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ABSTRACT
Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs.
Apart from facilitating gas accretion on to the central protostar, it must also impact on
the process of planet formation: directly through fragmentation, and indirectly through the
turbulent concentration of small solids. To understand the latter process, it is essential to
determine the dust dynamics in gravitoturbulent flow. For that purpose, we conduct a series
of 3D shearing box simulations of coupled gas and dust, including the gas’s self-gravity and
scanning a range of Stokes numbers, from 10 −3 to ∼0.2. First, we show that the vertical
settling of dust in the mid-plane is significantly impeded by gravitoturbulence, with the dust
scale height roughly 0.6 times the gas scale height for centimetre grains. This is a result of
the strong vertical diffusion issuing from (i) small-scale inertial-wave turbulence feeding off
the GI spiral waves and (ii) the larger scale vertical circulations that naturally accompany the
spirals. Second, we show that at R = 50 au concentration events involving submetre particles
and yielding order 1 dust-to-gas ratios are rare and last for less than an orbit. Moreover, dust
concentration is less efficient in 3D than in 2D simulations. We thus conclude that GI is not
especially prone to the turbulent accumulation of dust grains. Finally, the large dust scale
height measured in simulations could be, in the future, compared with that of edge-on discs
seen by ALMA, thus aiding detection and characterization of GI in real systems.

Key words: instabilities – turbulence – protoplanetary discs.

1 IN T RO D U C T I O N

Gravitational instability (GI) manifests within (almost) the entire
spectrum of astrophysical discs: from planetary rings and young
protoplanetary (PP) discs, to active galactic nuclei (AGNs) and
spiral galaxies. It redistributes angular momentum, thus enabling
accretion (both steady and bursty); it generates large-scale structure
in the form of dramatic spiral waves; and it regulates the frag-
mentation of the disc into bound objects such as planets (or stars).
The critical parameter governing the onset of GI is the Toomre Q
(Toomre 1964),

Q = csκ

πG�0
, (1)

where cs is the sound speed, κ the epicyclic frequency, and �0 the
background surface density. In a razor thin disc, linear axisymmetric
disturbances are unstable when Q < 1, though non-linear non-
axisymmetric instability can occur for a critical Q � 1. In PP discs,
this criterion translates to Mdisc � 0.1Mstar, where Mdisc and Mstar are
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the masses of the disc and central star. Depending on the speed of the
cooling process, the instability either forces the disc to fragment or
saturates in a gravitoturbulent state characterized by spiral density
waves (Gammie 2001; Rice et al. 2003, 2006; Durisen et al. 2007).

Indeed, large-scale ‘grand-design’ spirals have been observed
in several PP discs (e.g. Elias 2-27, WaOph 6, and MWC758)
and more disordered ‘streamers’ in FU Ori systems, structures
that might be attributable to GI (Liu et al. 2016; Dong et al.
2016; Pérez et al. 2016; Huang et al. 2018). But it should be
emphasized that only very massive, and thus very unstable, discs
(Mdisc > 0.25Mstar) generate observable structure: spirals associated
with more moderate gravitoturbulence may be too flocculent to be
detected with current facilities (e.g. Dong et al. 2015). On the other
hand, the presence or not of GI can be inferred from calculations
of Mdisc: recent surveys find that 50 per cent of class 0 and 10–
20 per cent of Class I sources might be unstable to GI (Tobin et al.
2013; Mann et al. 2015), though such estimates are problematized
by the difficulty in reliably determining these disc masses.

It has been pointed out that Class II and older discs possess masses
that are too small in comparison to those of observed exoplanetary
system, a fact that has tempted researchers to conclude that planets
form early (and/or most disc accretion occurs early) (Najita &
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Kenyon 2014; Manara, Morbidelli & Guillot 2018). This idea is
reinforced by the prevalence of ring structure in young discs (e.g.
HL Tau and GY 91), which are generally thought to be caused by
speedily formed planets (ALMA Partnership et al. 2015; Sheehan &
Eisner 2018). Taken together, these observations put forward the
case that GI is operating precisely when planet formation is active.
Hence it motivates us to look into the role (if any) GI assumes
during early planet formation in PP discs.

A first step is to establish the dynamics of intermediate size
(μm to m) dust grains when aerodynamically coupled to the
gravitoturbulent gas. A series of studies in 2D discs (Gibbons,
Rice & Mamatsashvili 2012; Gibbons, Mamatsashvili & Rice 2015;
Shi et al. 2016) reveal that GI spiral waves can entrain and aggregate
dust particles, thus facilitating their growth through the difficult mm
to m size range, in which various barriers exist. By enhancing their
densities, such aggregates may induce streaming instability (when
ρd � ρg) and/or gravitational collapse (e.g. Youdin & Goodman
2005; Cuzzi, Hogan & Shariff 2008; Bai & Stone 2010; Shi &
Chiang 2013; Simon et al. 2015; Yang, Johansen & Carrera 2017).
It is not guaranteed, however, that this aggregation works as well
in 3D stratified discs. Of particular concern are additional vertical
flows that may hinder dust sedimentation and/or the accumulation
of dust in spirals. Very strong spiral shocks induce hydraulic jumps
and accompanying fountains (Boley, Durisen & Pickett 2005)
but, in fact, (less violent) vertical flows accompany spiral waves
generically: recent high-resolution simulations by Riols, Latter &
Paardekooper (2017) and Riols & Latter (2018b) demonstrated
that GI spiral waves (i) are subject to parasitic instabilities that
produce small-scale inertial-wave turbulence, and (ii) induce co-
herent large-scale vertical circulations mediated by g modes. Both
flows are necessarily absent in 2D simulations, and also potentially
difficult to describe in global 3D simulations. Nonetheless, they
should critically influence the dynamics of dust. Assessing the
impact of these two types of flow is the main goal of this
paper.

Quite apart from planet formation, characterizing grain sedimen-
tation may bring new constraints on observed disc properties and aid
detection of GI in some discs. It is possible with ALMA to directly
measure the size of the dust layer from the continuum submillimetre
emission of structured discs (e.g. HL Tau, see Pinte et al. 2016) or
edge-on discs (e.g. HH30 and many others, see Louvet et al. 2018;
Duchene et al. 2019). A direct comparison of this size with that
measured in simulations could provide precious information on the
origin and nature of disc turbulence (Riols & Lesur 2018). Because
GI can develop strong supersonic motions, it is expected that the
settling process differs significantly from other types of turbulence
(for example, that driven by the magnetorotational instability or
the vertical shear instability, e.g. Fromang & Papaloizou 2006;
Picogna, Stoll & Kley 2018) and could leave a detectable imprint on
the vertical dust distribution. GI’s resistance to settling, however,
can only be assessed in 3D simulations of the type we present
here.

