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ABSTRACT

Young multiple systems accrete most of their final mass in the first few Myr of their lifetime, during the protostellar and
protoplanetary phases. Previous studies showed that in binary systems the majority of the accreted mass falls on to the lighter
star, thus evolving to mass equalization. However, young stellar systems often comprise more than two stars, which are expected
to be in hierarchical configurations. Despite its astrophysical relevance, differential accretion in hierarchical systems remains to
be understood. In this work, we investigate whether the accretion trends expected in binaries are valid for higher order multiples.
We performed a set of three-dimensional smoothed particle hydrodynamics simulations of binaries and of hierarchical triples
(HTs) embedded in an accretion disc, with the code PHANTOM. We identify for the first time accretion trends in HTs and their
deviations compared to binaries. These deviations, due to the interaction of the small binary with the infalling material from the
circumtriple disc, can be described with a semi-analytical prescription. Generally, the smaller binary of an HT accretes more
mass than a single star of the same mass as the smaller binary. We found that in an HT, if the small binary is heavier than the third
body, the standard differential accretion scenario (whereby the secondary accretes more of the mass) is hampered. Reciprocally,
if the small binary is lighter than the third body, the standard differential accretion scenario is enhanced. The peculiar differential

accretion mechanism we find in HTs is expected to affect their mass ratio distribution.

Key words: hydrodynamics — methods: numerical — protoplanetary discs.

1 INTRODUCTION

Surveys of star-forming regions indicate that multiple stellar systems
are common in young populations (Duchéne & Kraus 2013; Reipurth
et al. 2014). Among Class 0 and Class I stars (younger than 1 Myr),
the multiplicity fraction ranges between 40 per cent and 70 per cent
(Connelley, Reipurth & Tokunaga 2008; Chen et al. 2013), while in
evolved populations, it is around 20 per cent (Duquennoy & Mayor
1991). In addition, molecular cloud simulations show that protostars
are likely to form as part of multiple stellar systems and that their
surrounding discs experience dramatic dynamical interactions with
neighbour stars (Bate 2009, 2018). Thus, multiple stellar systems
with discs are expected to be common in star-forming regions. This
is also confirmed by surveys of Class O systems, as in Tobin et al.
(2016).

After the initial collapse of a molecular cloud core, the majority
of the mass available to the forming stellar system is confined by
angular momentum conservation in the disc and slowly accretes on to
the stars (Bonnell & Bate 1994). The tidal torque between the central
multiple system and the surrounding disc allows the exchange of
angular momentum between the disc and the stellar system (Lin &
Papaloizou 1979; Goldreich & Tremaine 1980). The gravitational
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torque exerted by the multiple system on the circum-multiple disc
is thought to suppress the surface density in the surrounding of the
stars. Indeed, a high enough angular momentum exchange between
the system and the surrounding material is able to open a central
cavity in the disc (Artymowicz & Lubow 1996). However, thanks
to the asymmetries of the gravitational potential and to the three-
dimensional (3D) nature of the problem, accretion of gas on to the
stars is not suppressed. Indeed, the stars of the system pull streamers
of gas from the inner edge of the cavity. These streamers bridge
the lower density region between the disc inner edge and the stellar
system allowing the gas to flow towards the stars (Artymowicz &
Lubow 1996; Farris et al. 2014; Ragusa, Lodato & Price 2016). There,
inner accretion discs around the single stars process the infalling gas
that eventually is accreted.

An example is the well-known GG Tauri A (Keppler et al. 2020;
Phuong et al. 2020). GG Tau A is a triple (Di Folco et al. 2014)
stellar system surrounded by a circumtriple accretion disc. The stars
carved a central cavity, where we observe streamers and filaments
of gas. Another multiple system that shows cavities and nested discs
separated by low-density regions is the GW Orionis triple stellar
system (Bi et al. 2020; Kraus et al. 2020). Other similar examples
are the binary BHB 2007 (Alves et al. 2019), in which a complex
structure of filaments supply gas from the circumbinary disc to the
circumstellar discs, and L1448 IRS3B (Reynolds et al. 2021), which
is a really young multiple stellar system in formation.
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In general, systems with more than two stars are unstable and
their evolution eventually leads to the ejection of one body of the
system (Valtonen & Karttunen 2006). The only stable configurations
observed are made of nested binary orbits and are called hierarchical
configurations. For example, a hierarchical triple system is made of
a binary orbited at a distance by a third body. In order to preserve the
stability of the system, the third body needs to orbit the binary at a
distance of several times the binary semimajor axis (see Mardling &
Aarseth 2001 for a stability criterion).

How accreting mass from the circum-multiple disc distributes
itself around the individual stars plays a key role in the star formation
scenario. Indeed, both the evolution of the stellar system masses and
the supply of gas around the stars to form inner discs (and possibly
inner planets) strongly depend on the competition between the stars
in having access to the gas stored in the disc. The study of these
processes allows us to also link the properties of the observed evolved
population of binaries to their initial conditions in which they initially
born (Bate 2000). The fraction of mass accreted by each star of the
system depends on the system orbital parameters, in particular on
the mass ratio, as shown by Farris et al. (2014). In addition, other
less studied system parameters play a role in the mass distribution
among the system stars, for example, the infalling gas temperature
(Young & Clarke 2015; Young, Baird & Clarke 2015) and the gas
viscosity (Duffell et al. 2020).

This process, known as differential accretion, has been widely
studied in binaries. Different numerical [smoothed particle hydrody-
namics (SPH) and grid] methods show that the secondary star of the
binary should accrete most of the disc mass (e.g. in Bate & Bonnell
1997, Farris et al. 2014, and Young et al. 2015). This is due to the
lower relative velocity between the secondary and the disc material
orbiting at the inner edge, and to the lower distance between the
secondary orbit and the inner edge of the disc. However, there are
exceptions to this general behaviour when the system orbit is very
eccentric. Indeed, in this case, Dunhill, Cuadra & Dougados (2015)
showed that discs around binaries with mass ratio lower than unity
can temporary accrete more mass on to the primary, and Mufioz &
Lai (2016) showed that unitary mass ratio binaries can temporary
break the symmetry expected in their accretion rates. Both these
exceptions are due to the precession of the eccentric cavity carved
by the stellar system.

As of today, however, little is known about differential accretion
in hierarchical systems. In this paper, we investigate to which extent
the accretion trends of binary systems remain valid for hierarchical
triples. In doing so, we propose a model to describe the deviations
of the stellar accretion rates in triple systems. We also discuss the
possibility to reveal unresolved hierarchical triple systems from
their accretion rates and the difficulty in constraining the orbital
parameters of the unresolved small binary.

The paper is organized as follows: In Section 2, we describe
the systems’ setup we considered and their initial conditions. In
Section 3, we present our results. We discuss the results of the
simulation sets in Section 4, and we give our conclusions in Section 5.

2 HYDRODYNAMICAL SIMULATIONS

We performed gas simulations of coplanar multiple systems em-
bedded in an outer coplanar accretion disc using the 3D SPH code
PHANTOM (Price et al. 2018).

