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A B S T R A C T

Visible-near-infrared reflectance spectra reveal clues about the mineralogy and composition of planetary
surfaces. In most cases, light interacts with a mixture of various components on planetary surfaces. While
radiative transfer models have been developed to simulate mixture in particulate surfaces, the extent to which
spectral features represent the bulk composition of rock remains unclear. In this study, we present the analysis
of a new dataset with hyperspectral imaging of rock slabs at different resolutions to characterize the scaling
of spectral data. We address the problem of spectral mixing with high-resolution imaging of Martian meteorite
NWA480 at a microscopic scale. The linear combination of each pixel provide an approximate to the rock’s
bulk spectra. However, we find the impurities, fractures and zoning create wide spectral variability in the
mineral crystals. In addition, the widespread opaque minerals may also darken the spectra, resulting in non-
unique interpretation of the bulk spectra. These complexities in the natural samples prevent an accurate mineral
abundance retrieval using unmixing algorithms with select spectral endmembers. We suggest applying recently
developed algorithms on unmixing with spectral variability with the consideration of the petrologic context
would be necessary to improve the quantitative analysis of planetary surfaces.
1. Introduction

Visible and shortwave near-infrared hyperspectral reflectance spec-
tra of a planetary surface provide compositional information that im-
proves our understanding of geological processes, including planetary
evolution and water–rock interaction (Adams, 1974; Clark et al., 1990;
Fischer and Pieters, 1994; Tompkins and Pieters, 1999; Bibring et al.,
2006; Murchie et al., 2009; Kokaly et al., 2017). Enormous amounts of
efforts have been put into the characterization of the spectra of mineral
separates, producing a large set of spectral libraries (e.g., the United
States Geological Survey (USGS) Spectral Library 07 (Clark et al., 1990;
Kokaly et al., 2017), NASA Reflectance Experiment Laboratory (RELAB)
Facility (Pieters, 1983), the RRUFF spectral libraries (Lafuente et al.,
2015)) where the visible-near-infrared spectra of most common miner-
als have been measured and archived. These minerals’ typical spectral
absorption features have been used to identify mineralogy on planetary
surfaces as ‘‘fingerprints’’. In contrast, quantitative understanding of
planetary bodies through reflectance spectroscopy is more difficult.

∗ Correspondence to: Center for Star and Planet Formation, GLOBE Institute, Øster Voldgade 5-7, København, 1350, Denmark.
E-mail address: lu.pan@sund.ku.dk (L. Pan).

Various approaches based on radiative transfer models (Hapke and
Wells, 1981; Hapke, 1981, 1984; Shkuratov et al., 1999) have been
developed to characterize particulate surfaces, assuming closely packed
pure mineral grains. Such models typically require input of various
physical parameters that describe the minerals’ interaction with light,
including the optical constants, phase function, back scattering and
macroscale roughness. Spectral datasets acquired in the lab have been
analyzed to investigate the physical meaning of these parameters (Cord
et al., 2003; Mustard and Pieters, 1989; Li and Milliken, 2015). The
inversion of binary spectral mixtures of lunar analog materials and
meteorites measured in laboratory has shown that radiative transfer
models can provide abundance estimates within 5% of minerals with
known spectral properties a priori and controlled grain size (Mustard
and Pieters, 1989; Li and Milliken, 2015; Harris and Grindrod, 2018;
Yang et al., 2019). As the underlying assumption dictates, the modal
abundance prediction based on spectral data provides better results for
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rock powder than rock chips in the analysis for Howadite, Eucrite and
Diogenite (HED) meteorite samples (Li and Milliken, 2015).

Meanwhile, rock outcrops are essential targets for planetary ex-
ploration as direct records of the petrogenesis and register a given
location’s geologic context. The study of rock outcrops can provide a
constrained solution to the temperature, pressure, and water solution,
the water activity and pH of the environment in which the miner-
alogical species formed, a common practice in terrestrial geology. New
datasets acquired by hyperspectral or multispectral cameras from a
distance to the target (several meters and from orbit) is complicated
by the spectral mixing of minerals in a rock at the micrometer scale.
Previous studies have shown that rocks with similar bulk composition,
but a different texture, can have significantly varying spectral patterns
in the bulk spectra (Crowley, 1986; Harloff and Arnold, 2001; Pompilio
et al., 2007; Carli et al., 2014). The fact that spectral endmember
components in a rock are not equivalent to the mineral separates
from the same rock also complicates the understanding of mineral
unmixing, as shown by the study of returned samples from the Apollo
mission during the Lunar Rock and Mineral Characterization Consor-
tium (LRMCC) (Isaacson et al., 2011). Additionally, a dark, fine-grained
matrix component is considered to dominate bulk spectra in intimate
mixing models. In contrast, the large phenocrysts often dominate the
bulk rock spectra, presenting an obvious paradox (Carli et al., 2014,
2015). These previous studies using spectrometer data point out that
instead of taking previous radiative transfer mixing models that deal
with particulate mixtures, new approaches need to be developed to
understand spectra taken on rock chip’s surfaces quantitatively.

Hyperspectral cameras can resolve micro-scale heterogeneities
while retrieving spectral data. The high-resolution hyperspectral im-
ages provide a new tool to address this question of unmixing within
bulk rock samples. Therefore, hyperspectral cameras have been used
to characterize the mineralogy of rock samples in laboratory measure-
ments and outcrop measurements in the field (Greenberger et al., 2015,
2020), and widely applied for biomedical (Lu and Fei, 2014; Johnson
et al., 2007; Vo-Dinh, 2004) and industrial applications (Gowen et al.,
2015; Tatzer et al., 2005; Feng and Sun, 2012). In this study, we present
new datasets using laboratory measurements from a hyperspectral
imaging spectrometer on a Martian meteorite to bring novel lights to
the controlling factors in spectral endmember variability for unmixing
problems in geological applications meteorite at various scales. By
obtaining spectral images at various distances and resolutions, we
provide a ‘‘ground truth’’ for a hyperspectral image from the microme-
ter to the millimeter scale. We analyzed bulk spectra and performed
classification and linear spectral unmixing on data obtained in the
laboratory to validate and discuss the physical and chemical factors
affecting spectral properties. Our analysis sheds new light on how
mixing occurs at varying resolutions and the major causes for spectral
variability. We also discuss the uncertainties in quantitative analysis
of short-wavelength infrared spectral datasets and the implications for
planetary exploration.

