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Abstract

The distortions of absorption line profiles caused by photospheric brightness variations on the surfaces of cool,
main-sequence stars can mimic or overwhelm radial velocity (RV) shifts due to the presence of exoplanets. The
latest generation of precision RV spectrographs aims to detect velocity amplitudes 10 cm s−1, but requires
mitigation of stellar signals. Statistical techniques are being developed to differentiate between Keplerian and
activity-related velocity perturbations. Two important challenges, however, are the interpretability of the stellar
activity component as RV models become more sophisticated, and ensuring the lowest-amplitude Keplerian
signatures are not inadvertently accounted for in flexible models of stellar activity. For the K2V exoplanet host ò
Eridani, we separately used ground-based photometry to constrain Gaussian processes for modeling RVs and
TESS photometry with a light-curve inversion algorithm to reconstruct the stellar surface. From the reconstructions
of TESS photometry, we produced an activity model that reduced the rms scatter in RVs obtained with EXPRES
from 4.72 to 1.98 m s−1. We present a pilot study using the CHARA Array and MIRC-X beam combiner to
directly image the starspots seen in the TESS photometry. With the limited phase coverage, our spot detections are
marginal with current data but a future dedicated observing campaign should allow for imaging, as well as allow
the stellar inclination and orientation with respect to the debris disk to be definitively determined. This work shows
that stellar surface maps obtained with high-cadence, time-series photometric and interferometric data can provide
the constraints needed to accurately reduce RV scatter.

Unified Astronomy Thesaurus concepts: Planet hosting stars (1242); Radial velocity (1332); Starspots (1572)

Supporting material: machine-readable tables

1. Introduction

Radial velocity (RV) surveys for exoplanets have not yet
been able to detect planets with similar masses and radii to
those of the Earth in Earth-like orbits around Sun-like stars.
However, the latest generation of spectrographs are designed to
reduce instrumental error sources with the goal of isolating the
stellar signals that obstruct the detection of low-amplitude
velocity signals. With extreme-precision RV (EPRV) surveys

of solar analogs, features such as starspots on the stellar surface
produce temporal variations in the shapes of line profiles
that add time-correlated variations to the center-of-mass RV
measurements and must be properly accounted for.
A number of phenomena contribute to the absorption line

profile signatures caused by stellar activity that result in RV shifts.
The convective envelope of cool, Sun-like stars is composed of
cells, or granules, in which hot stellar material rises and then falls
as it cools. Localized, strong magnetic fields suppress convection
and manifest as bright regions, including faculae, plages, and
networks, and dark starspots on the stellar surface. As these
features rotate in and out of view, they create rotationally-
modulated absorption line signatures that lead to periodic RV
signatures. Faculae, which contribute RV amplitudes <1m s−1,

The Astronomical Journal, 163:19 (19pp), 2022 January https://doi.org/10.3847/1538-3881/ac3235
© 2021. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0002-3380-3307
https://orcid.org/0000-0002-3380-3307
https://orcid.org/0000-0002-3380-3307
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-0529-1161
https://orcid.org/0000-0003-0529-1161
https://orcid.org/0000-0003-0529-1161
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0001-6017-8773
https://orcid.org/0000-0001-6017-8773
https://orcid.org/0000-0001-6017-8773
https://orcid.org/0000-0002-0493-4674
https://orcid.org/0000-0002-0493-4674
https://orcid.org/0000-0002-0493-4674
https://orcid.org/0000-0002-2208-6541
https://orcid.org/0000-0002-2208-6541
https://orcid.org/0000-0002-2208-6541
https://orcid.org/0000-0001-9764-2357
https://orcid.org/0000-0001-9764-2357
https://orcid.org/0000-0001-9764-2357
https://orcid.org/0000-0002-3003-3183
https://orcid.org/0000-0002-3003-3183
https://orcid.org/0000-0002-3003-3183
https://orcid.org/0000-0001-9745-5834
https://orcid.org/0000-0001-9745-5834
https://orcid.org/0000-0001-9745-5834
https://orcid.org/0000-0001-5415-9189
https://orcid.org/0000-0001-5415-9189
https://orcid.org/0000-0001-5415-9189
https://orcid.org/0000-0001-5980-0246
https://orcid.org/0000-0001-5980-0246
https://orcid.org/0000-0001-5980-0246
https://orcid.org/0000-0002-2361-5812
https://orcid.org/0000-0002-2361-5812
https://orcid.org/0000-0002-2361-5812
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0001-6158-1708
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0002-1050-3539
https://orcid.org/0000-0002-1050-3539
https://orcid.org/0000-0002-1050-3539
mailto:rachael.roettenbacher@yale.edu
http://astrothesaurus.org/uat/1242
http://astrothesaurus.org/uat/1332
http://astrothesaurus.org/uat/1572
https://doi.org/10.3847/1538-3881/ac3235
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac3235&domain=pdf&date_stamp=2021-12-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac3235&domain=pdf&date_stamp=2021-12-16
http://creativecommons.org/licenses/by/4.0/


are bright with respect to the photosphere and are most apparent
when near the limb of the stellar disk (Haywood et al. 2016).
Plages and networks are also bright with respect to the
photosphere, but have a more significant RV amplitude
contribution on the order of a few meters per second, as seen
on the Sun (Milbourne et al. 2019). Starspots are dark features
against the photosphere and can cause line profile distortions that
contribute a wide range of RV amplitudes—from less than
1 m s−1 to several kilometers per second for large starspots
(Roettenbacher et al. 2015; Haywood et al. 2016). Even for
chromospherically quiet stars, these signatures can overwhelm the
∼10 cm s−1 RV signature of an Earth analog in the habita-
ble zone.

Ongoing efforts to characterize and isolate stellar activity
signals include modeling stellar activity with flexible correlated
noise models (e.g., Gaussian processes (GPs); Haywood et al.
2014; Gilbertson et al. 2020); statistically identifying stellar
activity (e.g., PCA or F-statistic; Davis et al. 2017; Holzer et al.
2021); estimating RV variations from a spot model applied to
photometry (Aigrain et al. 2012; Dumusque et al. 2014);
extracting signatures of stellar activity from the cross-correlation
function used to measure RVs (Collier Cameron et al. 2021); and
using Doppler imaging of young stars to filter stellar activity
from line profiles (Heitzmann et al. 2021). Several additional or
related methods are compared by Dumusque et al. (2017) and L.
L. Zhao et al. (2021, submitted). These methods are based on
photometric and/or spectroscopic data and aim to account for
RV scatter due to photospheric activity.

There are a number of ways to reconstruct the stellar surfaces
to resolve some of the surface structure contributing to RV
signatures. Photometric light-curve inversion uses one or more
light curves of a star showing rotational variability to reconstruct
the stellar surface (Harmon & Crews 2000; Savanov &
Strassmeier 2008; Luo et al. 2019). This method makes no
assumptions on the spot size, shape, or number, and has been
shown to be reliable as compared to simulations and interfero-
metric images (Harmon & Crews 2000; Roettenbacher et al.
2017). While the method gives starspot longitudes, degeneracies
only allow for the determination of relative starspot latitudes
when multiple features are present, and degeneracies will remain
between the size of a starspot and its absolute latitude (e.g.,
Harmon & Crews 2000). Doppler imaging is a method to
reconstruct relatively large surface spots using high-resolution
spectra that can better determine starspot latitude (e.g., Vogt
et al. 1987; Rice et al. 1989), but a degeneracy between the
hemispheres remains. Doppler imaging requires a rotational
velocity of∼10 km s−1, restricting the stars to which method can
be applied (example applications of the method include those in
Korhonen et al. 2021 and Şenavcı et al. 2021). Interferometric
aperture synthesis imaging is a third method that can be used to
reconstruct the stellar surface. Because interferometric imaging
allows for stars and their spots to be imaged as they appear on
the sky, degeneracies in the starspot latitudes of other techniques
are resolved. With observations spanning a stellar rotation
period, the stellar inclination and the star’s orientation on the sky
—the position angle of the axis of rotation—can be measured.
Resolving the surfaces of stars is currently only possible for
bright stars that have angular diameters ∼2 mas or more and
relatively large starspots (e.g., Roettenbacher et al. 2016, 2017;
Martinez et al. 2021; Parks et al. 2021).

