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ABSTRACT
The formation of interstellar complex organic molecules is currently thought to be dominated
by the barrierless coupling between radicals on the interstellar icy grain surfaces. Previous
standard density functional theory (DFT) results on the reactivity between CH3 and HCO on
amorphous water surfaces showed that the formation of CH4 + CO by H transfer from HCO to
CH3 assisted by water molecules of the ice was the dominant channel. However, the adopted
description of the electronic structure of the biradical (i.e. CH3/HCO) system was inadequate
[without the broken-symmetry (BS) approach]. In this work, we revisit the original results by
means of BS-DFT both in gas phase and with one water molecule simulating the role of the
ice. Results indicate that the adoption of BS-DFT is mandatory to describe properly biradical
systems. In the presence of the single water molecule, the water-assisted H transfer exhibits
a high energy barrier. In contrast, CH3CHO formation is found to be barrierless. However,
direct H transfer from HCO to CH3 to give CO and CH4 presents a very low energy barrier,
hence being a potential competitive channel to the radical coupling and indicating, moreover,
that the physical insights of the original work remain valid.

Key words: astrochemistry – molecular processes – ISM: clouds – ISM: molecules.

1 IN T RO D U C T I O N

Interstellar complex organic molecules (iCOMs) are usually defined
as compounds of 6–13 atoms in which at least one is C (Herbst &
van Dishoeck 2009; Ceccarelli et al. 2017; Herbst 2017). They are
complex only from the astronomical point of view, while they are
the simplest organic compounds according to terrestrial standards.
Since terrestrial life is based on organic chemistry, the existence of
iCOMs is of fundamental importance to ultimately understand the
possible astrochemical origins of life.

iCOMs are widespread in the Universe. They have been detected
in a great variety of astrophysical objects like star-forming regions
(e.g. Rubin et al. 1971; Cazaux et al. 2003; Kahane et al. 2013;
Mendoza et al. 2014; López-Sepulcre et al. 2015; Belloche et al.

� E-mail: juan.enrique-romero@univ-grenoble-alpes.fr (JER); albert.
rimola@uab.cat (AR)

2017; Ligterink et al. 2017; McGuire et al. 2018), in the circumstel-
lar envelopes of AGB stars (Cernicharo, Guélin & Kahane 2000),
shocked regions (Arce et al. 2008; Codella et al. 2017; Lefloch
et al. 2017), and even in external galaxies (Muller et al. 2013).
Despite their presence has been known for decades, how iCOMs
are synthesized is still an open question and under debate (Herbst &
van Dishoeck 2009; Caselli & Ceccarelli 2012; Woods et al. 2013;
Balucani, Ceccarelli & Taquet 2015; Fedoseev et al. 2015; Enrique-
Romero et al. 2016; Butscher et al. 2017; Gal et al. 2017; Rivilla
et al. 2017; Vasyunin et al. 2017; Rimola et al. 2018; Butscher
et al. 2019; Enrique-Romero et al. 2019; Lamberts et al. 2019).
Two different paradigms have been proposed: (i) on the surfaces of
grains (either during the cold pre-stellar or warmer collapse phase
(e.g. Garrod & Herbst 2006; Woods et al. 2013; Fedoseev et al.
2015; Öberg 2016), and (ii) through reactions in the gas phase (e.g.
Charnley, Tielens & Millar 1992; Balucani et al. 2015; Skouteris
et al. 2018). The first paradigm assumes that whenever two radicals
(e.g. created by UV photon and/or cosmic ray incidences) are in
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close proximity (e.g. because of their diffusion) they can react to
form iCOMs in a barrierless way. In the second one, iced simple
hydrogenated molecules are released into the gas phase (e.g. due to
thermal desorption), where they react to form iCOMs through gas-
phase reactions. Interestingly, a review on the formation of iCOMs
on interstellar grain surfaces investigated by means of quantum
chemical calculations has recently appeared (Zamirri et al. 2019).