2. Method

2.1. Sample and data acquisition

The Martian meteorite Northwest Africa 480 (NWA 480) was chosen
as the sample under investigation, due to its relative high reflectance
compared to other Martian meteorites and relevance for igneous petrol-
ogy on terrestrial planets. NWA 480 is a basaltic shergottite with
large pyroxene crystals (up to 1–1.5 mm) in a dark matrix. Previ-
ous petrologic investigations (Barrat et al., 2002) showed the mineral
composition is 72 volume percent (vol%) zoned pyroxene, 25 vol%
maskelynite (shocked amorphous glass with plagioclase composition),
1 vol% opaque minerals and sulfide, 1 vol% phosphate, 1 vol% other
minerals including fayalite and silica. The pyroxenes show significant
zonations with a low-calcium, magnesium-rich core, an augite rim, and
2

a Fe-pigeonite outer rim, with variations in major element composition,
e.g., the Mg/Ca ratio varies from ∼20 in the core, to ∼1 in the
augite rim and to ∼0.1 in the outer rim based on the major element
composition reported by Barrat et al. (2002). Li-isotopic ratios of the
pyroxene phenocrysts suggest evolving magma composition and possi-
ble degassing during the crystallization of the meteorite (Barrat et al.,
2002; Beck et al., 2004; Marty et al., 2001). The typical porphyritic
structure with pyroxene phenocrysts and dark matrix makes NWA 480
an ideal candidate to investigate mixing effect in igneous rocks.

We acquired hyperspectral data using a HySpex SWIR-384 imag-
ing spectrometer. The cut surface of the sample was placed at the
same elevation as the 50% Spectralon® calibration target. The samples
were illuminated with a 400 to 2500 nm broadband halogen light
source at an incidence angle of ∼30◦. The sample and calibration
target were translated beneath the detector while the detector recorded
radiance from the target with line-by-line scanning at nadir position,
with an emergence angle of 0◦. The data were acquired with wave-
length between 930–2500 nm and a spectral sampling of 5.45 nm.
The acquisition frame rate and integration time is optimized to reduce
saturation and increase contrast. We varied the distance and lenses
on the detector so that focused data acquisition would be possible
at ∼2cm, ∼30cm and ∼1 m, in order to achieve hyperspectral image
acquisitions with different resolutions: ∼50 μm/pixel, ∼0.2 mm/pixel
and ∼0.7 mm/pixel. Below, we refer to the three images as the ‘‘high-
resolution’’ (∼50 μm/pixel), ‘‘medium-resolution’’ (∼0.2 mm/pixel) and
‘‘low-resolution’’ (∼0.7 mm/pixel) images taken at standoff distances of
2 cm, 30 cm, 1 m, respectively.

2.2. Image processing, endmember extraction and unmixing

Here we discuss in detail the method applied here in terms of
image processing, endmember selection and unmixing. A simplified
workflow of the process is depicted in Fig. 1. Spectral data with the raw
Digital Number (DN) were acquired with the calibration target and the
sample in the same scene to ensure the same illumination condition for
calibration. Dark current was measured before the scan and subtracted.
Then the reflectance was calculated using the average of 100–300
pixels of the reflectance target for each column. The three images
were masked to the extent of the meteorite surface, and themedium-
and low-resolution images were registered to the high-resolution image
using manually picked reference points. The images are warped and
re-sampled using the nearest neighbor algorithm and therefore only
geometrical transformation is made and there is no interpolation in the
spectral domain. The image registration is only spatially accurate at the
pixel level of the coarser resolution images (0.2, 0.7 mm/pixel) due to
the resolution limit. Pixels on the rim of the meteorite showed spectral
features that match organic contamination due to a sample holder made
of cardboard. In the hyperspectral cube, these pixels were removed
automatically using a linear deconvolution and threshold method to
identify and select the pixels dominated by the organic endmember. We
used the high-resolution image to select the appropriate endmembers
for spectral unmixing so that the spectral endmembers well represented
the mineralogy of the rock slab at the given resolution. Both supervised
and unsupervised methods were used to select the appropriate spectral
endmembers.

We manually selected three by three pixel-average spectra of min-
eral phases identifiable in the supervised classification method through
visual investigation. Different types of pyroxenes (low-calcium pyrox-
ene or LCP, high-calcium pyroxene or HCP, dark high-calcium py-
roxene, or Dark HCP) could be spectrally differentiated. However,
mineralogy in the dark matrix which might include maskelynite, il-
menite, chromite, sulfides, phosphate and other minerals, could not
be differentiated due to the lack of spectral features, limited signal-
to-noise ratio, and spatial resolution. Therefore, we denoted a ‘‘Dark’’
endmember that is of minimal contribution in reflectance. The ‘‘Bright’’

endmember can be a mineral grain with strong specular reflection and
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Fig. 1. A simplified chart of the workflow in this study. The high-resolution image obtained at 2 cm distance provides a ‘‘ground truth’’ of the sample. We then compare the
results of linear spectral unmixing of the other two images to the supervised classification using the high-resolution image.
was thus selected as a separate endmember. For the unsupervised clas-
sification method, we used the autonomous endmember determination
algorithm N-FINDR, a widely applied routine based on the N-volume
being largest when taking the purest pixels as spectral endmembers
of an N-dimensional dataset (Winter, 1999). We implemented the
unsupervised classification with four endmembers, provided that the
outcome has reasonable physical interpretations. The four endmem-
bers identified using N-FINDR are named as Dark, Bright, LCP, and
HCP, based on their spectral characteristics, respectively. Since the
overall reflectance level varied among the three images, possibly due
to varying lighting conditions, histogram matching was applied to
the medium- and low-resolution image to match the high-resolution
image’s reflectance level.

