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ABSTRACT
We present the implementation of a dust growth and fragmentation module in the public smoothed particle hydrodynamics
(SPH) code PHANTOM. This module is made available for public use with this paper. The coagulation model considers locally
monodisperse dust size distributions around single values that are carried by the SPH particles. Along with the presentation of
the model, implementation, and tests, we showcase growth and fragmentation in a few typical circumstellar disc simulations and
revisit previous results. The module is also interfaced with the radiative transfer code MCFOST, which facilitates the comparison
between simulations and ALMA observations by generating synthetic maps. Circumstellar disc simulations with growth and
fragmentation reproduce the ‘self-induced dust trap’ mechanism first proposed in 2017, which supports its existence. Synthetic
images of discs featuring this mechanism suggest it would be detectable by ALMA as a bright axisymmetric ring at several tens
of au from the star. With this paper, our aim is to provide a public tool to be able to study and explore dust growth in a variety of
applications related to planet formation.
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1 IN T RO D U C T I O N

High resolution imaging of protoplanetary discs with the Atacama
Large Millimetre/Submillimetre Array (ALMA) has revealed rich
substructure in mm continuum emission that includes rings, gaps
and spiral arms (Andrews et al. 2018; Huang et al. 2018). The
current state of the art in modelling these discs is to simulate gas
plus one, or more, dust populations of constant size (e.g. Dipierro
et al. 2015; Price et al. 2018b; Calcino et al. 2019; Mentiplay,
Price & Pinte 2019; Pérez et al. 2019; Veronesi et al. 2020). Gas
and dust are coupled via an aerodynamic drag force (Whipple 1973).
Whereas gas orbits at a sub-Keplerian speed because of its own
pressure support, the pressureless dust phase feels an azimuthal
headwind and loses angular momentum. This transfer leads to the
dust drifting radially towards the star and settling vertically towards
the mid-plane (Safronov 1969; Adachi, Hayashi & Nakazawa 1976;
Weidenschilling 1977; Dubrulle, Morfill & Sterzik 1995; Haghigh-
ipour 2005). These processes are most efficient for mm to cm
grain sizes, i.e. for dust populations detected by instruments such
as ALMA. While simulating gas, dust, and their mutual effects,
calculations indicate that interaction with embedded planets is the
likely explanation for the observed rings and gaps (Paardekooper &
Mellema 2004; Dipierro & Laibe 2017; Mentiplay et al. 2019; Pérez
et al. 2019; Toci et al. 2020). Stellar companions are also invoked to
explain spiral arms, cavities or misalignments (Kley & Nelson 2012;
Zhu et al. 2015; Dong, Fung & Chiang 2016; Muñoz & Lai 2016;

� E-mail: arnaud.vericel@gmail.com (AV); Jean-Francois.Gonzalez@ens-
lyon.fr (J-FG)

Dong et al. 2018; Price et al. 2018b; Calcino et al. 2019; Cuello
et al. 2019, 2020; Gonzalez et al. 2020; Nealon, Cuello & Alexander
2020). While this general simulation approach has proven successful,
particularly for planet-induced kinematic signatures (Pinte et al.
2018, 2019, 2020), it fails to explain how planets were formed in
these discs in the first place, or how the dust grows and evolves on
longer time-scales.

From a theoretical point of view, dust evolution has been studied
extensively in 3D without dust growth to understand dust radial drift,
settling or concentrations in pressure bumps (e.g. Weidenschilling
1977; Dubrulle et al. 1995; Haghighipour 2005; Fromang & Pa-
paloizou 2006). Efficient dust concentrations have been shown to
lead to the streaming instability – a local hydrodynamic instability
leading to direct planetesimal formation (Youdin & Goodman 2005;
Johansen & Youdin 2007; Schäfer, Yang & Johansen 2017; Yang,
Johansen & Carrera 2017; Auffinger & Laibe 2018; Abod et al.
2019; Li, Youdin & Simon 2019b). This mechanism could be the
cornerstone of planet formation. Understanding how particles can
reach such high concentration levels in discs is thus of utmost
importance. One mechanism that could provide the required initial
conditions is the ‘self-induced dust trap’ proposed by Gonzalez,
Laibe & Maddison (2017a) and Vericel & Gonzalez (2020), where
dust growth/fragmentation, back-reaction, and large-scale gradients
leads to dust pile-ups and subsequent formation of a local pressure
maximum in the disc.

Dust growth is a complex and computationally challenging process
in which coagulation of small dust particles forms larger bodies
by a ‘snowball effect’ (Lissauer & Stewart 1993; Dominik &
Tielens 1997; Blum & Wurm 2008). Since the pioneering work of
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Weidenschilling (1997), the numerical challenges of dust growth
have led the community to follow different approaches to tackle
this problem. Grid-based codes have considered the resolution of
the Smoluchowski equation (Smoluchowski 1916) in vertically and
azimuthally averaged discs (Brauer, Dullemond & Henning 2008;
Birnstiel, Dullemond & Brauer 2009; Birnstiel, Klahr & Ercolano
2012; Pinilla, Benisty & Birnstiel 2012; Drążkowska, Alibert &
Moore 2016; Drążkowska & Alibert 2017) where gas undergoes Ke-
plerian shear and the vertical equilibrium is reached instantaneously.
In most of these models the gas is considered as a static background
and back-reaction, i.e. the drag force exerted by dust on to the gas, is
neglected, although it can be of significant importance during the disc
evolution (Gonzalez et al. 2017a; Dipierro et al. 2018). However, a
few 2D grid-based codes compute the Smoluchowski equation at the
same time as the evolution of both gas and dust, more particularly for
the study of planet hosting discs (Li et al. 2005, 2019a; Drążkowska
et al. 2019; Laune et al. 2020). Alternatively, dust growth has also
been modelled with Monte Carlo methods in grid-based codes (e.g.
Ormel & Spaans 2008; Zsom & Dullemond 2008; Drążkowska,
Windmark & Dullemond 2014), although these need a large number
of size bins to avoid overdiffusion.

While the Eulerian nature of a grid-based code handles dust size
distributions naturally in each cell, particle tracking and complex
geometries present challenges. As a result, alternative methods have
also been developed with a static gas background on top of which
dust super-particles are set (Krijt et al. 2016; Krijt & Ciesla 2016;
Schoonenberg, Ormel & Krijt 2018; Misener, Krijt & Ciesla 2019).
In these studies, dust growth is modelled using the ‘single-size’
approximation, i.e. considering that every dust super-particle carries
a single size that can evolve because of the local conditions.

This method was pioneered by Laibe et al. (2008, hereafter L08)
following Stepinski & Valageas (1997), using a 3D smoothed particle
hydrodynamics (SPH) code that solves the equations of motion self-
consistently, including gas drag and back-reaction. This code, which
we will refer to as LYONSPH, initially developed by Barrière-Fouchet
et al. (2005) has been further developed over the years to include
fragmentation (Gonzalez et al. 2015, 2017a), porosity (Garcia 2018;
Garcia & Gonzalez 2020) and snow line (Vericel & Gonzalez 2020)
effects. In this paper, we extend and adapt this growth algorithm to
PHANTOM: a public, fast, modular, and optimized SPH code widely
used by the community (Price et al. 2017, 2018a, hereafter P18). By
doing so, our aim is to provide a tool to study dust growth in a range of
planet-forming environments, including discs around multiple stars,
flybys, and in misaligned and warped discs.

The paper is organized as follows. Section 2 describes the growth
and fragmentation model while Section 3 treats its numerical imple-
mentation. We present two tests in Section 4 as well as circumstellar
disc simulations in Section 5. Finally, we discuss our findings and
conclude in Sections 6 and 7.