Knowing the brightness inhomogeneities, such as starspots,
present at the time of RV observations can provide a way to

separate their impact on line profiles and thus on RV signatures
from those of the planets. This has provided motivation for
solar telescopes that measure RVs for disk-integrated spectra of
the Sun (Collier Cameron et al. 2021; Dumusque et al. 2021).
Here, we use a similar approach to analyze the star ò Eridani
(HD 22049, TIC 118572803). The closest K2 dwarf to the Sun,
ò Eri is at a distance of 3.220± 0.004 pc (Gaia Collaboration
et al. 2021). It is a bright (V= 3.73, H= 1.75; Ducati 2002),
main-sequence star with a radius of 0.74± 0.01 Re derived
from interferometry (di Folco et al. 2007; Baines &
Armstrong 2012). It is known to be active with variable
starspots and detected global activity cycles (Metcalfe et al.
2013). The star has a rotation period of approximately 11 days,
detected with a variety of techniques, including MOST
photometry and RV variations (Giguere et al. 2016), modula-
tion of Ca II H&K measurements (Hempelmann et al. 2016),
and photometry (Lanza et al. 2014). ò Eri is also a known
exoplanet host star (Hatzes et al. 2000; Mawet et al. 2019) with
an RV-detected 0.8MJup planet in a 7.4 yr orbit.
Here, we utilize stellar surface images to isolate the

associated RV signatures in EPRV data. In Section 2, we
present the spectroscopic, interferometric, and photometric
observations used in this work. Spectroscopic observations
include an extensive, multi-decade baseline archival data set, as
well as new, high-precision RV measurements. In Section 3,
we detail our GP analysis, infer attributes of the stellar activity,
and confirm orbital parameters of the known planetary
companion. In Section 4, we reconstruct the stellar surface
with a light-curve inversion algorithm and model interfero-
metric data obtained on two nights. In Section 5, the surface
reconstructed from a light curve is combined with a disk model
that simulates the stellar spectrum. We discuss the simulated
stellar spectra and show how they successfully account for a
significant portion of scatter in contemporaneous RV measure-
ments. The model’s efficacy, additional considerations, and
future work are discussed in Section 6.

2. Observations

ò Eri has been extensively observed owing to its brightness
and proximity to the Sun. In this section, we describe the
observations that were used for this work, including brief
descriptions of the archival data.

2.1. EXPRES Spectroscopy

High-resolution spectra of ò Eri were acquired with the
EXtreme PREcision Spectrograph (EXPRES; Jurgenson et al.
2016) commissioned at the 4.3 m Lowell Discovery Telescope
(LDT; Levine et al. 2012). EXPRES is an optical
spectrograph optimized for wavelengths 380–780 nm, reaching
a typical resolving power of R∼ 137,500. Additional specifica-
tions can be found in works detailing the RV pipeline,
instrument performance verification, and first science results
(Blackman et al. 2020; Brewer et al. 2020; Petersburg et al.
2020). EXPRES attains ∼30 cm s−1 RV precision for spectra
of slowly-rotating, main-sequence FGK-stars when the signal-
to-noise ratio reaches 250 at 550 nm. While the lowest rms RV
scatter is observed around chromospherically inactive stars, we
observed ò Eri as an interesting case study for characterizing
and mitigating RV jitter in a moderately active star.
We obtained 164 RVs of ò Eri on 39 distinct nights between

2019 August 15 and 2020 November 13 (see Table 1). Besides
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one seasonal gap, ò Eri was observed every 3–10 nights. Stellar
activity dominates the RVs, yielding an rms scatter of 6.6 m s−1

with an average single-measurement uncertainty of 35 cm s−1.

2.2. Archival Spectroscopy

Mawet et al. (2019) conducted an extensive analysis of
archival ò Eri RVs spanning 30 yr, coupled with direct imaging
of the system. They placed tight constraints on the orbit of the
7 yr planet first identified by Hatzes et al. (2000). The study
made use of over 450 RVs obtained with the following
instruments (their respective observatories are listed immedi-
ately after them): High Resolution Echelle Spectrometer/Keck,
Levy Automated Planet Finder/Lick, Hamilton/Lick, Coudé
Echelle/La Silla, and High Accuracy Radial Velocity Planet
Searcher/La Silla. We refer the reader to Mawet et al. (2019)
and Zechmeister et al. (2013) for details on these RVs. Our
analysis of the archival data additionally includes CHIRON
RVs acquired in 2014 (Giguere et al. 2016).

2.3. TESS Photometry

The Transiting Exoplanet Survey Satellite (TESS; Ricker et al.
2014) observed ò Eri during Sector 31 (2020 October 21 through
2020 November 19). The 2 minute cadence simple aperture
photometry (SAP) light curves were obtained through the Barbara
A. Mikulski Archive for Space Telescopes (MAST).

To account for scattered light and other systematic issues, we
typically remove co-trending basis vectors (CBVs) from SAP
light curves (following the procedure used in Roettenbacher &
Vida 2018; Cabot et al. 2021). However, we did not remove any
CBVs from the Sector 31 light curve, as the CBVs provided
through MAST for Sector 31 (with a file creation date of 2020
December 12) add trends to the data or increase the noise. The
shape of the SAP light curve is consistent with the nearly
contemporaneous, ground-based light curve described in
Section 2.4, suggesting stellar variability is likely the dominant
signature. We removed data flagged as bad by the TESS pipeline
(a nonzero quality flag). There were no usable data provided for
the SAP light curve between JD 2,459,155.8948312 and JD
2,459,158.8670810 due to scattered light from the Moon and the
transition between orbits of the satellite. ò Eri was observed with
Camera 1, which was strongly impacted by scattered light at the
time of these removed data points according to the Sector 31 Data
Release Notes (DR47).18 We removed a total of 2376
observations from the original 18,314 observations.

2.4. Automated Photoelectric Telescope Photometry

ò Eri was observed with two Automatic Photoelectric
Telescopes (APTs) at Fairborn Observatory (Henry 1999). Six
hundred observations were obtained with the T8 (0.8 m)
telescope from 2013 October 11 through 2020 February 20
and 64 observations on the T4 (0.75m) telescope from 2020
October 30 through 2020 November 30. Differential photometric
observations were obtained in the Strömgren b and y bandpasses,
but are presented as a combined (b+ y)/2 bandpass. The stars
HD 22243 and HD 23281 were used as comparison stars to
ensure the variable signature was that of ò Eri.
We removed the long-term trends in both of these data sets.

To do so, we smoothed the data with a Gaussian kernel with an
FWHM of 50 days and removed that signature to leave only the
signature of the starspots that were rotating in and out of view.
These data are included in Tables 2 and 3.

2.5. MIRC-X Interferometry

Two sets of interferometric observations were obtained on
2020 November 2 (JD 2,459,155.77) and 2020 November 5 (JD
2,459,158.87) at the Center for High Angular Resolution
Astronomy (CHARA) Array (ten Brummelaar et al. 2005)
using the Michigan InfraRed Combiner-eXeter (MIRC-X;
Anugu et al. 2020). The CHARA Array consists of six 1 m
telescopes in a Y-shaped array with nonredundant baselines (B)
extending from 34 to 330m (ten Brummelaar et al. 2005). The
snapshot observations were obtained in the H band (spanning
1.5–1.8 μm; λ/2B≈ 0.5 mas) in the grism mode (R∼ 190). The
observations of ò Eri were followed by those of the calibration
star, HD 26912 (uniform disk angular diameter measured in H
band with no limb darkening, θUD,H= 0.285± 0.026 mas;
Chelli et al. 2016).

Table 1
EXPRES RVs

Reduced Julian Date v σv
(RJD = JD – 2,400,000.0) (m s−1) (m s−1)

58,710.983924 −9.762 0.482
58,710.985348 −10.127 0.466
58,710.986526 −9.149 0.692
58,716.996130 −14.496 0.387
58,716.997549 −10.840 0.380
L L L

(This table is available in its entirety in machine-readable form.)

Table 2
Strömgren (b + y)/2 Differential Photometric Data of ò Eri with the APT T8

Modified Julian Date (b + y)/2 Differential Trend Removed
(MJD = JD – 2,400,000.5) Magnitude

56,576.813 −1.98170 −1.97666
56,576.901 −1.98095 −1.97666
56,577.815 −1.98250 −1.97661
56,584.791 −1.97605 −1.97630
56,584.875 −1.97405 −1.97629
L L L

(This table is available in its entirety in machine-readable form.)

Table 3
Strömgren (b + y)/2 Differential Photometric Data of ò Eri with the APT T4

Modified Julian Date (b + y)/2 Differential Trend Removed
(MJD = JD – 2,400,000.5) Magnitude

59,152.758 −1.96490 −1.96735
59,152.820 −1.96360 −1.96735
59,152.844 −1.96520 −1.96735
59,152.878 −1.96450 −1.96735
59,152.941 −1.96405 −1.96735
L L L

(This table is available in its entirety in machine-readable form.)