Finally, we performed spectral unmixing for the three images us-
ing the selected endmembers. Spectral mixing at visible near-infrared
wavelengths could be non-linear due to volumetric scattering, while if
the reflectance is dominated by the single scattering of the uppermost
layer, a linear-mixing approximation could be reasonable. In order
to evaluate the problem to the first order, we performed Fully Con-
strained Linear Spectral Unmixing (FCLSU) based on a least-squares
method (Heinz and Chang, 2001) using both unsupervised and su-
pervised endmembers extracted from the high-resolution image (taken
at 2 cm distance). The linear mixing model assumes any reflectance
spectrum as a linear combination of the spectra of each pure mineral
phases (endmembers) weighted by their abundance.

𝑟𝑚𝑖𝑥(𝜆) =
𝑁
∑

𝑖=1
(𝑎𝑖 ∗ 𝑟𝑖(𝜆)) + 𝜂 (1)

𝑟𝑚𝑖𝑥 is the reflectance of the mixture. 𝑟𝑖 is the reflectance of each
endmember for a total of N endmembers. 𝑎𝑖 is the abundance of each
endmember. 𝜂 is the residual noise and modeling error. Additional
constraints include the nonnegativity of the abundance and the sum
to be 1.

𝑎𝑖 ≥ 0 ∀𝑖,
𝑁
∑

𝑖=1
𝑎𝑖 = 1 (2)

To validate the results from linear spectral unmixing, we utilized
the high-resolution image to make a ‘‘spectral endmember classification
map’’ as the ground truth for spectral unmixing. This classification
map was made by first selecting the Dark endmember pixels with a
minimum threshold of 0.8 in abundance and then assigning all other
pixels to the endmember with the highest abundance value in the
unmixing results. The minimum threshold is adjusted and then chosen
to best match the areal extent of the dark matrix. We thus annotate this
3

method as the maximum value, dark pixel threshold (MV/DT) method.
We use this image as the ‘‘ground truth’’ of the spectral endmember
mapping and compare those with the unmixing results from the rest of
the data products. We find the mineralogy mapping using the threshold
method is appropriate for large pyroxene phenocrysts, as the outlines
are clearly visible and the zonation in these phenocrysts are resolved in
the image. Although the results differ largely for the bulk percentage,
the relative proportion of HCP and LCP remains consistent. However,
we note that we cannot resolve the small inclusions of opaque minerals
(e.g., Fe-Ti oxides) and they could be partly included in the classifi-
cation of pyroxene or Dark endmembers. The reported mineralogy in
the literature is based on point counts on a polarized or backscatter
electron image (e.g., Barrat et al., 2001; Beck et al., 2004) and only
reported bulk pyroxene percentages. The prediction from the threshold
method is within ∼10% comparing to the reported volume percentage
of pyroxene.

3. Results

3.1. Datasets and bulk spectra results

False-color composites of data acquired in this study are shown in
Fig. 2. On the false-color images, the low calcium pyroxenes appear in
pink, high-calcium pyroxenes in green, and the dark matrix in black
(Fig. 2).

The porphyritic texture and the pyroxene zonations are visible on
the high- and medium-resolution images with spatial resolution of 50
μm/pixel and 0.2 mm/pixel, respectively. At the spatial resolution of
the high-resolution image (∼50 μm/pixel), it is possible to discern the
pyroxene phenocrysts, while the dark matrix composed of maskelynite,
phosphate, and other minerals cannot be resolved. We find the bulk
spectra of the image reflect mainly pyroxene spectra, consistent with
the meteorite’s bulk composition dominated by pyroxene phenocrysts.
Pyroxenes are chain silicates consisting of octahedrons where the metal
cations reside, sandwiched between two silicon tetrahedral chains. Typ-
ically there are two types of octahedrons in pyroxene, M1 represents
the smaller octahedrons whereas M2 is the larger, more irregular octa-
hedron. The 2-μm absorption band shape and position is preferentially
determined by the crystal field splitting of Fe2+ in the M2 site. The 2-μm
band position is located at around 2–2.05 μm for NWA480. The band
is relatively wide, which is indicative of a combination of the 2-micron
band of LCP and HCP (Sunshine et al., 1999; Mandon et al., 2021).
Despite ≤ 5% discrepancies in overall reflectance, the bulk spectra in
continuum-removed space overlap with one another, suggesting that
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Fig. 2. a. False color combinations of image datasets with different resolutions (Red: 1220 nm, Green: 1656 nm, Blue: 2146 nm). Here the low calcium pyroxenes appear in pink,
high-calcium pyroxenes in green, and the dark matrix in black. The black scale bar represents 1 mm. b. Average spectra of the rock surface using three images. c. Normalized
reflectance (of spectra in b) using continuum removal. The continuum applied here is a convex hull fit of the spectrum with straightline-segments. The variations at 2.1 μm are
caused by the intrinsic spectral feature of the Spectralon target (e.g., Zhang et al., 2014). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
the bulk spectra of the meteorite well represent the linear combination
of all the pixels regardless of the resolution of the image. Since the
number of photons of light reaching the detector should be identical for
the same area regardless of standoff distance, the consistency of these
measurements is expected. If there are minor differences, it is likely
due to the design of detector or slight differences in the measurements,
rather than the physics of light interacting with the material differently.