2 MO D EL

Dust coagulation is the result of the collision between particles, the
outcome of which is determined by their relative velocity, noted Vrel.
The relative velocity can come from multiple sources including disc
turbulence, Brownian motion, dust radial, and azimuthal drift and
dust settling. Since we use the ‘single size’ approximation locally,
particles in that vicinity feel the same drag force, which cancels the
radial, azimuthal, and vertical component of their relative velocity
(see Vericel & Gonzalez 2020 for a discussion). Moreover, the
Brownian motion only plays a significant role for very small grains
(micrometre and smaller; Birnstiel, Dullemond & Brauer 2010),

Figure 1. Evolution of the relative velocity (equation 1) as a function of the
Stokes number for four different values of the ratio �v/Vt. In the simulations
performed for this paper, the differential velocity is always small compared
to the turbulent velocity (and by extension compared to the sound speed),
thus we only show values in the range 0 ≤ �v/Vt ≤ 1.

which is a regime that is in practice never met in our simulations. For
these reasons, we only consider the turbulence-driven component of
the relative velocity, which is transmitted to the dust from the gas
via drag. We use the form proposed by Stepinski & Valageas (1997),
that is

Vrel =
√

23/2Roα

√
Sc − 1

Sc
cs =

√
2Vt

√
Sc − 1

Sc
, (1)

where Ro is the Rossby number that we consider constant and equal
to 3, α is the viscosity parameter defined by Shakura & Sunyaev
(1973), and cs the gas sound speed. Various turbulent relative velocity
formulations have been proposed [we refer the reader to L08 and
Laibe (2014) for a discussion about their differences]. In equation (1),
Vt is called the turbulent velocity and Sc is the Schmidt number,
expressed as

Sc = (1 + St)

√
1 + �v2

V 2
t

, (2)

where St is the Stokes number and �v is the differential velocity be-
tween the gas and dust phases. The dust relative velocity (equation 1)
is plotted for different values of �v in Fig. 1. For small differential
velocities with respect to Vt, the Schmidt number approximates as 1
+ St, which reduces the relative velocity to

Vrel �
√

2St

1 + St
Vt. (3)

The Stokes number is defined as the product of the stopping time ts

set by the gas drag and the Keplerian frequency �k set by the star’s
gravitational field

St = ts�k, (4)

where ts depends on the drag regime considered (see Laibe & Price
2012b). In the usual Epstein regime (Epstein 1924), this gives

St =
√

πγ

8

ρss

f
(
ρg + ρd

)
cs

�k, (5)

where γ is the adiabatic index, ρs is the dust intrinsic density, and
ρg and ρd are the volume densities of the gas and dust phases.
The definition of the Stokes number corresponds to the mixture
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(Dipierro & Laibe 2017; Kanagawa et al. 2017). f is the Kwok
parameter (Kwok 1975) correcting drag for supersonic differential
velocities and expressed as

f =
√

1 + 9π

128

�v2

c2
s

. (6)

The radial drift process is fastest when St ∼ 1. Considering this,
we rewrite the Stokes number as the ratio between the dust size and
its optimal drift size for which St = 1, called sopt, which can be
expressed as

sopt =
√

8

πγ

f (ρg + ρd)cs

ρs�k
, (7)

=
√

8

πγ
f (1 + ε)

ρg

ρs
H, (8)

where ε = ρd/ρg is the dust-to-gas ratio and H = cs/�k is the scale
height of the gas disc.

2.1 Growth

In the model, we consider a single dust SPH particle to represent
a swarm of equal-sized physical grains. This means that at the
location of the SPH particle, the size distribution is considered highly
peaked around a certain value: the one that the particle carries.
We represent grain growth inside each SPH particle by assuming
perfect coagulation of two grains during a collision time. Since the
distribution is locally monodisperse (i.e. the size is locally uniform),
only same-size coagulation events are modelled and the grain mass
md doubles during a collision

dmd

dt
= mdfcol, (9)

where fcol = σ dndVrel is the collision frequency, σ d is the dust cross-
section, and nd is the dust numerical density. We consider compact
spherical grains, for which the growth rate is more conveniently
expressed using the size

ds

dt
= s

3
fcol. (10)

The growth rate is associated with the physical grains within the SPH
particle and not to the SPH particle itself. This is fundamental, be-
cause we wish to conserve the mass of each SPH particle to preserve
numerical robustness. This constraint is satisfied considering a larger
size corresponds to fewer physical grains represented by a given SPH
particle, without affecting its total mass. This representation holds
as long as the mass of the SPH particle itself is much larger than the
mass of a single physical grain it ‘contains’. This translates as the
condition

s �
(

Md

nSPH
d

3

4πρs

) 1
3

, (11)

where Md is the total dust mass, and nSPH
d is the number of dust SPH

particles. Quantitatively speaking, this gives

s � 362

(
Md

10−4 M�

) 1
3
(

nSPH
d

106

)− 1
3
(

ρs

1000 kg.m−3

)− 1
3

km, (12)

which is entirely satisfied for simulations with sizes between a few
tens of micrometres to a few tens of kilometres at most. Equation (10)
finally gives the growth rate

ds

dt
= ρd

ρs
Vrel. (13)

Figure 2. Evolution of the fragmentation parameter ψ as a function of the
ratio v = Vrel/Vfrag for both Hard and Smooth fragmentation models. The
grey zone corresponds to growth (Vrel < Vfrag), where ψ is not defined.

2.2 Fragmentation

While equation (13) describes the growth process, fragmentation
can also be considered in the model. More specifically, as the grains
relative velocity increase, the kinetic energy of the collision also
increases. At sufficiently high relative velocities, the kinetic energy
can destroy the grains chemical bonds and make them fragment to
smaller sizes. A threshold relative velocity above which grains are
fragmenting upon collisions can then be considered. This threshold
is often called the ‘fragmentation velocity’, noted Vfrag. In case of
fragmentation, the resulting growth rate is therefore negative and
expressed as

ds

dt
= −ρd

ρs
Vrelψ, (14)

where ψ refers to two models of fragmentation:

(i) ‘Hard’, that is symmetrical to the growth case (Gonzalez et al.
2015);

(ii) ‘Smooth’, which considers a more progressive loss of mass
with increasing relative velocities (Garcia 2018).

Defining the ratio of the relative velocity to the fragmentation
velocity as v = Vrel/Vfrag, the parameter ψ is given by

ψ =
{

1 : Hard fragmentation,

v2/(1 + v2) : Smooth fragmentation,
(15)

The evolution of ψ with the relative to fragmentation velocity ratio
is shown in Fig. 2. The Hard model considers that most of the mass is
lost during fragmentation, whatever the relative velocity. Conversely,
the Smooth model only considers large loss of mass for very high
relative velocities. Both models are implemented in PHANTOM and
can be selected by the user at runtime.

2.2.1 Fragmentation sizes and distance to the star

When considering fragmentation, we can estimate the equilibrium
size that the dust particles can reach when their relative velocity is
in equilibrium with the fragmentation velocity. Following Gonzalez
et al. (2017a), by writing the equality Vrel = Vfrag, we find more
precisely

√
2α̃cs

√
St

1 + St
= Vfrag, (16)
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where α̃ = 21/2Roα and Sc is considered equal to 1 + St. Using this
leads to the following quadratic equation

St2 + 2

(
1 − α̃c2

s

V 2
frag

)
St + 1 = 0, (17)

which has two solutions, that we call s±
frag, expressed as (see

appendix A of Gonzalez et al. 2017a)

s±
frag = sopt

(
α̃c2

s

V 2
frag

− 1 ±
√

α̃cs

Vfrag

√
α̃c2

s

V 2
frag

− 2

)
, (18)

where ‘ + ’ and ‘-’ refer to the cases where St > 1 and St <

1, respectively. One should note that equation (18) is not defined
when α̃c2

s < 2V 2
frag. This corresponds to the case where the maximum

relative velocity is smaller than the fragmentation velocity, which
means that fragmentation never occurs. Using this inequality with a
power-law prescription for the temperature, we find a corresponding
fragmentation radius rfrag

rfrag = r0

(
α̃

2

c2
s,0

V 2
frag

) 1
q

, (19)

where q is the temperature power-law index and r0 is a reference
radius. Beyond rfrag, fragmentation is not possible.

3 IMPLEMENTATION

The dust growth model is introduced in both PHANTOM’s two-fluid
and one-fluid algorithms (Laibe & Price 2012a, b, 2014a, b, c;
Price & Laibe 2015; Ballabio et al. 2018; Price & Laibe 2020).
First, we specify the implementation with the two-fluid algorithm. In
that configuration, the accuracy of the implementation relies on the
evaluation of a few gas-related quantities on each dust particle. This
is needed in particular for �v, St, and cs, which are not defined for
a given dust particle but rather for a gas–dust pair or for gas only.

3.1 Two fluid means two smoothing lengths

The SPH method allows one to evaluate any given quantity by means
of interpolations over the particle neighbours. Modelling dust and
gas as two separate fluids comes at the price of increasing the total
number of particles and having to handle two sets of resolution
lengths. For a gas or dust quantity (e.g the density), the typical length
over which the neighbours are used is the gas or dust smoothing
length (more precisely a few smoothing lengths, depending on the
kernel), which are expressed as

hgas = h0

(
ma

ρa

)1/3

, (20)

where h0 is a constant setting the average number of neighbours, ma

is the mass of a gas particle, and ρa its volume density, and

hdust = h0

(
mi

ρi

)1/3

, (21)

where mi is the mass of a dust particle and ρ i its volume density. We
used the index i for dust particles and a for gas particles, as in e.g.
Monaghan (1997) and Laibe & Price (2012a, b).