18 https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_31_
drn47_v02.pdf

3

The Astronomical Journal, 163:19 (19pp), 2022 January Roettenbacher et al.

https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_31_drn47_v02.pdf
https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_31_drn47_v02.pdf


We reduced the interferometric observations with the
standard MIRC-X reduction pipeline (version 1.3.5)19 with
the default reduction parameters, and we set the number of
coherent co-adds (ncoh) to 10, the flux threshold to 5, and the
signal-to-noise threshold to 3. We calibrated the data with a
modified version of the calibration software for the previous
Michigan InfraRed Combiner (Monnier et al. 2012), which
allowed for the removal of bad data that the automated pipeline
would not properly flag.

3. GP Analysis

GPs have become a frequently-used tool in analyses of RV
time series since the case studies by Haywood et al. (2014) and
Rajpaul et al. (2015). Specifically, they are often used as a
flexible model of correlated structure attributed to stellar
activity. GPs are advantageous because of their analytically
tractable likelihood function, and simple parameterization
through their covariance function (further details surrounding
GPs may be found in Rasmussen & Williams 2006).

We recently applied GPs to high-precision EXPRES RVs of
the bright, Sun-like star HD 101501 and demonstrated that the
combination of high-amplitude stellar activity and sparse
observing cadence inhibits the detection of low-mass planets
(Cabot et al. 2021). We showed that high-cadence RVs
drastically improve the detectable parameter space for planets
around active stars, and that simultaneous photometry provides
important constraints on stellar activity that are otherwise
difficult to infer from RVs alone. We used the same framework
in the following analysis. We opted to use the celerite
quasiperiodic covariance kernel (Foreman-Mackey et al. 2017)
with hyperparameters {B, C, L, and PGP}, corresponding to the
amplitude of the covariance, the weighting of the sinusoidal
term, the decay parameter, and the recurrence timescale,
respectively. The covariance matrix was constructed for pairs
of timestamps (ti, tj) and has the form

⎡
⎣⎢

⎤
⎦⎥

∣ ∣
( ) ( )∣ ∣ p

=
+

-
+ +- -K

B

C
e

t t

P
C

2
cos

2
1 , 1ij

t t L i j

GP

i j

where all the hyperparameters are positive (Foreman-Mackey
et al. 2017). celerite covariance matrices may be inverted
with reduced complexity, which makes their GPs appropriate
for the extensive RV data set considered here. The kernel is
markedly faster than the commonly-used quasiperiodic kernel
(e.g., Haywood et al. 2014), which may be implemented with
the george package (Ambikasaran et al. 2015). In contrast to
the george quasiperiodic kernel, the celerite quasiper-
iodic kernel is not mean-square differentiable (Rasmussen &
Williams 2006), and its covariance decreases faster for a fixed
decay timescale parameter (denoted L for the celerite
kernel, and λe for the george kernel). Our fitting process
made use of the nested sampler PyMultinest (Feroz &
Hobson 2008; Feroz et al. 2009; Buchner et al. 2014; Feroz
et al. 2019). The sampling parameters included 4000 live points
(except for our GP and 2-Planets model, which used 6000 live
points), a sampling efficiency of 0.6, and an evidence tolerance
of 0.5. For each model, the sampler was run three times in order
to obtain a median and standard deviation on the log-evidence

ln . We also confirmed that the inferred parameters are
consistent across the three runs (within 1σ uncertainties).
We note that Mawet et al. (2019) excluded a GP from their

model after showing that it is statistically disfavored by the
Bayesian information criterion, and that it does not significantly
impact the derived parameters. Our study focused on
characterizing stellar activity, as well as on searching for
Keplerian signals that have amplitude less than that of the
stellar activity signal. In particular, we were interested in the
effect of rotationally-modulated signals from starspots, which
can be spatially identified with a light-curve inversion
algorithm (see Section 4.1). Therefore, we retained a
quasiperiodic GP in our model.

3.1. Photometry Preconditioning

The eight-year data set of ground-based APT photometry,
described in Section 2.4 and shown in Figure 1, was used to
obtain posterior distributions on the GP hyperparameters.
Broad, log-uniform ( ) or uniform ( ) priors were assigned
to the GP hyperparameters B, L, PGP, and C. The fit involved a
jitter term s added in quadrature to all uncertainties, as well as a
global offset γ. The jitter and offset terms were given a broad
 and broad  prior, respectively. The TESS photometry did
not span enough rotations to constrain the GP parameters, and
was not used in this analysis. Posterior samples are shown in
Appendix A, along with distribution medians and 16% to 84%
confidence intervals. The periodic timescale PGP is very well
constrained at 11.4± 0.2 days. The decay timescale L is found
to be -

+40 10
20 days. The constraints on these hyperparameters are

based on the physical process of spots and faculae evolving on
the rotating stellar surface. The parameters PGP and L
approximately correspond to the stellar rotation period at the
typical latitude of spots and the typical spot lifetime,
respectively. While not imposed explicitly as a prior, the
results indicate the decay timescale is longer than the periodic
timescale.
There is no accurate, analytical model for the influence of

stellar activity on RV measurements; however, RV studies
searching for exoplanets have successfully used GPs regressed

Figure 1. Ground-based APT light curve of ò Eri. Top: Differential (b + y)/2
photometry (in magnitudes) from the T8 (black circles) and T4 (gray diamonds,
latest data set) telescopes. The long-term trends are shown in red for the T8
data and in blue for the T4 data. Bottom: The same photometry as above, but
with the long-term trends removed. The signature that remains is assumed to be
rotational variation and not overall brightening or dimming trends.

19 https://gitlab.chara.gsu.edu/lebouquj/mircx_pipeline
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to the RV measurements (Haywood et al. 2014) to model the
activity component. Since RVs are usually sparser than
photometry, it is useful to first regress a GP to photometry
and determine the best-fit hyperparameters (as we have done
above), and then regress another GP to the RV measurements
where most of the hyperparameters are fixed to the photometry-
based best-fit values (Haywood et al. 2014). We adopted the
same strategy of Haywood et al. (2014) in our RV analysis by
fixing three GP hyperparameters to their maximum a posteriori
(MAP) values from the photometry fit: = -Clog 6.7, L= 36.5
days, and PGP= 11.4 days. These fixed hyperparameters are
listed in Table 4 for the “preconditioned” models. The
amplitude hyperparameter B was left free, since the photometry
and RVs naturally concern different units. Kosiarek &
Crossfield (2020) demonstrated that the best-fit hyperpara-
meters for quasiperiodic GPs are similar when regressed
separately to contemporaneous RVs and photometry of the
Sun. While this result supports the notion of preconditioning
with photometry, a variety of factors such as spot distributions,
instrument systematics, or non-contemporaneous time series
could plausibly result in different best-fit hyperparameters. To
check the efficacy of preconditioning GP hyperparameters on
the photometry fit, we explored a GP and 1-Planet model that
left all GP hyperparameters free (Table 4, first column). The
orbital parameters are largely unaffected. Interestingly, the
inferred periodic timescale PGP= 11.8± 0.4 days is very close
to the photometry preconditioning best-fit value (PGP= 11.4
days), demonstrating a strong periodic component in the RV
data set arising from stellar rotation, and that the constraint
proposed by Kosiarek & Crossfield (2020) is unnecessary in
our case. The decay timescale = -

+L 21 5
9 days is roughly half of

the best-fit GP photometry value (L= 36.5 days), allowing the

GP to more rapidly evolve between subsequent stellar
rotations; however, the two estimates overlap at their 1σ upper
and lower limits.

3.2. RV Analysis

We proceeded to model over 30 yr of RVs, with a focus on
characterizing stellar activity, obtaining tight constraints on the
orbit of the known planet ò Eri b, and searching for additional
planets. Mawet et al. (2019) showed that secular acceleration of ò
Eri has negligible impact on derived parameters, and eventually
excluded it from their model. Additionally, they partitioned the
Hamilton/Lick RVs (Fischer et al. 2014) into four distinct data
sets on account of instrument upgrades. We repeated these
decisions in our analysis. In total, we jointly analyzed 11
different RV data sets, which include distinct time series for each
Lick epoch and the two cameras used in conjunction with Coudé
Echelle (see Figure 2). Therefore, our entire RV model consists
of the following: a GP activity component, which contributes
one free hyperparameter B corresponding to the covariance
amplitude; a systemic velocity offset γk and jitter term sk added
in quadrature with each data point’s uncertainty, for each RV
data set kä {1, 2, 3...11}; and five orbital elements {Ks, f0, P, ω,
and e} for each Keplerian component, corresponding to the
semi-amplitude, the phase of the first epoch, the orbital period,
the longitude of the periastron, and the eccentricity, respectively.
The prior on B is a log-uniform probability density function
distribution ranging from 0.1 to 2500, or ( ) 0.1, 2500
(m s−1)2. The priors on all γk and sk are ( )- 30, 30 m s−1

and ( ) 0.01, 20 m s−1, respectively. The semi-amplitude Ks,b

prior is ( ) 0.1, 20 m s−1, and the orbital period Pb prior is
( ) 2, 10,000 days.