3.2. Spectral endmember extraction and classification map

Spatial heterogeneity at 10 s of micron to millimeter scale con-
tributes to the rock surface’s bulk spectra, proportionally to their
surface area. If the surface heterogeneity could be reduced into a
few spectral endmembers, the bulk spectra should reflect the linear
combination of the spectral endmembers. However, identifying and
quantitatively modeling spectral mixing in rock slab is difficult to
validate since the spectral endmembers are not equivalent to the min-
eralogy within (Isaacson et al., 2011). The extent to which one could
differentiate spectrally distinct components in a rock depends on the
reflectance and the absorption features of individual mineral grains
and the resolution of the spectral image. Here we discuss the classi-
fication results in comparison with volumetric abundances of various
minerals since the cross-sectional area is equivalent to the volumetric
abundances of various components in a probabilistic sense.

In NWA 480, pyroxenes are identified with three obvious zones: a
LCP core (Mg/Ca ∼ 20), an augite rim(Mg/Ca ∼ 1), and a Fe-pigeonite
outer rim(Mg/Ca ∼ 0.1) (Barrat et al., 2001). Maskelynite, which com-
poses of 21 vol% of the entire meteorite (Barrat et al., 2001), may have
a 1.25–1.3 μm absorption due to minor substitute of Fe in plagioclase.
The 1.25–1.3 μm absorption is weakened and broadened under shock-
loading and disappears as maskelynite develops (Adams et al., 1979),
4

while the absorption remains detectable in anorthite-rich rock powders
even after shock (Johnson, 2003). Laboratory analysis showed that
plagioclase is only diagnostic in mafic mineral mixture containing ≤
10% olivine or pyroxene (Cheek and Pieters, 2014). To differentiate
maskelynite from other minerals in the dark matrix would be even
harder due to the small signal-to-noise ratio. We used four endmembers
in the N-FINDR routine to identify spectral endmembers in the image
cube, and based on the endmember spectrum, we identify them as LCP,
HCP, Dark and Bright endmembers. We show the spectral endmembers
from the unsupervised unmixing results for all three images (Fig. 3).
The same endmembers have reduced reflectance with a decreased
resolution, and the minor component (e.g., Bright endmember) cannot
be distinguished in the low-resolution image. As a result, the unmixing
of the low-resolution image picks up the sample holder’s absorption
features in mixture with pyroxene as an additional endmember. Sub-
sequently, only endmembers selected in the high-resolution image are
used for unmixing analysis.

We selected five spectrally distinctive endmembers in the supervised
method, including LCP, HCP, Dark HCP, Dark, and Bright endmembers.
Among these five endmembers, the Dark HCP endmember mapped the
outer rims of pyroxene phenocrysts with a Fe-pigeonite composition
and was not included in the unsupervised classification. The Dark HCP
endmember cannot be differentiated from the Dark endmember in the
unsupervised endmember extraction by adding more spectral endmem-
bers because of the low reflectance and lack of contrast between the
Dark HCP and Dark endmembers. The classification based on the high-
resolution image is shown in Fig. 4 for unsupervised and supervised
classification. As expected, the supervised version provides a more
accurate classification of the pyroxenes’ zonation since three different
pyroxene spectral endmembers were used. However, when it comes to
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Fig. 3. Spectral endmember extraction for images of different resolution (with distance at 2 cm, 30 cm, 1 m) on original (upper panel: sub-figures a, b, c) and normalized (lower
panel: figures d, e, f) datasets, respectively. In the low-resolution image, a few pixels on the margin still preserve minor absorption features caused by subpixel mixing of the
sample holder, highlighted in the mixed endmember (mixEM).

Fig. 4. Spectral endmember extraction and spectral classification map with dark endmember threshold and maximum value (See Section 2.2 for details). a. Normalized spectral
endmembers from the automated extraction using N-FINDR routine. b Normalized spectral endmembers selected manually for supervised classification. c. Classification map of the
high-resolution image with endmembers selected with N-FINDR (a). d. Classification map of the high-resolution image with supervised endmember selection (c).
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Table 1
Result of spectral unmixing using the unsupervised method. The numbers represent the
percentage of an endmember in the entire image. (Acronyms: MV = maximum value,
DT = Dark pixel threshold, FCLSU = fully constrained linear spectral unmixing). Bulk
spectrum for unmixing is from the high-resolution image (See Fig. 2). As a comparison,
previous petrography study with point counting method reported pyroxenes count to
72% volume percentage in this sample.

IMAGE High-res High-res Med-res Low-res Bulk

RESOLUTION 50 μm 50 μm 0.2 mm 0.7 mm ∼2 cm
Method MV/DT FCLSU FCLSU FCLSU FCLSU
LCP 21.68 13.05 9.12 8.75 10.66
HCP 54.31 18.33 13.15 12.16 15.44
Dark 23.56 66.60 76.65 78.35 73.10
Bright 0.45 2.02 1.08 0.74 0.80
Total pyroxene 75.99 31.38 22.27 20.91 26.10

Table 2
Result of spectral unmixing using the supervised method. The numbers represent the
percentage of an endmember in the entire image. (Acronyms: MV = maximum value,
DT = Dark pixel threshold, FCLSU = fully constrained linear spectral unmixing). Bulk
spectrum for unmixing is from the high-resolution image (See Fig. 2). As a comparison,
previous petrography study with point counting method reported pyroxenes count to
72% volume percentage in this sample.

IMAGE High-res High-res Med-res Low-res Bulk

RESOLUTION 50 μm 50 μm 0.2 mm 0.7 mm ∼2 cm
Method MV/DT FCLSU FCLSU FCLSU FCLSU
LCP 12.36 5.72 4.64 4.58 3.65
HCP 26.60 10.75 9.25 9.65 3.12
Dark HCP 22.57 12.67 4.66 3.36 68.38
Dark 33.62 65.64 78.81 80.67 22.56
Bright 4.85 5.21 2.64 1.74 2.28
Total pyroxene 61.53 29.14 18.55 17.59 75.17

the total amount of pyroxene (sum of LCP, HCP, and Dark HCP), the
supervised classification sums up to ∼62% of the entire rock surface
(Table 2). In contrast, the unsupervised classification result (∼76%)
(Table 1) is a better estimate, close to the petrologic classification.
The sum of total pyroxene is a measure of how well the classification
does for the Dark and Bright endmembers, with more subtle spectral
features. Due to the close resemblance between the Dark HCP and
Dark endmember and the bright LCP pixels and the Bright endmember,
misclassifications at ∼10% level cannot be improved using the spectral
dataset alone.