As gas and dust do not necessarily have the same behaviour, one
needs to be careful when dealing with two sets of smoothing lengths,
especially if an interpolated quantity for a particle type requires
a loop over the other one. This is typically the case for the drag
between gas and dust, and in our case additionally for �v, St, and cs.

The risk with such a method is that if the dust-to-gas ratio increases
significantly, the dust smoothing length can become much smaller
than that of the gas. This can jeopardize further interpolations due to a
lack of neighbours found inside the corresponding smoothing length.
Secondly, as gas is pressure-supported but dust is not, reducing
the dust smoothing length under that of the gas can also locally
clump close dust particles together as they would not feel any
repulsive force from the gas. To limit both of these risks, we follow
Laibe & Price (2012a) and use in our cross-species interpolations the
maximum of the gas and dust smoothing lengths, which is slightly
more computationally expensive but safer. We denote this maximum
smoothing length hia = max(hi, ha) for future use.

3.2 Sound speed and gas density

The gas density is interpolated using the kernel-weighted sum over
the neighbours

ρg,i =
∑

a

maW (r ia, hia), (22)

where W is the kernel function (quintic M6 in our case). The other
quantities are then interpolated using ρg, i, that is for a function g

gi =
∑

a magaW (r ia, hia)∑
a maW (r ia, hia)

, (23)

= 1

ρg,i

∑
a magaW (r ia, hia). (24)

We found that this form, slightly different than the usual interpolation
(weighted by m instead of m/ρ), was generally more accurate than its
counterpart, especially in regions where the dust concentrates. This
choice of implementation does not affect the speed of execution of
the code.

The sound speed on each dust particle is interpolated using

cs,i = 1

ρg,i

∑
a

macs,aW (r ia, hia). (25)

3.3 Differential velocity

We evaluate each component of the differential velocity vector before
computing the norm

�vx,i = 1

ρg,i

∑
a

ma�vx,iaW (r ia, hia), (26)

�vy,i = 1

ρg,i

∑
a

ma�vy,iaW (r ia, hia), (27)

�vz,i = 1

ρg,i

∑
a

ma�vz,iaW (r ia, hia), (28)

||�vi || = �vi =
√

�v2
x,i + �v2

y,i + �v2
z,i . (29)

One should notice that �v is not evaluated by the double-humped
kernel D used in Laibe & Price (2012a) but rather by the usual density
kernel W. Indeed, here we do not need to evaluate �v along the line of
sight of a gas–dust pair, thus the scalar product �via · r ia is avoided
and the evaluation is more accurate with the usual bell-shaped kernel
W.

3.4 Stokes number

The evaluation of the Stokes number depends on the drag regime that
the grains experience. In PHANTOM, the Epstein and Stokes regimes
are automatically selected depending on the Knudsen number Kn =
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9λg/4s (Weidenschilling 1977; Stepinski & Valageas 1996). To
follow this and remain as general as possible in our implementation,
we evaluate the local Stokes number (which corresponds to the
mixture) by computing the stopping time using ρg, i, cs, i, and �vi

rather than interpolating the stopping time between each gas–dust
pair

Sti = ts
(
ρg,i , cs,i , �vi

)
�k,i . (30)

The stopping time ts is expressed as (Laibe & Price 2012a)

ts = ρgρd

K(ρg + ρd)
, (31)

where K is the drag coefficient. Considering the Epstein drag regime
again, this gives for example (P18)

Sti =
√

πγ

8

ρssi

fi

(
ρg,i + ρi

)
cs,i

�k,i . (32)

3.5 One-fluid implementation

To simulate the most strongly coupled populations of grains, PHAN-
TOM also has a ‘one-fluid’ algorithm that represents the gas–dust
mixture with only one set of particles and thus one resolution
(Laibe & Price 2014a, b, c; Price & Laibe 2015; Ballabio et al.
2018). We also implemented the growth model with the one-fluid
formalism, although its validity is restricted to relatively small Stokes
numbers in order to respect the terminal velocity approximation
(Youdin & Goodman 2005). With that in mind, the one-fluid model
with dust growth can be used for a short amount of time and mainly
to accelerate the evolution of tightly coupled grains. We also added
to the code a conversion tool that allows the user to convert to the
two-fluid method when the one-fluid regime reaches its limit.

The implementation itself is straightforward in one-fluid since
the cross species interpolations vanish. To compute the values of
interest, we simply use the values stored on to the mixture particles
and transform them out of the barycentric frame, that is applying the
changes of variables

ρg = (1 − ε)ρ, (33)

ρd = ερ, (34)

vg = v − ε�v, (35)

vd = v + (1 − ε)�v, (36)

where ρ = ρg + ρd and ε = ρd/ρ is the dust fraction.

3.6 Timestepping

3.6.1 Numerical scheme

The size evaluation by the integrator follows the same predictor-
corrector scheme that is described in P18.

sn+ 1
2 = sn + 1

2
�t

(
ds

dt

)n

, (37)

s∗ = sn+ 1
2 + 1

2
�t

(
ds

dt

)n

, (38)

(
ds

dt

)n+1

= ds

dt
(s∗) , (39)

sn+1 = sn+ 1
2 + 1

2
�t

(
ds

dt

)n+1

. (40)

Figure 3. Ratio τ g/ts (equation 43) as a function of the Stokes number for
different values of the dust-to-gas ratio.

The size integration is also implemented with individual timestep-
ping, which can be significantly faster if dust grain sizes span a wide
range.

3.6.2 Constraints

The timestepping for growth and fragmentation is constrained by the
Courant–Friedrichs–Lewy (CFL Courant, Friedrichs & Lewy 1928)
condition, which requires the timestep to be smaller than the typical
growth time-scale

�t ≤ Ccourτg, (41)

where Ccour is a constant typically of order unity and τ g is the growth
time-scale

τg = s

|ds/dt | . (42)

Considering that �v � Vt and cs (such that Sc � 1 + St and f � 1),
this gives

τg

ts
= 1 + ε

ε

√
8

πγ

(1 + St)√
23/2RoαSt

. (43)

As seen in Fig. 3, the minimum timestep required to respect the CFL
condition is much larger than the stopping time. This condition is
already satisfied in PHANTOM, since the timestep is always at most
equal to the stopping time. This also results in very small timesteps
for tightly coupled grains, i.e. the smallest ones, which can drastically
slow down the simulations. To limit this effect when fragmentation
is involved, we incorporate a minimum allowed grain size, under
which dust can not fragment. We check and adjust the grain size
both during the predictor and corrector steps.

4 BENCHMARK TESTS

PHANTOM is equipped with a set of tests that are performed frequently
to hunt down potential bugs. Implementing a dust growth algorithm
comes with a few more tests that can be added to these checkups.
In this section, we (re-)present two dust growth-related tests: the
existing DUSTYBOX and the new FARMINGBOX.
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Dust growth in PHANTOM 2323

Figure 4. Differential velocity as a function of time for three different values
of the drag coefficient K in DUSTYBOX. The solid lines represent the analytical
solutions while the dots represent interpolated values during the test. All the
values are in code units throughout the test.

4.1 The return of the DUSTYBOX

DUSTYBOX is a simple two-fluid test in which gas and dust have an
initial differential velocity in a uniform box. This test ensures that the
gas drag suppresses the differential velocity between the two phases
according to an analytical solution that is relatively simple (the drag
coefficient is constant). This test has been extensively described in
Laibe & Price (2012a) and we refer the reader to this paper for
more details about the setup. We extended this test by adding the
verification of the interpolated differential velocity (equation 29).
With a constant drag coefficient K, the differential velocity between
gas and dust decreases exponentially in time, with a characteristic
time-scale that is the stopping time,

�v = �v0e
−t/ts = �v0e

−2Kt , (44)

where �v0 is the initial differential velocity and the factor 2 comes
from the fact that ρg = ρd in the test (see equation 31).

We present a few examples of this test with different values of the
drag coefficient K in Fig. 4. As the drag coefficient increases (from
blue to green), the grains are more coupled to the gas. As a result the
initial differential velocity is more efficiently damped and can reach
a steady state (i.e. �v = 0) faster. The differential velocities of all the
particles are tested at every timestep and the results show maximum
relative errors of about 10−4 with the analytical solution.