Currently, the ‘on-surface’ paradigm is the scheme mostly
adopted in astrochemical models. However, a first theoretical study
of the reactivity of HCO and CH3 on an amorphous water surface
(AWS), which is the bulk of the ices that envelope interstellar grains
in cold objects, showed that the combination of these two radicals
does not necessarily lead to the formation of the iCOM acetaldehyde
(CH3CHO) (Enrique-Romero et al. 2016). This unexpected result
called for and was followed by other studies of different systems
and with different computational methods. First, Rimola et al.
(2018) and Enrique-Romero et al. (2019) studied the formation
of formamide (NH2CHO) and acetaldehyde by reactions between
HCO and NH2 and HCO and CH3 on an AWS model by means
of static quantum chemical calculations. Subsequently, Lamberts
et al. (2019) studied the formation of acetaldehyde by reaction
between HCO and CH3 on a CO-pure ice model by means of ab
initio molecular dynamics simulations. The three works confirmed
the main finding by Enrique-Romero et al. (2016), namely that
the reactivity between the radical pairs does not lead exclusively
to the formation of the iCOMs, but the formation of CO + NH3

and CO + CH4 via direct H abstraction can also take place. In
view of these results, the formation of iCOMs via the barrierless
radical–radical combination scheme still needs to be validated.

In this article, we aim to revise the first calculations carried out on
the CH3 + HCO system (Enrique-Romero et al. 2016), which were
based on the standard density functional theory (DFT) approach.
Since then, it has become clear that an improved treatment of the
radical spins is necessary (Rimola et al. 2018; Enrique-Romero
et al. 2019). The article is organized as follows: In Section 2, we
review the treatment of the spins of a biradical system, in Section 3
we provide the details of the new computations carried out in this
article, in Section 4 we show the results, and in Section 5 we discuss
the conclusions.

2 W H Y A B E T T E R T R E AT M E N T O F TH E
B I R A D I C A L WAV E F U N C T I O N IS N E E D E D

In a previous work by some of us (Enrique-Romero et al. 2016),
the reactivity between HCO and CH3 in the gas phase and on AWS
modelled by H2O ice clusters was theoretically studied with stan-
dard DFT calculations. In the gas-phase model,1 different synthetic
channels were identified, namely the formation of acetaldehyde
(CH3CHO), CO + CH4, and CH3OCH, the occurrence of which
being determined by the relative orientation of the radicals. In
contrast, on the AWS models, a hydrogen-atom relay mechanism
assisted by water molecules of the ice led to the exclusive formation
of CO + CH4.

The electronic ground state for the CH3CHO, CO + CH4, and
CH3OCH products is a singlet wavefunction as they are closed-
shell systems. Conversely, the HCO and CH3 radicals are open-

1We loosely use the term ‘gas phase’ to refer to systems where no water
molecule is involved. The reader has to bear in mind that these reactions
cannot take place in the ISM unless a third body (i.e. the grain) absorbs the
released nascent energy.

shell doublet systems due to their unpaired electron, while a system
consisting of the two radicals (i.e. HCO and CH3 together) can
be either in triplet or singlet electronic states (the spins of the
unpaired electrons can be of the same sign or of opposite signs,
respectively). The triplet state is electronically non-reactive due to
the Pauli repulsion. In contrast, the singlet state (usually referred to
as a biradical system) is reactive because of the opposite spin signs.
The description of the electronic structure of biradical states requires
a wavefunction composed of more than one Slater determinant to
recover static correlation. In the wavefunction-based post-Hartree–
Fock (post-HF) realm, this can be described by multiconfigurational
self-consistent field (MCSCF) methods, such as the complete active
space self-consistent field (CASSCF), or the so-called multirefer-
ence methods like the complete active space perturbation theory
(CASPTn) ones. In CASSCF, a particular number of electrons (N)
are distributed between all possible (namely, ground and excited)
configurations that can be constructed from M molecular orbitals,
i.e. a (N, M) active space. It is worth mentioning that one has to pay
special care when deciding the orbitals to include in the active space,
since the resulting wavefunction could erroneously describe the
system under study. CASPTn is an improvement over CASSCF(N,
M) where a perturbative expansion is further performed in order
to retrieve more dynamic electron correlation. On the other hand,
such a multireference character cannot be obtained from normal
Kohn–Sham DFT. Instead, the electronic structure of biradicals can
be approximated by an unrestricted open-shell wavefunction with
the broken-(spin)-symmetry ansatz, where a triplet state is mixed
with a combination of ground and excited singlet states in order
to obtain an electron-correlated wavefunction (Noodleman 1981;
Noodleman & Baerends 1984; Neese 2004).

