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Abstract

Low-frequency radar tomography is an important subsurface imaging method for future planetary missions to solar system small
bodies. We derive angular and radial sampling criteria for monostatic and bistatic radar tomography algorithms that are based on
monochromatic free-space backprojection and spherical apertures. We use the vector Born approximation to highlight the degeneracy
of monochromatic bistatic source/receiver direction pair measurements in k-space. Analytical expressions are then derived for the scalar
point target response of different spherical sampling geometries. We also derive the angular sampling step and total number of sampling
points required to fully reconstruct the point target response for monostatic, bistatic, and non-degenerate k-space spherical apertures.
These are evaluated for object sizes and radar operating frequencies expected in small body tomography. We also analyze and derive
expressions for the coherence loss of spherical apertures due to random errors in a sensor’s radial position, which provides requirements
on the a posteriori ephemeris knowledge. Finally, we derive a vector backprojection algorithm suitable for focusing quad-pol scattering
matrix (S-matrix) data that is tested using full-wave S-matrix simulations of dielectric point targets. This work is intended to aid radar
instrument performance analysis and inform the design and architecture of future instruments and missions.
� 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction

Radar tomography is the most promising method to
remotely image the interior of solar system small bodies,
Kofman and Safaeinili (2004a), Safaeinili et al. (2002),
Hérique et al. (2018), Haynes et al. (2020). By collecting
reflection and transmission radar measurements around a
small body, tomographic radar processing can be used to
form 3D images of the interior structure or dielectric con-
stant of asteroids or comets. Rosetta-CONSERT, Kofman
et al. (2007); Kofman et al. (2015); Hérique et al. (2016),
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was the first of its kind to take limited transmission mea-
surements through the nucleus of comet 67P/C-G. The
CORE mission was proposed as a NASA Discovery-class
to perform comprehensive monostatic imaging of comet
10P/Tempel 2, Asphaug et al. (2014). The only radar cur-
rently being developed for asteroid imaging will be part
of the Hera mission to the asteroid Didymos, Michel
et al. (2018), which will carry the Juventus cubesat,
Goldberg et al. (2019): JuRa will be a monostatic and full
polarization radar sounder at 60 MHz to probe the smaller
asteroid of the binary pair, Herique et al. (2020). Smallsat
and cubesats missions and radar hardware are or have been
proposed for monostatic and bistatic tomography,
Pursiainen and Kaasalainen (2016); Bambach et al.
ommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.asr.2021.07.035
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mark.s.haynes@jpl.nasa.gov
https://doi.org/10.1016/j.asr.2021.07.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asr.2021.07.035&domain=pdf


M.S. Haynes et al. Advances in Space Research 68 (2021) 3903–3924
(2018); Granados et al. (2018); Hérique et al. (2019). In
general, these radar systems are in-family with traditional
long-wavelength (HF) orbital radar sounders MARSIS,
SHARAD, and LRS Picardi et al. (2004); Seu et al.
(2007); Ono and Oya (2000) which use low frequencies in
order to overcome absorption and scattering losses
through rough surfaces.

There are three general categories of 3D imaging algo-
rithms that can be used for small body interior imaging,
Safaeinili et al. (2002). The first are free-space methods in
which images of scattered intensity are formed by backpro-
jecting scattered field measurements onto the image
domain. These include radar tomography, Knaell and
Cardillo (1995), 3D synthetic aperture radar (SAR), Gim
et al. (2014); Arumugam et al. (2018), and reflection or
diffraction tomography. Diffraction tomography, specifi-
cally, is derived under the Born approximation, where the
spectral (k-space) components of an object are mapped to
source/receiver direction pairs, Devaney (1984); Kofman
and Safaeinili (2004b). The second category are inversions
of average dielectric properties using kinematic properties
of waves, e.g., speed of light, time delay, and attenuation.
This method was used on Rosetta-CONSERT data,
Kofman et al. (2015); Hérique et al. (2016). The third cat-
egory are full-wave electromagnetic non-linear inverse scat-
tering methods, Chew and Wang (1990); van den Berg et al.
(1999); Haynes et al. (2012), in which the 3D dielectric of
an object is found through an inversion process by match-
ing forward model predictions to measurements. This has
also been referred to as wavefield tomography, far-field
inversion, or full-wave tomography Sava and Asphaug
(2018b); Takala et al. (2018); Sorsa et al. (2019). Free-
space methods are easier to analyze, but full-wave methods
are ultimately required to maximize the science potential of
radar echoes.

Key questions for the future design and development of
small body radar tomography missions are: 1) what is the
required angular sampling spacing between radar measure-
ments around a small body, 2) what is the total number of
spherical sampling points required for complete imaging of
a small body, 3) how well do the locations of sensors need
to be known? Understanding these is crucial because they
drive orbit design and coverage, mission duration, require-
ments on reconstructed ephemeris accuracy, data volume,
radar function and performance, and ultimately mission
feasibility. Sampling criteria for far-field monostatic sys-
tems around small bodies was derived in Sava and
Asphaug (2018a) using k-space arguments, and
Pursiainen and Kaasalainen (2016) studied the effect of dif-
ferent bistatic sampling configurations on dielectric inver-
sion of small body voids but a rationale for the angular
sampling step was not given. The purpose of this work is
to formally derive and study the angular and radial sam-
pling criteria for free-space monochromatic 3D radar
tomography in monostatic and bistatic spherical geome-
tries in order to provide equations and rationale for radar
system engineering and mission trade studies.
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Three-dimensional tomographic radar systems in spher-
ical apertures have theoretical image resolutions that are
diffraction-limited, i.e., on the order of the wavelength.
This differs from traditional linear SAR in which range
and azimuth resolutions are restricted by the transmit
bandwidth and synthetic aperture length. Diffraction-
limited resolution applies to both backpropagation and
inverse scattering methods, and is achievable with
monochromatic radar systems (i.e., CW) when the full
angular diversity of scattered field measurements are sam-
pled. Monochromatic operation is an end member for both
analysis and hardware design. In practice, radar systems
with modest transmit bandwidth can reduce the required
spatial sampling density compared to that needed for
monochromatic systems. In effect, bandwidth permits more
information per spatial sampling location. However, for
narrowband systems, like those based on simple dipole
antennas, monochromatic analyses are reasonable tools
for first-order system assessments.

Finally, radar tomography is an inherently vector prob-
lem and must be considered in system analysis and imaging
algorithms. Inverse scattering methods readily handle the
vector nature of the data and scattering phenomenology.
Most point target analysis and k-space methods, however,
are derived for scalar scattering. In Section 2, we use the
vector Born approximation to link vector fields to scalar
scattering and k-space analysis. This is used to illustrate
the degeneracy of bistatic wavevector combinations in k-
space when different source/receiver pairs map to identical
object spectral components. This degeneracy affects the
count of the total number of required spherical sampling
points. In Section 8 we derive a vector backprojection algo-
rithm suitable for monochromatic focusing of quad-pol
scattering matrix data. The algorithm is tested on simu-
lated data of dielectric point targets in Section 9.

The rest of the paper is organized as follows. In Section 3
we derive analytical expressions for scalar point target
responses for monostatic and bistatic sampling geometries.
These are useful for general assessments of 3D apertures.
In Section 4, we derive the angular sampling criteria for
these geometries using SAR Doppler arguments and plane
wave harmonic analysis. In Section 5 the sampling rates are
used to predict the total number of angular sampling points
needed to fully sample a spherical aperture for each geom-
etry. The sampling criteria is validated in Section 6 in sim-
ulation. In Section 7, we analyze the effects of radial
position errors on aperture coherence, which gives criteria
on spacecraft position errors needed to successfully form
3D tomographic images. Finally, the implications of these
results and their effect on future mission feasibility are dis-
cussed in Section 10.

2. Vector Born approximation, k-space

We use the vector Born approximation (BA) to derive
the well-known relationship between the spatial spectrum,
or k-space, of a dielectric object and the incident/scattered



Fig. 1. Relation between wavevectors and polarization vectors.
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wavevector directions. We use this to point out an impor-
tant but lesser-known degeneracy of bistatic measurements
in k-space which is a direct result of the BA. This degener-
acy has implications for how we count of total number of
bistatic measurements in Section 5. In general, the analyt-
ical vector equations derived under the BA do not apply
to highly irregular, heterogenous, or lossy bodies because,
in the presence of multiple scattering, there is not a one-
to-one mapping between sensor position and the object
spatial spectral components.

2.1. Vector Born approximation

The volume integral equation (VIE) for the scattered
electric field for an inhomogeneous dielectric object is,
Chew (1995)

Esca rð Þ ¼
Z

G r; r0ð Þ � O r0ð ÞE r0ð ÞdV 0 ð1Þ

where E is the total field solution in the object, Esca is the

scattered field outside of the object, G r; r0ð Þ is the dyadic
Green’s function, and the object function is

O rð Þ ¼ k2 rð Þ � k2 ð2Þ
where k rð Þ is wavenumber in the object and k ¼ 2p=k is the
background wavenumber.