4.2 FARMINGBOX: motionless dust growth in the Epstein regime

The main goal of FARMINGBOX is to simulate the motionless growth
or fragmentation of dust particles and compare the integrated size
with its analytical solution. To attain an analytically solvable growth
rate, we fix the particles at their initial position (which cancels �v).
Similarly to DUSTYBOX, we set ∼7000 gas and dust particles on a
3D lattice inside of a 1 × 0.5 × 0.3 au3 box. Gas and dust are set so
that the dust experiences the Epstein regime throughout its growth
or fragmentation. We use this test in both pure growth and pure Hard
fragmentation models. The physical parameters used for each mode
are shown in Table 1. We only present the results of the two-fluid
algorithm in this section, although the one-fluid version was also
tested and gave sensible results.

Table 1. List of parameters used in FARMINGBOX for both pure growth and
pure fragmentation modes. All parameters are uniform throughout the box.

Parameter Unit Growth Fragmentation

cs m s−1 942 942
ρg kg m−3 10−8 10−8

ρd kg m−3 10−8 5 × 10−9

ρs kg m−3 1000 1000
s0 m 10−4 10−2

α ∅ 10−2 2.5 × 10−2

4.2.1 Growth

Firstly, we test the pure growth case. Gas and dust particles being
motionless, the Schmidt number is simply Sc = 1 + St. Following
L08, we can rewrite equation (13) with a change of variables such
that

T = t

τ
+ 2

√
St0

(
1 + St0

3

)
, (45)

where St0 is the initial Stokes number of the considered particle, of
initial size s0, and τ is a time-scale defined as

τ =
√

8

πγ

1√
23/2Roα�k

ρ

ρd
. (46)

The Keplerian frequency �k is set as r−3/2 in code units, which
emulates a 1 M� central star. Even though there is no such star in
the test, we keep this functional form to maintain the property that
growth is different for particles at different distances to the centre of
the box. This is also appropriate in order to have values of sizes and
Stokes numbers that would be found in real simulations.

With these new variables we can rewrite equation (13) in terms of
Stokes number and dimensionless time

dSt

dT
=

√
St

1 + St
. (47)

The solution to this equation is (L08)

St = σ

2
+ 2

σ
− 2, (48)

where σ =
(

8 + 9T 2 + 3T
√

16 + 9T 2
)1/3

. Note that this solution

has been adapted from L08 with our definition of the Stokes number
(equation 46).

Finally, this gives the time evolution of the grain size

s =
√

8

πγ

ρcs

ρs�k

(
σ 2 − 4σ + 4

2σ

)
= s0

(
σ 2 − 4σ + 4

2St0σ

)
. (49)

Figs 5 and 6 show the results of FARMINGBOX in pure growth mode.
Initially, all the particles have the same size (top panel of Fig. 5, black
line), which results in the Stokes number profile to be the same as the
Keplerian frequency (bottom panel, black line) and spanning between
two and three orders of magnitude from 10−3 and up. As growth
starts, particles at different radii grow differently due to their different
Stokes number. More specifically, the growth rate is maximum for
Stokes unity and decreases when grains are both very coupled or
decoupled from the gas. As a result, the final size distribution (top
panel, red curve) shows a maximum at r ∼ 0.1 au, corresponding to
the location where the grains have spent an optimal amount of time
around St = 1. Fig. 6 demonstrates that in more details, as particle
1 (bottom panel, blue dots) crosses St = 1 rapidly and decreases its
growth rate (top panel). Conversely, particle 2 (red dots) starts with
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2324 A. Vericel et al.

Figure 5. Dust size (top) and Stokes number (bottom) analytical distributions
as a function of the distance to the centre of the FARMINGBOX for six
different times in the pure growth case. Three specific particles are plotted
on top (squares, triangles, and stars). The error in L1 norm is approximately
6.13 × 10−3.

Figure 6. Size (top) and Stokes number (bottom) evolution of the three
particles plotted in Fig. 5 as a function of time. The lines represent the exact
solutions while the dots are the values outputted by the code.

a lower Stokes number but spends most of its time close to Stokes
unity, which overall is more efficient at making the particle grow.
Finally, particle 3 (green dots) spends the entire test at low Stokes
numbers due to its larger distance from the centre of the box, which
is growth inefficient.

4.2.2 Fragmentation

We now consider pure fragmentation. Similarly to the pure growth
case, we introduce the same change of variable but with the time
going in the opposite direction

T = − t

τ
+ 2

√
St0

(
1 + St0

3

)
, (50)

which also gives equation (47) and the subsequent solution (equa-
tions 48 and 49). In this particular case of pure fragmentation, T can
reach negative values, which would correspond to a negative size,
which is not possible. As this is a physical limit, we ensure that T
stays positive throughout the test, i.e. we set the physical parameters

Figure 7. Similar to Fig. 5 but for pure fragmentation.

Figure 8. Similar to Fig. 6 but for pure fragmentation. The error in L1 norm
is approximately 1.16 × 10−3.

in the box so that (see Table 1)

tmax < 2
√

St0

(
1 + St0

3

)
τ, (51)

where tmax is the maximum duration of the test, i.e. the time after
which T < 0. Figs 7 and 8 show the results of FARMINGBOX in pure
fragmentation mode. The behaviour is very similar to the growth
case, in the sense that fragmentation is also the most efficient near
Stokes unity, which is again observed for grains at r ∼ 0.1 au.

During FARMINGBOX, the Stokes number, size, and sound speed
of all dust particles are tested against the analytical values at each
timesteps. Figs 5 to 8 only display a subset of these data points to
keep the plots readable. The relative errors between the quantities
and their analytical values throughout FARMINGBOX stay in the range
of 10−3−10−4.

5 C I RCUMSTELLAR D I SC SI MULATI ONS

In this section, we perform several 3D circumstellar disc simulations
to compare the results given by PHANTOM with previous studies. In
that regard, we will simulate a single disc model that we will refer
to as ‘Standard’ (Std) and that is similar to the one used in previous
papers (e.g. Barrière-Fouchet et al. 2005; Laibe et al. 2008). We only
consider the two-fluid algorithm from now on.
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Dust growth in PHANTOM 2325

Table 2. The disc model used in our simulations, with r0 = 1 au.

Name p q Mdisc H/r0 rin rout

Std 3/2 3/4 0.01 M� 0.0281 20 au 300 au

Table 3. Simulation suite.

Label Fragmentation Vfrag [m s−1] Back-reaction

noF No ∅ Yes
F-Hard Hard 15 Yes
F-Hard-noBR Hard 15 No
F-Smooth Smooth 15 Yes

5.1 Numerical setup

We model a 1 M� star around which orbits a 0.01 M� disc represented
by 1.2 × 106 particles: 1 M gas and 0.2 M dust. This ratio has
been chosen to resolve the gas scale height and to limit dust over-
concentrations (see Section 6.2). The gas particles are positioned
between rin and rout (see Table 2), whereas the dust particles only
extend up to 5/6 rout. We found having a dust disc smaller than the
gas disc to be quite important in order to avoid numerical artefacts
linked to the gas relaxation in the outer disc. This numerical choice
is also justified by the radial drift, which inevitably tends to reduce
the size of the dust disc. To assist the disc relaxation in the inner
parts of the disc, the gas initially follows a smoothed surface density
profile such that

�g(r) = �0

(
1 −

√
rin

r

)(
r

r0

)−p

, (52)

where r refers to the cylindrical radius and �0 is set by the total disc
mass and is then allowed to evolve. The dust disc initially follows the
same law, with an initial and uniform dust-to-gas ratio of 1 per cent.
Both gas and dust particles are removed from the simulation if they
cross an accretion radius racc that is set to be equal to rin given our
interest for the regions where r > rin. The gas temperature is supposed
locally isothermal and follows the usual power-law prescription

T (r) = T0

(
R

r0

)−q

, (53)

where R refers to the spherical radius and T0 is set by the disc
aspect ratio at r0 (see Table 2). In order to represent a Shakura &
Sunyaev (1973) viscosity parameter αSS = 5 × 10−3, we follow the
formalism of Lodato & Price (2010), in which the SPH artificial
viscosity parameter can be related to αSS as

αAV ∼ αSS

10

〈h〉
H

, (54)

where <h > is the average smoothing length on a given portion of
the disc, with αAV ∼ 0.2. We take the coefficient preventing particle
interpenetration βAV = 2.