We perform three sets of simulations. Set 1 consists of nine
simulations made of three binary systems and six hierarchical triple
systems. The three binaries have mass ratio qyige = M/M, =0.2,0.4,
and 0.65, respectively, where M is the mass of the lighter star and
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Table 1. Hydrodynamical simulation sets. All binary orbits (wider
and smaller) are circular and coplanar with the disc. The semimajor
axis of each wide orbit is ayige = 10 au. All small binaries have a
unitary mass ratio gsman = 1.

Set 1 % Gwide Split star
b2 - 0.2 -

b4 - 0.4 -

b65 - 0.65 -

ts2 0.1 0.2 Secondary
ts4 0.1 04 Secondary
ts65 0.1 0.65 Secondary
tp2 0.1 0.2 Primary
tp4 0.1 0.4 Primary
tp65 0.1 0.65 Primary
Set 2

ts2al5 0.15 0.2 Secondary
ts2a05 0.05 0.2 Secondary
ts4al8 0.18 0.4 Secondary
ts4als 0.15 04 Secondary
ts4a05 0.05 0.4 Secondary
ts65a20 0.2 0.65 Secondary
ts65al5 0.15 0.65 Secondary
ts65a05 0.05 0.65 Secondary
Set 3

tp2a20 0.2 0.2 Primary
tp2a05 0.05 0.2 Primary
tp4a20 0.2 0.4 Primary
tp4a05 0.05 0.4 Primary
tp65a20 0.2 0.65 Primary
tp65a05 0.05 0.65 Primary

M, the mass of the heavier one. Initially, the binaries are circular and
have a semimajor axis ayige = 10 au. From each binary, we derived
two hierarchical triple systems. The first kind of triples (labelled ts)
is built by splitting the secondary star of the binary, while the second
kind of triples (labelled #p) is built by splitting the primary. In order
to build the hierarchical triple systems, the binary stars are split into
a circular binary with the same total mass of the split star, with a
semimajor axis dsma; = 1 au and a mass ratio ggman = 1.' This set of
simulations aims at understanding the effect of the mass ratio on the
accretion trends. Table 1 contains the orbital configuration of each
of these systems, and Fig. 1 shows the gas surface density after 50
wide binary orbits for each simulation.

The simulations of Set 2 are devoted to explore the dependence of
the triple system accretion rates on the small binary semimajor axis.
In Set 2, we consider hierarchical triple systems where we split the
secondary star. We start from the 52, ts4, and 7565 simulations from
Set 1, and we vary the small binary semimajor axis as reported in
Table 1.

Finally, in Set 3, we focus on hierarchical triple systems where we
split the primary star. We start from the #p2, tp4, and tp65 simulations
from Set 1, and we vary the small binary semimajor axis as reported
in Table 1.

The total stellar mass of each binary and triple system is 3 Mg.
Each system is surrounded by the same coplanar gas disc that initially
extends from Ri, = 2 dyige 10 Row = 10 ayige With a mass equal to

!For more information about how we implemented in the PHANTOM code the
possibility to simulate hierarchical triple systems, see Appendix B.
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binary

ts triple

tp triple

log column density [g/cm?)

Figure 1. Snapshots of three selected high-resolution simulations of Set 1 showing the gas density in logarithmic scale. Green dots are the sink particles. All
the three simulations have gyige = 0.65. On the first column, there is the binary. The central column shows the triple system obtained by splitting the secondary
star of the binary (s type). On the right column is shown the triple obtained by splitting the primary star of the binary (#p type). All snapshots are taken at 55

wide binary orbits.

0.03 M. The disc is modelled using 10° SPH particles, resulting in
a smoothing length about 0.1 times the disc scale height. The initial
gas surface density profile is

S(R) =3 R N 1 Rin (D
)_ m<Rin> - R )

with Bj;, = 69.4 g cm™2 and p = 1. We assume a locally isothermal
equation of state centred in the centre of mass of the system. The
sound speed profile follows

-q
CS(R) = Cs(Rin) i ) (2)
Rin

with g = 0.25. This results in a disc aspect ratio given by

E B @ i (1/2—¢q) (3)
R~ Ry \ R '

We set Hy/Ry = 0.1 at R = ayiqe, as in Farris et al. (2014) and Young &
Clarke (2015).

Disc viscosity is implemented via the artificial viscosity method
that is standard in SPH (Gingold & Monaghan 1977; Lucy 1977),
which can be related to the Shakura & Sunyaev (1973) «-viscosity as
found by Lodato & Price (2010). As differential accretion depends
on viscosity, we set ags = 0.1, by setting aay &~ 9, to match the
values chosen by previous works, in particular by Farris et al. (2014)
and Duffell et al. (2020).

Stars are simulated as sink particles (Bate, Bonnell & Price
1995; Price et al. 2018). Sink particles are particles that interact
only via gravity with other sink particles and SPH particles. They
are evolved via a second-order leapfrog integrator, as described in
section 2.8.5 of Price et al. (2018). Sinks are allowed to accrete SPH
particles and to store the accreted particles’ angular momentum and
mass. The accretion of a gas particle can occur when it enters the
accretion radius of a sink. To be accreted, the gas particle has to be
gravitationally bound to the sink and its angular momentum has to
be sufficiently low. In order to reliably resolve the accretion rates,
the accretion radius of each sink is set to 0.1 au. This radius is at
most ~0.04 times the wide binary secondary Roche lobe radius,
depending on the binary mass ratio (Eggleton 1983).

MNRAS 514, 906-919 (2022)

All our simulations were evolved for 100 wide binary orbits, which
correspond to half a viscous time-scale at the disc inner edge R;, &~
2ayige, Which can be expressed as (Lynden-Bell & Pringle 1974;
Hartmann et al. 1998)

N4R2

t
"9y

, “

Rin

with v = aHc,. We can write

2
—amta—o (2 a. 3
vV=odH Q=« R lede Rawide’ (5)

where Q is the Keplerian frequency and 2yq. is the binary orbital
frequency. Using equation (5) at R = Ry,, the viscous time in units
of binary orbits is
ol 8 1 27
T 9V 2m a(H /R Quise’
With our choice of o and H/R, the viscous time is approximately 200
binary orbits. We discuss the tests we made on longer integration
time in Appendix A.

The main observable to be measured in this work is the accretion
rate of each star during the simulation. The accretion rates of the
simulations conducted in this work are shown in the first row of Figs 2
and 3. We are not interested in the absolute value of the accretion rates
but in their ratio. The ratios between the stellar accretion rates cancel
out the decreasing trend shown in Figs 2 and 3 because the gas mass
distributes with the same proportion between stars, in agreement with
what found in Mufioz et al. (2020). In the second row of each mass
ratio in Figs 2 and 3, these ratios display a constant trend with an
initial transient phase shorter than 20 orbits, showing that differential
accretion quickly reaches a steady state.