Table 4
GP Analysis Results

Parameter Units GP and 1-Planet GP and 1-Planet GP and 2-Planets
(Free) (Preconditioned) (Preconditioned)

B (m s−1)2 -
+59 8

17 (54) -
+69 8

11 (66) -
+70 8

17 (60)
Cln L −11 ± 7 (−14) −6.7 L −6.7 L

L m s−1
-
+21 5

9 (16) 36.5 L 36.5 L
PGP days 11.8 ± 0.4 (11.8) 11.4 L 11.4 L
Ks,b m s−1

-
+10 2

1 (10) -
+10 2

1 (9) -
+10 3

1 (11)
f0,b rad -

+0.8 0.3
0.4 (0.9) 0.8 ± 0.3 (0.8) -

+0.8 0.3
0.5 (0.9)

Pb days 2650 ± 50 (2670) 2650 ± 50 (2670) 2650 ± 60 (2670)
ωb rad 3 ± 2 (2) 3 ± 2 (1) 3 ± 2 (6)
eb L -

+0.01 0.01
0.06 (0.01) -

+0.01 0.01
0.05 (0.01) -

+0.01 0.01
0.06 (0.01)

Ks,c m s−1 L L L L -
+0.1 0.1

0.7 (1.6)
f0,c rad L L L L 3 ± 2 (4)
Pc days L L L L -

+80 80
700 (10)

ωc rad L L L L 3 ± 2 (4)
ec L L L L L -

+0.03 0.03
0.27 (0.01)

ln L −3289.24 ± 0.02 ... −3287.76 ± 0.10 ... −3287.12 ± 0.13 ...
ln MAP L −3227.4 ... −3231.5 ... −3220.8 ...

Note. Results of our celerite GP analysis on the full RV data set. The three models correspond to GP and 1-Planet in which all GP hyperparameters were left free;
GP and 1-Planet where three GP hyperparameters were fixed to their MAP values from the light-curve analysis; and GP and 2-Planets, where again three GP
hyperparameters were fixed. The columns contain the median of the marginalized distribution of each parameter of interest, and the uncertainties correspond to the
16th and 84th percentiles. Values in parentheses “()” denote the MAP values. The bottom rows contain the log-evidences returned by the nested sampler and the log-
likelihood of the MAP vector. The value and uncertainty of each ln represent the median and standard deviation of three separate sampler runs, respectively. Jitter
and offset parameters for each time series are omitted from the table. Note that for the 2-Planets model, a significant number of samples involve the sampler effectively
swapping between planet b and planet c. Rather than enforcing a prior to maintain ordering between the planets, we simply filtered samples for the statistics reported
above for this model. Orbital parameters correspond to samples with Pc < 2000 days.
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The fit results for the parameters of interest are summarized
in the second column of Table 4. Our fitted orbital parameters
for the 7 yr planet agree with those of Mawet et al. (2019)
within 1σ uncertainties. The fitted RV curve is shown in
Figure 2, where 1σ and 2σ confidence regions are derived
analytically from the GP posterior predictive distribution, with
the hyperparameters fixed at the MAP values. We confirm that
the orbit is consistent with a circular one (Mawet et al. 2019).
We fit an additional model of two planets with preconditioning
of GP hyperparameters (Table 4, third column). We fixed the
GP hyperparameters L, PGP, and Clog to photometry-derived
values in order to reduce the fit dimensionality, and adopted the
same priors on the second Keplerian parameters as used for the
first Keplerian component. The Bayesian evidence prefers the
two-planet model marginally, but insufficiently to justify the
additional Keplerian parameters. The second planet’s semi-
amplitude is consistent with zero.

In Section 5, we more intensively study the activity-induced
signal in the recent EXPRES RVs. The MAP orbital solution in
the one-planet, preconditioned model (Table 4, second column)
serves as the RV baseline.

4. Photospheric Brightness Variations

Here, we model the spotted stellar surface of ò Eri with two
different techniques: light-curve inversion of TESS photometry
and spot modeling with interferometry from the CHARA Array
using the MIRC-X beam combiner. Both techniques assume
the star is spherical, as distortions are not expected for this star
with = v isin 2.93 0.5 km s−1 (Giguere et al. 2016).

4.1. Light-curve Inversion Reconstructions

While ground-based photometry (Section 2.4) is available
for ò Eri, we focus here only on the 2 minute cadence TESS
light curve, which has significant overlap with both the
EXPRES observations and our two MIRC-X observations.

The Sector 31 TESS light curve encompasses just over
two rotations of ò Eri based on our Prot= 11.4 days. At the gap in
data between the two orbits that make up Sector 31, we split the
data into two rotation periods (2,459,144.5196172–2,459,
155.8934423 and 2,459,158.8670810–2,459,169.9489975). The
observations were averaged in 100 equally sized bins in phase
across each of the two rotation periods. We reconstructed each
rotation separately with an algorithm Light-curve Inversion (LI;
Harmon & Crews 2000). LI makes no a priori assumptions of the
starspot shape, number, or size and uses a modified Tikonhov
regularizer to reconstruct the stellar surface (for more details on LI
see Harmon & Crews 2000; Roettenbacher et al. 2011, 2013). We
provided the algorithm input parameters of effective temperature
Teff= 5100 K (Giguere et al. 2016), starspot temperature
Tspot= 4100 K (based on Berdyugina 2005), quadratic limb-
darkening coefficients a= 0.4258 and b= 0.1936 (Claret 2018),
and stellar inclination i= 70° (Giguere et al. 2016), where
equator-on viewing corresponds to i= 90°. We estimated the
spot-to-photosphere brightness ratio by integrating the radiation of
blackbodies with the temperatures of the starspot and the
photosphere over the spectral response function of the TESS
bandpass (as in Roettenbacher et al. 2013). For Tspot= 4100 K
and Teff= 5100 K, the brightness ratio is 0.40, i.e., the spot has
40% of the brightness of the photosphere. LI finds the optimum
reconstruction that simultaneously fits the prescribed spot-to-
photosphere brightness ratio and the prescribed rms difference
between the observed and model light curves. We required the
rms difference for these observations to be 0.0005 (a value
comparable to that used for applying LI to a Kepler light curve;
Roettenbacher et al. 2016). Because of the small amplitude of the
TESS light curve, this rms allows for the systematic deviations
between the observed and reconstructed light curves shown in
Figure 3. Reducing the rms value to improve the fit resulted in
surfaces with features that are characteristic of overfitting (e.g.,
elongated dark features that are not consistent with structures
analogous to starspots; Harmon & Crews 2000). The light curve
of ò Eri evolves on a timescale shorter than the stellar rotation

Figure 2. Best-fit GP and 1-Planet model that was fit to the combination of archival ò Eri RVs with new EXPRES RVs (dark blue scatter points). The archival data set
is identical to that analyzed by Mawet et al. (2019), with the addition of CHIRON RVs (Giguere et al. 2016). For clarity, the MAP offset values (γk) have been
subtracted from each RV data set. A zoomed-in panel of the EXPRES RVs is shown on the right. The GP mean (red line) predominantly tracks the 7 yr planetary
signal (black line), with deviations owing to stellar activity. The quasiperiodic activity signal is more clearly seen in the zoomed-in panel. The period of oscillations is
usually close to the periodic timescale hyperparameter, which was fixed to the 11.4 day stellar rotation period. By choosing a quasiperiodic kernel, the GP can
accommodate small variations in period and amplitude, as well as gradual changes in the activity signal’s phase. The characteristic timescale for these variations is set
by the parameter L. The GP 1σ and 2σ confidence intervals are depicted as lightly shaded regions around the GP mean. CES+LC and CES+VLC correspond to data
obtained with the Coudé Echelle Spectrograph with the Long Camera and Very Long Camera, respectively. Lick data are color-coded by their corresponding upgrade
epoch.
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period, so we emphasize that LI assumes that the light curve does
not evolve in the light curve being inverted.

In Figure 3, we present the two LI-reconstructed surfaces
from Sector 31 at the time of the MIRC-X observations. Each
of the two surface maps shown in Figure 3 features one
prominent starspot. The star rotates 98° from left to right
between the two MIRC-X observations, so the spot seen on the
left surface map is the same as the spot near the right limb in
the right surface map. We also present Figure 4, which shows
pseudo-Mercator projections of the entire stellar rotation from
each portion of the TESS light curve. In this presentation, JD
2,459,144.5196172 is considered phase 0.0, which corresponds
to the longitude of 90° as the center of the star, as seen by the

observer. As time increases, the longitude at the center of the
star decreases because the star is assumed to rotate counter-
clockwise as seen from above the visible pole, while the stellar
longitude also increases in the counterclockwise direction. A
second starspot is visible in both reconstructions.