The dust initially has a uniform size s0 of 30 μm throughout
the disc and is allowed to grow or fragment in agreement with the
model presented in Section 2. The influence of the initial grain size is
explained in Appendix A. Considering the low disc mass, we neglect
the disc self-gravity but do take into account the dust back-reaction
on to the gas.

The short list of circumstellar disc simulations performed for this
paper is showed in Table 3.

5.2 Pure growth

We first consider and analyse a simulation without fragmentation
(noF). Pure dust growth in a similar disc and with a similar growth
model has been studied by L08 therefore our results will be compared
to theirs.

5.2.1 Radial drift and dust concentration

Fig. 9 shows the pressure and surface density radial profiles at
different times. The gas reaches a steady state in a few thousand
years, resulting in a pressure maximum located near 28 au (left-hand
panel), which corresponds to the inner edge of the disc. The negative
pressure gradient between ∼28 au and the outermost parts of the disc
induces a headwind on the dust that leads to its radial drift towards
the star. As a result, the dust mass is transferred towards the pressure
maximum (right-hand panel), where the headwind cancels itself out.
At this location the dust concentrates, while the outer parts of the
disc are slowly being emptied. The dust radial drift also reduces the
extent of the dust disc as one can see from the dust surface density
profile (right-hand panel). This whole process is accelerated by dust
growth, which increases radial drift velocities up to the point where
St = 1.

To study the coupled effects of dust growth and radial drift, we
follow in Fig. 10 the evolution of six particles initially in the mid-
plane of the disc with a size s0 = 30 μm. Their initial distance to
the star are 40, 60, 80, 100, 150, and 200 au, respectively. We also
over-plotted an estimation of sopt at t = 0, for which we considered
the dust-to-gas ratio to be uniform and the differential velocity to
be subsonic (such that f ∼ 1; see equation 6). While this estimation
is limited near local dust concentrations, it still provides a useful
comparative basis for the rest of the simulation. Dust particles shown
in Fig. 10 have similar behaviours that can be decomposed into three
steps:

(i) A growth phase with very little radial drift: St � 1.
(ii) A phase of radial drift and growth where radial drift is more

efficient: St ∼ 1.
(iii) A slower growth without radial drift: St � 1.

The further away the particles are, the longer it takes for them to
experience all three phases. For example, after 50 kyr, particles P1
to P3 experienced these different steps, whereas P4 is on the verge
of entering phase (iii). Particles P6 is only entering phase (ii).

These different steps shape the dust distribution as we can see on
the background (grey points, shown at 50 kyr). Grains in phase (i)
form a tail at r � 200 au, while grains in phase (ii) form a diagonal
between ∼40 and ∼200 au. Particles that are decoupled (phase (iii))
form a reservoir of material at the pressure maximum, that is at
∼28 au. The three specified evolutionary stages are the same as
those identified in L08.

The diagonal formed by drifting and growing grains [phase (ii)] is
steeper than the curve corresponding to sopt. This result, also found by
L08, shows the effect of dust growth during the radial drift process,
which increases their Stokes number faster than radial drift decreases
it. This behaviour was also found analytically by Laibe (2014).

5.2.2 Vertical settling

Another important aspect of dust growth that we want to explore is its
effect on vertical settling. To this end, Fig. 11 shows the evolution of
the disc scale height. Pure growth is very efficient at transforming the
initially flared dust disc into a thin stratified layer in the mid-plane.
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2326 A. Vericel et al.

Figure 9. Left: Pressure radial profile at five different times between 1 and 45 kyr in simulation noF. The position of the pressure maximum is showed with the
vertical black dotted line. Right: Dust (solid lines) and gas (dashed lines) surface density radial profiles for the same times as the left plot. The position of the
pressure maximum is also shown with the vertical black dotted line at r ∼ 28 au.

Figure 10. Trajectories in the (r, s) plane of six particles initially in the
mid-plane of the disc (solid lines) between 0 and 50 kyr in simulation noF.
Empty circles of the same colour mark each particle’s position every 10 kyr,
with a filled circle for the final state. They grey points in the background
represent the dust distribution at 50 kyr. The black dashed line represents sopt

(equation 8) at t = 0 (ε = 0.01), i.e. where St = 1.

While the gas disc has a roughly constant aspect ratio of about 0.05
throughout the simulation, the dust disc aspect ratio tends to be less
than 10−3 in a few tens of thousands of years. This process is efficient
because dust decouples from the gas as it grows. More precisely, the
aerodynamic drag efficiently damps the vertical oscillations of the
dust particles around the mid-plane, which tends to form layers with
a thickness limited by the disc turbulence (Dubrulle et al. 1995;
Fromang & Papaloizou 2006). These studies predict that the dust
layer thickness is roughly proportional to St−1/2. This is consistent
with what we find, since the average Stokes number decreases when
the distance to the star increases (see Fig. 10; particles above sopt are
in the inner disc in contrast to the particles in the outer disc).

We take advantage of the Lagrangian formalism and follow the
vertical settling process of a few particles in more detail. We select
five particles, noted P7 to P11, with an initial distance to the star of 50,
70, 100, 150, and 200 au, respectively. Fig. 12 plots their evolution in
altitude and Stokes number. Particle trajectories in the (r, z) plane are

Figure 11. Scale height radial profiles of the gas (black dashed line) and
dust (coloured solid lines) discs at six different times between 0 and 45 kyr
in simulation noF.

first vertical, and then radial, allowing us to consider both movements
as decoupled from each other. The settling time-scale is smaller than
the drift time-scale by a factor of the order of (H/r)2∂ln P/∂ln r �
1 (Garaud, Barrière-Fouchet & Lin 2004; Barrière-Fouchet et al.
2005). The evolution of their Stokes number is another interesting
point, as it reveals two opposing processes during the settling phase:

(i) The settling of grains to denser layers of gas and dust, which
strengthens the coupling between the two (St ∝ (ρd + ρg)−1↘).

(ii) Dust growth that tends to decouple the dust from the gas
(St ∝ s↗).

For P8, P9, and P11, this competition is clear. The settling and
growth dominate the Stokes number evolution one after the other.
For P7, its relatively close proximity to the star and to the mid-
plane makes the growth process very efficient and therefore it always
dominates. The pure growth simulation has shown the coupled effect
of dust growth, vertical settling, and radial drift. Our results highlight
the exact same dust regimes of evolution as those described in L08.

Although pure growth is an interesting academic case in order
to understand the interplay between these different processes, dust
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Dust growth in PHANTOM 2327

Figure 12. Left: Trajectories in the (r, z) plane of five particles between 0 and 50 kyr in simulation noF. The filled squares, empty squares, and filled circles
represent the initial time, the time of fist contact with the mid-plane, and the final time respectively. Right: Same as the left-hand panel but for the (r, St) plane.

growth in discs is more realistically limited by fragmentation when
the collision velocities become larger than a given threshold. In
the next section, we perform more realistic simulations by taking
fragmentation into account.

5.3 Adding fragmentation

Considering the same disc, we add fragmentation as presented in
Section 2. We first analyse the simulation with the Hard fragmen-
tation model (F-Hard). We consider a fragmentation threshold of
15 m s−1, value often used for wet icy aggregates (e.g. Wada et al.
2009; Gonzalez et al. 2015; Vericel & Gonzalez 2020). Simulations
with fragmentation were evolved twice as long as those with pure
growth – that is ∼100 kyr – because they reach a quasi-steady state
more slowly than their counterpart.

5.3.1 General evolution

The evolution of the dust size radial distribution is first displayed
in Fig. 13, colour coded with Vrel/Vfrag. The fragmentation sizes s±

frag

(equation 18) are also over-plotted: they are estimated using the form
of sopt computed in Section 5.2 with the power laws describing the
initial disc structure and thus do not reflect the evolution of the gas
profile. The curves corresponding to s±

frag define a ‘fragmentation
zone’ that is hatched in Fig. 13. The fragmentation zone is shown
using increasing dust-to-gas ratios over time, which are estimated
using the surface density profiles. Notice that the fragmentation
zone extends out to ∼100 au, which fits with the calculation of
rfrag (equation 19) that gives ∼105 au.