3.3. Spectral unmixing results

In the case of planetary applications, the spatial, heterogeneous
mixture is inevitable. Assuming the different spectral components in
the dataset combine linearly, it is theoretically possible to decompose
the coarser-resolution images and invert each spectral component’s per-
centages. We performed spectral unmixing of the three image datasets
using the same endmembers, manually selected on the high-resolution
image, to evaluate if it is possible to scale up the expected results
from linear spectral mixing (Tables 1, 2). Interestingly, the resulting
classifications in the supervised case are consistent within 2% for LCP
and HCP among the three images using the FCLSU method, and the
relative proportion of HCP and LCP is consistent in both methods
(Fig. 5).

However, Dark and Dark HCP endmembers’ abundances are incon-
sistent between the high-resolution image and the other two images. A
possible explanation is that the Dark and Dark HCP endmembers may
only be differentiated if they occur as pure pixels in high-resolution
data but cannot be differentiated in lower-resolution datasets when
they are considered as a linear mixture. None of the FCLSU results
match well that of the supervised classification using maximum values
and dark pixel threshold methods (Fig. 4d), and the most considerable
discrepancy among the results lies in the classification of the Dark end-
6

member. The same trend is found for the unsupervised classification,
where LCP and HCP results are consistent among different resolution
images, and the MV/DT (Maximum value, Dark pixel threshold) image
accounts for fewer Dark pixels, so the total pyroxene is higher. We
note here in both types of classification results, spectral unmixing
of medium- and low-resolution images underestimate LCP and HCP
compared to the high-resolution image using the same classification
method (Tables 1, 2).

In order to test the effect of the Dark endmember, we performed
spectral unmixing without the Dark endmember (with HCP, LCP, Dark
HCP and Bright). In this case, the resulting abundances would regroup
∼25% of maskelynite and opaque minerals into pyroxenes (mostly Dark
HCP), ending up with close to 100% pyroxene. Therefore, the presence
or absence of a Dark endmember would either underestimate or overes-
timate the abundances for pyroxenes, due to the predominance of dark
component in the rock. There is currently no good solution to overcome
the internal variability in the mineral grains.

4. Discussion

4.1. Effects of spectral mixing in rock slabs

Here we discuss the underlying assumptions and reasoning to de-
compose the bulk rock spectra through linear deconvolution. As we
observe, significant microscopic spatial heterogeneities occur in ig-
neous rocks (and some sedimentary rocks). Such spatial heterogeneity
is typical of planetary surfaces. The underlying assumption is such that
at detector resolution, each pixel that can resolve the mineral size has
a spectrum that are close to those of the same type of mineral grains.
This assumption would be true if the spectral data are dominated
by single-scattered light (light only interacted with the first mineral
grain).

For visible-near-infrared wavelengths and the typical extinction
coefficient (𝛼) in minerals measured in the laboratory, volumetric scat-
tering is expected (Hapke and Wells, 1981; Hapke, 1981; Clark et al.,
1990). For example, pyroxenes have an imaginary optical constant (𝑘)
of 10−4 − 10−5 at wavelengths (𝜆) of 1–2 μm (Lucey, 1998). For a grain
size of 1 mm, the internal transmission factor can be approximated as:
𝛼⟨𝐷⟩ = 4𝜋𝑘𝐷

𝜆 = 0.12 − 1.25. Here ⟨𝐷⟩ is the average distance traveled
by transmitted rays during one traverse of the particle, approximate
as the grain size (𝐷). The corresponding transmission factor of such
a pyroxene crystal using the exponential model is: 𝛩 = 𝑒−𝛼⟨𝐷⟩ =
0.29 − 0.88. A significant portion (29%–88%) of the light should be
transmitted through the pyroxene, interacting with the neighboring
minerals.

However, naturally occurring minerals with possible internal scat-
terers like mineral/liquid/gas inclusions as well as fractures and defects
inside mineral structure may greatly increase the extinction coefficient
of the mineral grains, especially when the phenocrysts are relatively
large (D = 0.5–1 mm) (Roedder, 1965; Anderson and Wright, 1972;
Tait, 1992; Danyushevsky et al., 2002). Such inclusions in phenocrysts
of igneous rocks are often transitional metal-bearing oxides (e.g., mag-
netite (Fe3O4), ilmenite (FeTiO3), chromite (FeCr2O4)) (Fleet et al.,
1980; Scowen et al., 1991) with important absorption features due
to electronic transition and charge transfer in the visible-near-infrared
wavelength range, resulting in overall reduced single scattering albedo
of the mineral. The effects of intimate mixing could be dominating
in the fine-grained portion of the matrix groundmass, where a small
amount of opaque minerals significantly reduces the contrast, resulting
in an overall low albedo of the mixture. As a combined effect, the
spectral reflectance and absorption features of the linear combination
of the phenocryst and the matrix are dominated by the pyroxene
component. Light scattered via single or multiple scattering inside large
phenocrysts is likely the dominating factor for spectral response in
porphyritic igneous rocks, lending support to the linear deconvolution
of martian meteorite hyperspectral image.
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Fig. 5. The linear unmixing results using FCLSU for the five spectral endmembers selected using the supervised method.
Similar to previous work (Pompilio et al., 2007; Carli et al., 2014;
Mandon et al., 2021) on spectra for rock slabs, we find the large
phenocrysts dominate bulk spectra of the rock slab, contrary to a
granular mixture where smaller grain size components dominate the
spectral response due to an increased number of multiple scattering
events. However, assuming the same total volume of phenocrysts,
varying the size of the phenocrysts alone cannot explain the different
behavior. Here we propose that the dominating effect of phenocrysts
results from the greater number of internal scatterers, causing the
diverging behavior of scattering. Since large phenocrysts are mostly
polycrystalline, grain boundaries, small inclusions and fractures/cracks
would be more common than smaller grains. These scatterers result in
increased internal scattering within larger phenocrysts and therefore
less efficient transmission of light. Further investigation into natural
samples is needed to enlighten the controls on the varying scattering
behavior.