Another important question concerns the observable properties
of the spiral waves that GI triggers. While many spiral arms have
been observed in various PP discs, some, such as HL Tau, are
sufficiently massive to be GI unstable (Booth & Ilee 2020) and yet
do not show up spiral structure. One solution to this particular case
is to claim that the GI is not strong enough to generate detectable
‘grand-design’ spirals (see earlier). But it is also possible that the GI
dust structure (in particular those made of millimetre dust particles
traced by instruments like ALMA) differs significantly from the GI
gas structure. One way to decide on this issue is to understand the

relationship between characteristic GI features in the dust and in
the gas. Because of 3D vertical motions associated with the GI, it
is likely that the dust will at best exhibit a ‘blurred’ analogue of
large-scale gas structure.

Our aim in this paper is to revise previous 2D simulations,
which cannot describe the secondary vertical flows exhibited by
GI, and global 3D simulations, which usually cannot afford the
resolution to do so. For that purpose, we performed 3D shearing box
simulations of stratified discs including both self-gravity and dust,
using a modified version of the PLUTO code. The dust population is
approximated as a pressureless multifluid made of different particle
sizes, from a few hundreds of micrometres to decimetre. The back
reaction of the dust on the gas is taken into account, but not the
self-gravity of the dust itself. As a preliminary step, we use a very
simple cooling law of Newtonian form and neglect dust coagulation
or fragmentation. Note that simulations by Shi & Chiang (2013)
and Baehr & Klahr (2019) also explored dust dynamics in 3D
self-gravitating discs, but they did so in the fragmentation, not
gravitoturbulent, regime. In particular Baehr & Klahr (2019) found
that dust is efficiently collected into fragments and ultimately
collapse to form planetary cores.

Our main result is that GI turbulence forcefully resist the
vertical settling of intermediate size particle (mm to dm): the
quasi-steady dust layers we find possess scale heights comparable
to the gas scale height Hg. Motions associated with both large-
scale rolls and small-scale inertial-wave turbulence contribute to
the vertical diffusion of solids. Another important result is that
for the largest particle size probed (Stokes number of ∼0.16),
the dust does concentrate into thin filaments (as in 2D) but with
a dust-to-gas ratio ρd /ρg that barely exceeds one: 3D vertical
motions tend to inhibit concentration. Finally, in the horizontal
plane, although most of the grains are trapped into spiral waves, the
dust structures tend to be less sharp and more smeared out than
in 2D.

The paper is organized as follows: in Section 2, we describe
the model and review the main characteristics of the dust–
gas interaction. We also present the numerical methods used
to simulate the dynamics. In Section 3, we first characterize
the main properties of gravitoturbulent discs (without the dust
component) and explain how we initialize the simulations with
dust. We then calculate the steady-state dust scale heights, as
a function of Stokes number, and quantify the combined effect
of small-scale wave turbulence and vertical circulation in grain
lofting. We finally characterize the horizontal dust grain dynamics
associated with GI spiral waves motions, with an eye to the
competition between their horizontal ‘smearing out’ and their
entrainment in spirals. We conclude in Section 4 by discussing
the applications of our work to PP discs observations and planet
formation.

2 MO D E L A N D N U M E R I C A L S E T U P

2.1 Governing equations

To simulate gas and dust in gravitoturbulent flow, we use a local
Cartesian model of an accretion disc (the shearing sheet; Goldre-
ich & Lynden-Bell 1965; Latter & Papaloizou 2017), where the
differential rotation is approximated locally by a linear shear flow
−Sxey and a uniform rotation rate � = � ez, with S = (3/2) � for
a Keplerian equilibrium. We denote by (x, y, z) the radial, azimuthal,
and vertical directions. We refer to the (x, z) projections of vector
fields as their ‘poloidal components’ and to the y component as their
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‘toroidal’ one. We assume that the gas is ideal, its pressure P and
density ρ related by γ P = ρcs(T)2, where cs(T) is the sound speed
(allowed to vary) and γ the ratio of specific heats. In this paper, we
neglect molecular viscosity. We adopt a multifluid approximation
in which the gas and the dust interact and exchange momentum
through drag forces.

The evolution of gas density ρ, total velocity field v, and pressure
P obeys

∂ρ

∂t
+ ∇ · (ρv) = 0 (2)

∂v

∂t
+ v · ∇v + 2� × v = −∇	 − 1

ρ
∇P + γ d , (3)

∂P

∂t
+ ∇ · (P v) = −P (γ − 1)∇ · v − P

τc

, (4)

where the total velocity field can be decomposed into a mean shear
and a perturbation u:

v = −Sx ey + u. (5)

	 is the sum of the tidal gravitational potential induced by the
central object in the local frame 	c = 1

2 �2z2 − 3
2 �2 x2 and the

gravitational potential 	s induced by the disc itself, which obeys
the Poisson equation:

∇2	s = 4πGρ. (6)

The last term in the momentum equation (3) represents the acceler-
ation γ d exerted by the dust’s drag force on the gas (detailed below).
The cooling in the internal energy equation (4) is a linear function of
P with a typical time-scale τ c referred to as the ‘cooling time’. This
prescription is not especially realistic but allows us to simplify the
problem as much as possible. We also neglect thermal conductivity
and magnetohydrodynamical (MHD) effects. Note that we do not
include heating from stellar irradiation, which can impact on the
fragmentation threshold (Rice et al. 2011).

The dust is composed of a mixture of different species, charac-
terizing different grain sizes. Each species, labelled by a subscript
k, is described by a pressureless fluid, with a given density ρdk

and
velocity vdk

. The equations of motion for each species are:

∂ρdk

∂t
+ ∇ · (ρdk

vdk
) = 0, (7)

∂vdk

∂t
+ vdk

· ∇vdk
+ 2� × vdk

= −∇	 + γ gk
, (8)

with γ gk
the drag acceleration exerted by the the gas on a dust of

type k. The term in the gas momentum equation (3) is obtained by
conservation of total momentum:

γ d = − 1

ρ

∑
k

ρdk
γ gk

. (9)

The drag acceleration acting on particles of type k is given by:

γ gk
= 1

τ k
s

(v − vdk
). (10)

where τ k
s is the stopping time, a direct measure of the coupling

between dust particles and gas. In this study, we assume that dust
particles are spherical and sufficiently small that they are in the
Epstein regime (Weidenschilling 1977). For particles of radius ak

and internal density ρs (which should not be confused with the gas
or dust densities), the stopping time τ k

s is

τ k
s = ρsak

ρcs

. (11)

A useful dimensionless quantity to parametrize this coupling is the
Stokes number of the kth dust species

Stk = �τk
s . (12)

In what follows, for notational ease and because the meaning will
always be clear, we drop the subscript k and simply refer to the
‘St of a given species’. Also, if not stated otherwise, St denotes the
Stokes number in the mid-plane. We note that the effective Stokes
number in the disc atmosphere is larger than St, since it is inversely
proportional to the density in a stratified medium.