The accretion rates measured in this work are reported for each
orbit, as in Figs 2 and 3. To compute the accretion rates in the nth
orbit, we integrate the M (z) over the orbital period P, thus

. ty+P M(l)
M, = ——dt, @)
n p

Q)

where t, is the initial time of the nth orbit. We then averaged with a
moving average over 11 orbits (i.e. 4 orbits of the cavity inner edge),
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Figure 2. Moving averaged accretion rates and A = (Mt,secl + Mt,secZ)/ Mt,pri factors measured in the zs triple simulations (Set 2). For each wide orbit mass
ratio gwide, in the upper panels are plotted the accretion rates of the secondary (green) and primary (blue) star. In the lower panels is plotted the ratio between the
accretion rates. The solid line refers to the associated binary, from which the triples are generated. Different line styles refer to different small binary semimajor
axes. The secondary accretion rate for the triple system is the sum of the accretion rates of the small binary stars.
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Figure 3. Moving averaged accretion rates and A = Mt,sec /(Mt,pm + Mt,prig) factors measured in the #p triple simulations (Set 3). For each wide orbit mass
ratio qyide, in the upper panels are plotted the accretion rates of the secondary (green) and primary (blue) star. In the lower panels is plotted the ratio between the
accretion rates. The solid line refers to the associated binary, from which the triples are generated. Different line styles refer to different small binary semimajor
axes. The primary accretion rate for the triple system is the sum of the accretion rates of the small binary stars.
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Figure 4. Set 1 simulations’ A = Mec/Mpi values. Green dots are binary
simulations. Red dots are triples obtained by splitting the primary star of
the binary. Blue dots are triples obtained by splitting the secondary star. The
solid green curve is the fit proposed in this work in equation (10). Dotted
and dashed green curves are the Duffell et al. (2020) and Kelley et al. (2019)
parametrizations, respectively.

so that

== ®)

The ratios between the stellar accretion rates with their errors (as
in Fig. 4) are computed discarding the initial transient orbits.

3 NUMERICAL RESULTS

3.1 Binary systems’ differential accretion

The ratio between the stellar accretion rates is the key observable in
the binary systems’ differential accretion problem. Let us define this
factor as

_ Mb,sec

Ay = —
Mb,pri

. ©)
where Mb,Sec and Mb,pri are the moving averaged accretion rates of
the secondary and primary star, respectively (defined in equation 8).
The Ap ratio measures how evenly the accreting mass distributes
over the binary stars. If X, is larger than unity, this means more
material is being accreted by the secondary. We simulate three binary
systems (with gyige = 0.2, 0.4, 0.65, simulations b2, b4, b65) in
order to consistently compare the hierarchical triple simulations with
their binary counterparts. Fig. 4 shows with green dots the X factors
measured in our Set 1 of 3D SPH binary simulations.

The A, factor depends on the parameters of the system. In
particular, A, depends on the mass ratio of the binary, as pointed out
by Farris et al. (2014). In addition, A, depends also on the infalling
gas properties (Young & Clarke 2015; Young et al. 2015). For a given
mass ratio, warmer discs raise the primary accretion rate, pushing A,
towards unity. This is due to the fact that warmer gas streamers have
a wider range of trajectories to reach the primary star. In addition,
warmer gas around the secondary star crosses the Roche lobe more

MNRAS 514, 906-919 (2022)

easily, reaching the primary Roche lobe. Lastly, Duffell et al. (2020)
showed that A, depends also on gas viscosity. In particular, they
found that for less viscous discs, the value of X, tends towards unity.

Recently, two parametrizations for A,(q) were proposed. The first
one in Kelley et al. (2019, hereafter K19 parametrization), which
updates the one proposed by Gerosa et al. (2015) and is built by
fitting the Farris et al. (2014) binary simulation set. The second one
in Duffell et al. (2020, hereafter D20 parametrization), who simulate
binary accretion discs slowly modifying the binary mass ratio during
the simulation in order to span Ay(g) continuously. These works,
based on different 2D grid numerical techniques, resulted in two
different parametrizations (see green curves in Fig. 4). In order to
be able to compare our binary simulations with the D20 and K19
parametrizations, we used the same disc thickness and viscosity
of previous works, even if higher than the typical protostellar disc
viscosity (Hartmann et al. 1998; Dullemond et al. 2018).

As shown in Fig. 4, our binary simulations are in fairly good
agreement with the parametrizations proposed in the literature. In
particular, we found the same accretion trends described by previous
works. Indeed, the secondary star always accretes most of the mass.
Moreover, the higher the binary mass ratio, the lower the value of Ay
(as expected). In addition, if we reduce the thickness of our disc, A,
tends to the D20 parametrization. The discrepancies can be due to the
different numerical technique we used. In particular, our simulations
are 3D as opposed to the 2D ones by Duffell et al. (2020) and
Farris et al. (2014), and the disc height profile could vary between
simulations away from the inner cavity edge.

We fit our binary data points with the following one-parameter
function:

1-C

A =C+ , (10)
Gwide

which accounts for the g, dependence found in previous studies
(Gerosa et al. 2015; Duffell et al. 2020) and which approaches
unity when gyige approaches unity. Indeed, for symmetry reasons,
we expect a unitary mass ratio binary to evenly accrete mass on
to the two binary stars. Our best fit for the C parameter results in
C = 0.63. Contrary to K19 and D20 parametrizations, our formula
is obtained from a set of 3D simulations, and it is shown in Fig. 4
(green solid curve).

3.2 Hierarchical triples’ differential accretion

For a quantitative comparison with the A, factor measured in binaries,
we introduce an analogous ratio for hierarchical triples: A,. If the
small binary of the triple system is lighter than the single body (i.e.
in the s type triples), we define A as the ratio between the sum of
the accretion rates of the small binary stars (Mt,secl + M, ee2) OVer
the accretion rate of the single star (M[‘pri):

_ Mt,secl + Ml,sec2

At -
Mt,pri

(n

If instead the small binary is heavier than the single body (i.e. in
the #p triple case), we define A, as the ratio between the accretion rate
of the single star (Mt,sec) over the sum of the accretion rates of the
small binary stars (Mt,pm + Ml‘priz):

M, t,sec

)\.[ -
Mt,pril + Mt,priZ

(12)

In other words, the X, factor of a hierarchical triple system is defined
considering the system as a binary in which the small binary is
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treated as a single body, with an accretion rate equal to the sum of
the accretion rate of the small binary stars.

Accordingly, we define gyq. (the mass ratio of the wide orbit) for
the zs and the #p triple cases. In the former case, we define

Ml secl T Mt sec2
o = — TR 13
Gwide M[.pri ( )

where M .1 and M, ., are the mass of the small binary primary
and secondary, respectively, and M, is the mass of the single body.
In the latter case, we define

M, t,sec

—_ (14)
Ml,pril + Mt.priZ

Gwide =

where M i1 and M, ,ri» are the mass of the small binary primary and
secondary, respectively, and M, . is the mass of the single body. In
Fig. 4, we show, for each gyiqe in Set 1, the A, factors of the triple
simulations, along with the X, factor of their associated binaries.