Calculations by Enrique-Romero et al. (2016) were performed in
an open-shell formalism, but after publication we realized that the
initial guess wavefunctions remained in a metastable, symmetric
state with spin-up and spin-down orbitals being equally mixed (i.e.
spin analysis indicated 50 per cent of spin-up and 50 per cent of
spin-down in both radicals and the total spin density being zero),
thus resembling a closed-shell solution. Compared to that, the
actual broken-symmetry (BS) wavefunction leads to a significant
stabilization of the reactants, which changes the results qualitatively.
Thus, this work aims to revise some of the original results using
the DFT BS solution, showing, moreover, that it agrees reasonably
well with those at the CASPT2 level.

3 C OMPUTATI ONA L D ETAI LS

All DFT calculations were performed using the GAUSSIAN09 pack-
age (Frisch et al. 2009), while post-HF multiconfigurational and
multireference calculations were carried out with the OPENMOLCAS

18.09 software (Karlström et al. 2003; Aquilante et al. 2010;
Aquilante et al. 2016; Fernandez Galván et al. 2019).

DFT geometry optimizations and transition state searches were
carried out with (i) the M06-2X (Zhao & Truhlar 2008) and (ii)
BHLYP-D3 (i.e. BHLYP; Lee, Yang & Parr 1988; Becke 1993)
including the Grimme’s D3 dispersion correction (Grimme 2006;
Grimme et al. 2010) functionals, in combination with a def2-
TZVPD basis set. Structures with triplet electronic states were
simulated with open-shell calculations based on an unrestricted
formalism. Singlet biradical systems were calculated adopting an
unrestricted BS approach. For the sake of comparison, for some
cases, single point energy calculations adopting standard (i.e. non-
BS) unrestricted (U) formalisms have also been carried out.
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Figure 1. PESs at different DFT levels and at CASPT2 for the reactivity
between CH3 and HCO to form CH3OCH (right side panel) or CO + CH4

and CH3CHO (left side panel). The energy reference 0.0 is the HCO + CH3

asymptote. The dashed horizontal lines indicate broken vertical axis. PRE-R
refers to the pre-reactant complexes and TS to the transition states. Single
point energies at singlet and triplet UM06-2X levels on the (BS)UM06-2X
optimized geometries are also shown. The presented structures correspond
to the (BS)UM06-2X optimized geometries except for PRE-R, which is the
triplet UM06-2X optimized geometry. Energy units are in kJ mol−1 and
distances are in Å. We have also checked the triplet state of the CH3OCH
product resulting in 80 kJ mol−1 higher in energy than the singlet state and
an energy barrier for its formation of about 55 kJ mol−1 higher than the
singlet case (UM06-2X theory level).

CASSCF geometry optimizations and transition state searches
were performed using a (2,2) active space, corresponding to the
radical unpaired electrons in their respective orbitals. Reaction
energetics were refined by performing CASPT2 single point energy
calculations on the CASSCF(2,2) optimized geometries. In both
cases, the cc-pVDZ basis set was employed. For the sake of clarity,
here we only show the CASPT2 results, the CASSCF(2,2) ones
being available as online supporting information (SI).

Since the scope of this work is to revise the electronic structure
of the biradical systems, only electronic energy values are reported
and accordingly zero-point energy corrections were not accounted
for here.

Input file examples for this kind of calculations are provided in SI.

4 R ESULTS

4.1 Reactions in the gas phase

In the gas phase, in agreement to the previous work Enrique-
Romero et al. (2016), the nature of the final product depends on
the relative initial orientations of the reactants. When the C atoms
of the two radicals are pointing one to each other (i.e. H3C···CHO),
they couple to form CH3CHO; similarly, when the H atom of the
HCO is pointing to the C atom of CH3 (i.e. OCH···CH3), H is
transferred to form CO + CH4. Both processes have been found to
be barrierless, irrespective of the method (i.e. BS-DFT and MCSCF;
see the left-hand side of Fig. 1).