Dust at 50 � r � 100 au reaches fragmentation sizes s−
frag relatively

rapidly (∼20 kyr, third panel). Meanwhile, dust in the innermost
parts of the disc is incapable of growing, which creates a steep size
gradient at r ∼ 50 au (40–50 kyr). This size contrast induces a
gradient of radial drift velocities, i.e. a traffic jam. In other words,
dust concentrates radially near the gradient of sizes, which in the
figure can be seen from 40 kyr onward. A second – but slight – size
gradient can also be observed at the entry of the fragmentation zone
(∼100 au). Nevertheless, this gradient is less important and does not
create a significant traffic jam in the disc. Note that once dust grains
are trapped at r ∼ 50 au, they continue to grow even when they

appear to be in the hatched area. This is because the latter represents
the initial shape of the fragmentation zone, not reflecting the changes
in the gas profile or the reduction of the relative velocities of grains
due to their confinement in the trap. Finally, the runaway growth
seen after ∼80 kyr results from artificial clumping, which locally
overestimates the growth rate (see Section 6.2.)

To understand in more detail the process taking place in this
simulation, we show the evolution of the pressure and surface density
profiles in Fig. 14. The dust concentration is clearly observable in the
surface density profiles at ∼50 au. Additionally, a pressure maximum
develops near the dust concentration after a few thousand years,
which hints at the back-reaction on to the gas as the source of this
feature.

The combination of dust growth/fragmentation, its pile-up, and
the formation of a local pressure maximum in the disc might be the
manifestation of the ‘self-induced dust trap’ mechanism proposed by
Gonzalez et al. (2017a). The next section focuses on this hypothesis.

5.3.2 Self-induced dust trap: the importance of the dust
back-reaction

The ‘self-induced dust trap’ mechanism has been proposed as a
means for dust to overcome both the radial drift and fragmentation
barriers in discs: by taking into account dust growth and fragmen-
tation as well as large-scale gradients, dust particles pile-up and
concentrate in the disc, such that the back-reaction reverses the gas
flow locally to create a pressure maximum that further traps the dust.

To estimate the importance of the back-reaction, Gonzalez et al.
(2017a) considered the stationary solution for the gas radial velocity,
which gives (Dipierro & Laibe 2017; Kanagawa et al. 2017; Gonzalez
et al. 2017a)

vg,r = − 1

1 + ε

[
εSt

1 + St2 vdrift −
(

1 + εSt2

1 + St2

)
vvisc

]
, (55)

where

vdrift =
(

H

r

)2
∂ ln P

∂ ln r
vk (56)
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2328 A. Vericel et al.

Figure 13. Dust size radial distribution between 0 and 90 kyr in simulation F-Hard. Particles are coloured with their ratio Vrel/Vfrag. The hatched zone
corresponds to the fragmentation zone, which is delimited by the fragmentation sizes s±

frag. These sizes are evaluated with increasing dust-to-gas ratios over time
(see legend on each panel).

corresponds to the drift velocity caused by the pressure gradient
(Nakagawa, Sekiya & Hayashi 1986) and

vvisc =
∂

∂r

(
ρgνr3 ∂�k

∂r

)

rρg
∂

∂r
(r2�k)

(57)

is the usual viscosity-induced velocity (Lynden-Bell & Pringle 1974).
Notice that the form used by Gonzalez et al. (2017a) is slightly

different, because their Stokes number definition concerns the dust
only and not the mixture, which differs by a factor 1 + ε. The
viscosity term tends to push the gas inward, whereas the drag term
does the opposite. If the drag term is greater than its counterpart, the
net motion is towards the outer parts of the disc, which changes the
gas structure locally.

To measure the impact of back-reaction on the gas motion, we
use a parameter, called xbr, which measures the balance between the
viscous and drag terms in equation (55). Following Gonzalez et al.
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Figure 14. Left: Pressure radial profiles between 0 and 90 kyr in simulation F-Hard. Right: Same, but for the dust (solid lines) and gas (dashed lines) surface
densities.

(2017a) and Gonzalez, Laibe & Maddison (2017b), i.e. assuming
vvisc/vdrift ∼ 1/α, we subsequently find

xbr � α−1εSt

1 + St2(1 + ε)
. (58)

Where xbr > 1, vg, r > 0 and the gas flows outwards, which
corresponds to the formation of a local pressure maximum. The gas
mass flux as well as the estimation of xbr are plotted in Fig. 15. When
the dust concentration develops (∼30 kyr), the gas starts to be pulled
outwards (r�gvg, r > 0, cyan). Moreover, we observe a tendency
where the gas seems to be pulled further away with increasing
time. This is consistent with the nature of the self-induced dust trap
mechanism, because the dust concentration extends at increasing
distances to the star over time. Indeed, the regions where xbr ≥ 1
becomes more extended as time goes on. The estimation of xbr also
shows that the back-reaction should be able to reverse the gas flow.
This is also consistent with the findings of Gárate et al. (2020).

To confirm this hypothesis, we finally performed a simulation
without back-reaction as verification. Fig. 16 compares the corre-
sponding radial profiles of pressure and surface density. Without
back-reaction, the pressure maximum is the same as the pure growth
simulation, i.e. at the inner edge of the disc. In this simulation,
no other pressure maximum develops in the disc, even though the
dust experiences growth and fragmentation. As a result, grains drift
towards the inner edge of the disc and are trapped there, as opposed
to the simulation with back-reaction that shows self-trapping at
∼50 au. With this comparison, we are confident that the mechanism
observed is a self-induced dust trap. Although this mechanism has
been observed several times (Gonzalez et al. 2017a; Garcia 2018;
Pignatale et al. 2019; Vericel & Gonzalez 2020), this is the first
time it is observed in another independent code, which validates
its existence. A face-on rendered view of the gas and dust density
evolution during the self-induced dust trap formation is shown in
Fig. 17.

5.3.3 Comparison with the pure growth case

To further point out the major differences that fragmentation pro-
duces, we compare simulations with (F-Hard) and without (noF)
fragmentation in this section. A first example can be seen in Fig. 18,

where we show the difference in dust settling. With fragmentation,
the internal parts of the disc are, as one would expect, less settled
than the pure growth case, mainly because the dust cannot reach large
sizes. More generally, the disc can be separated into three zones (see
black vertical dashed lines):

(i) An external one (r � rfrag) where fragmentation is impossible.
In this region, fragmentation has no impact and the dust discs reach
similar aspect ratios.

(ii) An intermediate one (50 � r � rfrag au) where the dust relative
velocity is in equilibrium with the fragmentation velocity (see right-
hand panel). In this region, fragmentation limits dust growth, thus
the grains are more coupled to the gas and the disc is less settled than
in the pure growth case.

(iii) An inner one (r � 50 au) where the grains are growing and
fragmenting on short time-scales and do not reach an equilibrium
with the fragmentation threshold. In this region, grains have even
smaller sizes and the dust disc is thinner than the gas disc, but much
thicker than in the pure growth case.

A comparison of the trajectories of similar particles is also
shown in Fig. 19. Trajectories outside of the fragmentation zone
are extremely similar since the particles experience the same growth
path. On the other hand, when particles enter this zone (salmon
colour), their size first evolve along the s−

frag line, that is they tend
to fragment slowly (see P2 for example). Note that P5 or P6 enter
the fragmentation zone after typically 50 kyr or more and follow
a fragmentation size corresponding to a larger dust-to-gas ratio.
This makes perfect sense, since dust settling and pile-up tend to
concentrate dust in the mid-plane of the disc and increase the dust-
to-gas ratio over time. The formation of the self-induced dust trap can
be seen from the point of views of P2, P3, and P4, as after some time
(∼50 kyr) their radial drift stops and their size increases near ∼50 au.
They are then able to grow inside the estimated fragmentation zone
because the gas structure is modified locally and the grains relative
velocity decreases as they concentrate. Finally, the shape of the
dust size distribution carries these differences, as one can see in
Fig. 20. Following the previous explanations, it is very clear that
the distribution only differs in the fragmentation zone, which we
estimated rather well.
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Figure 15. Left: Gas mass flux radial profiles at different times between 10 and 90 kyr. Right: Same, but for the estimation of xbr, which is evaluated with the
vertically integrated dust-to-gas ratio, that is ε = �d/�g.

Figure 16. Same as Fig. 14 but with a comparison between simulations with (F-Hard, solid lines) and without (F-Hard-noBR, dashed lines) back-reaction and
only showing �d.

5.3.4 Effects of the fragmentation model

We implemented two fragmentation models to measure their impact
on dust evolution. Here, we compare the Hard model already
presented to the Smooth one (simulation F-Smooth). The comparison
can be seen in Fig. 21. What we gather from the comparison is that
the Smooth model also forms a self-induced dust trap in the disc. It
also tends to form this dust trap slightly closer to the star. Indeed, this
model is less harsh on the dust fragmentation, which shifts the size
gradient towards the star (it allows slightly larger grains at similar
radii). As a consequence, the pressure maximum formed, which is
intimately linked to the position of the dust size gradient, is also
located closer to the star, finally leading to the observed position of
the trap. Even though this tendency is observed, we stress that the
differences are extremely minor, with a radial shift of a few au only.
We thus argue that the two fragmentation models produce largely
similar results.