The differential accretion in hierarchical triple is set by the
combination between the binary differential accretion and the effects
induced by the presence of the small binary. Thus, in order to isolate
the contributions of the small binary to differential accretion, we
compared each hierarchical triple simulation with its associated
binary. In order to do this, we associated with each binary system
discussed in Section 3.1 (i.e. each b simulation) two hierarchical
triple systems, obtaining the nine simulations of Set 1 (see Table 1).
The two associated triples are built by substituting the primary or the
secondary binary star with a small binary, obtaining, respectively, the
tp and ts triple simulations (refer to Appendix B for the details on how
we implemented this substitution in the PHANTOM code). The triple
obtained by splitting the secondary star can be viewed as a massive
body orbited by a lighter binary (zs type). If instead the primary is
split, the system consists of a massive binary orbited by a third lighter
body (#p type). The substituting small binary is circular, has a mass
ratio gsman = 1, and has a semimajor axis dsman = 0.1 @yige, Where
ayide 18 the semimajor axis of the wide binary orbit. The mass of the
substituting small binary is equal to the substituted star. With this
process, we built up the simulation Set 1, discussed in Section 2.

As shown in Fig. 4, in the parameter space region explored by this
simulation set, zs and p simulations raise their small binary accretion
rate with respect to their single counterpart in the associated binary
system. As a consequence, ts simulations raise their A value, while
tp simulations lower it. In addition, zs triples shift A more than tp
triples. In Figs 2 and 3, we report the accretion rates and A factors
of every simulation of this work. The binary (solid curve) and the
asman = 1 au ts and fp simulations (dashed curves) show how the
accretion rates of the single stars contribute in shifting the A factors.
From the single accretion rate data, we see that the small binary
always increases its accretion rate, while the tertiary star lowers it.
However, the split affects the single star only for lower mass ratios.
Indeed, in the gy = 0.65 case, the accretion rate of the single body
does not change significantly. This implies that the total accretion
rate of the ¢ = 0.65 triple systems is not conserved with respect
to the binary case. Given that the total accretion rate of the system
is set by viscous accretion, it should not be different for different
stellar systems surrounded by the same disc. Thus, we conclude that
the gwige = 0.65 systems have not reached steady state. However,
we show in Appendix A that 100 outer binary orbits are enough to
measure A factors in a reliable manner.
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Figure 5. A = M./ Mpﬁ factors for Set 2 triples. Different colours refer to
different mass ratios of the wide orbit gyide. dsmall/awide = 0 points are the
associated binary simulations.
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Figure 6. ) = M./ Mpri factors for Set 3 triples. Different colours refer to
different mass ratios of the wide orbit gyide. dsmall/awide = 0 points are the
associated binary simulations.

3.3 Dependence on agpn,; and prescription for accretion rate
deviations in triples

How much accretion rates deviate from the binary case depends on
the orbital configuration of the hierarchical triple, in particular on its
small binary mass M}, and on its small binary semimajor axis dsmai-
Indeed, Figs 5 and 6 show how much the triple X, factor deviates
from the associated binary Ay factor as a function of gy, for Set 2
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(ts type triples, see Section 2) and Set 3 simulations (#p type triples,
see Section 2), respectively.

The change in the accretion rate of a multiple system star is linked
to a variation of the net flux of mass in its Roche lobe. Indeed, in
the steady state regime, all the mass that enters the Roche lobe is
eventually accreted by the star(s) inside the lobe. This implies that
the mechanisms that modify the accretion rate of a body have to act on
the scale of its Roche lobe. Two physics phenomena can be invoked in
order to describe these deviations: the augmented geometrical cross-
section of the small binary and the angular momentum exchange
between the small binary and the surrounding gas.

On the one hand, the small binary interacts with the surrounding
gas through a geometrical cross-section that is proportional to the
area of the small binary orbit A,

A xa’ (15)

small -
Thus, we expect that the larger geometrical cross-section of the small
binary raises its accretion rate with respect to the corresponding
single star in the associated binary system.

On the other hand, we expect the small binary torque on to the
surrounding gas to obstruct the accretion of material on to the small
binary stars. In the impulse approximation (Lin & Papaloizou 1979),
we can estimate the torque exerted by the small binary on to the
surrounding gas. If we suppose the small binary mass ratio ggm,; <<
1, the density of tidal torque exerted by the small binary on to a fluid
element at a distance p from the secondary star can be approximated
by

4
2 2 2 @small
T = qumaI]Qsmallasmall ( Slp"a > ’ (16)

where Qgman is the small binary frequency and f'is a dimensionless
normalization factor. Even if this approximation holds for low mass
ratio binaries only, it gives us insights about how the specific torque
scales with the small binary properties. We can assume that p
is approximately equal to the distance between the inner binary
stars and the small binary Roche lobe edge; thus, p o Rroche-
Hence, writing explicitly the binary frequency in equation (16), we
obtain

aSmall
T X MbR“i’ (17)
Roche
where My, is the small binary mass.

Taking into account the torque scaling and the geometrical cross-
section, we propose a parametrization to describe the competition
between these mechanisms in modifying the accretion rate of the
triple small binary with respect to the corresponding single star
in the associated binary system. With this prescription, we also
test the relative efficiency of different contributions to the devi-
ations. Deviations are measured by means of the accretion ratio
between the accretion rate of the small binary in the triple (M, e =
MLSCC 1+ Mt,mz) over the accretion rate of the corresponding binary
star (Mb,sec)- We then fit the accretion ratios with the following
prescription:

M a Awi 3 a 2
§ t,sec =1+ 1.,{ ( small/ Wlde) . + FA ( small> i (18)
b,sec (RRoche/awide) Ayide

where I'; and I"5 are parameters to be fitted and relate to the torque
and the geometrical cross-section, respectively. In equation (18), we
assume the geometrical term to scale with the small binary cross-
section (o¢ a2, and the torque term to scale as in equation (17)
(ox a1/ Rione)- We thus expect that for small semimajor axis the
cross-section contribution to the accretion rate will dominate the
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accretion. Meanwhile, for wide semimajor axes, the torque term will
be more relevant. In addition, we expect that the torque parameter
I, will be proportional to the small binary mass (as in equation 17),
while the geometrical cross-section will depend only on the geometry
of the orbits and not on the mass. However, the efficiency of each
term depends on I'; and 4.

3.3.1 Secondary split accretion ratios

In order to test the parametrization for the accretion rate devia-
tion due to the splitting, we simulate a second set of hierarchi-
cal triples. The aim of this set is to explore different regimes
for the accretion ratio varying the semimajor axis of the small
binary.

We started from the 7s triples of Set 1 (with gy = 1 au) and
we simulated the same #s hierarchical triple but with a semimajor
axis of the small binary of @y, = 0.5 and 1.5 au. We also exploited
the wider stable range of semimajor axes for high-gy;qe hierarchical
triples (Mardling & Aarseth 2001) in order to simulate even wider
small binaries for gyjge = 0.4 (for which we also simulate agy. =
1.8 au) and 0.65 systems (with agy,; = 2 au). The accretion rates of
this simulation set (called Set 2, see Section 2) are plotted in Fig. 2,
and their average A, factors are reported in Fig. 5.