4.2. Uncertainties in linear unmixing and spectral variability

It is possible to reduce the spectral unmixing problems into simple
linear unmixing assuming single scattering is the dominant factor.
The abundances of each spectral endmember can then be calculated
using the spectra of the mixture. We show in the results that lin-
ear unmixing of NWA 480 vastly underestimates the abundances of
7

pyroxene phenocrysts, which is likely due to the misclassification of
dark pyroxene pixels as ‘‘Dark’’ endmember since the variations in
spectral reflectance are mistakenly interpreted as a linear combination
of the Dark endmember and the other brighter endmembers (Tables 1,
2). Notably, the large pyroxene phenocryst’s outer rim is a Fe-rich
pigeonite with low reflectance (≤15%) that cannot be readily distin-
guished from the ‘‘Dark’’ endmember commonly found in the matrix.
The statistics of each spectral class in Fig. 6 highlight the significant
overlap between different classes. Such large endmember variabili-
ties that transcend different groups of minerals prevent an accurate
unmixing, especially when the spectral endmembers (e.g., Dark) are
relatively featureless (lack of spectral absorption features). Even the
LCP endmember, with the most robust absorption features and the most
confident classification results, shows variations in reflectance up to
45%.

Spectral unmixing algorithm studies for hyperspectral images have
identified spectral variability as a major issue in retrieving abun-
dances (Koirala et al., 2020; Drumetz et al., 2016, 2019; Borsoi et al.,
2020a). The variability comes from external factors (atmospheric and
illumination conditions, topographic variations) and intrinsic variabil-
ity inside the samples, where the controlling physicochemical param-
eters are usually unknown (Borsoi et al., 2020b). Recently developed
algorithms account for endmember variability using endmember bun-
dles, computational or parametric models (e.g., Drumetz et al., 2016,
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Fig. 6. Class statistics of a. unsupervised classification and b. supervised classification. Spectral statistics were calculated using all the pixels labeled in each class using the
dark-pixel threshold and maximum value method (Fig. 4). Thick solid lines represent the mean value of each endmember (𝜇); Thin solid lines represent mean value ± 1 standard
eviation (𝜇 ± 𝜎); Dashed lines represent ± 2 standard deviations (𝜇 ± 2𝜎).
019; Borsoi et al., 2020b, and references therein). Understanding the
auses for such variability in the laboratory/field can be crucial for
eveloping precise algorithms and analysis (Drumetz et al., 2019), as
uch models for spectral variability have been developed for vegetation
nd canopy studies (Asner, 1998). We discuss below the possible causes
or spectral variability in natural samples that are directly relevant to
eologic investigations.

.3. Possible causes for spectral variability in minerals

There are three types of causes for spectral variability that may
ccur for the same mineralogy: variations in chemical composition,
eometrical configurations, and the internal scatterers of the mineral
rains. Compositional variations often occur in igneous minerals due
o the reaction with the surrounding melt with time-dependent compo-
ition changes during fractional crystallization. For igneous rocks that
ave experienced aqueous alteration, dissolution and diffusion of chem-
cal species can also form alteration rims around mineral grains or along
ractures, with different optical properties in the unaltered/pristine
nterior. Such composition-caused spectral variability is often evident in
he absorption band centers’ position and overall reflectance for large
henocrysts. For example, in the pyroxene phenocrysts of NWA 480,
he band center shifts from ∼1.9 to 2.1 μm from the core to the rim
Fig. 7).

The shift in band center corresponds well to the previous chemical
nalysis of the meteorite (Barrat et al., 2001, 2002) where the pyroxene
henocrysts have a low-calcium core, an augite rim, and a Fe-pigeonite
uter rim. Chemical zoning also results in variability in overall re-
lectance. For example, with a 2 μm band position similar to the inner
ore, the Fe-rich outer rim has a much lower reflectance, likely due to
he increased content of Fe and possible Fe-oxide inclusions.

Other than the chemical variations within the mineral crystals,
he interaction of light with the cut surface can be influenced by
he crystal’s geometry and physical properties. Specifically, possible
nfluencing factors include (a) the lighting and observing geometry,
b) the surface roughness, (c) the phenocryst orientation, (d) the grain
ize of the phenocryst. In our experiment, each pixel is obtained with
8

he same lighting geometry. There is no documented surface roughness
of the slab surface, but surface roughness at a micron-meter scale
cannot be directly constrained. To better understand the effect of the
phenocryst grain size, we extracted average spectra on each LCP core
and examined regional variations in reflectance levels, but no regional
variation is noted (Fig. 8).

To further evaluate the variability due to grainsize, we derived the
size of the LCP core and its average spectra in the 2 cm dataset. We
extracted the LCP core pixels from the supervised classification result
(Fig. 4d). The grainsize 𝑑 is then computed as 𝑑 = 2 ∗

√

𝐴∕𝜋, where
𝐴 is the areal extent of the core pixels, simulating the diameter of a
circle that matches the measured area. The average spectra of each
grain are used to perform the spectral analysis in Fig. 9. We find that the
reflectance value does not change according to grain size but instead
remains constant or slightly decreasing toward smaller LCP grains
(Fig. 9). Contrary to the intimate mixing model (See Appendix for
detail), the lack of variation in the reflectance level for most pyroxenes
indicates that single scattering or scattering within the phenocryst is the
dominant component in reflectance (Fig. 9). There is a slight reflectance
decrease with decreasing grain size. Such a trend could be better
explained by considering the transparent pyroxene as an equivalent
slab that overlies the dark matrix, so a smaller grain size indicates a
shorter path length and reduced absorption (Hapke, 2012). In addition,
roughness, crystal orientation, or fractures and inclusions (Beck et al.,
2004) may also contribute to the variability with grainsize.