The effects of different disc parameters are considered in Ap-
pendix B.

5.3.5 Synthetic images

We transformed our simulations with fragmentation at 50 kyr into
synthetic observations using the radiative transfer code MCFOST

(Pinte et al. 2006, 2009). At this time, the traps have developed, but
the artificial clumping has not started yet (see Fig. 19 and Section 6.2.)
To achieve this, we recreated a local dust size distribution on each
gas particle from our single set of dust particles. More precisely, we
separated a given simulation into 20 grain size bins and recomputed
using the SPH kernel the density structure at the location of the gas
particles for each bin independently. For each of these locations and
from the 20 dust density fields, MCFOST then interpolated the grain
size distributions over 100 bins uniformly distributed in log and
sampling grain sizes from 0.03 to 1000 μm. We assume dust grains
smaller than 1 μm follow the gas. The total grain size distribution
integrated over the whole disc is finally normalized, assuming a
power-law distribution dn(s) ∝ s−3.5ds and the total disc mass. Grains
optical properties were calculated using the Mie theory, assuming
astrosilicates composition (Weingartner & Draine 2001).

MNRAS 507, 2318–2338 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/2318/6348119 by guest on 02 M
ay 2023



Dust growth in PHANTOM 2331

Figure 17. Face-on rendered view of the gas (top) and dust (bottom) column densities at four different times during the formation of the self-induced dust trap
in simulation F-Hard.

Figure 18. Left: Disc aspect ratio radial profiles with (F-Hard, blue) and without (noF, red) fragmentation at 50 kyr. Right: Radial profile of the relative-to-
fragmentation velocity ratio for simulation with fragmentation at the same time as the left-hand panel. The vertical lines delimit the zone where the dust relative
velocity is in equilibrium with the fragmentation velocity.

The central star was represented by a sphere of radius R� = 2 R�
and effective temperature Teff = 4000 K radiating as a blackbody.
The disc temperature structure was first computed using ∼106 photon
packets. The images were then computed at λ = 350, 850, 1300, and
3000 μm using 107 photon packets at each wavelength to sample the
specific intensity, followed by a ray-tracing integration to generate
the synthetic maps. The system was assumed to be at a distance of
140 pc and seen pole-on. The synthetic images are shown in Fig. 22.
The dust concentration at ∼50 au translates into a bright and thin ring
at millimetre wavelengths. The observed ring also shows a thinner

structure as the wavelength increases, which is a manifestation of the
dust size distribution being more peaked for higher sizes (the thermal
emission of grains of size s peaks at λ ∼ 2πs). Both fragmentation
models give similar images. The major difference is seen at lower
wavelengths, where the Hard model shows a thicker ring than its
counterpart.

Considering these synthetic images, the self-induced dust trap
mechanism observed in our simulations should be detectable by
instruments such as ALMA, which is sensitive to the dust thermal
emission in the mid-plane of the disc. This is particularly interesting
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Figure 19. Trajectories in the (r, s) plane of six particles initially at 40, 60,
80, 100, 150, and 200 au from the star for simulations with (F-Hard, solid
lines) and without (noF, dashed lines) fragmentation. The fragmentation zone
(salmon colour, computed using the power laws initially describing the disc
structure) is delimited by the fragmentation sizes s±

frag (dotted lines) and

estimated with ε = 0.01. s−
frag is also plotted for larger dust-to-gas ratios (ε =

0.1, 0.25, and 0.5, from smaller to larger sizes). The optimal drift size sopt

is also added (dash–dotted line). The simulation with fragmentation extends
up to 100 kyr, that is twice as long as the pure growth case, which reaches a
quasi-steady state at this time. To compare them efficiently, the stars represent
the particles state at 50 kyr, while the filled circles mark their state at 100 kyr.

Figure 20. Dust size radial distribution in simulations with (F-Hard, coloured
particles) and without (noF, grey particles) fragmentation at 50 kyr. The
colour represents the ratio Vrel/Vfrag. The fragmentation zone is hatched and
estimated using s±

frag and ε = 0.2 (see also Fig. 13).

given the commonness of axisymmetric rings in recent disc observa-
tions (Andrews et al. 2018; Huang et al. 2018). However, we stress
that it might be hard to disentangle this mechanism from others
that produce bright axisymetric rings (e.g. at the edge of a massive
planet’s gap or because of dust sintering; Rice et al. 2006; Okuzumi
et al. 2016; Toci et al. 2020).

6 D ISCUSSION

6.1 The monodisperse approximation

The dust growth module presented in this paper does not solve the
Smoluchowski coagulation equation (Smoluchowski 1916) but rather

considers locally monodisperse size distributions. This facilitates the
implementation as it becomes a single differential equation to solve
numerically for every particle of the simulation. The monodisperse
approximation considers the local distribution to be highly peaked
around a single value that is carried by the dust SPH particle. By
construction, this makes it impossible to track all sizes at the same
time and therefore we only keep the largest ones in memory, which
creates a top-heavy dust size distribution. This is particularly the
case in regions of efficient growth, as illustrated in Fig. 23 between
50 and 100 au in simulation F-Hard. In that regard, small sizes are
less represented, which physically is an acceptable approximation
since most of the dust mass is carried by the larger populations.
However, this becomes more concerning when simulating synthetic
images, as most of the stellar light is absorbed and scattered by
tightly coupled grains (i.e. small grains � 1 μm). This directly
impacts the scattered light images, but also the disc thermal structure
(and sub-mm images) as the disc midplane is heated by photons
scattered from the disc upper layers. We alleviate part of this issue
at the stage where MCFOST reconstructs the size distribution (see
Section 5.3.5) by adding grains smaller than 1 μm, considering that
they follow the gas, which limits the impact of this caveat. One
might also argue that the SPH method is already poorly adapted
to images in scattered light, since it comes from the upper layers
of the disc, which, by effect of settling and overall vertical density
distributions, have a lower resolution. On the contrary, the mid-plane
of the disc is better resolved and contains mm to cm grain sizes,
which makes the synthetic images at millimeter wavelengths more
adapted to this kind of dust growth model. Adding the sub-micron
sized grains ensures that our disc temperature structure is correct and
ALMA synthetic images of self-induced dust traps, such as shown
in Fig. 22, should be mostly unaffected by our dust treatment, with
the possible exception of its shortest wavelengths. In the mid- to
far-infrared, under-representation of the 1–100 μm grain population
would mostly affect synthetic images of regions of efficient growth,
and in particular the contrast between bright and dark rings. We do
not compute images in this wavelength range.

The resolution of the Smoluchoswki equation in a code that
directly integrates the equations of motion self-consistently for both
gas and dust is extremely challenging, although methods suitable for
use in PHANTOM are under development (Lombart & Laibe 2021).
The results of such an implementation providing a continuous size
distribution will precise the extent of the validity of the monodisperse
approximation.

Lastly, the growth model presented in this paper and based on
Stepinski & Valageas (1997) requires an explicit formulation of the
Stokes number – presently expressed with the Keplerian frequency.
This can be a source of limitation, as it assumes the disc is Keplerian
by nature. Significant non-Keplerian rotations are a possibility, e.g.
when the disc is perturbed by massive companions, which would
limit the use of such growth model. Although alternatives to this
issue are beyond the scope of this paper, the Stokes number would
probably be best computed in that scenario with a dynamical time-
scale estimated within the simulation itself.

6.2 Numerical limitations

As mentioned in section 3.1, the dust growth model is also limited
by the numerical formalism that we employ. Here, we will discuss
the one we used in our simulations: the two-fluid algorithm. More
precisely, the handling of two sets of resolution can become delicate
to manage when the two resolutions stop being comparable. In
practice, the gas structure is relatively steady because of the pressure
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Figure 21. Left: Dust size radial profiles between 0 and 90 kyr for fragmentation models Hard (solid lines) and Smooth (dashed lines). Right: Same but for the
dust surface density.