In order to apply the prescription in equation (18), we compute the
ratio between the accretion rate of the small binary (Mt,sec) over
the accretion rate of the secondary star in the associated binary
system (My ). When the repulsing effect of the binary torque
contributes more than the geometrical cross-section to the accretion
rate deviation, we expect this accretion ratio to be less than 1. On the
contrary, when the cross-section dominates, the ratio will be larger
than 1. Fig. 7 shows M, gec/Mp s varying the small binary semimajor
axis.

Widening the inner binary, each gq. data set in Fig. 7 follows
a similar trend: a steep raise for smaller small binary semimajor
axes, followed by lower deviations for larger small binary semi-
major axes. Accretion ratios clearly depend on gyige, Which in
turn depends on the small binary mass. Indeed, for a given small
binary semimajor axis, more massive small binaries systematically
correspond to higher deviations in the accretion rate. Thus, the
extent of the deviation depends on the split star mass. In the
explored semimajor axis range, the accretion ratios are always higher
than unity. Thus, the geometrical cross-section contribution to the
deviation is greater than the torque contribution in each triple we
considered.

In order to study how I'; and I" depend on the small binary mass,
we separately fit the data point of each mass ratio (i.e. the blue,
black, and red points in Fig. 7) with the prescription in equation (18).
We thus obtain for each mass ratio the values of I'; and I' that
best fit our data. These values are plotted in Fig. 8. The parameter
I, scales linearly with the small binary mass My, as expected from
equation (17). Also, I" s depends on the small binary mass, in contrast
with what we expect from a purely geometric cross-section. The
dependence of I'y on M, can be due to a gravitational focusing
effect. Indeed, without gravitational focusing, gas with an impact
parameter higher than agman skips the small binary geometric cross-
section. On the contrary, in the gravitationally focused limit, gas with
an impact parameter higher than agy,) can enter the cross-section of
the small binary. This is because the relative velocity between the
gas and the binary is lower than the escape velocity from it. In this
limit, more massive binaries have a larger effective cross-section, as
noticed in the plot.
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Figure 7. Set 2 deviations in the small binary accretion rate as a function of
the small binary semimajor axis. These simulations are obtained by splitting
the secondary star of the three binaries of Set 1. The dots are the ratios
between the accretion rate of the small binary (M sc.) and the accretion rate
of the secondary star in the associated binary system (Mb,sec). The curves are
obtained by fitting the three parameters of our prescription (equation 18) for
each mass ratio of the wide orbit (0.2, 0.4, and 0.65 for red, black, and blue
curves, respectively). The dotted part of each curve denotes the semimajor
axis range for which the hierarchical triples are unstable.
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Figure 8. Best-fitting I" parameters for our prescription (equation 18) as a
function of the small binary mass. M}, and My are the mass of the inner
binary and of the system, respectively.
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3.3.2 Primary split accretion ratios

We study how the accretion rate varies as a function of the orbital
parameters of the triple when splitting the primary star. Primary and
secondary stars are expected to accrete gas from the disc inner edge
in different ways. On the one hand, the secondary has access to the
gas stored in the disc mainly by pulling streamers directly from the
inner edge. These streamers fill the secondary star Roche lobe (and
to a lesser extent the cavity) with gas, allowing gas to fall on to the
secondary star. On the other hand, the primary star pulls less massive
streamers than the secondary, particularly for low mass ratios. Thus,
the primary provides less gas directly from the disc, resulting in lower
accretion rates. Another viable way for gas to reach the primary star
is by means of the L1 point between the Roche lobes of the two
binary stars. The more gas crosses the L1 point towards the primary,
the higher its accretion rate at the expense of the secondary star. As
said, in hotter discs, the accretion rates of the two stars are more even
also thanks to this gas exchange (Young et al. 2015).

Raising the mass ratio gy;de, these differences level out and the
primary becomes more and more independent from the secondary
in filling its Roche lobe with gas. As a result, the closer gyige 1S to
unity, the more the primary and secondary stars accrete mass in a
similar way. On the contrary, away from gyige = 1, we expect the
primary to be in a gas-poor environment, which prevents it from
efficiently accreting mass. We expect these differences to result in
different differential accretion deviations when splitting the primary
star, rather than the secondary. Indeed, the split of the primary can
either raise the mass that crosses L1 or raise the mass that falls on
to the small binary from the inner edge. Thus, we tested the primary
split configurations in Set 3.

In Set 3, we simulate a set of #p hierarchical triples, based on the
tp simulations of Set 1 (with asy,; = 1 au), varying the small binary
semimajor axis (asman = 0.5, 2 au, see Section 2). Fig. 3 shows the
accretion rates of Set 3 simulations, and Fig. 6 shows their average
A factors.

The greater A factor deviations are observed in the gyige = 0.2
systems (Fig. 6). The deviations are due to an enhanced flow through
the L1 point; indeed, as shown in Fig. 3, the raise in the accretion
rate of the small binary is at the expense of the accretion rate of the
third body. Fig. 6 also shows that wider small binaries more easily
capture mass from the third body Roche lobe, further reducing their
A factor.

Hierarchical triples with gyige = 0.4 and 0.65 show smaller or no
deviations due to the splitting. Indeed, in Fig. 2, their A factors reduce
up to 0.9 times the binary A factor. Thus, for higher mass ratios of
the outer orbit, the small binary is less efficient in stealing mass from
the third body Roche lobe. In addition, and contrary to the gyigze =
0.2 case, wider small binary semimajor axes affect the deviations in
A only modestly, as the impact of the geometrical cross-section is
limited by the availability of mass in the surrounding of the small
binary.

In light of this, the deviation observed in triples obtained by
splitting the primary star cannot be captured by the effects described
in equation (18). In Fig. 9, we show the ratios between the accretion
rate of the small binary over the accretion rate of its single counterpart
in the associated binary system. Only for high gyide, We recover the
trend observed in Fig. 7, as the small binary starts to accrete more
similarly to the secondary star of a binary, for which equation (18)
holds.

It is important to notice that the accretion rates of primaries
and #p triple small binaries are not fully resolved (as discussed in
Appendix A). Thus, the numerical results of this section have to be
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Figure 9. Set 3 deviations in the small binary accretion rate as a function of
the small binary semimajor axis. These simulations are obtained by splitting
the primary star of the three binaries of Set 1. The dots are the ratios between
the accretion rate of the small binary (Mt,pri = Ml,pm + Ml,priZ) and the
accretion rate of the primary star in the associated binary system (Mprﬁ).

treated with caution. These results are still relevant as we report the
relative deviations due to the splitting measured for different choices
of orbital parameters and we never rely on the absolute values that
we measure in our simulations.