The three conditions of the Born approximation are:

1. Born approximation for the total field in the object,
E rð Þ ¼ Einc rð Þ,

2. Plane wave incidence, Einc rð Þ ¼ Eoêi exp iki � rð Þ,
3. Far-field Green’s function, (3).

The far-field approximation of the dyadic Green’s func-
tion in the scattered field direction is

G r; r0ð Þ � I� r̂r̂
� � eikr

4pr
e�iks�r0 ð3Þ

Substituting these into (1), the Born approximation for the
VIE is

Esca rð Þ ¼ eikr

4pr
I
�

�r̂r̂
� �

� Ei

Z
O rð Þei ki�ksð Þ�rdV ð4Þ

The volume integral has reduced to the 3D Fourier
transform of the object function in the wavevector differ-
ence domain. This is the classical k-space relation between
the scalar scattering of the object and the incident/scattered
direction that map to the object spatial frequency compo-
nents. A similar expression is derived in Safaeinili et al.
(2002); Eyraud et al. (2013). Under the BA, scattering is
purely scalar, there is no multiple scattering, and depolar-
ization only appears as the projection between incident
and scattered plane wave polarizations. The Born approx-
imation assumes that the total field solution is unaffected
by the object, and this is only valid when the objects are
small compared to the wavelength and/or have low dielec-
tric contrast.
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Because the BA relies on plane waves, (4) can be cast as
a scattering matrix, or S-matrix. In spherical coordinates,

I
�

�r̂r̂ ¼ ĥsĥs þ /̂s/̂s, then decomposing the incident and

scattered polarizations into v̂ and ĥ components, the far-
field S-matrix can be written

Esv

Esh

� �
¼ eikr

4pr

Svv Svh

Shv Shh

� �
Eiv

Eih

� �
ð5Þ

where

Svv Svh

Shv Shh

� �
¼ v̂s � v̂i v̂s � ĥi

ĥs � v̂i ĥs � ĥi

" #Z
O rð Þei ki�ksð Þ�rdV ð6Þ

The unit wavevectors and polarizations are defined, Tsang
et al. (2000),

k̂i ¼ sin hi cos/ix̂þ sin hi sin/iŷ þ cos hiẑ ð7Þ
v̂i ¼ cos hi cos/ix̂þ cos hi sin/iŷ � sin hiẑ ð8Þ
ĥi ¼� sin/ix̂þ cos/iŷ ð9Þ
k̂s ¼ sin hs cos/sx̂þ sin hs sin/sŷ þ cos hsẑ ð10Þ
v̂s ¼ cos hs cos/sx̂þ cos hs sin/sŷ � sin hsẑ ð11Þ
ĥs ¼� sin/sx̂þ cos/sŷ ð12Þ

where hi;/ið Þ and hs;/sð Þ are spherical angles. ĥ and v̂ are

the same as ĥ and /̂ unit vectors in spherical coordinates

and they form an orthogonal system with k̂ as shown in
Fig. 1.

Measuring the S-matrix requires a fully-polarimetric
radar system. For low-frequency radar systems around
an asteroid or comet, this can be accomplished with
cross-dipole antennas and independent transmit and
receive signal paths in the RF electronics. The above equa-
tions assume that the dipole antennas are oriented tangent
to the sphere enclosing the object. In Section 8, we will
derive a backprojection algorithm suitable for vector data
based on sampling the full S-matrix.
2.2. k-space

Under the Born approximation, a bistatic pair of plane
waves ki; ksð Þ measures the object spectral component
k ¼ ki � ks. This interpretation is well-known for all free-



Fig. 3. 2D discrete k-space sampling due to circular geometry of sources
and receivers.
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space focusing or diffraction tomography algorithms,
Devaney (1984); Kofman and Safaeinili (2004b). The main
ideas are:

1. In the forward scattering convention,�k̂i points to the

source, and k̂s points to the receiver.
2. Monostatic measurements are any ks ¼ �ki, where

k ¼ 2ki. Monochromatic reflections sample a k-space
sphere with radius 2k. This is the highest spatial fre-
quency that can be directly sampled by that probing
frequency.

3. ks ¼ ki is pure transmission. All antipodal source/re-
ceiver pairs map to k ¼ 0 under the BA.

4. ks – ki is a general bistatic measurement. If the source
and receiver directions are reversed, ki ¼ �ks; ks ¼ �ki

the same k-space location is sampled. This is a statement
of reciprocity.

These are illustrated in 3D in Fig. 2. Fig. 3 shows dis-
crete k-space samples due to evenly spaced source/receive
sampling around a circle in 2D. The outer circle (pink)
are monostatic measurements, the inner circle (red) are
fixed transmit, all receive measurements. Moving the trans-
mitter (green) sweeps out the full set of bistatic measure-
ments (blue dots) as a sum of fixed transmit geometries.
The inner most circle (cyan) are near-transmission, and
the center is pure antipodal transmission.

2.3. Degeneracy of bistatic measurements in k-space

A direct consequence of the BA and k-space formula-
tions is the degenerate mapping of different incident/scat-
tered wavevector combinations to the same object
spectral component. Under the BA, any incident/scattered
combinations that satisfy k ¼ ki � ks are considered equiv-
alent measurements, irrespective of the nature of the object.
We explain this degeneracy in detail next.
Fig. 2. 3D k-space spectral sampling for three source/receiver geometries.
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In 2D, there are exactly two ways to sample the same k-
space location with monochromatic waves. These are
found by reversing an initial pair of incident/scattered
wavevectors, and is the same as reflecting an initial head-
to-tail path of the wavevectors over the resultant k, shown
in Fig. 4. In 3D, there are an infinite number of ways to
sample the same k-space location with monochromatic
waves. These are found by spinning the head-to-tail path
of ki and �ks about the resultant vector k, shown in
Fig. 4. Any pair of incident/scattered wavevectors that lie
on the outside of the cones formed by this procedure
map to the same k. In other words, they appear to be the
same measurement. In general, this is not true, especially
for large, highly heterogeneous, or asymmetric dielectric
objects.

In the spatial domain, the degeneracy can be understood
geometrically as source/receiver pairs that fall on opposite
sides of a circle that is formed by spinning an initial pair of
source/receiver position unit vectors about their bisector,
shown in Fig. 5. Every opposing source/receiver pair on
any circle are reciprocal. All pairs on the same circle are
degenerate in k-space.

The degeneracy of bistatic k-space measurements creates
a problem for how we count the total number measure-
ments for 3D tomography. One way to count the required
Fig. 4. Left: 2D reciprocal measurements that sample the same point in k-
space. Right: Identical ways of sampling the same k-space location from
pairs of bistatic measurements in 3D. This illustrates the degeneracy of
bistatic measurements under the Born approximation and free-space k-
space formulations.



Fig. 5. Spatial domain representation of bistatic measurement degeneracy
in k-space. The sphere represents source/receiver position unit vectors.
Circles are created by rotating an initial pair of source/receiver position
vectors about their bistector. All opposite bistatic pairs on any given circle
map to the same k of the object spectrum under the Born approximation.
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number of bistatic measurements is to sample every k

exactly once. However, this predicts many fewer bistatic
measurements than what is predicted by taking all possible
combinations of bistatic directions for a given spherical
sampling density. This will be discussed further in
Section 5.

Finally, we only consider monochromatic waves in this
work, but an additional degeneracy occurs in frequency
where the combination of frequency and observation angle
map to identical k-space locations. In this case, while the
degeneracy of k-space appears to worsen, a system with
finite bandwidth would lessen the required spatial sampling
density because the same information could be obtained
from fewer sensor positions.

The k-space degeneracy, whether for monochromatic or
finite bandwidth systems, also has consequences for orbit
design. Assuming the BA as a reasonable start point, we
might choose an orbit solution such that k-space is sampled
as quickly as possible with the least redundancy. Therefore,
the extent to which degeneracy is avoided can be used as a
possible metric for data collection efficiency.

3. Scalar 3D point target response

The point target response (PTR) is a fundamental metric
for evaluating the performance and sampling requirements
of an imaging system. The PTR gives the theoretical reso-
lution of the backprojected image of an infinitesimal point
target. We derive the PTR for monostatic, bistatic, fixed-
transmit, and k-space sampling geometries for scalar waves
in free-space. These allow us to discuss sampling and data
acquisition strategies of 3D tomography under the BA in a
way decoupled from the details of the object or radar
instrument. Using the PTRs, we show that diffraction lim-
ited resolution is possible with monochromatic spherical
apertures. In addition, we show how the bistatic PTRs
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differ with and without the k-space degeneracy. The ana-
lytic results here will be used in Sections 4 and 7 to numer-
ically validate the angular and radial sampling criteria for
the sampling geometries.

3.1. Discrete scalar PTR

For a scalar source located in the far-field in direction
p� hi;/i þ pð Þ, an incident plane wave with unit amplitude
is given by

/inc xð Þ ¼ eiki �x ð13Þ

where ki ¼ kk
^

i. The far-field scattered field of a unit-
amplitude point target located at xp is

/sca; i;sð Þ ¼ ei ki�ksð Þ�xp ð14Þ
where i; sð Þ indexes an incident/scattered direction pair and

ks ¼ kk
^

s. The scattered field of a point target is just the
phase difference between the incident and scattered plane
waves measured at the target relative to the origin. The
monochromatic focused field (or voltage) image is founded
by reradiating, or backprojecting, each scattered field mea-
surement onto the imaging domain with conjugate phase
and summing over all measurement pairs:

V ¼
X
i;sð Þ

/sca; i;sð Þe
�i ki�ksð Þ�x ð15Þ

Substituting (14) into (15), the 3D image of the point
target response (PTR) is

V ¼
X
i;sð Þ

e�i ki�ksð Þ� x�xpð Þ ð16Þ

Eq. (16) can be used to compute the PTR for any arbi-
trary collection of incident and scattered measurement
direction pairs, under the assumptions of identical illumi-
nation (e.g., identical transmit power and antenna gain)
and known source/receive position.