2.2 Stokes number and particle size

In this paper, we preferentially use the Stokes number rather
than particle size to describe the dust dynamics, since St is a
dimensionless quantity which does not depend on the disc properties
and geometry. Nevertheless, to make possible comparison with
observed systems, it is helpful to associate the Stokes number to a
grain size.

In the case of a self-gravitating discs with Q ∼ 1, hydrostatic
equilibrium dictates that the surface density

� ∼ ρ0Hg

√
2π ∼ cs�

πG
, (13)

where ρ0 is the mid-plane density and Hg � H is the self-gravitating
disc scale height. H is the standard hydrostatic disc scale height
cs0/� with cs0 the sound speed in the mid-plane of a hydrostatic
disc in the limit Q → ∞. Thus, combining these different relations,
and noting �2 = GM�/R3, we obtain:

St � a

(
ρs

√
2ππR2

2M�

)
(H/R)−1. (14)

The factor 1/2 comes from a rough estimate of Hg � H/2 based
on self-gravitating equilibria (see for instance appendix A of Riols
et al. 2017).

Next we assume that ρs = 2.5 g cm−3, the central object possesses
a mass equal to that of the Sun, and the disc aspect ratio of 0.1. These
assumptions present us the following conversion

St � 0.028
( a

1 cm

) (
R0

50 au

)2

. (15)

2.3 Numerical methods

The numerical methods are identical to those used by Riols et al.
(2017). Simulations are performed with the Godunov-based PLUTO

code, adapted to highly compressible flow (Mignone et al. 2007),
in the shearing box framework. The box has a finite domain of
size (Lx, Ly, Lz), discretized on a mesh of (NX, NY, NZ) grid points.
The numerical scheme uses a conservative finite-volume method
that solves the approximate Riemann problem at each inter-cell
boundary. It conserves quantities like mass, momentum, and total
energy across discontinuities. The Riemann problem is handled
by the HLLC solver, suitable for compressible flows. An orbital
advection algorithm is used to increase the computational speed
and reduce numerical dissipation. Note that the heat equation (4) is
not solved directly, since the code conserves total energy. Our unit
of time is �−1 = 1, our unit of length is H = 1, while the surface
density is fixed equal to � = 1.88.

For details of how we calculate the 3D self-gravitating potential
see Riols et al. (2017) and Riols & Latter (2018a). There the method
was tested on the computations of 1D stratified disc equilibria,
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as well as their linear stability, to ensure that the implementation
is correct (see appendices in Riols et al. 2017). The boundary
conditions are periodic in y and shear periodic in x. In the vertical
direction, we use a standard outflow condition for the velocity field
and assume an hydrostatic balance in the ghost cells for pressure,
taking into account the large-scale vertical component of self-
gravity (averaged in x and y). Finally, the boundary conditions for
the self-gravity potential, in Fourier space, are:

d

dz
	kx,ky

(±Lz/2) = ∓k	kx,ky
(±Lz/2). (16)

where 	kx,ky
is the horizontal Fourier component of the potential, kx,

ky are the radial and azimuthal wavenumbers, and k =
√

k2
x + k2

y .

This condition is an approximation of the Poisson equation in the
limit of low density.1 In addition, we enforce a density floor of
10−4 �/H which prevents the time-steps getting too small due to
evacuated regions near the vertical boundaries.

For the dynamics of the dust, we use the method described and
tested in appendix A of Riols & Lesur (2018). In brief, we employ
an HLL Riemann solver to compute the density and momentum
flux at cell interfaces. The drag force is treated as a source term
in the right-hand side of the second-order Runge–Kutta solver. The
time-step is adapted to take into account the dust dynamics and the
drag force. We implemented a version of the FARGO algorithm for
the dust components, which splits off their mean orbital advection
motion.

Finally, the gas is replenished near the mid-plane so that the total
mass in the box is maintained constant. The source term in the mass
conservation equation is

ς (z, t) = ρ̇i(t) exp

(
− z2

2z2
i

)
, (17)

where ρ̇i(t) is the mass injection rate and zi = H is a parameter that
corresponds to the altitude below which most mass is replenished.
We checked that the mass injected at each orbital period is negligible
compared to the total mass (less than 1 per cent per orbit). If not
explicitly mentioned, we enact a similar replenishment for the dust.
We checked also that this addition of mass does not change the main
results of the paper.

2.4 Simulation setup and parameters

The large-scale waves excited by GI have radial length-scales λ �
H Q. In order to capture these waves, while affording reasonable
resolution, we use a box of intermediate size Lx = Ly = 20 H

where H = cs0/�. The vertical domain of the box spans −3 H and
3 H . We use various resolutions, from 3 to 26 points per H in the
horizontal directions. For all simulations presented in this paper, the
heat capacity ratio is fixed at γ = 5/3 and the cooling time at τ c =
20�−1.

When running GI simulations with gas only, we start from a
polytropic vertical density equilibrium, computed with an initial
Toomre Q slightly larger than 1. The calculation of this equilibrium
is detailed in the appendix of Riols et al. (2017). Non-axisymmetric
density and velocity perturbations of finite amplitude are injected
to trigger the turbulent state. For the dust runs, the initialization is

1Indeed if the density is reduced to zero (vacuum condition), the Poisson

equation is simply d2

dz2 	kx,ky − k2	kx,ky = 0. which has solutions ∝ e−kz

when z → +∞ and ∝ ekz when z → −∞

detailed in Section 3.2: we use Stokes number between 0.0016 and
0.16 and initial dust-to-gas ratio of 0.0035 for each dust species.