4 ACCRETION IN HIERARCHICAL TRIPLE
SYSTEMS

4.1 Deviations of triple differential accretion from the
associated binary system

We have shown that hierarchical triples embedded in accretion
discs have a peculiar way to distribute disc mass between the
stars of the system. The ground state of differential accretion in
hierarchical triples is based on the binary dynamics. Indeed, to a
first approximation, the wide orbit of the hierarchical triple mimics
a binary system and it accretes mass in the same way, favouring the
lighter body of the system. However, at smaller scales, the influence
of the triple system small binary has to be taken into account.
The small binary—gas interaction changes the accretion rates of the
three stars in relative terms (changing the proportion in which mass
distributes among the stars, as shown in Fig. 4). Having a larger
geometrical cross-section, the small binary increases its accretion
rate. This geometrical mechanism competes with the tendency of the
small binary gravitational torque to repel the surrounding gas out
of its Roche lobe. This competition gives the peculiar shape of the
deviations in the accretion rate of the small binary as a function of
its semimajor axis, as shown in Figs 7 and 8.

This mechanism generally shifts the triple system X, factor in
favour of the small binary. However, how much A; deviates from
the associated binary A, factor depends also on the mass ratio of
the triple system wide orbit (qyi¢e). Indeed, lower mass ratios show
higher deviations from the associated binary, both when the small
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binary is lighter and heavier than the third body. Moreover, the triples
obtained by splitting the secondary star of a binary result in higher
deviations, compared to triples obtained by splitting the primary star
(see Section 3.3.2).

4.2 Differential accretion in hierarchical triples

The main consequence of differential accretion in binary systems is a
tendency to equalize system masses. Indeed, as discussed in previous
works (Farris et al. 2014; Kelley et al. 2019; Duffell et al. 2020), with
enough mass at disposal, the higher accretion rate of the secondary
star pushes the mass ratio of the system towards unity.

In this work, we found that a hierarchical triple system in which
the small binary is lighter than the third body raises the wide binary
mass ratio gyige more effectively than its associated binary system.
Indeed, in the parameter space explored, the hierarchical triple X,
factor (defined in equation 11) is higher than the Ay factor of its
associated binary (defined in equation 9).

For a quantitative comparison, the gyige = 0.65 configuration (the
one with the lowest A, among Set 1) has A; &~ 1.3A;,, when splitting
the secondary star of the associated binary. Even if we account only
for the mass equalization due to the triple mechanism (i.e. if we
consider A, = 1), we found that the small binary accretion rate
is 1.3 times higher than the primary one. The binary differential
accretion mechanism alone allows us to obtain such a disequilibrium
in the accretion rates only for gz lower than 0.35 or 0.75 for K19
and D20 parametrizations (respectively), as shown in Fig. 4. For
wider small binary semimajor axes or lower wide orbit mass ratios,
the triple differential accretion mechanism is even more efficient.
In addition, the disequilibrium between the stellar accretion rates in
triples is at play even if gyige & 1, where binary differential accretion
is turned off.

We also remind that binary prescriptions strongly depend on the
circumbinary gas properties and we do not know how they behave in
actual protostellar disc conditions. On the contrary, we showed that
the larger than unity X./A, ratio is due to the increased cross-section of
the small binary, which solely depends on the geometry of the orbits.
Thus, we expect this ratio to be independent of the disc conditions.
This difference is important because Duffell et al. (2020) showed that
binary differential accretion is turned off in low-viscosity regimes,
where they found A &~ 1 independently of the mass ratio. If this result
is confirmed, we expect binary differential accretion to be turned
off for low-viscosity protostellar discs. But, if the larger than unity
M/Ap ratio is preserved (as we expect), the differential accretion in
hierarchical triples constitutes the only viable mechanism to equalize
the stellar masses.

Assuming A, = 1, as in protostellar disc condition independently
of g (Duffell et al. 2020) or as in more viscous discs around high-g
systems, we can explicitly study the evolution of g with time in the
binary and in the hierarchical triple case. Under the approximation of
aconstant accretionrate (e.g. due to an infall that replenishes the outer
part of the disc), we obtain the following differential equation for g:

dg  g+1
diee M) +1

where t,.. = (Mlot/Mlol)t is the time in units of the mass doubling
time of the system, with M and M,y the total system accretion
rate and mass, respectively. Solving equation (19), we obtain the
times needed by a hierarchical triple and by a binary (7, and ty,
respectively) in order to reach a given wide orbit mass ratio gyige
starting from the same initial mass ratios ¢o. Fig. 10 shows t,/t
as a function of the final wide orbit mass ratio gy for three

g) —q), (19)
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Figure 10. Ratio of the times needed in order to reach a certain gyige by a
triple () and by a binary (). Different curves refer to different initial mass
ratios go. Curves are obtained by solving equation (19) with A(gwige) = 1 for
binaries and A(gwige) = 1.3 for triples.

different initial mass ratios go. We assume A(gyige) = 1 for binaries
and A(gwide) = 1.3 for triples, that is the triple A factor we expect
from the A/\;, ratio measured in our simulations, as discussed in the
previous paragraphs. The equalizing time for hierarchical triples (i.e.
the time needed to reach A(qywig¢e) = 1) is nearly an order of magnitude
lower than the binary equalizing time, in particular for high-gyige
systems.

A more subtle difference between the two mechanisms is the final
equilibrium point of the wide orbit mass ratio gyige. Indeed, from
equation (19), we see that the equilibrium point for gyige 1S at Gwigze =
M. Thus, because (i) binary differential accretion prescriptions tend
to unity for increasing gywige and (ii) symmetry reasons suggest that
an equal-mass binary has A, = 1, we expect binaries to stall at a mass
ratio gwige = 1. Conversely, for a triple with a small binary heavier
than the single body, we expect a A, lower than unity due to the raise
in the small binary accretion rate. Thus, hierarchical triple systems
stall at a mass ratio gyiq. Smaller than unity as well. The extent of this
equilibrium shift depends on the specific orbital parameters of the
system, which are responsible for the shift in A;. This work suggests
an equilibrium point for triple systems of gwige & 0.9. Indeed, A/Ap
measured in our triple systems with small binary heavier than the
single star is approximately 0.9. Thus, we expect that around gyige =
1, where A, &~ 1 as well, A, = 0.9.

4.3 Multiplicity signatures in differential accretion

In principle, with perfect knowledge of binary differential accretion
and of its dependence on the binary mass ratio gyiq., the gas viscosity,
and temperature, we could be able to infer from an observed Ay in a
binary system the presence of an unresolved small binary. Indeed, in
case of binary accretion rates not in line with the binary theory, we
could invert the relation proposed in equation (18) in order to obtain
the agman of a possible unresolved small binary. However, up to now,
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binary prescriptions do not take into account dependences other than
qwide-2

In addition, the disc conditions explored in this work (and in
the main works on this topic in the literature) are halfway between
the compact object accretion discs (that are thinner than the aspect
ratio used) and protoplanetary discs (that are orders of magnitude
less viscous), and thus do not represent either case. Moreover, we
limited our investigation to: (i) circular wide and small binary orbits,
(i1) equal-mass small binaries, and (iii) coplanar configurations. This
allowed us to simplify the problem and observe the specific signatures
of the geometrical and torque effects described in this work.