4.2. Interferometric Models of Starspots

For the two sets of interferometric data, we individually fit a
stellar surface to each one. The limb-darkening coefficient, the
starspot location, and the starspot size were fit separately to the
data, as described below.

Figure 3. Top: Binned TESS light curve (blue solid line) and LI-reconstructed light curve (red dashed line) of ò Eri. The binned light curve is normalized to the
maximum value for each rotation. Two stellar rotations were reconstructed using LI with the gap in TESS data separating the rotations. The vertical black dashed lines
indicate the times of the interferometric MIRC-X observations discussed in Section 4.2. Bottom: LI-reconstructed surfaces of the binned TESS light curve. The visible
pole is marked with a white line and the surface rotates counterclockwise around this pole. The surface temperature ranges from a spot temperature of Tspot = 4100 K
to a photospheric temperature of Tphot = 5100 K. The surfaces are shown at the times of the MIRC-X observations.

Figure 4. Left: LI-reconstructed pseudo-Mercator surface of ò Eri for the first rotation observed by TESS (ending before TJD 2,459,157). At phase 0.0, as viewed by
TESS, the center of the star is at longitude 90°. As time increases, the longitude of the center of the star decreases. Right: LI-reconstructed pseudo-Mercator surface of
ò Eri for the second rotation observed by TESS (starting after TJD 2,459,157).
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For limb darkening, we assumed power-law limb darkening,
which is defined as

( ) ( )m m= aI I , 20

where μ is the cosine of the angle between the observer and the
normal to the stellar surface, I is the intensity, I0 is the intensity
at the center of the stellar surface, and α is the limb-darkening
coefficient.

For both sets of data, the starspot is defined to have a
brightness of 61% of that of the photosphere. This value was
estimated based on the ratio between the estimated spot and
photospheric temperatures in the H band, the bandpass in
which our MIRC-X observations were obtained. The difference
between the spot and photospheric temperatures is the same as
was used with LI and was estimated based on Berdyu-
gina (2005).

To construct a model of the star, we assumed the H-band,
limb-darkened angular diameter measured by Baines &
Armstrong (2012), θLD= 2.153 mas. While Baines & Arm-
strong (2012) used a linear limb-darkening law (Milne 1921)
and a model limb-darkening coefficient from Claret et al.
(1995), we used a power-law limb-darkening law, as described
above, which was shown to be an appropriate model for
interferometric observations by Lacour et al. (2008) and
described by Hestroffer (1997). To determine the best value
of α for limb darkening, we fit a surface without spots to the
data. We selected α with the fit that had the lowest reduced χ2

value for the combination of the visibilities, closure phases, and
triple amplitudes with the visibilities being weighted 10 times
more strongly than the other parameters to allow the closure
phases and triple amplitudes to contribute to but not dominate
the fit. The visibility measurements were favored because the
shape of the visibility curve more strongly constrains the limb-
darkening parameter than the closure phases, which more
strongly constrain surface asymmetries. For the 2020 Novem-
ber 2 data, we found a best-fit limb-darkening coefficient of
α= 0.27± 0.02. For the 2020 November 5 data, we found
α= 0.27± 0.01. Errors were determined with 100 bootstraps.
For example, for each bootstrap, from the 985 visibility data
points for 2020 November 2, a point was randomly chosen 985
times with replacement, and this set, as well as similarly
selected closure phases and triple amplitudes, was used to fit
for α.

We then assumed the stellar diameter and the limb darkening
and performed a grid search for the location of a simple,
circular starspot with varying size to obtain the best fit for its
location, which we show in Figure 5. Ideally, to choose the
best-fit spot location, we would select the location with the
lowest reduced χ2 value for the combination of the visibilities,
closure phases, and triple amplitudes with the closure phases
being weighted 10 times more strongly than the other
parameters in this case because the closure phases are more
sensitive to surface asymmetries than the other observables.
Here, the weighting was chosen to allow the visibilities and
triple amplitudes to contribute to but not dominate the fit.
While this best-fit method is valid for the night of 2020
November 2, when the starspot was near the center of the
stellar disk and at nearly its largest contribution to the light
curve, the starspot was on the limb on 2020 November 5 and at
a much lower contribution to the light curve. The best-fit spot
location for 2020 November 5 is likely an artifact, but there is a
local minimum that is consistent with the expected location of

the spot based on its previous location and the star having
rotated through 98° between the observations. The local
minimum spot location is shown in Figure 5. The details of
our recovery tests for simulated starspots using the uv plane
coverage of the 2020 November 5 data are in Appendix B. We
note that the limited data available for these models makes
these spot detections marginal, though consistent with the
photometric observations.
For the 2020 November 2 data, we performed 100

bootstraps, as described above, for the location of the starspot
of the same size and darkness used for the best-fit data set to
illustrate the quality of our fit. The starspot locations were not
easily quantified to error bars on the starspot location;
therefore, we show the location of the starspots in Figure 9 in
Appendix B. The locations of the starspots in these bootstraps
are roughly consistent with the region surrounding the
minimum of the χ2 surface of the best-fit data set (see
Figure 10 also in Appendix B).

4.3. Reconstruction and Model Differences

While the TESS light curve and, consequently, the LI
surface reconstructions of Figure 3 show more starspot
evolution than is detectable in the interferometric models of
Figure 5, we note that the TESS light curve is missing nearly all
observations between the two interferometric observations. As
a result, the reconstruction of the evolving spot that is visible at
the time of both MIRC-X observations is more informed by the
prior rotation (2020 November 2) and the following rotation
(2020 November 5). The LI surfaces give the impression that
the morphology of the spot has changed in the 3 days between
the MIRC-X observations. While we assume some evolution
has occurred, the differences between the spots as seen in
Figure 4 are potentially misleading and likely due to noise
artifacts of the reconstructions. Unfortunately, we are unable to
resolve structure in the starspots with the interferometric
observations for comparison.
A notable difference between the LI reconstructions and the

interferometric models is the locations of the spots. LI has no
ability to either constrain or determine the position angle of the
rotational pole in the plane of the sky. Interferometric
observations, however, do provide the opportunity to constrain
the star’s orientation on the sky, both the position angle and the
inclination, given sufficient data. Consistent with our LI
reconstructions, we assumed an inclination of i= 70° (Giguere
et al. 2016) for the interferometric observations. We investi-
gated the position angle of the rotational pole of ò Eri by
comparing the interferometric models to the surfaces recon-
structed with LI. The starspot longitudes taken from LI are
reliable, but the starspot latitude may not be reliable due to a
lack of sufficient information from the input light curve(s).
Because we only used a single bandpass of data for these
reconstructions, we assumed that the starspots are not
necessarily located in the latitude where they appear on the
LI surfaces.
To approximate the position angle of ò Eri in the plane of the

sky, we superimposed the interferometric models with the LI-
reconstructed surfaces rotated in the plane of the sky. For each
snapshot interferometric data set, there are two orientations for
which the modeled starspot and the corresponding LI-
reconstructed starspot are aligned in longitude; however only
one orientation is consistent with both interferometric models.
Using the reconstructions and models for both 2020 November
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2 and 5, we found that the data suggest that the position angle
of the rotation axis of the star is ∼335°, as presented in
Figure 6. This assumes that the stellar inclination is i=+70°,
but the method used to determine the inclination in Giguere
et al. (2016) and LI both cannot make a distinction between
i=+70° and i=−70°. Therefore, a position angle of 155°
is also possible if i=−70°. The position angle suggested
in this analysis is tentative and must be confirmed with future

data sets. Further details on this determination are found in
Appendix B.

5. Spectroscopic Simulations

Sector 31 TESS photometry spans nearly 2.4 stellar rotations of
ò Eri when it was also observed with EXPRES. From these
photometric observations, we reconstructed the stellar surface

Figure 5. Top: MIRC-X observations of ò Eri from 2020 November 2 (left) and 2020 November 5 (right). The observed data are shown in black with one baseline of
each triangle shown in the closure phase and triple amplitude panels. The model data for a limb-darkened, spotted surface are plotted in red. Bottom: The spotted,
limb-darkened (power-law) stellar surface models used to generate the interferometric data in red. The visible pole is marked with a white line and the surface rotates
counterclockwise around this pole. As in Figure 3, the surface temperature ranges from a spot temperature of Tspot = 4100 K to a photospheric temperature of
Tphot = 5100 K. The surface models are presented such that they are on the plane of the sky where north (toward the celestial pole) is up and east is to the left. Because
of the sparse uv plane coverage, these starspot detections are marginal. More data are needed for future studies aiming to image the star and determine the inclination
and position angle of the rotational pole.