2.5 Diagnostics

To analyse the statistical behaviour of the turbulent flow, we define
the standard box average

〈X〉 = 1

V

∫
V

X dV , (18)

where V = LxLyLz is the volume of the box. We also define the
horizontally averaged vertical profile of a dependent variable:

X(z) = 1

LxLy

∫ ∫
X dxdy. (19)

We also introduce the cross-correlation � of two functions (inte-
grated or averaged over z)

f � g = 1

LxLy

∫ ∫
f (x ′ + x, y ′) g(x ′, y ′)dx ′dy ′ (20)

3 SI MULATI ON R ESULTS

3.1 Hydrodynamical gravitoturbulence

Before we include the dust components, we first compute pure
gaseous gravitoturbulent states similar to those of Riols et al. (2017)
in the shearing box for different resolutions (from 3 to 26 points per
H in the horizontal directions). These serve as our initial conditions
for the multifluid runs displayed in the following subsections.

We start by analysing some properties of these states. The strength
and saturation of the gravitoturbulence is fixed by the cooling time
τ c, the key control parameter. In such flows, the time-averaged stress
to pressure ratio follows the Gammie (2001) relation:

α � 1

q�(γ − 1)τc

= 1

�τc

(γ = 5/3, q = 3/2) (21)

In this paper, we focus on the case τc = 20 �−1. The reader may
refer to Riols et al. (2017) and Riols & Latter (2018a, section
3.1) to obtain a detailed analysis of related simulations and more
information about the turbulent properties. For τc = 20 �−1, the
turbulence is supersonic, highly compressible, and characterized by
large-scale spiral density waves, particularly strong in this cooling
time regime. On top of these structures, small-scale motions driven
by a parametric instability involving inertial waves attack the spiral
wave fronts (see Riols et al. 2017). Note that the resolution required
to capture this instability is about 10 points per H. However, we
emphasize that even for a resolution of 26 points per H, the smallest
scales of the parasitic inertial modes are probably not resolved,
given that it favours the smallest of scales.

An important quantity to characterize and quantify the diffusion
of solid particles in turbulent flows is the rms velocity of the gas
urms(z) = (u2)1/2. We show in Fig. 1 the vertical profiles of the
horizontally averaged rms velocity in the x- and z-directions, for
runs with a resolution of 26 and 6.5 points per H in the horizontal
directions (respectively NX = NY = 512, NZ = 128 and NX =
NY = 128, NZ = 96). Under some approximations, these quantities
can be related to the diffusion coefficients in the radial and vertical
directions and are important to characterize the level of dust settling
(see Section 3.3.2). We show that the vertical and radial rms velocity
increases with z. This profile results from the combination of the
poloidal roll motions that accompany spiral waves at z � H (see
Riols & Latter 2018b), and small-scale inertial modes attacking
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Figure 1. Mean vertical profiles of the gravitoturbulent rms velocities,
normalized by cs0 . The quantities are averaged over time and horizontal
plane, with resolution 512 × 512 × 128 (left) and 128 × 128 × 96
(right). The time average is done for 40 �−1 for the high-resolution run
and 100 �−1 for the low-resolution run. The dashed vertical lines delimit
the self-gravitating disc scale height Hg � 0.44H.

these spirals at all altitudes, but with some predominance at z �
H. For a given altitude, the radial and vertical rms velocities are
stronger at the higher resolution. We interpret this difference as
a consequence of the small-scale inertial waves, triggered at high
resolution, but marginally excited at resolution NX = NY = 128.

3.2 Initialization of the dust and settling time

In order to simulate the dust motions unproblematically, we start
with the gravitoturbulent state presented above, and introduce grains
with initial distribution at t = 0

ρd (t = 0) = ρ0 exp

(
− z2

2H 2
d0

)
, (22)

with Hd0 = 0.5 H and ρ0 a constant evaluated so that the ratio of
surface densities �d /� is 0.0035 for a single species (or size). The
dust velocity is initially unperturbed Keplerian motion. We first
conducted simulations at low and intermediate resolution (NX = NY

≤ 256), for which we integrate simultaneously the motion of five
different grain sizes with Stokes numbers in the mid-plane 0.16,
0.06, 0.016, 0.006, and 0.0016. We then computed two distinct
high-resolution (NX = NY = 512) simulations, initialized from the
same gravitoturbulent state, the first one containing particles with
Stokes numbers 0.016 and 0.006, the other containing particles with
St = 0.16 and 0.06. Also, for simplicity, the dust mass distribution
is initially independent of the particle size, which should not the
case in real PP discs, of course. However we checked that the
dust back reaction on to the gas has no important impact on the
simulation outcome (see Appendix B). The initial mass distribution
is then irrelevant for the dust dynamics in our problem and one can
re-normalize the dust density by any given value.

Note that for a given size, the dust-to-gas ratio is not necessarily
realistic, though the total dust surface density is 0.0175 the gas
surface density, which is not unreasonable.

Once the dust is initialized, its time and horizontally averaged
density profiles converge toward a steady state after a characteristic
period of time, dependent on the Stokes number. Fig. 2 (top and

Figure 2. Top and centre panels: space–time diagram (z, t) showing
the dust density distribution, averaged in x and y, for St = 0.006 and
0.06, respectively. Bottom panel: dust density profiles averaged in time
and normalized to the mid-plane density for St = 0.006 and 0.06. As a
comparison, the green dashed curve describes the gas density profile.

centre panels) shows the time evolution of the averaged dust density
profile (in x and y) for St = 0.006 and 0.06, computed from
the high-resolution runs. Initially, large grains (St = 0.06) fall
towards the mid-plane very rapidly, within a time proportional to
�−1/St ∼ 15 �−1 (Dullemond & Dominik 2004). Afterwards, tur-
bulent diffusion and mixing grow important and ultimately balance
the gravitational settling. The mean vertical profile of the smaller
grains ( St = 0.006) does not seem to evolve significantly during
the simulation because the dust layer is already close to equilibrium
initially. However, as the space–time diagram makes clear, on short
times the vertical profiles are quite dynamic and, in the case of small
dust especially, consist of quasi-periodic vertical compressions and
rarefactions, which are clearly associated with the spiral wave
dynamics.

Note that the high-resolution simulations are run for a relatively
short time (�100 �−1) due to the large computing resources they
demand. Nevertheless, this time remains longer or comparable to
the settling time for most of the Stokes numbers probed. Lower
resolution simulations are run for ∼150 �−1 and we checked that
no significant variation of the dust dynamics occurs during this time.

3.3 Dust settling and vertical dynamics

3.3.1 Vertical density profiles and scale heights

We characterize the long-term dust vertical equilibrium and estimate
its typical scale height as a function of the Stokes number. Fig. 2
(bottom panel) shows the mean vertical density profiles, averaged
in time (over 130 �−1 for St = 0.006 and 60 �−1 for St = 0.06)
and obtained in the high-resolution runs (512 × 512 × 128). For
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4636 A. Riols et al.