Finally, the internal scatterers, including fractures and inclusions,
would increase scattering and absorption within the phenocrysts de-
pending on their compositions and significantly modify the resulting
spectra depending on the types of inclusions. For example, gas and
fluid inclusions can be approximated as isotropic scatterers and non-
absorbing in the visible wavelength range, increasing the internal
scattering and enhancing the spectral feature of large phenocrysts. In
the infrared, inclusions can be highly absorbing in specific wavelengths
depending on the liquid/gas species. In the meantime, mineral inclu-
sions like Fe-Ti oxides, chromite and pyrrotite are often opaque (e.g.,
Adams, 1974) due to the electronic transition and charge transfer
occurring in the visible wavelength, as shown in the Backscattered
electron (BSE) image (Fig. 10), taken with a JEOL JSM630I-F scanning

electron microscope (SCIAM, Angers) (Barrat et al., 2002; Beck et al.,
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Fig. 7. Rim-to-rim profile of the pyroxene phenocryst in NWA 480. a. False color image of a pyroxene phenocryst (Red: 1220 nm, Green: 1656 nm, Blue: 2146 nm). b. The band
center, the band depth, and full width half minimum of the 2 μm band along the p-p’ profile highlighted in a. c. Spectral data extracted in the high-resolution image along the
p-p’ profile shown in a, showing the variability due to chemistry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 8. a. Average spectral plot of LCP core pixels. Different colors signify five spatially
divided regions of the rock surface: Numbered 0–4. b. The map of LCP grains of the
five divided regions. Note there is no preferential bias on the location in terms of
spectral variability.
9

2004). Detailed, quantitative chemical analysis at the micron-meter
scale is needed to show the related inclusions which may have caused
such variability.

Despite the intrinsic complexity of inclusions in the minerals, phys-
ical and petrological models that account for internal scatterers in
minerals in different geological contexts would be very useful for spec-
tral analysis and unmixing, as similar models were made for varying
amounts of aerosols in the atmosphere (Mishchenko et al., 1999); or
impurities in ice slabs (Andrieu et al., 2015).

4.4. Difficulties and implications for quantitative analysis of planetary
surfaces

Planetary surfaces are commonly composed of rocky material rather
than particulates of separate, pure mineral grains. Therefore, under-
standing spectral mixing in rock slabs is the first step toward a more
quantitative analysis of the spectral reflectance dataset. Microscopic
analysis of rocks shows various textures and structures representing
spatial heterogeneity, which is not currently considered in a homoge-
neous mixing model. Additionally, we have shown that even for the
same type of mineral grains, the reflectance level varies up to 45%, and
the existence of opaque or transparent minerals without any spectral
absorption features contribute to ambiguity in classification.

Given these observations, we discuss the fundamental uncertainties
that are crucial to address through quantitative spectral unmixing
igneous rocks.

First, the existence of opaque and dark minerals, including but not
limited to Fe-Ti oxides, chromite, sulfide, glass (maskelynite), needs to
be considered, in particular when considering igneous rocks (Pompilio
et al., 2007; Carli et al., 2014, 2015; Serventi et al., 2013). The
abundance of opaque minerals would be challenging to retrieve since
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Fig. 9. a. Reflectance variations in pyroxene phenocrysts at 1389 nm. Purple dots
represent the average refectance of phenocrysts plotted against its grain size. The error
bars represent the 1-𝜎 reflectance variation within the same phenocryst. b. Band depth
of the 2 μm band calculated using a standard band depth function (𝐵𝐷 = 1 − 𝑅∕𝑅𝑐 )
with fixed endpoints at 1.225 and 2.516 μm evaluated at 1.933 μm. LCP cores that
cover less than three pixels are shown in green crosses, highlighted due to possible
misclassifications for smaller grains. The gray solid lines in a. represents the reflectance
of the phenocryst (𝑅0) and the matrix (𝑅1), calculated for two spectral endmembers of
single scattering albedo of 0.9 and 0.3, respectively. The yellow dashed line represents
the average of a linear mixture 70% phenocryst and 30% matrix. Colored solid lines
correspond to non-linear mixing results based on Hapke’s model, given various matrix
grain sizes.

there is often a lack of spectral feature or that the spectral absorptions
are unintelligible due to the small signal-to-noise ratio. These minerals
contribute to the bulk rock spectra typically by changing the rock’s
total reflectance, an effect indistinguishable from variations in physi-
cal parameters (e.g., surface roughness, illumination, and observation
conditions). Non-linear spectral unmixing calculations using only one
or a few selected dark mineral (e.g., basaltic glass) may tend to add
weight to the weak spectral features even though they are unlikely to
be the dominating feature in a spatially heterogeneous mixture due to
their small contribution to the bulk rock abundance and reflectance.
10
Fig. 10. SEM image of one pyroxene phenocryst in the meteorite NWA 480 (Barrat
et al., 2001; Beck et al., 2004). Here the large crystal in the center is the pyroxene
phenocryst with zonation. Bright zones indicate minerals with high electron density,
often Fe-Ti oxides, pyrrhotite, and chromite. The few bright isometric minerals inside
pyroxene are likely chromite, which formed around the same time as the pyroxene
LCP core (Barrat et al., 2001). Various dark fractures are visible at this scale inside
the pyroxene phenocryst.