On the other hand, when the O atom of HCO points towards the
C atom of CH3 (i.e. HCO···CH3), the carbene CH3OCH species
can form. For this case, however, BS-DFT calculations indicate that
the biradical system is metastable. Consequently, the formation
of CH3OCH is not spontaneous but it requires overcoming an
energy barrier of 31.3 and 51.0 kJ mol−1 at the (BS)UM06-2X
and (BS)UBHLYP-D3 levels, respectively. The same trend is found
for CASPT2 calculations with an energy barrier of 11.5 kJ mol−1

(see the right-hand side of Fig. 1). It is worth mentioning that,
for the formation of CH3OCH, U single point calculations on the
(BS)UM06-2X optimized geometries (without considering the BS
approach) result in the spontaneous formation of CH3OCH, leading
to the same result as for the restricted situation (see singlet UM06-
2X energies in Fig. 1 represented by blue crosses). This is because
the singlet UM06-2X initial guess wavefunction does not consider
the reactant as an actual biradical system but the unpaired electrons
are localized 50 per cent spin-up and 50 per cent spin-down in one
radical and the same for the other radical, resembling an electronic
closed-shell situation. This excited initial guess wavefunction is
about 173.9 kJ mol−1 less stable than the asymptote (0.0 kJ mol−1,
corresponding to the situation where the radicals are infinitely
separated) and hence the system rolls down to the most stable
closed-shell situation. Similarly, single points at the triplet UM06-
2X level on the (BS)UM06-2X optimized geometries are also shown
in Fig. 1 (represented by blue diamonds). We want to stress out
that triplet-state wavefunctions do not require the use of the BS
ansatz as single-reference methods like UDFT already provide good
descriptions of such open-shell systems, thanks to Pauli’s exclusion
principle.

4.2 Reactions in the presence of one water molecule

For the reactivity between CH3 and HCO in the presence of
one water molecule, we have studied the reactions of CH3CHO
formation through a radical–radical coupling (Rc) and the formation
of CO + CH4 through both a direct hydrogen abstraction (dHa), i.e.
the H transfer is direct from HCO to CH3, and a water-assisted
hydrogen transfer (wHt), i.e. the H transfer is assisted by the water
molecule, which allows a successive H-transfer mechanism OC·
·H···HO· ·H···CH3.

In Enrique-Romero et al. (2016), it was shown that, in the
presence of (H2O)18 and (H2O)33 water cluster models, the wHt
was found to be barrierless, i.e. the assisted H transfer occurred
spontaneously during the optimization process, a finding that led
the authors to conclude that this channel was the dominant one over
the others. However, we identified that such a spontaneous process
is a consequence of the limitation of standard DFT to describe the
electronic structure of biradical systems if the BS approach is not
adopted.

By adopting BS-DFT, we have found here that for both the
(BS)UM06-2X and (BS)UBHLYP-D3 methods, Rc is a barrierless
process (see Fig. 2).

The PESs for the dHa and wHt processes at the different theory
levels are shown in Fig. 3. At (BS)UM06-2X and (BS)UBHLYP-
D3 levels, dHa presents a small energy barrier (2.4 and 5.1 kJ
mol−1, respectively). In contrast, wHt presents a high energy barrier
(58.2 and 73.3 kJ mol−1, respectively), indicating that it is not
spontaneous. Similar findings are provided by CASPT2, which
predicts energy barriers of 1.3 and 36.1 kJ mol−1 for dHa and wHt,
respectively. In contrast, U single point energy calculations on the
(BS)UM06-2X optimized geometries without considering the BS
approach describe both dHa and wHt as spontaneous processes (see
singlet UM06-2X energies in Fig. 3 represented by blue crosses),
in which the reactant structures lay above the actual reactants by
more than 200 and 250 kJ mol−1, respectively. This is because the
singlet UM06-2X calculation starts from a non-symmetry broken
initial guess wavefunction, hence yielding the same wavefunction as
a restricted (i.e. closed-shell) M06-2X calculation. This calculated
closed-shell wavefunction can be understood as an electronically
excited state, in which the electronic structure has a significant
contribution of an ionic state: a protonated CO molecule (HCO+)
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Figure 2. PESs at different DFT levels and at CASPT2 for the Rc reaction
between CH3 and HCO in the presence of one water molecule. The 0th
energy reference corresponds to the pre-reactant complex (R-Rc). Single
point energies at the singlet UM06-2X level on the (BS)UM06-2X optimized
geometries are also shown. The structures presented in this figure are those
corresponding to the (BS)UM06-2X optimized geometries. Energy units are
in kJ mol−1 and distances are in Å.