Figure 3. Mean ratio of dust-to-gas height scale Hd/Hg as a function
of the Stokes number for different resolution, measured from numerical
simulations, with the definition given by equation (23). In the high-
resolution runs, we add error bars whose width corresponds to the standard
deviation from the time-averaged Hd/Hg. The purple diamonds account for
a simulation without replenishment of the dust. The black dotted line is the
theoretical prediction from the simple advection-diffusion model described
in Section 3.3.2 using a diffusion coefficient Dz = 0.013.

comparison we superimpose the gas vertical density profile (dashed
green line); though not strictly a Gaussian, this curve can be fitted
rather well with one, with width Hg � 0.44H.

The dust density profiles can also be approximated by Gaussians
but with a width smaller than Hg. We define the dust scale height
Hd (St) as the altitude z such that

ρd (z = Hd ) = ρd (z = 0) e− 1
2 � 0.6 ρd0. (23)

For each species, we measure this scale height and display the time-
averaged dust-to-gas ratio Hd/Hg in Fig. 3 for various resolutions.

First we see that, independently of resolution, the size of the
dust layer increases with decreasing Stokes number. This is to
be expected, because small dust particles are less sensitive to
gravitational settling and will tend to follow the turbulent gas
motion. At larger St, the ratio Hd/Hg depends on St−1/2, a result that
has been obtained in other simulations coupling dust and turbulent
gas (Fromang & Papaloizou 2006; Okuzumi & Hirose 2011; Zhu,
Stone & Bai 2015; Yang, Mac Low & Johansen 2018; Riols & Lesur
2018). This dependence can be understood, in a rather crude way,
within the framework of a simple diffusion theory (Morfill 1985;
Dubrulle, Morfill & Sterzik 1995, see Section 3.3.2), where the
vertical equilibrium is set by the balance between the gravitational
settling and turbulent diffusion.

Second, the absolute values of Hd/Hg increases with the grid
resolution. The reason for this dependence may be attributed to
the difficulty in simulating the parametric instability, which excites
small-scale modes that will enhance the diffusion of dust particles.
Lower resolution runs do not adequately capture these small-scale
modes and hence the diffusion they bring to bear on the dust. Note,
however, that convergence does seem to be achieved for a resolution
greater than 13 points per H (the cases with 13 or 26 points in the
horizontal directions showing no major difference in the dust scale
height).

Third, the size of the dust layer is large for mm to cm particles (St
� 0.0016 and 0.016), greater than 0.85Hg and 0.6Hg, respectively.
This is very similar to what magnetorotational turbulence with a
zero-net vertical field can achieve (Fromang & Papaloizou 2006).

These layer thicknesses are interesting since they can be directly
measured in cases where the disc is observed edge-on. Indeed, the
spatial resolution of instruments like ALMA is sufficient to resolve
vertical scales less than H at distances of a few tens of au (see
discussion in Section 4).

Finally, as mentioned already in Section 3.2, Fig. 2 indicates that
the dust mid-plane density varies quasi-periodically (with period
of a few �−1). Concurrently, the dust layer undergoes vertical
compression and expansion, which are clearly correlated with the
variations of the gas mid-plane density. Inevitably these oscillations
lead to variations in the dust scale height. We thus quantify, for the
high-resolution runs, the typical deviations of Hd (denoted δHd)
and the ratio Hd/Hg (denoted δH ∗

d ) from their temporal averages.
We find that δHd � 0.19, 0.16, 0.15, and 0.13 Hd , respectively
for St = 0.16, 0.06, 0.016, and 0.006. In the same order, we
find δH ∗

d = 0.17, 0.12, 0.1, and 0.07 (Hd/Hg). The last values are
used to calculate the error bars in Fig. 3. Thus, the deviations (or
oscillations) remain relatively small compared to the mean values
and will be probably undetectable by current instruments measuring
the dust scale height.

3.3.2 Settling model and diffusion coefficients

We next apply a simple diffusion model (Dubrulle et al. 1995) to
explain the equilibrium dust scale heights measured in the previous
section. The model has its limitations; in particular, it assumes that
turbulent eddies possess sizes much less than H, whereas the GI
vertical rolls occur on scale similar or larger than H. Nevertheless,
assuming that the theory is marginally applicable, we find (see
Appendix A) that the dust-to-gas scale height ratio is

Hd

Hg

=
(

1 + St �fc(s + 1) H 2
g

Dz

)−1/2

. (24)

with fc ≈ 1.3 a coefficient related to the compressibility of the flow,
s � 2.77 a coefficient related to the settling due to self-gravity
and Dz � 〈v2

z 〉 τcorr a constant and uniform diffusion coefficient
encapsulating turbulent transport.

We could, of course, apply equation (24) to Fig. 3 and find the
Dz predicted by the theory in each case. Instead, we calculate Dz

directly from the simulations and subsequently check how well
the diffusion theory does in reproducing Fig. 3. We compute the
vertical diffusion coefficient from the high-resolution simulation
data, by averaging in time over 100 �−1 the quantity

Dz = − 〈δρd δvzd
〉〈

ρ ∂
∂z

(
ρd

ρ

)〉 , (25)

(see Appendix A). Fig. 4 shows Dz calculated this way for two
different Stokes numbers St = 0.016 and 0.006, as a function of
z. In the mid-plane we find Dz � 0.013 roughly for both, but
note that Dz increases with altitude z, following the rms vertical
velocity in Fig. 1. Despite this increase, the hypothesis of constant
Dz does hold for z � Hg. If next we insert this constant numerical
value in place of the diffusion coefficient in equation (24), we
obtain a ratio Hd/Hg that reproduces that measured in the high-
resolution simulation (see dotted black line in Fig. 3). We hence
conclude that, to a first approximation, the several turbulent gas
flow features acting on the dust work together diffusively, at
least on long times. (On short scales, of course, the situation is
more interesting and dynamic, as the top two panels of Fig. 2
attest.)
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Dust in gravitoturbulent protoplanetary discs 4637

Figure 4. Vertical diffusion coefficients measured in the high-resolutions
simulations with NX = NY = 512. The blue and orange curve are respectively
computed for St = 0.016 and 0.006. The green curve is the diffusion
coefficient computed by filtering out all the modes ky > 2π /Ly in the
calculation of the averaged product 〈δρd δvzd

〉. This gives an estimate of
the diffusion produced by large-scale spiral waves only. Note that the
small asymmetry about the mid-plane is potentially due to the fact that
the averaging procedure is done over a rather short time (∼100 �−1).