3.2. Scalar PTR with continuous sampling

The point target responses in (15) and (16) can be eval-
uated analytically in the limit of a continuous number of
measurements. Letting xp ¼ 0, the continuous version of
(16) is

V ¼
Z

Xs

Z
Xi

e�i ki�ksð Þ�xdXidXs ð17Þ

where the integrals are evaluated over the wavevector, or k-
space, surfaces X. This is technically an integral over the
4D space of incident/scattered spherical directions. The dif-

ferential area of each sphere is dX ¼ k2 sin h/dhd/, where
the angles are spherical angles in k-space. If a signal con-
sists of multiple frequencies, or has finite bandwidth, the
integral should be evaluated over the volumes of the inci-
dent and scattered wave numbers.



Fig. 6. Normalized radial point target response for monochromatic waves
in free space for different sampling geometries.
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Full Monostatic. For a full monostatic, reflection-only
sampling geometry, ks ¼ �ki, (17) becomes an integral
over one k-space sphere:

V mono ¼
Z

Xi

e�i2ki�xdXi ð18Þ

Using the results in Appendix A, this evaluates to

V mono ¼ 4pk2sinc 2krð Þ ð19Þ
The PTR is a radial sinc function centered on the target

where the first null-to-null width is equal to k=2. When the
entire sphere of reflected directions is collected, the PTR is

diffraction limited. The scale factor, 4pk2, is the surface
area of the k-space sphere with radius k, and is replaced
by the number of reflected directions when computing the
PTR from the discrete sum (16).

Full Bistatic. For a full bistatic geometry, all combina-
tions of incident and scattered directions are collected,
therefore (17) (and (16)) can be separated as

V bi ¼
Z

Xi

e�ki�xdXi

Z
Xs

eks�xdXs ð20Þ

Using Appendix A, this becomes

V bi ¼ 4pk2
� �2

sinc2 krð Þ ð21Þ
The full bistatic PTR has a null-to-null width equal to k

and it has lower sidelobes than the monostatic PTR (19).
The scale factor is squared due to the fact that all possible
bistatic pairs of measurements are included in the acquisi-
tion. This includes all degenerate k-space pairs and can be
considered an auto-convolution of the fixed transmit, all
receive geometry (see next) over transmit directions.

Fixed Transmit, All Receive. When the incidence direc-
tion is fixed and all scattered directions are used, then the
ki integral in (17) becomes constant and

V fixed ¼ e�iki �x
Z

Xs

eiks�xdXs ð22Þ

which evaluates to

V fixed ¼ 4pk2e�iki�xsinc krð Þ ð23Þ
This PTR has the widest width and the sidelobes levels

are the same as the monostatic case. In addition, the inci-
dence plane-wave phase is present in the PTR.

This case applies to measurement configurations where
one sensor can be considered stationary and far away
and a second sensor orbits the body. For example, the com-
bination of a ground-based transmitter, high-altitude
spacecraft, or celestial radio source with a low-altitude
orbiting spacecraft. A lander-orbiter configuration is also
in-family, but the PTR should be redefined due to the fact
that the lander is in the near field of the object.

Full k-space. The point target response when k-space is
fully sampled is given by the inverse Fourier transform
over the spherical k-space volume. Here each k is sampled
exactly once out to a radius of 2k. The PTR integral is
3908
V k�space ¼
Z 2k

0

Z 2p

0

Z p

0

e�ik0 �rdV 0
k ð24Þ

where dV k ¼ k2 sin hkdkdhkd/k. The integral over the spher-
ical angles reduces to, Appendix A,

V k�space ¼ 4p
Z 2k

0

sinc k0rð Þk02dk0 ð25Þ

which evaluates to

V k�space ¼ V k
3 sin 2krð Þ � 2kr cos 2krð Þð Þ

2krð Þ3 ð26Þ

where V k ¼ 4p 2kð Þ3=3 is the volume of the k-space sphere
with radius 2k. V k multiplies a function with maximum
value of one at r ¼ 0. The multiplier, V k, is replaced by
the number of discrete samples had the PTR been com-
puted as a discrete sum. Different from the full bistatic, this
contains no degenerate measurement pairs. In addition, full
bistatic sampling can be thought of as full k-space sampling
with the addition of a weighting function that depends on
the number of measurements contributing to the density of
the degeneracy.
3.3. Comparison

Fig. 6 shows the point target responses for these acqui-
sition geometries plotted as a function of radius from the
center of the PTR. Table 1 gives numerical values for key
properties. The 3 dB width of bistatic vs monostatic vs

fixed transmit differ between them by approximately
ffiffiffi
2

p
.

In all cases, the 3 dB and 10 dB widths of the main lobe
are < k. Full bistatic resolution is roughly between k=3
and k=2. Full monostatic resolution is roughly between
k=5 and k=3. The radius of the first sidelobe peak is found
by differentiating the PTR analytically, (A.5), then solving
for the zero numerically. The full k-space PTR has a side-



Table 1
Properties of the free-space point target response of spherical apertures for different sampling geometries and monochromatic imaging.

3D Configuration Normalized Radial PTR* 3 dB** width 10 dB** width 1st null radius 1st sidelobe radius 1st sidelobe level

Full Monostatic sinc 2krð Þ 0.2215 k 0.3690 k k/4 0.3576 k �13.26 dB
Full Bistatic sinc2 krð Þ 0.3189 k 0.5570 k k/2 0.7151 k �26.52 dB
Fixed Tx, all Rx sinc krð Þ 0.4429 k 0.7380 k k/2 0.7151 k �13.26 dB

Full k-space
3 sin 2krð Þð
�2kr cos 2krð ÞÞ= 2krð Þ3 0.2888 k 0.4933 k 0.3576 k 0.4586 k �21.29 dB

* PTR is a field (voltage) quantity. dB intensity (power) is computed with 20log10. Note, sinc xð Þ ¼ sin xð Þ=x.
** Computed at linear powers of 0.5 and 0.1, respectively.

Table 2
Linear SAR Analogs of 3D Sampling Geometries.

3D Sampling Geometry SAR Analog

Full Monostatic $ Linear SAR
Full Bistatic $ Full Phased Array
Fixed Tx, all Rx $ Passive SAR
Full k-space $ Partial Phase Array
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lobe envelope similar to full bistatic, but oscillates at a spa-
tial frequency of 2k rather than k.

Designing or achieving specific sidelobe levels in the
PTR is an important consideration for the design of the
system. Weak targets can be ‘blinded’ by the sidelobes of
strong targets. For example, in monostatic sampling, a tar-
get with a backscatter that is less than 30 dB below that of
a nearby bright target will not be distinguishable in an
image. The weakest desirable target sets an upper limit
on the sidelobe levels. In classical SAR, range and azimuth
sidelobe levels can be designed by a choice of weighting
function in the fast-time and slow-time spectral domains.
This classical approach could be generalized in 3D, where
sampling strategy is treated as a k-space weighting function
that is chosen to meet PTR sidelobe level requirements.
3.4. Analogue with linear SAR

The 3D geometries above have direct analogues with lin-
ear synthetic aperture radar (SAR), which is worth point-
ing out. Full monostatic is like traditional SAR in which
the radar transmits and receives from the same location
as the system moves. Full bistatic is analogous to a full
phased array where all elements of an antenna array trans-
mit and receive. Fixed transmit, all receive is analogous to
passive SAR, where an external plane wave is incidence on
a target and a linear aperture receives the echo. Like pas-
sive SAR, only the one-way phase contributes to the focus-
ing and therefore the resolution is twice that of full
monostatic. Full k-space is analogous to where the along-
track SAR spectrum is sampled without degeneracy by a
subset of partial phased array bistatic measurements. These
are summarized in Table 2.

The traditional SAR along-track PTR can be found by
replacing the argument of the analogous sinc functions for
monostatic, bistatic, or fixed transmit, with

kr ! k
L
2
sin haz ð27Þ

where L is the synthetic aperture length and haz is the along
track azimuth angle. The key distinction of spherical sam-
pling geometries over traditional SAR is that diffraction-
limited resolution is possible with monochromatic waves,
while for linear SAR, the along track and range resolutions
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are limited by the synthetic aperture length and system
bandwidth, respectively.
4. Angular sampling criteria

For small body tomography, one or more spacecraft are
expected to fly near the body at a distance lower than a few
tens of target radius Kofman et al. (2007); Michel et al.
(2018). This configuration deviates significantly from
Fraunhofer conditions in which optical rays are parallel
Kong (1986) and waves incident the entire body as planes.
Instead, for a given position of the two spacecrafts, each
observed point of the target corresponds to different pairs
of ki; ksð Þ. This means that the ki; ksð Þ evolution of a point
during a sequence of observations, which correspond to the
Doppler history in SAR, depends on the position of the
target relative to the spacecraft, Fig. 7.

The angular sampling criteria gives the maximum angu-
lar step between radar measurements that is needed in
order to properly sample the phase of a target. Failing to
meet the sampling criteria leads to side-lobes in the PTRs
or aliasing in the object k-space. Sampling criteria for
spherical apertures has been studied generally for SAR
and near-field antenna systems, Fortuny-Guasch and
Lopez-Sanchez (2001); Hansen (1988). The sampling crite-
ria directly yields the total number of required measure-
ments needed of fill out a spherical aperture. For small
body radar tomography, this affects orbital coverage
requirements, mission duration, as well as radar instrument
operation, data rates and data volumes.