Second, the spectral variability in different grains of the same
mineral induces errors regardless of linear or non-linear spectral un-
mixing models and needs to be better understood. These grains can be
differentially altered chemically and physically due to varying grain
size, causing spectral variability. The spectral variability induced by
zoning, fracturing, and internal scatterers need to be quantified with
specifically designed experiments and measurements. For example,
previous studies on the solid solution in olivines (Isaacson et al.,
2014), clinopyroxenes (Klima et al., 2011) and orthopyroxenes (Wang
et al., 2005; Dyar et al., 2007) have shown the effect of temperature
and melt composition on the site occupation of Fe2+ and Mg. If the
lithology under investigation is different from a basaltic igneous rock,
the mineralogy and causes for spectral variability may need to be
reconsidered. For example, if an altered rock sample has only a small
fraction (<10%) of dark component, this endmember may be ignored,
and the linear unmixing may provide reasonable estimates for the
image based on the sharp vibrational absorption bands due to metal-OH
and 𝐻2𝑂 combination tones (e.g., Leask and Ehlmann, 2016).

Despite the foreseeable challenges in data interpretation, infrared
spectrometers are one of the most important tools to determine miner-
alogy for in situ exploration, and have been included in the instrument
payload onboard Martian rovers, for example, SuperCam instrument
onboard Mars 2020 Perseverance rover (Wiens et al., 2020; Maurice
et al., 2021), the MarSCoDe instrument onboard Tianwen-1 Zhurong
rover (Wan et al., 2021) and Ma_Miss instrument onboard ExoMars
2022 Rosalind Franklin rover (De Sanctis et al., 2017). In addition to
point spectrometers, a microimaging spectrometer will also be carried
onboard ExoMars 2022 (MicrOmega) (Bibring et al., 2017). Spectral
mixing at microscopic scale would inevitably impact the resulting
measurement. Based on our analysis, we speculate that for igneous
rocks on Mars, the phenocrysts situated in a dark matrix would often
dominate the contribution to the bulk spectra. We would recommend
when taking spectral measurements in situ, texture and albedo con-
trast between phenocryst and matrix should be determined using high
resolution images (e.g., by the SuperCam Remote Micro-imager (RMI)
or MicrOmega). Then spectral unmixing can be made for an accurate
interpretation of the rock petrology and composition with a pre-defined
percentage of the dark matrix. We would also emphasize that nonlinear
mixing models are better suited to the deconvolution of particulate
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mixture spectra (e.g., regolith), and caution should be taken before
application to the spectra of bulk rocks.

Although spectral measurements of natural samples would always
suffer from the spatial heterogeneity and spectral variability, texture
and physical/chemical variations in igneous rocks should not be con-
sidered as random parameters. Predictions based on igneous minerals’
evolution along various pressure and temperature pathways would
help build a petrologically reasonable model for spectral endmember
variability. Hyperspectral imaging in the laboratory also provides a
novel approach to test spectral mixing in natural samples with spatial
context. Spectral imaging data of natural samples with known geolog-
ical background would provide more quantitative constraints on the
causes and extent of spectral variability. Combining with statistical
analysis, such study would pave the way for an improved quantification
of planetary surface materials in the future.

5. Conclusion

In summary, based on newly acquired hyperspectral measurements
at different scales, we performed classification and unmixing analysis
of the hyperspectral image cubes to understand better the parame-
ters that affect spectral mixing in a rock slab. We find that a linear
combination of each pixel gives a reasonable prediction for the rock’s
bulk spectrum. However, different endmembers’ spectral variability
prevents an accurate quantitative assessment, vastly underestimating
the phenocrysts’ contribution when a Dark endmember is included.
In this dataset, the spectral variability in the pyroxene phenocrysts
may be due to the chemical zonation, mineral lattice orientation, and
the presence of inclusions and fractures. The varying grain size or
geometric parameters are not the main factors that result in spectral
variability in the pyroxene phenocrysts. Our work shows a new ap-
proach using hyperspectral images at the microscale to understand
radiative transfer models at different scales. As current and future
planetary missions will be carrying visible-near-infrared spectrometers
to investigate the composition of rocks in situ, this analysis opens a new
approach to understanding rock composition and texture from infrared
spectra. Further investigations will be focused on better understanding
the physical and chemical variability within the framework of the rock’s
petrologic history.
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Appendix. Intimate mixture modeling

We applied the Hapke theory (Hapke, 1981; Hapke and Wells, 1981;
Hapke, 1984) for intimate mixing of particulate minerals to highlight
the effect of mixing for various grain sizes (Fig. 9). We assumed a
constant single scattering albedo for the mean grain size. The grain size
did not change the apparent single scattering albedo but only resulted
in the varying geometric cross-section with which light interacts. This
choice was made to show increased scattering with smaller grain sizes
predicted by intimate mixing. Adding the grain size dependence of sin-
gle scattering albedo only strengthens the increased scattering trend for
smaller grains. Based on Hapke’s theory for intimate mixture (Hapke,
2012), the bidirectional reflectance of the mixture is approximated by

𝑟𝑚𝑖𝑥 (𝑖, 𝑒, 𝑔) =
𝜔𝑚𝑖𝑥 𝜇0 [

𝑃 (𝑔) +𝐻 (𝜇)𝐻
(

𝜇0
)

− 1
]

. (3)
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4𝜋 𝜇0 + 𝜇
Here 𝜔𝑚𝑖𝑥 is the single scattering albedo of the mixture, 𝜇0 and 𝜇 are
the cosines of the incidence and emergence angle. 𝑃 (𝑔) is the phase
function, 𝐻 is the Chandrasekhar function.

𝜔𝑚𝑖𝑥 =
𝜔1 + 𝐶𝜔2
1 + 𝐶

(4)

C is the weighting factor:

𝐶 =
𝑀1𝜌2𝐷2
𝑀2 𝜌1𝐷1

(5)

Here 𝑀 is the mass fraction, 𝜌 is the solid density, and 𝐷 is the grainsize
of the component.
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