Figure 6. Left: The best-fit interferometric fit for the 2020 November 2 data set with the LI reconstruction and its latitude and longitude grid overlaid, assuming
i = +70°. The LI reconstruction is rotated ∼335° east of north in order to have the LI and MIRC-X starspots lie on the same line of longitude. The visible pole is
marked with a white line and the surface rotates counterclockwise around this pole. Right: Same as the left figure, but for the 2020 November 5 data set. This position
angle determination is tentative due to the limited interferometric data.
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(Figures 4) and, here, we discuss our method for identifying and
isolating the RV signature of the starspots at any phase of rotation.

5.1. Integrated Spectrum over a Simulated Disk

We simulated the stellar spectrum over time as the surface
inhomogeneities reconstructed in the previous section rotated
into and out of view for the time baseline of the TESS Sector
31 observations. This timeframe overlaps with 32 (of 164 total)
spectra of ò Eri obtained with EXPRES between 2020 October
and November. Our simulation is similar to the SOAP software
(Boisse et al. 2012), which models perturbations to the spectral
line profile induced by circular spots and plages, while
accounting for limb darkening, stellar rotation, and stellar
geometry. Additional physics, including an improved limb
darkening and a model of convective blueshift suppression,
were incorporated into SOAP2 by Dumusque et al. (2014). In a
similar vein, 2D simulations of stellar disks have been used in
studies of exoplanet transits (Casasayas-Barris et al. 2019),
with the purpose of investigating spectroscopic artifacts from
center-to-limb variations and the Rossiter–McLaughlin effect.
The premise is the same, in that the exoplanet occults a region
of the star with its own local properties (e.g., white-light flux
and Doppler shift). Our simulation code uses the physics and
methodology used in SOAP2, but with EXPRES spectra for ò
Eri instead of the solar spectrum.

A high-fidelity template spectrum of ò Eri was obtained by
simultaneously fitting all 164 EXPRES spectra of the star with a
B-spline regression similar to what is done by SERVAL
(Zechmeister et al. 2018). The B-spline is crucial for providing
a smooth, continuous function to which we may apply arbitrarily
small Doppler shifts. The disk model itself comprises an 80× 80
pixel grid representing the visible surface of the star. Corner pixels
beyond 1 R* remain empty throughout the following steps. Each
pixel was assigned (1) a finely-sampled (R∼ 800,000) spectrum
derived from the spectral template; (2) a flux weight (i.e., the
relative contribution of flux to the integrated spectrum due to limb
darkening; the effect of spots is discussed below); and (3) a local
velocity determined by stellar rotation. We approximated the
spectra for various values of μ by assigning flux weights
according to an appropriate limb-darkening law and used the
appropriately Doppler-shifted EXPRES template spectrum. To
generate a disk-integrated spectrum at each moment in time, we
co-added the Doppler-shifted and flux-weighted spectra from
every pixel in the grid.

Critical to this study, the model is based on the LI surface
reconstructions of the TESS light curve described in the
previous section. First, the LI surface was interpolated from the
existing spatial structure (approximately equal-area rectangular
zones) onto a uniformly-spaced latitude/longitude grid
(Figure 4). We found 90 latitude divisions and 180 longitude
divisions were sufficient for resolving the finest details in the LI
surface. The rotation of the star was simulated by transforming
the latitude and longitude coordinates, taking into account
stellar inclination. Finally, the surface was mapped from 3D
spherical coordinates to a 2D projection (via interpolation) on
the pixel grid described above. At a given time step, we
multiplied the flux weights of each pixel (determined by a
quadratic limb-darkening law) by the relative brightness of the
projected stellar surface, and then integrated the spectrum. In
this way, we accounted for spots downweighting local
contributions to the integrated spectrum. As a consistency
check, we summed the white-light flux of the projected disk at

30 equally-spaced intervals during a single rotation and
recovered the relative brightness variations in the TESS light
curve. The effects of resolution were explored, and we found
the results did not change appreciably when more pixels were
used to model the disk. RVs were obtained from the integrated
spectrum via cross-correlation with the original stellar template.
Our LI surface model for the TESS Sector 31 data is shown in

Figure 7 and compared to both the actual EXPRES data, the GP
model described in Section 3, and an FF′ model (Aigrain et al.
2012) discussed in the next section. The Keplerian component of
the known planet has been subtracted, but this represents only a
marginal RV trend of ∼18 cm s−1 over the ∼20 day timespan of
the RVs considered. The RVs from the LI model contain relative
velocity variations that arise from perturbations to the spectral line
profile caused by the simulated spot. The actual EXPRES RVs are
also relative velocities; however, the relative velocity offset in the
EXPRES data changes as new data are acquired and will only
asymptotically approach a constant value after all of the signals (
i.e., the known planet in a 7 yr orbit and the photospheric
contributions) have been well sampled over all phases. The
temporal baseline of the EXPRES RVs, which is slightly over 1
yr, is not sufficient to reach that constant offset, so we derived
and removed the best-fit offset between the simulated and
observed RVs.
The subset of EXPRES RVs taken during the TESS Sector

31 observations has an rms scatter of 4.72 m s−1. If we adopt
corrections from the GP model, this scatter is reduced to 0.76
m s−1. However, the GP model, by definition, is conditioned on
the data to which it is fit. Therefore, the residuals reflect the
measurement uncertainties added in quadrature with the jitter
term sk, added to account for intra-night scatter. Intra-night sk
can arise from p-mode oscillations, granulation, or under-
estimation of formal uncertainties. This illustrates one of our
primary concerns: even when the hyperparameters are condi-
tioned on photometric observations, the GP’s flexibility (which
is based on its parameterization and likelihood) allows it to
conform to the RV measurements very closely, typically
within<1 m s−1 from individual measurements or the mean
RV of a given night.
The LI surface model, however, is completely independent

of the EXPRES RVs. Aside from the constant RV offset
discussed above, the LI surface model does not represent a fit to
the RV data, but was derived strictly from the TESS
photometry and the stellar spectrum template. After subtracting
the RVs derived with the LI model and interpolated to the time
of the EXPRES RV measurements, the residual rms of the
EXPRES RVs decreases from 4.72 to 1.98 m s−1. This is a
58% reduction in the RV scatter for ò Eri.

6. Discussion

6.1. Efficacy of the LI Surface RV Model

We have shown that the LI surface stellar activity model
presented in Section 5 accounts for a significant portion of scatter
in the EXPRES RV measurements. The success of this model
marks an important step in robustly separating Keplerian and
activity-related components in an RV time series; however, it is
important to address the remaining ∼2 m s−1 rms scatter and
potential avenues for improving the model. For example,
Dumusque et al. (2014) accounted for additional physics in their
spot models, including inhibition of convective blueshift in
regions affected by spots. Qualitatively, the net effect of
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accounting for convective blueshift in an equatorial spot is to
break the symmetry in its corresponding RV signal, and push the
RV signal toward more positive velocities. We experimented with
a simple implementation of the convective blueshift effect by
assigning a constant velocity offset inside the active region (e.g.,
Dumusque et al. (2014) adopted 350 m s−1), but this addition did
not improve the model fit. It is worth noting that ò Eri is a K2
dwarf, and the interplay between convective cells and magnetic
fields in active regions may differ from that in the Sun. It might
also help to more carefully model spectra at different values of μ.
For example, Casasayas-Barris et al. (2019) generated synthetic
spectra for regions extending from the disk center to the limb. The
change in effective temperature may have a minor impact on the
cross-correlation and RV inference and it would be useful to
retrieve faculae and accurate sizes for high-latitude features in the
surface reconstructions; however, this will require longer-baseline
interferometric measurements than are presently available. The
most prudent next step is to improve the cadence of the RVs to
allow for more dynamic modeling of the surface and to extend the
time baseline of observations for both the RVs and the space-
based photometry.

It is also worthwhile to explore additional physics. The full
impact of stellar activity itself involves many components,
including features on the rotating surface, as well as granulation,
p-mode oscillations, and magnetic activity cycles (Fischer et al.
2016, and references therein). While the amplitudes and
timescales of different activity sources have been studied, the
details needed to model their impact on RVs are not well
understood. Nevertheless, the growing body of literature

adopting quasiperiodic GPs as an activity model supports the
premise that, on timescales of several days, rotationally-
modulated signals often have the strongest amplitude effect on
RVs, and are the most likely to generate false-positive Keplerian
candidates. There is also strong precedent for inferring
rotationally-modulated RV variations from photometry (Aigrain
et al. 2012; Haywood et al. 2014).