Figure 22. Synthetic images at λ = 350, 850, 1300, and 3000 μm (left to right) of simulations with Hard (top) and Smooth (bottom) fragmentation models at
50 kyr. Images are convolved using a 0.1 × 0.1 arcsec2 Gaussian beam (displayed on the bottom left of each panel). The system is assumed to be at a distance
of 140 pc and seen pole-on.

support. On the other hand, dust particles are pressureless, which
in case of local dust concentrations can become a problem and lead
to numerical clumps. Dust concentrations arise naturally at pressure
bumps since the radial drift vanishes, which increases locally the
dust-to-gas ratio. At a certain point, the dust smoothing length
becomes so small that the gas is effectively invisible to the dust
particles, which underestimates the extent of the dust structures (see
for example Figs 10 and 13). The code used by L08, LYONSPH, seems
to be less prone to this limitation. We suspect this difference to come
from two main reasons:

(i) The way the smoothing length is handled. In PHANTOM, the
smoothing length is carefully computed and adjusted using iterations
on h − ρ, while in LYONSPH, h is independently estimated and thus
changes less over time, which might smooth out the density in the
disc. While the method used by PHANTOM produces better resolved
density structures, it could also be more affected by numerical
clumping.

(ii) The viscosity treatment. While we used the formalism pro-
posed by Lodato & Price (2010), LYONSPH uses the older Monaghan
(1992) formulation. We have noticed that in LYONSPH, particles tend
to be more accreted by the star, which increases the effective viscosity
of the disc over time. As a result, an effectively more dissipating disc
could smooth out the disc structures and thus limit local dust over-
resolutions.

Numerical clumping is hard to detach from in the two-fluid
formalism, especially when considering dust growth that further
decouples dust from gas. However, to limit its effects as much as
possible, the best solution is to adjust the ratio between dust and gas
particles, as we already did in our setup. For example, we want a
high enough number of gas particles to resolve the disc scale height
(� 1M) while having a large gas-to-dust particles ratio such that
the gas smoothing length is as small as possible compared to the
dust’s (∼5–10). By simple analytical arguments, if we consider the
condition hg � hd to be fulfilled to avoid any numerical clumping,
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Figure 23. Grain size distribution in simulation F-Hard at 50 kyr in the
whole disc (black) and in the 50–100 au region only (blue).

this gives a maximum safely attainable dust-to-gas ratio of

εmax ∼ ε0

nSPH
g

nSPH
d

, (59)

where ε0 is the initial dust-to-gas ratio. With great safely attainable
dust-to-gas ratio comes great computational time.

6.3 Perspectives

Beyond the presentation of the model implementation in PHANTOM

and the associated tests, this paper mainly revisited and found
similar results as previous studies that considered dust growth in
protoplanetary discs. The main objective of this paper is to present
the algorithm and stress that it is public and usable by the community.
With PHANTOM’s modularity, this means that dust growth can be
studied in 3D in any given system that was previously out of reach,
all with better overall performances and a lower memory footprint
than LYONSPH.

For example, multiple systems are of much interest, since they
can constitute between a few and about 60 per cent of systems
(Rubenstein & Bailyn 1997; Bellazzini et al. 2002; Guerrero et al.
2014). Grasping planet formation in general surely means that dust
growth in these poorly studied systems is needed. This point is
especially of interest considering the recent substructures than have
been theoretically and observationally discovered in circumbinary
discs (neglecting dust growth; e.g. Ragusa et al. 2017; Calcino et al.
2019; Poblete, Cuello & Cuadra 2019).

Dust properties are also another important element that can be
improved in this model. While we consider perfectly spherical
grains composed of a given species, we are aware that reality is
vastly more complicated. For example, snow lines can change the
dust chemical composition, affect their surface properties, and thus
their growth and dynamic (e.g. Wada et al. 2009; Drążkowska &
Alibert 2017; Vericel & Gonzalez 2020). Another important element
could be the dust porosity, which can be significant considering
for instance the very small filling factors of about 10−3 that have
been measured on comet 67P/Churyumov–Gerasimenko (Fulle et al.
2015). Dust porosity can accelerate dust growth and help overcome
planet formation barriers (Garcia 2018; Garcia & Gonzalez 2020),
which is promising for planetesimal formation. The implementation
of a porosity model is underway in PHANTOM and will be the subject
of further investigations in the future.

7 C O N C L U SIO N

We presented a dust growth model that considers local monodisperse
size distributions. After specifying the numerical implementation in
PHANTOM, we presented two tests that ensure the algorithm works as
intended. We then proceeded to circumstellar disc simulations, while
first focusing on pure growth and adding fragmentation effects later
on. We finally performed radiative transfer calculations to produce
synthetic images. Our main findings can be summarized as follows:

(i) The tests show that the parameters of interest are evaluated
with a maximum relative error of about 10−4, a satisfying degree of
precision.

(ii) Simulations without fragmentation develop a dust concentra-
tion at the inner edge of the disc, which corresponds to the usual
gas pressure maximum. The dust concentrated at this location drifts
from the outer parts of the disc and ends its course well decoupled
from the gas. Results are consistent with those found by L08.

(iii) Simulations with growth and fragmentation show the forma-
tion of a self-induced dust trap as first proposed by Gonzalez et al.
(2017a). This trap forms at several tens of au from the star and is the
result of the dust piling-up in the disc and modifying the gas structure
through back-reaction.

(iv) Simulations in which self-induced dust trap forms produce
synthetic images showing an axisymmetric bright ring at millimetre
wavelengths. These should be detectable by instruments such as
ALMA.
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A P P E N D I X A : PU R E G ROW T H : IN F L U E N C E O F
T H E IN I T I A L G R A I N SI Z E

The effects of the initial size has been discussed by L08, where they
found that dust growth was fast between 1 and 10 μm and therefore

Figure A1. Dust size radial profiles in pure growth simulations for s0 = 10 (blue), 30 (green), and 50 (red) μm at 0 (top left), 10 (top right), 25 (bottom left),
and 45 (bottom right) kyr.

Figure A2. Same as Fig. A1 but for the gas (black dashed line) and dust (solid coloured lines) disc scale heights.
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the choice of the initial size between those values was inconsequential
on dust evolution. The initial size is numerically very important to
control, since small grains dictate the timestepping in the two-fluid
dust method. As a matter of fact, slightly increasing the initial size
can lead to a simulation being a few times faster.

Here, we tested three initial sizes with 10, 30 (reference value
used throughout the paper), and 50 μm. We can see their effects
on grain growth and settling in Figs A1 and A2. Grains in the
innermost parts of the disc reach similar sizes very rapidly (a few
thousand years), since the growth time-scale there is the shortest.
This allows the grains to quickly forget their initial size. In terms
of vertical settling, the inner parts of the discs also match exactly
as quickly. At later times, the distance to the star for which
simulations have converged to the same state increases. At 45 kyr
for instance, we can notice that the simulations are similar up to
∼100 au.

It seems clear that two simulations with different initial sizes can
reach a similar state if enough time has passed so that most of the
disc can forget its initial size, that is respecting the condition �s

� s0, where �s is the size gained through collisions. In practice,
the initial size is therefore constrained upward by this limitation, and
downward by the timestepping constraint we already mentioned. Our
choice of 30 μm seems adequate for most cases but can be adapted
to the user’s needs.

APPENDI X B: INFLUENCE OF THE D I SC
MODEL O N SELF-I NDUCED D UST TRAP
F O R M AT I O N

B1 Inner boundary

One may wonder whether the location of the disc inner boundary
can affect the formation of self-induced dust traps. We ran a new
simulation of our standard disc with a smaller inner radius of rin =
10 au, up to the trap formation and before the onset of runaway
growth. Fig. B1 shows that the self-induced dust trap forms at the
same location of ∼50 au, where both the grain size (left) and dust
surface density (centre) peak, and where xbr becomes larger than 1.

Figure B1. Simulation for the disc with rin = 10 au. Dust size radial distribution at the end of the simulation where particles are coloured with their ratio
Vrel/Vfrag (left) and radial profiles of the dust surface density (centre) and of xbr (right) at different times.

Figure B2. Same as Fig. B1 for the disc with p = 1 and q = 1/2.
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Due to the smaller inner radius, the disc regions interior to the trap
can supply more material outwards, helping the trap to form sooner
than in the simulation with rin = 20 au presented in Section 5.3.

B2 Surface density and temperature profiles

We present the case of a disc with p = 1 and q = 1/2, all
other parameters being equal to those of our standard disc. This
configuration also results in self-induced dust trap formation, as

can be seen in Fig. B2. The different profiles, and in particular the
smaller value of q, lead to the trap forming at larger radii, as reported
in Gonzalez et al. (2017a), here at ∼120 au. Since evolution time-
scales increase with radius, the trap also forms later than in our
standard disc.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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