We expect the mechanism proposed in this work to be at play in
more complex configurations as well. However, its efficiency will
be surely affected. This is mainly due to the dependence of both the
accretion rate and the small binary torque on the orbital parameters of
a given multiple system. In particular, the eccentricity and the mutual
inclinations between the orbital planes and the discs are likely to play
a major role since they can induce tilt oscillations and precession,
which would translate into phase-dependent accretion rates along
the orbit. A known example of a system where a highly eccentric
binary shows phase-modulated accretion rates is discussed in Dunhill
et al. (2015), where they show that for a limited amount of time it is
possible for the primary to accrete more mass than the secondary.

Given these limitations, the only remaining case that at the moment
could highlight an unresolved small binary in an accreting binary
system is a system where A < 1 is observed. In that case, no
binary configuration can reproduce this behaviour (except with a
high eccentricity) and the only explanation that can be addressed to
solve the puzzle should be a massive unresolved small binary, whose
geometrical cross-section counterbalances the tendency of binary
differential accretion to favour the secondary single star. However,
in our simulations, even such configurations hardly push under 1
the ratio between the accretion rates, as can be seen in Fig. 3 and
discussed in Section 3.3.2. Although in principle this should be
possible for mass ratios greater than the ones explored in this work,
the parameter space region where significant signatures of a hidden
small binary could appear remains small.

Thus, the goal to exploit the deviation of the observed A, in a
triple system from the A, expected in its associated binary system is
complicated by these additional dependences and at the moment we
cannot disentangle deviations due to different mechanisms, which
change A without the need to invoke a higher multiplicity.

5 CONCLUSIONS

In this work, we presented hydrodynamical simulations of discs in
hierarchical triple systems. We focus on the accretion process from
the circumtriple disc on to the individual stars of the system. In
particular, we studied how the presence of the small binary affects
the accretion rates of the individual stars.

We performed a set of simulations in order to span different hier-
archical triple system configurations using the SPH code PHANTOM.
We proposed a semi-analytical prescription (given by equation 18)
that is able to describe the data we obtained in our simulations.

Our main findings are the following:

(i) Differential accretion in hierarchical triple systems can be
explained by the interplay between two contrasting mechanisms:
(1) the increased geometrical cross-section between gas and small

2 Although in Young & Clarke (2015) a trend related to temperature is
suggested, further studies are needed to constrain an effective parametrization.
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binary, and (2) its angular momentum exchange with it. These two
mechanisms are superimposed on the binary differential accretion
process.

(i1) The small binary torque is too weak to counterbalance the
increased accretion rate of the small binary due to the larger cross-
section, except for very wide small binary semimajor axes (dsman)
that result in unstable hierarchical triples. Thus, in the vast majority
of the stable hierarchical triple parameter space, the small binary
accretes more mass than if it would be a single star of the same mass.
As aresult, if the hierarchical triple small binary is heavier than the
third body, the standard differential accretion scenario (whereby the
secondary accretes more of the mass) is hampered. Reciprocally, if
the small binary is lighter than the third body, the standard differential
accretion scenario is enhanced.

(iii) Hierarchical triple systems with a small binary lighter than the
single star equalize their masses nearly an order of magnitude quicker
than binary systems. Conversely, in triples with a small binary heavier
than the single star, mass equalization is slowed down. In contrast
with binaries, the equilibrium mass ratio for triple systems is lower
than 1.

In conclusion, the mass ratio in accreting hierarchical triple stellar
systems evolves differently compared to binaries. These differences,
during the disc lifetime, are expected to produce characteristic
mass ratio distributions, which could possibly be observed through
ongoing and future surveys. Further observational data will help to
test and further constrain the proposed accretion model for triple
stellar systems. At any rate, the orbital parameters and initial masses
play a crucial role in determining the final stellar mass ratios in
high-order multiple stellar systems.
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APPENDIX A: NUMERICAL TESTS

A1 Accretion rate dependence on accretion prescription and
spatial resolution

The accretion rate on to the stars of each stellar system is the main
observable measured in this work. In the following sections, we
detail the numerical tests we performed to check that the measured
accretion rates are reliable. In the first section, we discuss how the
accretion rates depend on the accretion prescription we used in our
simulations. In the second section, we test if the measured accretion
rates are fully resolved in our numerical simulations.
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Al.1l Accretion prescription

Given that we used sink particles, there is only one possible numerical
choice when setting the simulation: the sink radius Rg,,. SPH
particles inside a sphere of radius 0.8 Ry, are automatically accreted
on to the sink. The other particles inside a sphere of radius Ry are
accreted only if they are both gravitationally bound to the sink and
have a sufficiently low angular momentum (Bate et al. 1995; Price
et al. 2018). In all our simulations, we set all the accretion radii equal
to 0.1 au. This radius is roughly 4 per cent of the smallest Roche lobe
radius around secondary stars in binaries (i.e. the smallest Roche lobe
radius around small binaries in triples).

To test how the choice of sink radii affects stellar accretion, we
ran two additional simulations doubling and halving all sink radii of
our reference simulation (the 52 triple in Set 1). We integrated these
two configurations for 100 outer orbit periods and we compared the
accretion rates with the reference simulation.

Fig. A1 shows the accretion rates and A factors of test simulations,
along with the reference one. We found that deviations from the
reference simulation due to different sink radii are lower than
2 per cent. The deviations due to the splitting we measure in this work
are at least one order of magnitude higher, particularly in triples with
the small binary lighter than the third body (compare Fig. Al with
Fig. 2). Since the accretion rates are not affected by the choice of the
accretion radius, we conclude that our sink particles measure stellar
accretion properly.

Al.2 Spatial resolution

To model accretion on to the stars in a realistic way, we simulate the
entire circumtriple disc. This choice limits our ability to carefully
model the formation and evolution of circumstellar discs. The
simulations presented in this paper barely resolve inner discs in the
cavity of the circumtriple disc. These discs do form within the cavity
but with a limited spatial resolution. Indeed, the spatial resolution
in the immediate surrounding of the stars is about 20 per cent of the
Roche lobe radius (i.e. the spatial scale of the expected circumstellar
discs).

The net flux of mass through the Roche lobe boundary around
each star is the quantity that sets the individual accretion rates. The
formation of discs inside the Roche lobes can introduce a delay during
the disc formation phase. However, the mass that enters a given lobe
will eventually fall on to the star. Indeed, mass cannot accumulate
indefinitely in the Roche lobe. Here, we wish to investigate whether
the numerical resolution is high enough to ensure that the accretion
rates on to the stars are well resolved.

To test the resolution of our simulations, we ran two additional
simulations: We multiplied by 4 and divided by 2 the number of
particles in the 752 reference simulation, obtaining a higher resolution
simulation of 4 million particles and a lower resolution simulation
with 500k particles. We ran the higher resolution simulation for 40
outer orbit periods and the lower resolution simulation for 100 orbits.
Their accretion rates and A factors are shown in Fig. A2.