The angular sampling criteria for 3D tomography and
spherical apertures can be derived several different ways.
We do this first using arguments of traditional SAR Dop-
pler. Second, we consider the convergence of the PTR at a
given radius from the focal point. This sampling criteria
will be used in Section 5 to compute the total number of



Fig. 7. Geometry for Doppler sampling and signal paths for computing
the monostatic vs bistatic target phase differences on a spherically bound
object.
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sampling points. k-space sampling requirements are dis-
cussed in Section 5.2. In Sava and Asphaug (2018a), sam-
pling criteria were derived for radiated plane waves using
k-space arguments in the context of wavefield migration.
4.1. Doppler sampling

SAR Doppler deals with the rate of change of the target
phase due to a change in sensor position, Richards et al.
(2010). The Doppler frequency is usually given in terms
of sensor velocity and look direction, but it fundamentally
constrains the largest distance between two sensor posi-
tions required to Nyquist sample the target phase. For
nadir-pointing planetary orbital radar sounders with
near-omnidirectional antenna patterns, the maximum
Doppler frequencies occur at the limbs. For small bodies,
the limb is taken as the tangent to the body-enclosing
sphere.

For monostatic operation, we must sample the differ-
ence of the two-way phase between two sensor positions.
For bistatic or fixed-transmit operation, the ‘two-way’
phase consists of traversing the path once from one sensor
to the target then to the second sensor. The geometry is
shown in Fig. 7. Let the first sensor be on the y-axis at
an altitude h above the body-enclosing sphere that has
radius a. The second sensor position follows a circular
orbit to an angle h. The target is at the limb as viewed from
the first sensor position. Exact expressions for the change
in phase are given in Appendix B. Using those results,
and assuming that h=a > 0:2 or a > 2k, then the change
in phase between sensor positions is well-approximated by
3910
D/2�way;mono �2ka sin h � 4pa
k

h ð28Þ

D/2�way;bi �ka sin h � 2pa
k

h ð29Þ

The Nyquist criteria is satisfied when D/ is sampled fas-
ter than half a cycle, or D/2�way 6 p. The angular sampling

step, Dh, between any two adjacent points is therefore

Dhmono 6
1

4

k
a

ð30Þ

Dhbi 6
1

2

k
a

ð31Þ

measured in radians. These only depend on the electrical
size of the object and are independent of h. The angular
sampling step of bistatic is twice that of monostatic, even
though the total number of possible measurement pairs is
much larger. For wide-bandwidth radar signals, the highest
frequency (smallest wavelength) in the band should be
used. For narrow-band signals, the wavelength of the cen-
ter frequency is sufficient. (30) and (31) are plotted in Fig. 9
as a function of body diameter.

Eqs. (30) and (31) are consistent with the sampling crite-
ria derived in Sava and Asphaug (2018a) which was done
for one-way radiated plane waves. In particular, Sava
and Asphaug (2018a, Eq. 8) is stated in terms of a spatial
sampling step and maximum look angle. Exchanging the
spatial step for the body radius, and the look angle for
the angular step, we arrive at the same sampling criteria.
The monostatic sampling differs by a factor of 2, which
comes from one-way versus two-way accounting.
4.2. PTR convergence

A second way to derive the angular sampling criteria for
free-space monochromatic focusing and spherical apertures
is to require that the computation of the PTR sum (16)
converge across the largest dimension of the object. That
is, we want the PTR sidelobes for a focal point on one side
of the object to converge to their theoretical values on the
far-opposite side of the target. The geometry for this is
shown in Fig. 8. The radius of convergence, rc, needs to
be equal to the largest diameter of the object. rc depends
on the total number of measured plane wave directions,
and therefore their angular spacing, in (16).

The PTR radius of convergence is derived by consider-
ing the spherical harmonic content of the scalar plane wave
expansion at a radius rc measured from center of the focal
point combined with the rules for quadrature integration of
the Fourier surface integrals of the PTRs. Details are given
in Appendix C. Setting the radius of convergence in (C.6)
equal to the diameter of the body, rc ¼ d ¼ 2a, the angular
sampling steps to ensure PTR convergence in monostatic
and bistatic geometries are



Fig. 8. Geometry showing the PTR radius of convergence, rc, which needs
to be equal to the body diameter, d.
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Dhmono 6
1

4:4

k
a

ð32Þ

Dhbi 6
1

2:2

k
a

ð33Þ

This is finer sampling than the exact Doppler Nyquist
limit (30), (31). The multiplier 1/1.1 acts like a Doppler
over-sampling factor, but it is rigorously linked to the fide-
lity of the PTR via harmonic analysis. (32) and (33) are
plotted in Fig. 9.
5. Total number of spherical sampling points

The total number of required spherical measurement
points for 3D tomography is a critical metric for future
radar tomography missions. It gives the coverage require-
ments that drive orbit design, data rate and volume, mis-
sion duration, and ultimately the trade between
performance and mission feasibility. We use the angular
sampling criteria above to count the total number of
required measurements for monochromaitc full monostatic
Fig. 9. Maximum required angular sampling step for monostatic and
bistatic geometries, (30)–(33).
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and full bistatic sampling. In this section, we also give the
sampling criteria for non-degenerate full k-space sampling.
5.1. Number of monostatic and bistatic spherical sampling
points

Assume that discrete plane wave directions are evenly
distributed over the sphere according to the angular sam-
pling criteria above. It is not necessary to take radar mea-
sures at exactly these sampling points. The plane wave
directions need to be observed within Dh=2 of a prescribed
direction on average in order to maintain the angular sam-
pling rate in any direction around the sphere. An incident/
scattered measurement pair is considered sampled if both
the incident and scattered directions land within a small
circular region on the sphere with area

DX � p
Dh
2

	 
2

sr ð34Þ

The number of sampling points evenly distributed over
the sphere is then

N ¼ 4p
DX

ð35Þ

Substituting the Doppler sampling limits, (30), (31) into
(34), and then into (35), the total number of sampling
points required for full monostatic and full bistatic sam-
pling are

Nmono ¼44
a
k

� �2
ð36Þ

Nbi ¼43
a
k

� �2
ð37Þ

The density of spherical sampling points goes as the
square of the electrical dimension of the object, and the
density of full bistatic is 1/4 that of full monostatic. (36)
is plotted in Fig. 10 as a function of the object electrical
Fig. 10. Number of sampling points and bistatic measurements over the
sphere for monostatic and bistatic geometries as a function of body
diameter. The number of bistatic measurement pairs predicted from k-
space sampling, Nbi;pairs;k , is much small than that predicted by pair-wise
combination of Doppler-sampled bistatic points, Nbi;pairs.
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diameter, and plotted again in Fig. 11 as a function of
physical diameter and operating frequency. If (32) and
(33) are used, then the numbers of points are about 20%
larger.

For full monostatic, every plane wave direction only
needs to be sampled once. For full bistatic, we count all
possible pairs of incident/scattered directions for a given
sampling. Using reciprocity, and excluding self-terms, the
Fig. 11. Top: Number of monochromatic monostatic sampling points,
Nmono, (36), on the sphere as a function of body diameter and operating
frequencies that are in the typical range for radar tomography of solar
system small bodies. Middle: Number of bistatic combinations, Nbi;pairs,
(38). Bottom: Number of full k-space bistatic combinations, Nbi;pairs;k , (42).
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number of unique Doppler-sampled bistatic measurement
pairs given Nbi points distributed over the sphere is

Nbi;pairs ¼
Nbi

2

	 

¼ Nmono=4

2

	 

ð38Þ

This is plotted in Fig. 10 and then in Fig. 11 as a func-
tion of operating frequency and body diameter. Nbi;pairs

goes as � N 2
bi � a=kð Þ4. This grows very fast with an

increase in body diameter or decrease in wavelength. Part
of the reason for this growth is that (38) contains all possi-
ble degenerate bistatic pairs. It is so large, in fact, it seems
implausible these points could be completely sampled by a
realistic bistatic radar system. However, all of these spatial
pairs are likely not required, discussed further Section 10.4.
5.2. Number of k-space sampling points

The number unique k-space points that are needed to
Nyquist sample an object’s spatial spectrum is also deter-
mined by the object size and operating wavelength. Due
to the bistatic degeneracy in k-space, the total number of
bistatic pairs that can fill out k-space is much smaller than
that predicted by (38). The number of monostatic measure-
ments turns out to be the same as (36).

The minimum number of k-space samples is found by
dividing a k-space sphere of radius 2k by the volume of
the 3D k-space voxel required to Nyquist sample an imag-
ing domain. The highest measurable wavenumber is 2k.
The spectrum is two-sided, so the available spatial band-
width is 4k, which corresponds to a spatial sampling fre-
quency, f x ¼ 4=k (this is consistent with Doppler
sampling of a reflected wave at intervals of k=4). The num-
ber of samples across the diameter of the object, d, is
N ¼ f xd. The k-space step, Dk, is then equal to the spatial
bandwidth divided by the total number of sample points

Dk ¼ 4k
N

¼ 2p
d

ð39Þ

Due to the circulant property of the discrete Fourier
transform in Cartesian coordinates, under this sampling,
a point on one side of the object will be wrapped to the
exact opposite side along the principal axes of the image.
The volume of the k-space sphere is

V k ¼ 4

3
p 2kð Þ3 ð40Þ

The total number of cubic voxels of volume V Dk ¼ Dkð Þ3
in V k is

Nbi;pairs;k ¼ V k

V Dk
ð41Þ

¼ 4

3
p43

a
k

� �3
ð42Þ

¼ V

k=4ð Þ3 ð43Þ



Fig. 12. Top: Disco ball sampling of source/receiver directions over the
unit sphere. Middle: full monostatic PTR computed from (16) with
Nmono ¼ 478 measurement directions as random linear cuts through the
origin (all lines). Bottom: full bistatic PTR computed from (16) with
Nbi;pairs ¼ 114; 003 measurements at the same cuts. Analytical solution
overlaid (solid black). The radii (i.e., object diameter) at which the PTR is
predicted to converge for these numbers of measurements is shown for
Doppler sampling (vertical red dashed lines) and PTR convergence criteria
(vertical green dotted lines). Note, the radius of convergence of full bistatic
PTR is twice that of full monostatic for the same spherical sampling
density of points, albetit using a much larger number of measurement
pairs.
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where d ¼ 2a is the diameter of the imaging volume, V.
(43) shows that the number of k-space samples is equal
to the number of k=4 cubes that fit in the volume of the
spherical imaging domain. Because there are no degenerate
k-space pairs, Nbi;pairs;k is much smaller than (38). On the
other hand, uniform k-space sampling does not easily
map to a prescribed angular sampling criteria. Eq. (42) is
shown in Fig. 11 as a function of operating frequency
and object diameter.