and a negatively charged CH3 species (CH−
3 ). This ionic state is an

ideal situation to trigger a Grotthus-like mechanism, in which the
‘extra’ proton of HCO+ is transferred through the assisting water
molecule to the ‘proton-defective’ CH−

3 . These results confirm again
the need to use the BS-DFT approach to properly describe biradical
systems.

5 C O N C L U S I O N S

This work is a revision note of a previous work by some of us
(Enrique-Romero et al. 2016), in which the reactivity of the same
system, i.e. CH3 + HCO, has been studied using DFT methods
adopting an unrestricted BS approach [i.e. (BS)UM06-2X and
(BS)UBHLYP-D3] as well as post-HF multiconfigurational and
multireference methods [i.e. CASSCF(2,2) and CASPT2]. In the
original work, the DFT BS formalism was not adopted, hence
seriously affecting the description of the electronic structure of
the CH3/HCO biradical system. The main conclusions of this work
are summarized as follows:

(i) When the unrestricted DFT formalism is used without adopt-
ing the BS approach to describe the electronic structure of biradical
systems, the initial guess wavefunction may collapse into a restricted
closed-shell solution. If this occurs, the reactivity between two
radicals is likely to be wrongly described. In the particular case
of the CH3 + HCO reactivity on water ice, calculations indicate
that the water-assisted H transfer process is spontaneous.

(ii) Unrestricted BS DFT calculations for biradical systems show
qualitatively similar results as those obtained at post-HF multicon-
figurational and multireference levels, indicating the suitability of
this DFT approach to describe the reactivity of biradical systems.

(iii) In the gas phase, both CH3CHO and CO + CH4 formations
are found to be barrierless. In contrast, the formation of the carbene
CH3OCH species has a noticeable barrier.

(iv) In the presence of one water molecule, the wHt reaction is not
spontaneous but, in contrast, it has a high energy [58 and 73 kJ mol−1

Figure 3. PESs at different DFT levels and at CASPT2 for the reactions
of dHa (a) and wHt (b) between CH3 and HCO in the presence of one
water molecule. The 0th energy references are the pre-reactant complexes:
R-dHA (a) and R-wHt (b). Single point energies at the singlet UM06-2X
and triplet UM06-2X levels on the (BS)UM06-2X optimized geometries are
also shown. The dashed horizontal lines indicate broken vertical axis. The
presented structures correspond to the (BS)UM06-2X optimized geometries.
Energy units are in kJ mol−1 and distances are in Å.

at the (BS)M06-2X and (BS)BHLYP-D3 levels]. Accordingly, its
occurrence is unlikely under the interstellar conditions. In contrast,
the radical–radical coupling is barrierless and the dHa presents
a very small energy barrier (5 kJ mol−1 at the most). Similar
results have been obtained using larger cluster models mimicking
the surface of interstellar water ice (Enrique-Romero et al. 2019).

Finally, it is worth mentioning that, despite the limited description
of the biradical system in Enrique-Romero et al. (2016), the physical
insights provided by that work remain still valid, since it is shown
that the biradical reactivity does not necessarily result in the radical–
radical coupling product (i.e. the iCOM). Indeed, it is found here
that the dHa can actually be a competitive channel, giving the same
product as that for the wHt. This finding is in agreement with recent
theoretical works dealing with the reactivity of biradical systems on
interstellar ice surfaces (Rimola et al. 2018; Enrique-Romero et al.
2019; Lamberts et al. 2019).
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the authors. Any queries (other than missing material) should be
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APPENDI X A : O NLI NE MATERI AL

In the online material file, we provide: (i) the absolute energies (in
Hartrees) of the reactions presented in this work, (ii) some input
examples for GAUSSAIN and OPENMOLCAS calculations, and (iii)
the XYZ Cartesian coordinates of the structures presented in the
work.
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