3.3.3 The relative contributions of vertical rolls and small-scale
turbulence to diffusion

In the previous subsection, we demonstrated that the
gravitoturbulence can effectively halt the settling of dust
grains. Now we determine what features of the flow are responsible
for this vertical diffusion. In particular, which is more important:
small-scale inertial-wave turbulence (difficult to simulate because
of steep resolution requirements), or large-scale vertical rolls
(somewhat more easy to simulate, especially in global set-ups)?

We begin by addressing the large-scale vertical circulation. As
shown by Riols & Latter (2018b), in stratified atmospheres with a
mean entropy gradient, these motions are quite generally triggered
by baroclinic effects and are composed of a pair of counter-
rotating rolls of size �Hg, travelling in the horizontal direction
with the wave. In severe spiral shocks, vertical flows arise also from
hydraulic jumps (Boley and Durisen 2006).

In Fig. 5, we show the gas distribution in the horizontal plane and
the corresponding dust distribution in a poloidal plane (y = −9H)
for St = 0.06 at three different times. At the location of each spiral
wave, the dust distribution forms vertical arcs that locally reach z �
H. These arcs are clearly the result of dust lifted up by the large-scale
rolls. Note that these arcs are not necessarily symmetric with respect
to the wave front and are stretched in a privileged direction. Clearly,
we see a dynamic transport of dust vertically, but it is not guaranteed
that, cumulatively, these arcs lead to an appreciable average vertical
diffusion of dust (and thus impact on the ratio Hd/Hg). Indeed the
interarm spiral regions are highly sedimented at the same time the
arcs are active.

To make further progress and to develop a more quantitative
approach, we remove the contribution of axisymmetric modes and
non-axisymmetric modes with ky > 2π /Ly in the calculation of the
vertical diffusion coefficient Dz. This is equivalent to filtering out
the small-scale inertial-wave turbulence and keeping only the large-
scale spiral vertical rolls (with ky = 2π /Ly) in the product 〈δρd δvzd

〉.
The related diffusion coefficient Dzfilt is shown in dashed green in
Fig. 4. We see that the filtered quantity contributes 30 per cent of
the diffusion coefficient in the mid-plane (Dzfilt � 0.0035) and rises
to 50 per cent in the corona. We conclude from this that both the
spiral vertical motions and the small-scale inertial waves contribute
to the dust diffusion.

Figure 5. Snapshots of the gas density in the horizontal plane and the dust
density in the poloidal plane for St = 0.06 and for three different times (from
top to bottom : 27, 31, and 51 �−1). The dashed lines in the former denote
the location of the poloidal planes.
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In fact, this result may have been expected from Fig. 3, which
shows the dependence of Hd/Hg on resolution. For the lowest
resolution (NX = NY = 64), the small-scale turbulence is not
properly resolved and its impact on the dynamics diminished, as a
consequence. Thus the vertical diffusion is accomplished primarily
by the vertical rolls, and indeed we see immediately that the dust
scale height drops and is well approximated by a theory using the
filtered diffusion coefficient Dzfilt . At better resolution the small-
scale turbulence is better described, vertical diffusion increases as
a result, and the dust thickness increases.

3.4 Dynamics in the horizontal plane

3.4.1 Concentration events

In this section, we analyse the statistics of concentration events,
especially those that lead to high dust-to-gas ratios ρd/ρ � 1. These
are of importance because, in such dust-rich gas, the streaming
instability may be triggered or even the gravitational collapse of the
dust itself, either inaugurating a crucial stage in the planet formation
process (see Introduction).

Before we present this subsection’s results we must emphasize
that they are resolution dependent: specifically, the better the
resolution the more likely the dust is to be concentrated. This
dependence probably issues from two causes: (i) some of the
properties of our simulated small-scale inertial-wave turbulence are
not converged with respect to resolution, because the parametric
instability can inject energy into extremely short scales, shorter
than our grid lengths, and (ii) the violation of the pressureless
fluid approximation for the dust in high-resolution runs, because
the stopping time may become longer than the turbulent turnover
time on the grid. Certainly, the latter effect will artificially enhance
concentration events, and thus our high-resolution results may best
be understood as providing upper bounds on concentration. Perhaps
more robust are the relative trends observed and the differences
between 2D and 3D simulations.

First, we show in Fig. 6 the time evolution of the maximum
concentration ρd/ρ in the box. This concentration, on average,
increases with Stokes number, which is expected from physical
arguments. Small grains mostly follow the gas motion, whereas
particles with Stokes number 0.16 can drift more easily toward
pressure maxima. Fig. 6 shows that in the high-resolution runs, and
for St = 0.16, the concentration of dust rarely exceeds 1 during the
first tens of orbits. Obviously such events are even less frequent for
small particles but can still occur (e.g. at t = 10 and t = 110 �−1 for
St = 0.006). However all these events are short and never last more
than an orbit. Note that in our low-resolution simulation, significant
concentration events do not occur (see discussion above).

To further investigate the occurrence of particle concentration,
we show in Fig. 7 the probability distribution function f(χ ) for
concentration events, computed for two different Stokes numbers
in the mid-plane region (|z| ≤ 0.4H). If we set χ = ρd/ρ, the
function f(χ ) is obtained by counting the number of cells within the
mid-plane that contain a given concentration χ , at any given time.
The function is averaged in time and then normalized so that its
integral over the domain of χ considered is 1. We find again that
the largest Stokes number St = 0.16, which corresponds to a grain
of decimetre size, favours higher dust concentration. The function
has a small tail at χ � 1, but the probability of χ = ρd/ρ � 1 is
almost zero and concentration events are very rare.

In the lower panel of Fig. 7, we compare this result with 2D
planar simulations possessing the same Stokes numbers, cooling

Figure 6. Maximum dust concentration in the box for different Stokes
numbers. These are computed for resolutions 128 × 128 × 96 (top panels)
and 512 × 512 × 128 (middle and lower panels).