The number of monostatic measurements is found by
dividing the surface area of the 2k-radius sphere by an area

SDk ¼ p Dk=2ð Þ2, which is the disk-equivalent area of the
side of a k-space 3D voxel. The surface area of the 2k-
radius sphere is

Sk ¼ 4p 2kð Þ2 ð44Þ
The number of points for monostatic acquisition in k-

space is

Nmono;k ¼ Sk

SDk
ð45Þ

¼44
a
k

� �2
ð46Þ

¼ S

p k=4ð Þ2 ð47Þ

where S is the surface area of the enclosing sphere. Eq. (46)
is the same as that derived from the Doppler sampling (36).
Nmono;k is also equal the number of k=4-radius disks that
divide the surface area of the enclosing sphere.

5.3. Relationship between k-space and full bistatic sampling

Bistatic measurements can be thought of as sampling a
4-dimensional space of spherical angles that describe the
vectors ki hi;/ið Þ and ks hs;/sð Þ. This has a mapping to k-
space as: k rk; hk;/k; cð Þ, which consists of the three dimen-
sions of the k-space spherical volume rk; hk;/kð Þ, plus a
fourth dimension for the rotation of degenerate measure-
ments, c, about k. This reduction in dimensionality
between full bistatic and full k-space helps explain the dra-
matic decrease in the number of sampling points from
Nbi;pairs, (38), to Nbi;pairs;k, (42).

6. PTR examples

We validate the angular sampling criteria and required
number of sampling points by comparing the PTRs com-
puted with the sum (16) with the analytic expressions.
Source/receiver directions are arranged on the unit sphere
using the disco ball approximation: points are distributed
mostly evenly at discrete latitudes centered on a prime
meridian, shown in Fig. 12. In this example there are 20
lines of latitude, which gives Nmono ¼ 478 monostatic sam-
pling directions, and Nbi;pairs ¼ 114; 003 bistatic combina-
tions. The PTRs are computed along random radial lines
through the center of the focal point, including the princi-
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pal axes of the imaging domain and plotted in Fig. 12.
Overlaid are the analytic expressions, (19) and (21). The



Fig. 13. Top: Discrete k-space samples on a Cartesian grid. Bottom: Full
k-space PTR for a object dimension d ¼ 5k. Overlaid is the analytical
results (26) and match is fairly good over a span of length d. The same cuts
are used as those in Fig. 12. The PTR is replicated every d in XYZ due to
the circulant properties of Cartesian k-space sampling.
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results agree very well out to the radius of convergence,
beyond which the PTRs do not converge.

Using (36) and (37), we solve for the diameter of the
body for which the PTRs should converge given this num-
ber of sampling points, recalling that the body diameter is
equal to the radius of convergence. The radius of conver-
gence from Doppler Nyquist sampling, Section 4.1, is plot-
ted as the vertical red dashed line, and that derived from
harmonic analysis, Section 4.2, is plotted as the vertical
green dotted line. Harmonic analysis better predicts the
radius of convergence than the exact Doppler limit. In this
example, the radius of convergence (body diameter) is
about 2.5k for full monostatic, and about 5k for full
bistatic. The radius of convergence of the full bistatic
PTR is twice that of the full monostatic for the same spher-
ical sampling density of plane waves, because the angular
sampling requirement for full bistatic is half that of full
monostatic, however, all combinations of bistatic measure-
ments are needed.

The disco ball spacing probably cannot be sampled
exactly in a real experiment where polar orbits around a
small body are practical. The realized sampling will affect
the PTR, especially when regions of the sphere are over-
or under-sampled relative to the desired Doppler rate.
Uneven sampling is analogous to a non-uniformly
weighted linear antenna arrays, where the weighting affects
the sidelobe structure of the PTRs. For example, if each
point can be sampled within half the angular sampling step
of the disco ball arrangement, then the sidelobes of the
PTRs are bounded by a floor relative to the uniform spher-
ical sampling. This has been confirmed numerically for the
monostatic example in Fig. 12, where the sidelobe floor is
about �25 dB. This effect is consistent with gradating lobe
mitigation in randomly spaced linear antenna arrays.

Next, we validate the k-space sampling criteria. For
comparison, we pick the object diameter to be equal to
the radius of convergence for full bistatic in the example
above, d ¼ 5k, where Dk ¼ 2p=d ¼ 1:26=k. Using (42) this
gives Nbi;pairs;k ¼ 4; 169 total k-space sampling points on a
Cartesian grid within a radius of 2k, shown in Fig. 13
(top). While FFT methods can be used, we compute the
PTR using (16). For each k-space sample we find one cor-
responding incident/scattered wavevector pair. This is done
by computing an arbitrary perpendicular vector, v, to each
k, which originates from k=2 such that j ki j¼j ks j¼ k. ki

and ks are the difference vectors between the resultant,
vþ k=2, and either the origin or k, respectively. This proce-
dure guarantees that all discrete k are mapped to exactly
one pair of bistatic measurements.

The full k-space PTR is computed along the same radial
lines as those used in Fig. 12. The result is shown in Fig. 13
(bottom), where the analytical result (26) is overlaid (solid
black). The match is good over a span of d, but not perfect,
which is likely due to the Cartesian sampling of the k-space
spherical volume. Images of the main lobe occur at �5k
along the XYZ axes, which are the circulant images that
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occur every d due to the Cartesian sampling of k. If the
image diameter were doubled, and so Dk halved, the peaks
would replicate every 10k. The replication length in k-space
is that same as the radius of convergence in the previous
cases. Also, a different random set of non-degenerate inci-
dent/scattered directions produces the exact same discrete
PTR, which is a direct consequence of the k-space degener-
acy. This would not be the case when imaging real hetero-
geneous objects in which degenerate pairs in k-space give
different scattered field measurements.
7. Radial position knowledge

It is generally accepted that the position of a radar sen-
sor must be known to better than k=10 to accurately focus
radar echoes and create tomographic images. Small phase
errors in the backprojected data lead to rapid coherence
loss, or decoherence, of the focused field, which degrades
the image and results in a loss of aperture gain. We derive



M.S. Haynes et al. Advances in Space Research 68 (2021) 3903–3924
equations for the coherence loss of spherical apertures for
monostatic and bistatic radar tomography. These equa-
tions are important for future mission design because they
drive requirements on the uncertainty of the a posteriori
reconstructed spacecraft ephemeris.

A complete treatment of this problem starts by giving
each sensor a 3D position error, converting the position
error to an equivalent phase error along the line of sight
to the focal point, and then evaluating the ensemble aver-
age of the PTR power. For spherical apertures and far-
field assumptions, the dominant effect is due to radial posi-
tion errors. The same error projected in the angular direc-
tion has less impact. Coherence loss has been studied
previously for linear synthetic apertures, Greene and
Moller (1962), formation flying radar sounders, Carrer
et al. (2019), and is the same phenomenon as rough surface
backscatter loss under the Kirchhoff approximation, Tsang
et al. (1985).

We derive the coherence loss for spherical apertures by
studying the PTR sum (16) with zero-mean, uncorrelated
Gaussian random phase errors. In practice, ephemeris
smoothing or interpolation will lead to correlated position
errors up to some spatial lag. Uncorrelated errors, though,
provide useful insight and tools for quick performance
trades.
7.1. Full monostatic

The coherence loss for monostatic sampling geometries
due to errors in radial position knowledge is derived by
starting with the discrete PTR sum (16), with
k ¼ ki ¼ �ks, the focal point xp ¼ 0, and N sensors evenly
distributed over a sphere. Each sensor has a radial position
error, rn, which counts twice toward the plane wave phase
error, 2krn. Each rn is a zero-mean IID Gaussian random
variable with standard deviation rr. The backprojected
voltage is then

V ¼
X
n

ei2kn�xei2krn ð48Þ

The average power is computed as the ensemble average
over the magnitude-squared voltage

P ¼j V j2 ¼ VV � ð49Þ
The analytic solution of the ensemble average is derived

in Appendix D. Using those results and notation, we iden-
tify wm ¼ ei2km�x; j wm j¼ 1; s ¼ 2k, and r ¼ rr, which gives
an average power of

P ¼e�4k2r2r P c þ 1� e�4k2r2r
� �

P i ð50Þ
Pc ¼N 2sinc2 2krð Þ ð51Þ
P i ¼N ð52Þ
where Pc is the coherent PTR power of the unperturbed
aperture (proportional to the square of the voltage PTR

and scales as N 2), and P i is the incoherent component of
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the power due to random position errors (proportional to
the number of sensors in the aperture, N). The exponential
dependence on rr in (50) is similar to the backscatter coher-
ence loss over random rough surfaces derived under the
Kirchhoff approximation.