The simulations show that the accretion rate of secondaries is fully
resolved: The simulations at higher and lower resolution exhibit the
same accretion rates as the reference simulation. We note that the
accretion rate of the primary grows with resolution. This implies
that the circumprimary disc material is not fully resolved. Hence,
we conclude that our results based on secondary splitting and the
resulting accretion rate deviations are not affected by resolution
issues. However, the measured A factors (both in binaries and in
triples) are slightly overestimated, due to the underestimation of
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Figure Al. Accretion rates and A = (M sec1 + My sec2)/ My pri factors mea-
sured in the triple simulations run to test the accretion prescription. In the
upper panel are plotted the accretion rates of the secondary (green) and
primary (blue) star. In the lower panel is plotted the ratio between the accretion
rates. The solid line refers to the reference simulation s2. Different line styles
refer to different sink radii. The secondary accretion rate for the triple system
is the sum of the accretion rates of the small binary stars.

the primary accretion rate. The configuration we tested is the most
affected by this issue, as it is the one with the lower primary accretion
rate. Here, the A factor is overestimated by ~ 8 per cent. It is worth
highlighting that the ratio of A factors constitutes a more reliable
quantity given that we are comparing binary and triple simulations
at the same resolution. However, our results about primary splitting
(Section 3.3.2) have to be dealt with more caution. Our results are
still relevant in the sense that — instead of discussing individual
accretion rates — we report the relative deviations measured for
different choices of orbital parameters.

A2 Integration time

Our simulations in Sets 1, 2, and 3 last 100 outer orbit periods.
As discussed in Section 2, this time span is half a viscous time-
scale at the inner edge of the disc. Thus, by the end of the
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Figure A2. Accretion rates and A = (M sec1 + My sec2)/ My pri factors mea-
sured in the triple simulations run to test the resolution. In the upper panel
are plotted the accretion rates of the secondary (green) and primary (blue)
star. In the lower panel is plotted the ratio between the accretion rates. The
solid line refers to the reference simulation zs2. Dotted and dashed lines refer
to the lower and higher resolution simulations, respectively. The secondary
accretion rate for the triple system is the sum of the accretion rates of the
small binary stars.

simulation, the circumtriple disc has not reached steady state. Given
the number of simulations required to perform the analysis made in
this work, modelling the entire disc viscous evolution is beyond
our computational ability. Moreover, note that the configuration
considered here, where the mass reservoir in the evolving disc is
limited, will not actually settle into a steady state even for longer
times. However, in this work, we are interested in the way in which
mass distributes from the circum-multiple disc over the stellar system
stars. This is well measured by the ratio of the stellar accretion rate.
In all the simulations we run, these ratios show an initial transient
of less than 20 binary orbits — regardless of the multiplicity and
of the orbital parameters of the system, before settling down into
quasi-equilibrium. To further test this, we ran the three gyige = 0.65
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Figure A3. Accretion rates and A = (M sec1 + My sec2)/ My pri Tactors mea-
sured in the triple simulations run to test longer integration times. In the upper
panel are plotted the total accretion rate of the system (red) and the accretion
rate of the secondary (green) and primary (blue) star. In the lower panel is
plotted the ratio between the accretion rates (secondary over primary). The
solid, dashed, and dotted lines refer to the binary (b65), ts triple (zs65), and
tp triple (1p65) simulations, respectively. The secondary (primary) accretion
rate for the ts (tp) triple system is the sum of the accretion rates of the small
binary stars.

simulations in Set 1 for longer integration times. Fig. A3 shows
the accretion rates and the A factors measured in these simulations.
We find that, independently of the total accretion rate, mass divides
between the sinks in the same way (i.e. we measure a constant A
factor) until the gas smoothing length in the surrounding of the small
binary exceeds the small binary semimajor axis. This happens around
250 orbits, and it is a purely numerical effect caused by the loss of
resolution around the small binary. Thus, even if the total accretion
rate will evolve towards the steady state, we expect the accretion
rate ratios to remain constant. This allowed us to reliably measure
the A factors even if our simulations have not reached a steady
state.
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APPENDIX B: SETTING UP HIERARCHICAL
TRIPLE SYSTEMS WITH PHANTOM

The orbital arrangements of observed triple systems tend to be
hierarchical, as different configurations are often unstable and have
shorter lifetimes. A hierarchical triple (hereafter HT) system consists
of a binary (m; and m,) and a distant star (m3) that orbits the centre
of mass of the inner binary. If the third body is sufficiently distant,
an analytical perturbative approach is possible in order to compute
the evolution of the system. In that case, a first approximation of the
inner and the outer orbit is the exact two-body orbit. Indeed, at each
instant, we can neglect the perturbations due to the riplicity of the
system and compute the orbital elements of the elliptical orbits that
the three bodies would follow. These elements are called osculating
elements. The set regarding the inner binary describes the orbit that
the inner bodies would follow if the third body would instantaneously
disappear. The set referring to the third body describes the orbit that
it would follow if the inner binary was reduced to a single body with
the total mass of the binary and in its centre of mass.

In the case of an HT system, we can thus describe the instantaneous
state of the system again with 10 elements: the binary mass ratio g =
my/my, the triple mass ratio Q = ms/(m; + my), the semimajor axis
ratio, the two eccentricities, the two initial anomalies, and the three
Eulerian angles to orient the orbits in respect to each other.

In order to simulate the stellar system configurations discussed
in this work, we implemented in PHANTOM the possibility to set as
initial condition an HT system embedded in a Keplerian circumtriple
disc. Even if this work focused on a coplanar orbit only, PHANTOM is
also able to set a misaligned HT configuration. For future reference,
we briefly describe the way in which HTs are initialized in the code.

The initial position and velocity of the two binary bodies are
computed by means of the Thiele—Innes elements (Binnendijk 1960).
Thiele-Innes elements are computed in terms of the Campbell
elements through the following relations:

P = (coswcos 2 — sinw cosi sin 2,
cos w sin 2 + sinw cos i cos 2,

sinw sini), (B1)
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Q = (—sinwcos 2 — coswcosi sin 2,
— sinw sin £ + cos w cos i cos 2,

coswsini), (B2)
A =cosE —e, (B3)

B=+1—-¢2sinE, (B4)

where w, €2, i, a, and e are the argument of the pericentre, the
argument of the ascending node, the inclination, the semimajor axis,
and the eccentricity of the binary orbit, respectively, and E is the
eccentric anomaly. With equations (B1)—(B4), we can compute the
rectangular coordinates and velocities of a given initial condition as

(x,y,2)=a(AP + BQ), (B5)

(Vy, vy, v;) = —aEGSINEP — /1 —e2cos E Q), (B6)

where E is the time derivative of the eccentric anomaly. The eccentric
anomaly E and its derivative E are computed from the true anomaly
of the orbit.

The HT system initial condition is built by means of the osculating
elements of the outer and of the inner binary orbit. First, the code

builds a binary with the orbital parameters of the outer orbit. Then,
one of the sinks of the outer binary is substituted with an inner binary

of the same mass of the substituted sink. The centre of mass of the
inner binary follows the orbit of the substituted sink. The subroutine
devoted to this task can be called as much times as needed, in order to
build a generic hierarchical system, even with more than three stars.
After the initial setup, the N-body dynamics of the system is solved
as described in section 2.8.5 in Price et al. (2018).

Additional information and technical details can be found in the
online PHANTOM documentation: https://phantomsph.readthedocs.i
o/en/latest/hierarchicalsystems.html

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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