Figure 7. Probability distribution functions f for concentration events. The
top panel shows f(χ ) computed from 3D simulations, where χ = ρd/ρ. The
bottom panel shows f(χ

′
) associated with 2D simulations (in green) and 3D

simulations (in red) where χ
′ = �d/�. The dotted lines are for St = 0.06

and the solid lines are for St = 0.16.
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Dust in gravitoturbulent protoplanetary discs 4639

Figure 8. Left-hand panels: snapshots of gas pressure in the mid-plane at two different times. The top panels are taken at t = 48 �−1, while bottom panels
are taken at t = 50 �−1 when the dust-to-gas ratio reaches a local maximum (we remind the reader that top and bottom are different simulations with different
grain size, but with the same initial conditions for the gas). Right-hand panels correspond to the dust density in the mid-plane for St = 0.016 (top) and St =
0.16 (bottom).

time, and initial surface densities. Note that the 2D simulations are
performed without a smoothed potential in the vertical direction,
and thus solve

∇2	s = 4πGρ(x, y)δ(z). (26)

with δ the Dirac function. To make the comparison possible, we
compute the probability distribution function for the ratio of surface
densities χ

′ = �d/�. The result is that the tail of the distribution
function in 2D simulations extends to larger χ

′
, and hence stronger

concentration events are more likely. One hence concludes that
the inclusion of additional 3D flows works against the formation
of dense columns of dust, probably via a combination of vertical
redistribution of dust by the vertical rolls and small-scale inertial-
wave turbulence.

3.4.2 Grain distribution within spiral waves

Although the concentration of subdecimetre dust grains seems
to barely reach 1, it is of interest to determine how the dust is
distributed horizontally. We find that grains are mostly concentrated
into the pressure maxima associated with spiral waves, in agreement
with previous work (Gibbons et al. 2012, 2015; Shi et al. 2016).
To illustrate this result, we show in Fig. 8 two snapshots of
the gas pressure and dust density taken from the high-resolution
simulations. The upper right panel corresponds to St = 0.016

at a random time, while the lower right panel corresponds to
St = 0.16 at t = 50 �−1 when the concentration reaches a local
maximum ρd/ρ � 1. Clearly, small particles are well coupled to
the gas and therefore display a similar density structure. Particles
possessing the longer stopping time St = 0.16 concentrate in thin
filaments, located within the spiral waves, and exhibit densities
two or three order of magnitude greater than the background dust
density.

To be more quantitative, we analyse the typical length-scales
of the gaseous and dust structures in the radial direction. For that
purpose, we introduce the two auto-correlation functions ���(x)
and �d��d(x) (see definitions in Section 2.5), averaged in time
during the course of the simulation. The typical width of these
functions (which is taken as 2x with x corresponds to the radius of
half their peak amplitude) account respectively for the size of the
gas spiral arms and the dust structures in the radial direction.

Fig. 9 (top) shows ��� for different 2D and 3D runs. For a
similar box size Lx = 20H, the spiral arms obtained in 2D are two
times thinner than those obtained in 3D. For reference, we denote
by λ2d and λ3d � 2H these different widths. Fig. 9 (centre panel)
shows the autocorrelation functions of the dust �d��d for 2D and
3D runs and for Stokes numbers St =0.06 and 0.16. Clearly 2D dust
structures are much thinner than those in 3D. The dust filaments
in 2D have length-scale between 0.18 and 0.25λ2d, while in 3D
the structures are much wider with typical size between 0.4 and
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Figure 9. Top and centre panels are, respectively, the autocorrelation
functions of the gas and the dust surface density in the radial direction.
Bottom panel shows the cross-correlation between gas and dust surface
density in the radial direction. Each correlation function is averaged in time.

0.8λ3d (comparable to the gas spiral arms). We checked also that
the dust is concentrated into thinner structures when the Stokes
number increases, which is expected.

Finally, to understand the distribution of dust relative to the gas,
we introduce the cross-correlation function �d�� displayed in the
bottom panel of Fig. 9. Clearly, for all cases, the cross-correlation
has a maximum at x = 0 suggesting that the dust is trapped,
on average, at the density maxima of the gas spiral waves. More
interestingly, the correlation is higher in 2D than in 3D and the
typical correlation length is smaller in the 2D case (�0.5λ 2d in 2D
versus �2λ3d in 3D). Physically this means that on average in 3D,
diffusion of dust is enhanced and counteracts the process of grain
accumulation inside spiral waves.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we simulated the dyamics of dust in gravitoturbulent
accretion discs. Our special focus was on the action of secondary
3D flows associated with the spiral waves (vertical rolls and inertial-
wave turbulence), and thus we employed high-resolution vertically
stratified shearing boxes, using the code PLUTO.

First, we showed that both small-scale GI motions and large-scale
vertical rolls associated with spiral waves act to efficiently diffuse
the grains in the vertical direction. We calculated the steady-state
dust scale heights as a function of Stokes number, and showed that a
simple diffusion model (like that employed by Dubrulle et al. 1995)
is sufficient to explain the scale heights measured in simulations.
Note that the Schmidt number, the ratio of turbulent viscosity to
particle diffusion coefficient,

Sc = νt/Dz = αH 2�/Dz = H 2/(q(γ − 1)τcDz), (27)

[assuming equation (21) for α] is of order 4, twice that measured in
the radial direction in 2D simulations (Shi et al. 2016). Overall, we
find that GI significantly impedes the settling of intermediate size
grains: quasi-steady dust scale heights are roughly half or more the
accompanying gas scale height. This is perhaps the most interesting,
and most robust, result in this paper.

Second, we studied the dynamics in the horizontal direction and
found that, on average, concentration of grains into pressure maxima
(i.e spiral waves) is less pronounced in 3D than in 2D, although
small-scale filamentary structures embedded in the spiral waves still
occur. The ratio ρd/ρ never exceeds 1 and transient concentration
events possess time-scales that barely reach an orbit for grains below
the decimetre size. We stress, however, that these results suffer from
resolution non-convergence, issuing either from our fluid model for
the dust or the difficulty in simulating the small-scale turbulence.

Lastly, we showed that the typical horizontal length-scale of dust
spiral structure in 3D is longer than that of gas spiral arms for St
� 0.2, and in particular significantly longer than in comparable 2D
runs. This suggests that additional 3D flows act to diffuse the grain
in the radial direction and prevent its concentration into the pressure
maxima. In other words, the secondary vertical rolls and small-scale
inertial turbulence help ‘blur’ the signature of the gas’s spiral waves
in the horizontal dust distribution.

Our results have several implications for young and massive PP
discs and their observations. First, they invite us to reassess the con-
clusions of previous 2D studies on the formation of planetesimals by
GI (Gibbons et al. 2012, 2015; Shi et al. 2016). 3D flows disfavour
the concentration of grains, via their retardation of vertical settling
and via radial diffusion. Consequently, these flows indirectly inhibit
the streaming instability acting on centimetre to decimetre sizes
(Youdin & Goodman 2005) and the direct gravitational collapse of
such grains.