7.2. Full bistatic

The coherence loss for bistatic geometries due to radial
position errors is also derived by starting with (16). For
simplicity, we assume that each wavevector direction is
associated with an independent source or receiver, i.e.,
there are no true monostatic measurements. This is the
same as having a sphere of radius r1 on which the source
moves, and a sphere of radius r2 on which the receiver
moves, where r1 – r2. Each incident/scattered wavevector
gets an independent random phase. This is done for analyt-
ical convenience. Were we to include true monostatic mea-
surements, we would need to account for a two-way phase

error at N monostatic points, while the roughly N 2 bistatic
sensor pairs would have uncorrelated one-way phase
errors. The expression for coherence loss would need to
be rederived. However, we expect the difference between
these two cases to be small, because the number of mono-
static measurements is small compared to the set of bistatic
combinations.

Both measurements of a reciprocal pair are included in
the computation. We further assume that the spheres of
measurement directions are equally well-sampled: there
are Nm incident directions, Nn scattered directions, where
Nm ¼ Nn ¼ N . The voltage PTR with random phases is
then

V ¼
X
m;n

ei km�knð Þ�xeik rmþrnð Þ ð53Þ

where m; nð Þ indexes an incident and scattered direction
pairs, and rm and rn are zero mean IID Gaussian random
variables. The sign of the random phase does not matter
because the Gaussian distribution is symmetric. Because
all bistatic pairs are measured independently, the double
sum can be separated and the ensemble average dis-
tributed, so that (49) becomes

P ¼
X
m

eikm�xeikrm



2 X

n

e�ikn�xeikrn



2

ð54Þ

¼
X
m

eikm�xeikrm



2 X

n

e�ikn�xeikrn



2

ð55Þ

Using the results and notation from Appendix D, we
identify wm ¼ eikm�x; j wm j¼ 1; s ¼ k, and r ¼ rr, and (55)
becomes

P ¼ e�k2r2r
ffiffiffiffiffi
Pc

p
þ 1� e�k2r2r
� � ffiffiffiffiffi

P i

p� �2
ð56Þ

Pc ¼N 4sinc4 krð Þ ð57Þ
P i ¼N 2 ð58Þ
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where Pc is the total coherent power of the full bistatic
aperture (i.e., proportional to the bistatic PTR squared,

which goes as N 4), and P i is the total incoherent power

(which goes as N 2). The squared roots in (56) account for
the fact that in (54) we implicitly divided each bistatic volt-
age measurement evenly between the two sums. Expanding
(56)

P ¼ e�2k2r2r P c þ 2e�k2r2r 1� e�k2r2r
� � ffiffiffiffiffiffiffiffiffi

PcP i

p
þ 1� e�k2r2r
� �2

P i ð59Þ
which shows that the bistatic geometry mixes the coherent
and incoherent powers of the source/receiver subapertures.
The exponent multiplying the coherent power is a factor of
2 smaller than that for monostatic, which implies that the
coherency of a full bistatic aperture is less sensitive to
radial position errors.

7.3. Comparison

The ensemble-averaged PTRs, (50) and (56), are plotted
in Fig. 14 (top) for different rr and N ¼ 261. Fig. 14 (mid-
dle) are the same computed numerically over random trials
of the PTR sums averaged over 200 trials, which shows
excellent agreement with the analytical expressions. In both
cases, the resolution of the PTR does not change, but the
coherent component drops very quickly with rr. Fig. 14
(bottom) are plots of the coherence loss at the PTR peak,
r ¼ 0, for different numbers of aperture points. When
rr ¼ 0; P i ¼ 0, there is only the coherent component. When
rr � k=4 the coherent component of the monostatic disap-
pears and the power is entirely incoherent. When rr � k=2
the bistatic power is entirely incoherent, which makes it
slightly more resilient to position errors. This is due to
the one-way phase error of each sensor, compared to the
two-way phase error in the monostatic case. These show
that, in order to limit the coherence loss of backprojected
images, the radial position knowledge of the radar sensors
for tomographic systems needs to be better than k=10, and
that a requirement of k=20 is well-justified.

8. Backprojection of vector data

Here we derive an algorithm for backprojecting 3D vec-
tor data. While simple to implement, this ensures that dif-
ferent polarizations do not destructively interfere when
summed coherently in free-space. In addition, this allows
us to link the vector Born approximation in Section 2 to
the scalar analyses in Sections 3,4,5,6 and 7. In Section 9,
we test our algorithm on simulated scattered field measure-
ments of dielectric point targets. A similar algorithm based
on vectorial-induced current reconstruction was developed
in Eyraud et al. (2013), and tested on a comet-analogue
material in experiment Eyraud et al. (2018).
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Assume that all four components of the S-matrix are
measured by a fully-polarimetric bistatic radar system.

Because v̂ and ĥ are orthogonal, any linear polarization
can be synthesized as though it were transmitted or
received. It is then possible to find a common polarization,

b̂, between any pair of incident and scattered directions,
which is given by the cross product of the plane wave
directions:

b̂ ¼ k̂i � k̂s
j k̂i � k̂s j

ð60Þ

Geometrically, b̂ lies on the intersection of the planes
containing the incident and scattered polarization vectors,
shown in Fig. 15. Polarization synthesis is accomplished

by projecting the components of the S-matrix onto b̂ as

Sis ¼ b̂ � v̂s b̂ � ĥs
� � Svv Svh

Shv Shh

� �
v̂i � b̂
ĥi � b̂

" #
ð61Þ

The action of polarization synthesis is equivalent to
actively phasing a quad-pol radar system so that each radar
on a pair of spacecraft orbiting a small body transmits and

receives the linear polarization b̂. This is also equivalent to
two spacecraft, each with a single dipole antenna, where
the dipoles of each radar are kept parallel to each other

and parallel to b̂. In Eyraud et al. (2018), only exact co-
linear polarized data were used to generate images. (61)
creates the co-linear polarization automatically from the
full S-matrix.

The monochromatic vector backprojected image is com-
puted as

V ¼
X
i;sð Þ

Sise�i ki�ksð Þ�x ð62Þ

where the phase of the S-matrix measurements is refer-

enced to the origin. For monostatic systems, k̂i � k̂s ¼ 0
and (60) is indeterminate. If we desire to mix the monos-
tatic S-matrix measurements, we can choose, for example,

b̂ ¼ v̂i þ ĥi
� �

=
ffiffiffi
2

p
ð63Þ

From (6), the S-matrix for a point target at xp under the
Born approximation is

Svv Svh

Shv Shh

� �
¼ v̂s � v̂i v̂s � ĥi

ĥs � v̂i ĥs � ĥi

" #
ei ki�ksð Þ�xp ð64Þ

The vector PTR is then found by substituting (64) into
(61) and then into (62). However, it can be shown that

b̂ � v̂s b̂ � ĥs
� � v̂s � v̂i v̂s � ĥi

ĥs � v̂i ĥs � ĥi

" #
v̂i � b̂
ĥi � b̂

" #
¼ 1 ð65Þ

which means the vector PTR computed via (62) reduces to
the scalar expression (16). This is expected because 1) the



Fig. 14. Left column: coherence loss due to radial position uncertainty (i.e., error in the plane wave phase) for full monostatic. Left top: analytical (50)–
(52). Left middle: numerical, (48). Left bottom: coherence loss of the PTR peak as a function of the stand derivation radial phase uncertainty, rr using (50).
Right column: coherence loss due to radial position uncertainty for full bistatic. Right top: analytical (56)–(58). Right middle: numerical (53). Right
bottom: coherent loss of PTR peak (56).
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scattering of the BA is scalar and 2) the projection of the S-

matrix through b̂ collapses the vector decomposition.

9. Point target imaging

We test the vector backprojection algorithm using
dielectric point targets, shown in Fig. 16. Each target is a
dielectric sphere approximately k=45 in diameter with a
dielectric permittivity of �r ¼ 2 in a background of free-
3917
space. The targets are spaced somewhat unevenly in the
XY plane. The value of 2 was chosen only to give the tar-
gets contrast with the background. For widely-spaced sub-
wavelength targets any choice of dielectric can be used to
assess these algorithms.

Bistatic S-matrix measurements are simulated using the
Method of Moments (MoM) solution of the vector VIE.
The MoM has the advantage that it computes all combina-
tions of incident and scattered directions for the same



Fig. 15. Geometry showing the common polarization b̂ between two
bistatic measurement directions onto which the polarimetric S-matrix
measurements can be projected to accomplish free-space backprojection of
vector data.

Fig. 16. Locations of dielectric point targets in the XY plane for the
images in Fig. (17).
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matrix inversion cost, which allows us to cleanly separate
monostatic and bistatic geometries. The simulation con-
tains no noise and the plane wave directions, phases, and
polarizations are perfectly known. The incident/scattered
field directions are simulated on a regular spherical grid
at 3o steps in both h and /. The spherical grid of points
is then subsampled to a disco ball approximation to avoid
oversampling the polls.

Fig. 17 shows the imaging results for three sampling
geometries and three sampling densities using the algo-
rithm in Section 8. From left to right, the columns corre-
sponds to the sampling density for a radius of
convergence equal to 1:6; 2:4; 4:8½ 	k. For full monostatic
and full bistatic geometries the boundary is depicted by a
circle. For full k-space the boundary is a square, which is
the Cartesian circulant boundary. The angular sampling
step and total number of sampling points are given in
Table 3. For k-space sampling, a single random set of
3918
non-degenerate incident/scattered direction pairs are
selected using the procedure in Section 6 and which are
closest to measurements sampled on the 3o spherical grid.