6.2. Comparison to GPs

We modeled the full RV time series in Section 3 for the
purpose of independently measuring orbital parameters of ò Eri
b, evaluating evidence for additional planets, and characteriz-
ing stellar rotation and typical spot lifetimes. Our model
employed a GP via the celerite implementation. GPs are
being applied as flexible stellar activity models by other groups
as well in the current era of extreme-precision spectroscopy
(e.g., Faria et al. 2020). Our application of GPs closely
resembles that of Haywood et al. (2014); however, one may
simultaneously model activity indicators as done by Rajpaul
et al. (2015). A number of even more advanced models are
described in contributions to Zhao et al. (2021, in preparation),
and a new GP model for inferring parameters governing the
distribution of starspots, with potential applications to RV data
sets, has been presented by Luger et al. (2021).
A particular advantage of the LI surface model is its derivation

from an independent, photometric data set, which eliminates the
possibility of Keplerian signals being absorbed into the model.
We previously showed that photometry-preconditioned GPs are
prone to conform to low-amplitude variations from a planet if that

Figure 7. Comparison of three models of activity-based RV variations. The red curve and shaded regions depict the GP model and confidence intervals (also shown in
Figure 2). The orange curve depicts the RV variations obtained by rotating the LI-reconstructed stellar surface and integrating the stellar spectrum over a pixelated
disk. For reference, snapshots of the disk model are shown for several selected timestamps of RV exposures. The features on the surface are responsible for the RV
variations in the model, and a faint dashed line connects each snapshot to the corresponding point on the RV model curve. The gray curve represents an FF′ model
(Aigrain et al. 2012), which serves as a benchmark for the LI surface model. The bottom panel shows the residuals for the LI surface model, GP model, and FF′ model
in orange, red, and gray, respectively. The rms scatter of residuals after subtracting the GP is 0.76 m s−1, which is largely a reflection of the EXPRES measurement
uncertainties and intra-night scatter. The rms scatter of residuals after subtracting the LI surface model and best-fit offset is 1.98 m s−1, compared to the 2.20 m s−1 rms
from subtracting the FF′ model. All three are a reduction from the original rms scatter of 4.72 m s−1 of this subset of RVs, which were selected based on their overlap
with TESS photometry. In both the plot and the rms calculations, the marginal Keplerian contribution has been subtracted.
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Keplerian signal is rejected under the Bayesian evidence
comparison (i.e., adding five additional parameters to the model
does not sufficiently improve its log-likelihood; Cabot et al.
2021). This effect is especially true for sparse RV data sets.
Another advantage is that the LI surface model has a direct,
clearly interpretable correspondence to a physical characteristic of
the star (i.e., resolved surface features), while GPs typically do
not. One may use specific, physically-motivated GP kernels (e.g.,
quasiperiodic ones) and find a repeating structure that corresponds
to long-lived surface features, but it is a degenerate problem to
invert the GP model and resolve surface features or other specific
qualities of the star. In our case, the GP clearly does not
correspond to the effects of surface features at all times and
deviates at a>2σ level from the LI surface model at most times
(Figure 7). GP models that fit multiple, contemporaneous time
series at once (e.g., Rajpaul et al. 2015; Gilbertson et al. 2020) in
implementations such as pyaneti (Barragán et al. 2022) were
not tested in this study, but may make for interesting future
comparison against the LI model. Compared to the photometry-
preconditioned GP used here, they may have reduced flexibility.

At present, GPs remain a useful model for stellar activity,
which can greatly assist with identifying and constraining
Keplerian signals. However, accurately modeling RV varia-
tions with alternative and complementary data sets is an
important goal, both for robustness against inadvertently
removing Keplerian signals and for the interpretability of the
activity model.

6.3. Comparison to FF′

The FF′ technique (Aigrain et al. 2012) models RV variations
based on contemporaneous photometry and provides a useful
benchmark for our LI surface model. FF′ exploits the geometry of
a spot moving across the stellar surface to remove explicit
dependence on the rotation period, stellar inclination, and spot
latitude. However, it is accurate only to first order in the presence
of multiple spots, and neglects limb darkening and spot projection
effects. Extensions of the FF′ technique include those of Rajpaul
et al. (2015) and Giguere et al. (2016), which are not explored
here. The full FF′ model is
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or equivalently

( )D = D + DRV RV RV , 4crot

by denoting the left term as the rotation-related component and
the right term as the convection-related component. In the above
equation, Ψ(t) is the light curve, and the constants Ψ0, δVc, f, κ,
and R* represent the disk’s flux if no spots are present, the
convective blueshift inhibition within a magnetized region, the
reduction in flux for a spot at the center of the disk, the ratio
between the areas of the magnetized region and spot surface, and
the stellar radius, respectively. Two parameters may be estimated
directly from the light curve: sY » F + Y0 max , where σΨ is the
standard deviation of the light curve and Fmax is the light-curve
maximum; and ( )» Y - F Yf 0 min 0, where Fmin is the light-
curve minimum (Aigrain et al. 2012).

The binned TESS light curves (Figure 3) were interpolated
onto an oversampled grid and subsequently smoothed with a
Savitzky–Golay filter, which allowed us to compute a smooth

time derivative of the light curve  ( )Y t . The window length was
approximately 6% of an 11 day TESS observing window.
We manually varied the window size, and found the final residual
rms scatter changed up to ∼20 cm s−1. The adopted window size
yielded the lowest residual rms scatter. We optimized δVcκ and a
global model offset to fit the model to the subset of EXPRES data
in Figure 7. The convection term in Equation (4) did not improve
the fit, so δVcκ was fixed to 0 in the best-fit model. The
convection term was significantly smaller than the rotation term in
a case study of HD 189733 (Aigrain et al. 2012), a star with a
similar rotation period to ò Eri; however, suppression of
convective blueshift may become the dominant process for slower
rotators (e.g., Haywood et al. 2014).
The residual rms for the best-fit FF′ model is 2.20 m s−1.

The FF′ model has considerably more fine structures than the
LI surface model (Figure 7), which is due to either noise in the
TESS light curve or smaller surface features unresolved by the
inversion. However the largest features in both models are
similar, which is expected since coincidentally only one spot is
visible at most times, and the spots are small as compared to the
stellar disk, although the two models deviate by a few meters
per second midway through the first rotation, which may be due
to the noncircular morphology of the visible spot. In addition to
moderately outperforming FF′ by a ∼20 cm s−1 reduction in
rms, the LI surface model is more easily interpreted since it
reveals the correspondence between specific spots and their RV
perturbations. The remaining scatter in both sets of residuals
indicates that more accurate modeling is needed for certain spot
distributions (e.g., high-latitude features, or an odd-numbered
multipole component), or that other features (e.g., faculae) or
physics (e.g., granulation) are responsible for a significant
portion of the activity signal.

6.4. Imaging Sun-like Stars

While LI reconstructions are valuable in revealing the stellar
surface’s RV contribution, the surfaces are affected by the
degeneracies of the light-curve inversion method. The longitude
of starspots is well constrained by the light curve; however, the
starspot latitude is not. With this method, information on
constraining stellar latitudes comes from limb darkening. Starspots
at different latitudes will impact the light curve differently at
different wavelengths because limb darkening is different in
different bandpasses. For our ò Eri inversions, we used a single-
bandpass light curve from TESS. Improving the latitude
constraints of starspots being reconstructed with LI will require
simultaneous light curves in a range of photometric filters.
As stated in Section 1, reconstructing a stellar surface with

Doppler imaging will provide more latitude information.
Although the method is being utilized for searching for hot
Jupiters orbiting young stars (Heitzmann et al. 2021), Doppler
imaging is not an appropriate imaging method for main-
sequence stars, like ò Eri, because the stars’ slow rotation does
not provide sufficient spatial resolution.
To date, interferometric aperture synthesis imaging, which

unambiguously provides latitude information, has not been
performed on main-sequence stars. However, our models of
two data sets from the CHARA Array with the MIRC-X beam
combiner indicate that detailed images of bright, spatially large
main-sequence stars are possible with sufficient uv plane
coverage and prominent spots.
Between the two interferometric observations, ò Eri rotated

in approximately a quarter rotation with the starspot present on
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both nights of the interferometric data being in the same spot.
Our models potentially constrain stellar orientation. The
interferometric data suggests that the star’s rotation axis is
oriented along the position angle ∼335° east of north. This was
determined by rotating the LI reconstruction such that the
MIRC-X observations would have the same longitude (see
Section 4.3 and Appendix B). As we have only a small number
of interferometric observations, confirmation of this position
angle requires further observations.

The starspot was observed approximately 20° of latitude away
from the starspot in the LI reconstructions. This is in line with the
expectation that surfaces reconstructed with LI will not necessarily
place the starspots at the appropriate stellar latitudes. LI favors
smaller spots, which the regularizer identifies as “smoother”; in
combination with only one bandpass with limited limb-darkening
constraints, LI will reconstruct the surface with starspots at the
sub-Earth latitude. For the 70° inclination of ò Eri, the sub-Earth
latitude is +20°.