Second, and on the other hand, the inefficient sedimentation
of submillimetre particles could help us infer the existence of
gravitoturbulence in the outer radii of PP discs. At these radii,
non-ideal effects, in particular ambipolar diffusion, is believed to
quench the magnetorotational instability (Fleming, Stone & Hawley
2000; Sano & Stone 2002; Wardle & Salmeron 2012; Bai & Stone
2013; Lesur, Kunz & Fromang 2014; Bai 2015) and prevent any
form of turbulence originating from MHD effects. Thus a low level
of settling measured in observed discs is likely to be induced by
hydrodynamic turbulence such as GI (or the VSI if sufficiently
strong, see Stoll & Kley 2016; Lin 2019). In the coming years, the
radio-interferometry of ALMA will be able to study a large sample
of ‘edge-on’ discs with sufficient resolution to measure the dust
scale height in these systems. The comparison between these scale
heights and those simulated will help us assess the presence of GI
in these discs.

Finally, the 3D flows accompanying spiral arms in GI could
have a direct impact on the scattered infrared luminosity measured
from observations. We have shown that small dust particles (with
stopping times much less than �−1) are lofted efficiently above
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the spiral patterns at the disc surface, and also mixed in the upper
layers by small-scale turbulence. As a result, the surface emission
properties of the disk will be altered.
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APPENDI X A : SETTLI NG MODEL

We use here the simple diffusion theory of Dubrulle et al. (1995) to
estimate the dust scale height in gravitoturbulence. In this model, it is
assumed there is some ‘small-scale’ turbulence, with a characteristic
horizontal length-scale, a characteristic vertical length-scale �H,
and a time-scale of order an orbit. In addition, there is a large-scale
mean component that varies on long times, much longer than an
orbit, and exhibits variations only in z, of an order the disc scale
height, H.

We introduce fast variables x′ and t
′
, which vary on the turbulent

scales, and slow variables z and t, which vary on the long mean scales
(see Latter & Balbus 2012). Next all quantities are decomposed into
mean and fluctuating parts

ρd = ρd + δρd ; v = v + δv; vd = vd + δvd , (A1)

with the mean parts depending only on the slow variables and the
fluctuating parts depending on both slow and fast variables. To
formally distinguish the two components we introduce the average
f = ∫

f dx′dt ′, which integrates over sufficient turbulent length-
and time-scales so that f only depends on the slow variables, where
f is any field and δf is the fluctuating component of that field.

The averaged mass conservation equation (7) can be written as:

∂ρd

∂t
+ ∂

∂z
(ρd vz + δρd δvzd

+ ρd �vz) = 0, (A2)

where �v = vd − v is the drift velocity between dust and gas. The
first term in the z-derivative corresponds to the advection stretching
of dust by the mean vertical gas flow (wind), which appears to be
negligible in our numerical simulations. The second term is the
correlation of turbulent fluctuations which is approximated by a
diffusion operator in Dubrulle’s theory. The third term accounts
for the mean vertical drift of dust due to gravitational settling
(including the self-gravity of the disc). Using classical assumptions,
detailed in section 5.1.2 and sppendix B of Riols & Lesur (2018),
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in particular the terminal velocity approximation, it is possible to
recast equation (A2) in the useful form of an advection-diffusion
equation:

∂ρd

∂t
= ∂

∂z

[(
z�2 + d	s

dz

)
τs ρd

)
+ ∂

∂z

[
Dz ρ

∂

∂z

(
ρd

ρ

)]
,

(A3)

where Dz � 〈v2
z 〉 τcorr > 0 is the diffusion coefficient, with τ corr the

correlation time of the turbulent eddies. Note that the horizontally
averaged Stokes number τs = St�−1ρ0/ρ is slightly different from
St�−1ρ0/ρ. Due to gas density fluctuations associated with GI,
there is a factor fc � 1.3 difference between the two quantities.
This factor is obtained from simulations by averaging in x and y the
inverse of the gas density. We finally assume that the gas density
can be modelled by a Gaussian ρ = ρ0 exp (− z2

2H 2
g

) with mid-plane

ρ0 = 1.57 and Hg = 0.44H. This hypothesis is not too far from
reality for Q � 1. Under this assumption, we approximate d	s/dz
� sz�2 with s = 2.77 in the limit z � Hg.

The equilibrium solution of equation (A3) is

ρd (z) = ρd0 exp

(
− z2

2H 2
g

)
exp

⎛
⎜⎝−

∫
St �fc(s + 1) z e

z2

2H2
g

Dz(z)
dz

⎞
⎟⎠ .

(A4)

For uniform diffusion coefficient Dz and z � Hg, this gives:

ρd (z) � ρd0 exp

(
− z2

2H 2
d

)
(A5)

with
Hd

Hg

=
(

1 + St �fc(s + 1) H 2
g

Dz

)−1/2

. (A6)

The distribution is Gaussian and the dust scale height tends towards
unity in the limit of small St. For larger values (but potentially still
<1), the ratio may exhibit the scaling St−1/2.

APPENDIX B: SIMULATION W ITHOUT BAC K
R E AC T I O N

We show in this appendix the results of a simulation without the dust
back reaction on to the gas. This simulation has been run for 45�−1

with resolution of 26 points per H in the horizontal direction and
contains two species with St = 0.06 and 0.16. We aim to compare
this with other simulations including the back reaction (and same
setup and Stokes numbers). First we show in Fig. B1 the dust
density profile (averaged in t, x, and y). For both Stokes numbers,
we find that the profiles are almost indiscernible from each other.
This means that the settling process is unaffected by the dust back
reaction.

To go further, we show in Fig. B2 the probability distribution
function f(χ

′
) of concentration events (see Section 3.4.1 for details

about its calculation), computed for our two different Stokes
numbers, in the case with and without back reaction. Again we
see only marginal differences between the two cases suggesting
that the dust back reaction does not interfere too much with the
process of dust concentration and clumping. A slight deviation is
however seen at large χ

′ = �d/� for St = 0.06 (in the tail of the
distribution) but this is expected since the number of events is rare

and the statistics not very good at large concentration χ
′
(given the

time of the simulation).

Figure B1. Dust density profiles (averaged in time, x and y) for two different
Stokes number, with and without back reaction.

Figure B2. Probability distribution function for concentration events as a
function of χ

′ = �d/�. The dotted lines are for St = 0.06 and the solid lines
are for St = 0.16. We compare the cases with (red) and without (blue) dust
back reaction.
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