Fig. 18 illustrates the effects of noise and coherent gain
for the monostatic and full k-space configurations that
have the highest sampling density. The maximum level of
the S-matrix data in both cases is about �53 dB, while
the mean level is around �70 dB. Noise is added to each
complex S-matrix measurements as independent draws
from a complex standard normal distribution

c ¼
ffiffiffiffiffi
Pn

p ffiffiffi
2

p N 0; 1ð Þ þ iN 0; 1ð Þð Þ ð66Þ

where Pn is the noise power, and N 0; 1ð Þ is a draw from a
standard normal distribution with zero mean and unit vari-
ance. The noise level is chosen to be equal to the maximum
signal value, Pn ¼ �53 dB. Therefore, the signal to noise
ratio (SNR) of all measurements is less than 0 dB and
the SNR of roughly half of the measurements is less than
�23 dB. These two examples are discussed in Section 10.2.
10. Discussion

10.1. Imaging results

The features and artifacts in the reconstructed images in
Fig. 17 are consistent with the sampling geometries of
spherical apertures and the use of monochromatic free-
space focusing. All three geometries correctly focus on
the point targets within the predicted radius of conver-
gence. Recall, backprojection assumes that there is no
intervening material between the sensors and the focal
points. The sidelobes from the monostatic image do inter-
fere somewhat and extend beyond the boundary of the col-
lection of point targets. The bistatic image yielded the
cleanest far sidelobes. The circulant repetitions of the k-
space images fall precisely on the predicted Cartesian
boundary.
10.2. Aperture gain of radar tomography systems

Fig. 18 illustrates free-space focusing in the presence of
measurement noise. The noise level used is relatively high,
where the SNR for all measurements is less than 0 dB. Still,
the majority of point targets for the monostatic geometry
are resolved and all the targets for the full k-space geome-
try are resolved. In both cases, the noise floor is above the
level of the noise-free sidelobe levels. The gain over the
noise is proportional to the number of coherent measure-
ments. This is demonstrated by the improvement in the
noise floor between the two geometries, where the k-
space geometry has roughly 6 times as many sampling
points as the monostatic case.

In general, spherical tomographic radar systems have
the potential for very large aperture processing gains
assuming all measurements can be collected. Airborne



Fig. 17. Monochromatic free-space vector backprojection images of the point targets in Fig. 16 and sampling parameters in Table 3. Rows 1 through 3 are
backprojection images for three sampling geometries: full monostatic, full bistatic, and full k-space. The images are displayed as normalized linear intensity
from 0 to 1. Columns 1 through 3 corresponds to spherical sampling densities having radius of convergence of 1:6; 2:4; 4:8½ 	k, respectively. For monostatic
and bistatic sampling the radius of convergence is represented by a white circle, while for k-space sampling the Cartesian circulant boundary is shown by a
white square.

Table 3
Sampling Parameters for the Images in Fig. (17).

Radius of Convergence
kð Þ 1.6 2.4 4.8

Full Monostatic
Dhmono, Eq. (30) � 9o � 6o � 3o

Nmono, Eq. (36) 529 1177 4642
Full Bistatic

Dhbi, Eq. (31) � 18o � 12o � 6o

Nbi;pairs, Eq. (38) 18769 91204 1385329
Full k-space

Dk 1=kð Þ, Eq. (39) � 1:96 � 1:31 � 0:66
Nbi;pairs;k , Eq. (42) 1094 3707 29650

M.S. Haynes et al. Advances in Space Research 68 (2021) 3903–3924
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and space-borne SAR, including traditional orbital radar
sounders, have aperture gains constrained by short obser-
vation times. Spherical apertures on the other hand can
contribute thousands of measurements to a focal point,
assuming the radar is sensitive to those interior points. This
means that more and smaller low-power radar instruments
could be used to achieve spatial coverage, while compen-
sating signal-to-noise ratio through aperture gain.
10.3. Motivation of quad-pol radar systems for tomography

The choice of single-, dual-, or quad-pol radar architec-
tures has implications for the cost and complexity of the



Fig. 18. Imaging examples with noisy data. Full monostatic (left) and full
k-space (right) for the high density sampling (right column of Fig. 17). The
noise level is equal to the maximum of all S-matrix measurements, so that
the signal to noise ratio of all measurements is less than 0 dB and for half
of all points it is worse than �20 dB.
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radar, antenna design and mass, and future mission opera-
tions. The images above were formed using bistatic quad-
pol S-matrix data in which a co-aligned incident/scattering
polarization could always be constructed. This was
motived by the vector backprojection algorithm. In gen-
eral, highly heterogeneous objects will depolarize the scat-
tered field, beyond the capabilities of free-space algorithms
to fully focus the data. There is also an architecture trade
between having a slightly more complicated bistatic
quad-pol radar system (requiring four times the data of
single-pol systems) versus a single-pol bistatic experiment
in which the antennas are kept co-aligned by the spacecraft.
This level of coordination may be out of reach of current
smallsat/cubesat flight systems, or be used to motivate
needed capability. Finally, from the perspective of system
robustness, a quad-pol radar system has built-in redun-
dancy, should one half of the polarizations fail.

10.4. Feasibility of achieving full aperture sampling

We have shown that the total number of sampling
points required to fully sample the monostatic and bistatic
spherical apertures with monochromatic waves can be
quite large. Monostatic apertures for low frequency radars
(<20 MHz) can be completely sampled relatively easily
with plausible mission durations, Sava and Asphaug
(2018b); Sava and Asphaug (2018a). However, the number
of bistatic pairs predicted by Nbi;pairs for objects d ¼ 10k is
about 1 million, Fig. 11. The problem becomes worse for
larger bodies and higher frequencies.

This raises an important question: are all bistatic pairs
predicted by Nbi;pairs required for high fidelity interior imag-
ing? Recognizing that Nbi;pairs was derived for monochro-
matic sampling, it is clear that wide-band, or multi-
frequency, radar systems can obtain more information
per sampling point, using the transmitter bandwidth to fill
in more of k-space per sampling direction pair. However,
the system bandwidth of low-frequency radars cannot be
made arbitrarily large due to practical limitations of large
antennas and so some spatial diversity is required. One
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next step is to repeat these derivations for k-space filling
assuming a finite bandwidth system. This will reduce the
number of required bistatic measurements and should sug-
gest optimal distributions of bistatic pairs for free-space
focusing.

Finally, while free-space imaging methods are simple to
implement, they do not use the scattered field information
most efficiently. Inverse scattering methods formulate the
imaging problem as an optimization in which each resolu-
tion cell of the 3D object dielectric is an unknown to be
solved. It stands to reason that the true count of the num-
ber of unknowns in these problems is the number of k-
space samples required to Nyquist sample the object, i.e.,
Nbi;pairs;k, (42). However, because the inverse scattering solu-
tion is non-unique, together with bistatic degeneracy in k-
space, it is unclear how many or which bistatic pairs are
optimally required to invert for the 3D object dielectric.
In addition, regularization can effectively reduce the num-
ber of the degrees of freedom in the inversion, which
reduces the apparent number of required bistatic measure-
ments Haynes et al. (2012); Takala et al. (2018).

One hypothesis then is that the minimum number of
bistatic measurements required for 3D imaging of small
bodies is somewhere between Nbi;pairs;k and Nbi;pairs.
Nbi;pairs;k quantifies the minimum k-space sampling of the
object, and, while it contains no degenerate bistatic pairs,
more measurements might be needed to address the non-
uniqueness of the inverse scattering algorithms. Nbi;pairs,
on the other hand, contains a large amount of redundant
information across space and frequency, and therefore
might be considered an upper bound. Because bistatic scat-
tering information is almost certainly required for high
quality imaging, and because the combinatoric computa-
tion of Nbi;pairs for monochromatic waves predicts an unre-
alizable number of measurements, answering what is the
minimum or optimal number of bistatic measurements,
whether for free-space algorithms or 3D dielectric inver-
sion, is an important topic of future investigation. In gen-
eral, the interior make-up of the body does not change
the required Doppler sampling rates, but only a large sim-
ulation study can answer definitively what is the minimum
required sampling rate for more advanced inversion
algorithms.
11. Conclusion

In this work, we derive angular sampling criteria for
low-frequency 3D radar tomography systems for imaging
the interiors of solar system small bodies. These results
are intended to aid the design and analysis of radar tomog-
raphy instruments and mission systems. We started with
the vector Born approximation to derive and discuss the
k-space interpretation of free-space scalar scattering,
including the degeneracy of k-space measurements. We
then derived the scalar point target response for monos-
tatic, bistatic, and k-space sampling geometries in spherical
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apertures. These were used to validate the angular sam-
pling criteria and total number of spherical sampling
points. We then derived expressions for aperture coherence
loss in the presence of radial position errors, demonstrating
the requirement for k=20 position knowledge.

We derived a vector backprojection algorithm designed
to combine quad-pol S-matrix measurements to form sca-
lar images. We showed that with quad-pol data we can
always find a co-aligned polarization between arbitrary
bistatic measurement directions in order to collapse vector
data into scalar images. We tested this algorithm on simu-
lated S-matrix data of dielectric point targets. S-matrix
data was generated with a source-independent electromag-
netic simulator which allowed us to 1) generate the large
number of source/receiver measurement pairs with a single
scattering solution, and 2) cleanly test the image perfor-
mance of monostatic versus bistatic sampling geometries.

In general, the predicted number of unique monochro-
matic bistatic measurement pairs for radar tomography
of a small body grows very fast with body diameter and
operating frequency. This has implications for how or
whether all these measurements can be collected by practi-
cal radar systems. It also raises the question about whether
all these measurements are ultimately required for wide-
band systems or sophisticated imaging algorithms. This
motivates future work to determine the minimum or opti-
mal sets of measurements needed to successfully form 3D
dielectric images of small bodies using inverse scattering
algorithms, where, we expect, the number of spatial sam-
pling points will most likely be less than those predicted
for monochromatic imaging.
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Appendix A. Fourier integral over the sphere

The surface integrals in (17) have the form

U ¼
Z

Xk

eik�x sin hkdhkd/k ðA:1Þ

From symmetry the dot product is evaluated relative to
a common fixed axis where x ¼ r is a radial vector and t is
the angle between the vectors k and r so that
k � r ¼ kr cos tð Þ. Changing h ! t, the integral becomes
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U ¼
Z 2p

0

Z p

0

eikr cos tð Þ sin tdtd/ ðA:2Þ

Using the identity

jn zð Þ ¼ �ið Þn
2

Z p

0

eiz cos hPn cos hð Þ sin hdh ðA:3Þ

(A.2) evaluates to

U ¼ 4pj0 krð Þ ¼ 4psinc krð Þ ðA:4Þ
where jn xð Þ is the spherical Bessel function, and
sinc xð Þ ¼ sin xð Þ=x. The following derivative is useful for
finding the locations of the sidelobe peaks

d
dx

sinc axð Þ ¼ ax cos axð Þ � sin axð Þ
ax2

ðA:5Þ
Appendix B. Doppler sampling

The geometry is shown in Fig. 7. The body radius is a
and the sensor altitude above the body-enclosing sphere
is h. The target at the limb is located at

x ¼ a sin b x
^ þa cos b y

^ ðB:1Þ
where

cos b ¼ a
aþ h

ðB:2Þ

The sensor positions in a circular orbit are

s1 ¼ aþ hð Þ y^ ðB:3Þ
s2 ¼ aþ hð Þ sin h x^ þ aþ hð Þ cos h y^ ðB:4Þ

The ranges from the sensor points to the target at the
limb are then

r1 ¼j s1 � x j ðB:5Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ hð Þ2 � a2

q
ðB:6Þ

r2 ¼j s2 � x j ðB:7Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ hð Þ sin h� a sin bð Þ2 þ aþ hð Þ cos h� a cos bð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 2a aþ hð Þ sin h sin bþ cos h cos b� 1ð Þ

q ðB:8Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 2a aþ hð Þ cos b� hð Þ � 1ð Þ

q
ðB:9Þ

The difference of the two-way phases under monostatic
operation is

D/2�way;mono ¼2/1 � 2/2 ðB:10Þ
¼2k r1 � r2ð Þ ðB:11Þ

While the ‘two-way’ phase change for bistatic operation
is

D/2�way;bi ¼2/1 � /1 þ /2ð Þ ðB:12Þ
¼k r1 � r2ð Þ ðB:13Þ

Assuming that the change in angle is small, sin h 
 1, or
that h � a, it can be shown that

r1 � r2 � a sin h ðB:14Þ
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which is the same result as plane-wave far-approximation
with the limb equal to the point x ¼ a. Using this approx-
imation the change in phase can be approximated

D/2�way;mono �2ka sin h � 2kah ðB:15Þ
D/2�way;bi �ka sin h � kah ðB:16Þ
Alternately, we can solve for h exactly for a given D/.

Starting with

pk r1 � r2ð Þ ¼ D/ ðB:17Þ
where p ¼ 1; 2½ 	, substituting (B.9) and solving for h, we get

h ¼ b� acos
h2 � r1 � D/

pk

� �2
2a aþ hð Þ þ 1

0
B@

1
CA ðB:18Þ

Setting z ¼ h=a (B.18) can be written

h ¼ b� acos

D/
ffiffiffiffiffiffiffiffi
z2þ2z

p
pka � D/ð Þ2

2 pkað Þ2 þ 1

1þ zð Þ

0
B@

1
CA ðB:19Þ

It can be shown that when z > 0:2 or a=k > 2 that this is
well-approximated by

h � D/
pka

ðB:20Þ

which is equivalent to the result above.
Appendix C. Plane wave spherical harmonic content and

spherical quadrature

The far-field angular sampling step for tomography can
also be derived by considering the spherical harmonic con-
tent of the plane wave expansion at a radius r and quadra-
ture sampling of the Fourier surface integral. The
expansion of a scalar plane wave in terms spherical har-
monics at the origin is, Tsang et al. (2000),

eik�x ¼
X1
l¼0

Xl
m¼�l

iljl krð ÞY lm h;/ð ÞY �
lm hk;/kð Þ ðC:1Þ

where hk;/kð Þ are the spherical coordinates of the wavevec-
tor direction k and r; h;/ð Þ are the coordinates of the
observation point x. Substituting this into (A.1),

U ¼ 4pk2
X1
l¼0

Xl
m¼�l

iljl krð ÞY lm h;/ð Þ
Z
Xk

Y �
lm hk;/kð Þ

� sin hkdhd/k ðC:2Þ
For a fixed kr, the spherical Bessel function only has

harmonic content up to a maximum degree L, which is
given approximately as, Yaghjian (1996),

L � 1:1kr 1þ 1

kr

	 
� �
ðC:3Þ
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This allows the sum in (C.2) to be truncated at L. Next,
to ensure convergence of the harmonic sum (C.2), the sur-
face integral over Xk is computed over a discrete number of
plane wave directions hk;/kð Þ. The integration is done by
using N h ¼ Lþ 1ð Þ=2d e Gaussian-Legendre quadrature
points in h and N/ ¼ Lþ 1 trapezoidal integration points
in / at each h. In this scheme, the poles are oversampled,
and the quadrature steps in h are almost evenly spaced
but never sample the poles. Dividing N h þ 1 into p, or
using the / step at the equator, the angular sampling to
integrate exactly a spherical harmonic of degree L is
approximately

Dh ¼ 2p
Lþ 1

ðC:4Þ

Substituting (C.3) and ignoring the rounding

Dh � 2p

1:1kr 1þ 1
kr

� �þ 1
ðC:5Þ

Further assuming that r=k � 1 we get

Dh � k
1:1r

ðC:6Þ

In summary, the integral (A.1) can be computed exactly
over discrete samples of plane wave directions by choosing
an angular step consistent with the quadrature rules for
integration for spherical harmonics of degree L, where L

is determined by the harmonic content at the observation
radius.

This derivation assumed a single factor of kr in the
exponential of the PTR integral (A.1), and therefore
applies to bistatic and fixed transmit geometries. For
monostatic, the argument of the spherical Bessel function
in (C.1) will be 2kr, and therefore (C.6) needs an additional
factor of 1/2.
Appendix D. Ensemble average of a sum of wave functions

We derive the average power of a sum of wave functions
with Gaussian random phases. The voltage signal is,
generally,

V ¼
X
m

wme
iszm ðD:1Þ

where wm is a wave function, zm are IID Gaussian random
variables with zero mean and standard deviation r, and s is
real-valued. The average power is computed as

P ¼ j V j2 ¼ VV � ðD:2Þ

¼
X
m

wme
iszm

 ! X
m0

w�
m0e�iszm0

 !
ðD:3Þ

¼
X
m;m0

wmw
�
m0ei szm�szm0ð Þ ðD:4Þ
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When m ¼ m0, the random phase is zero and the self-
terms should not be included in the ensemble average.
The ensemble average is then brought inside the double
sum to the random phases as

P ¼
X
m

j wmj2 þ
X

m;m0 ;m–m0
wmw

�
m0ei szm�szm0ð Þ ðD:5Þ

¼
X
m

j wmj2 þ
X

m;m0 ;m–m0
wmw

�
m0ei szm�szm0ð Þ ðD:6Þ

Assuming the random variables are independent but
with identical variance for each index, we use the character-
istic function, Appendix E, and this becomes

P ¼
X
m

j wmj2 þ e�s2r2
X

m;m0 ;m–m0
wmw

�
m0 ðD:7Þ

Next, add and subtract the sum of self-terms multiplied
by the exponential

P ¼ P
m

j wmj2 þ e�s2r2
P

m;m0;m–m0
wmw

�
m0

þe�s2r2
P
m

j wmj2 � e�s2r2
P
m

j wmj2
ðD:8Þ

The positive term is used to complete the double sum
after which this can be rearranged as

P ¼ e�s2r2
X
m;m0

wmw
�
m0 þ 1� e�s2r2

� �X
m

j wmj2 ðD:9Þ

The double sum is the unperturbed, or mean-field,
coherent component of the power, Pc. The sum of the mag-
nitude squared is the total incoherent power, P i, con-
tributed by the random variation. Therefore,

P ¼e�s2r2Pc þ 1� e�s2r2
� �

P i ðD:10Þ

Pc ¼
X
m;m0

wmw
�
m0 ¼

X
m

wm



2

ðD:11Þ

P i ¼
X
m

j wmj2 ðD:12Þ

This result is similar to the expressions in Carrer et al.
(2019) for arrays of smallsat radar sounders with position
errors.
Appendix E. Characteristic function

The characteristic function for a multivariate Gaussian
random variable z � N l;Rð Þ is given generally as,
Scarowsky (1973, Eq. 2.22),

E eis
tz

� � ¼ eil
ts�1

2s
tRs ðE:1Þ

For two zero-mean random variables with correlation C

this is

ei k1z1þk2z2ð Þ ¼ e�
1
2 k2

1
r2
1
þ2Ck1k2r1r2þk2

2
r2
2ð Þ ðE:2Þ
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