While the starspot latitude appears to be lower than what LI
predicts, we did not use this information to inform the simulated
spectra, as our interferometric model for 2020 November 5 was
not independently determined, and was informed by the previous
observation and the LI surface due to the low contrast between the
starspot and the limb (for more details, see Appendix B).
However, these observations serve as a proof of concept that
starspots can be interferometrically detected on a main-
sequence star.

Because the position angle was not independently determined
for both nights of observation, we do not definitively state the
star’s orientation on the sky. We also assumed an inclination of
70° after Giguere et al. (2016). The debris disk around ò Eri has
been detected in a number of different studies that report
inclinations ranging from about 20° to 30° (Greaves et al. 2014;
MacGregor et al. 2015; Chavez-Dagostino et al. 2016; Booth et al.
2017; Holland et al. 2017). All of those studies give position
angles of∼0°, except for Holland et al. (2017), who give 61° ± 3°
east of north. The inclination of the plane of the planet is
consistently found to be ∼30° (Hatzes et al. 2000; Benedict et al.
2006; Reffert & Quirrenbach 2011). The longitude of the
ascending node of the orbit was found to be 254° ± 7° by
Benedict et al. (2006) and 282° ± 20° by Reffert & Quirrenbach
(2011), both of whom are in disagreement regarding the debris
disk position angle measurements, which are defined by the major
axis. To confirm whether the stellar equatorial plane is aligned
with the debris disk or with the planetary orbit, more MIRC-X
observations are required to interferometrically measure both the
star’s position angle and its inclination, from which an improved
understanding of the system’s orientation and evolution could be
derived in addition to a better stellar image for our spectroscopic
analysis.

6.5. Conclusions and Future Work

We have shown that if available, a light-curve inversion
image of the stellar surface can provide crucial information for
disentangling the signature of stellar activity from that of
planets. Obtaining a more accurate image will result in more
accurate simulated RVs.

We recommend both RV and imaging observations should
be of high cadence. Cabot et al. (2021) emphasized the
importance of high-cadence RV observations for modeling
stellar activity with GPs and improving the RV precision for
detecting planets. Obtaining high-cadence observations for
complementary imaging is also vital to having an accurate

image of the stellar surface from which RVs will be modeled.
Here, we obtained two short observations of ò Eri with the
MIRC-X beam combiner. More observations throughout a
night would provide denser uv plane coverage, and observa-
tions across the stellar rotation would allow for the entire stellar
surface to be imaged in a method analogous to Doppler
imaging and light-curve inversion. The method developed here
will work best when the imaging and RV observations are
obtained contemporaneously to ensure that the same stellar
surface evolution is being observed. As seen for ò Eri in
Figure 3, the surface structures of main-sequence stars can
change on timescales shorter than the stellar rotation.
While each high-cadence data set investigating the stellar

activity and potential for planetary companions is valuable,
combining the data sets as we describe here allows for the
strengths of EPRV and stellar surface imaging to be harnessed in a
way otherwise only accessible for the Sun. The unique value of
solar studies is prior detailed knowledge of surface features
coupled with EPRV measurements. We are working toward
extending this to other stars by using high-cadence photometry to
reconstruct the stellar surface and verify that current interfero-
metric capabilities can detect starspots on a main-sequence star.
Interferometric stellar images will provide unambiguous prior
information about surface features to better understand the impact
of photospheric activity on RVs.
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Appendix A
Posterior Distribution of the GP Fit to APT Photometry

Posterior draws of the GP hyperparameters are shown in
Figure 8, based on the fit to APT photometry. Median values are
listed with uncertainties corresponding to the 16th and 84th
percentiles. The MAP values of PGP, L, and C were used in the
preconditioned RV fits.

Figure 8. Corner plot showing posterior distribution draws of GP hyperparameters (celerite quasiperiodic covariance kernel), after burn-in by the nested sampler.
The 16%, 50%, and 84% quantiles are marked with vertical dashed lines in the marginalized histograms, which are also used to define the median values and
uncertainties printed above each column.
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Appendix B
Determining Starspot Location and Position Angle and

Starspot Recovery Tests

In Section 4.2, we discussed the interferometric models of ò
Eri. In order to show the robustness of the location of the
starspot in the 2020 November 2 data, we performed 100
bootstraps where the visibility, closure phase, and triple
amplitude data were chosen with replacement, as described in
Section 4.2 for the limb-darkening parameter, α. We plot the
results in Figure 9 with each bootstrap represented by a gray
circle, of the approximate size of the starspot used in the fit, and
the best-fit spot location shown in red. These bootstrap
locations are approximately consistent with the region around
the minimum of the χ2 surface shown in Figure 10, described
below.

As mentioned in Section 4.3, we determined that the data
suggest the position angle of ò Eri is ∼335° east of north. This
was found by superimposing the LI surfaces on top of the
interferometric models and rotating the LI surfaces such that
the LI starspot and the interferometric model starspot were
aligned at the same longitude. Because only one starspot was
visible, there were two orientations that put the starspots at the
same longitude. For 2020 November 2, we found that the best-
fit interferometric-modeled and LI-reconstructed starspots were
aligned in longitude if the LI reconstruction was rotated ∼75°
and ∼335° east of north in the plane of the sky.

However, the best-fit model for 2020 November 5 and the
∼98° rotation of the star based on the Prot= 11.4 days between
the observations are not consistent. In Figure 10, we show the
reduced χ2 surfaces for both 2020 November 2 and 5. For 2020
November 2 there is a global minimum (represented by the
black region within the reduced χ2 space), but for 2020
November 5, there are multiple local minima, and the lowest
reduced χ2 value is again represented in black.

Because we expected the starspot to be on the limb from the
LI reconstructions, we investigated the ability of our interfero-
metric spot-fitting model algorithm to detect starspots of
varying sizes for a star with the angular diameter and limb
darkening of ò Eri with the uv plane coverage and telescope
configuration of the 2020 November 5 observations.

We aimed to recover a starspot in different locations and
with varying contributions to the overall brightness of the star
(reductions in light from 0.1% to 6.4%). We assigned an
angular diameter θLD= 2.153 mas and a limb-darkening
coefficient α= 0.27, as above. We used a circular starspot
that had a spot-to-photosphere brightness ratio of 0.61 and
allowed its position and size to vary, but we required that the
starspot had to stay within the star. In Table 5, we include the
test and recovered spot parameters.

In Figures 11 and 12, we show that we were able to
reasonably accurately recover the location of the starspot when

it reduced the brightness of the star by at least 0.4%. The
reduced χ2 surfaces included in these figures are a combination
between the visibilities, closure phases, and triple amplitudes
with the closure phases weighted 10 times more than the other
observables, as described above. For spots that reduce the
stellar brightness by less than 0.4%, the best-fit solution is an
artifact. However, when examining the reduced χ2 space of the
fit, the actual spot location was found to be a local minimum.
The starspot removing the smallest amount of light from the
stellar surface explored here, 0.1%, is analogous to our
estimations for the starspot on the limb.
Because the recovery tests indicate that the actual location of

the starspot on 2020 November 5 may be recoverable as a local
minimum, we considered these regions of the reduced χ2

space. Extrapolating from the two possible position angles
found for just 2020 November 2, ∼75° was rejected because
the 2020 November 5 spot location was not in a local
minimum, but the position angle of ∼335° placed the starspot
in a local minimum, on the lower right of the right side of
Figure 10. As a result, we included the starspot in this
orientation and the associated model data in Figure 5. More
data are required, however, to confirm this orientation.
Because we cannot verify the position angle and because the

LI reconstructions of ò Eri indicate the presence of another
starspot that was out of view on both 2020 November 2 and 5,
we did not attempt to inform the photometric surfaces with the
interferometric spot location.

Figure 9. Outline of the model stellar surface with the starspot location of each
bootstrap indicated by a gray circle. Each circle is the size of the starspot used
in the fit. The thicker red circle is the location of the best-fit starspot location.
The stellar surface is oriented as in Figure 5.
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Figure 10. Left: Reduced χ2 surface for detecting a starspot in the 2020 November 2 interferometric data. The color gradient was chosen to particularly emphasize the
location of the global and local minima. The minimum within the black region is the location of the model starspot shown in Figure 5. Right: Reduced χ2 surface for
detecting a starspot in the 2020 November 5 interferometric data. The black region is the global minimum, which our recovery tests show is likely to be an artifact, but
the minimum on the lower right of the plot is aligned with our estimate of the starspot location given the position angles possible for the 2020 November 2 data and the
LI reconstructions. The spot at this location and its associated interferometric observations are shown in Figure 5.

Table 5
Interferometric Starspot Recovery Test Results

Test Identifier Assigned Distance Assigned Position Assigned Brightness Model Distance Model Position Model Brightness
from Center Angle (deg E of N) Decrease (%) from Center Angle (deg E of N) Decrease (%)

A0 0.75 45 0.10 0.74 61 0.13
A1 0.75 225 0.10 1.01 356 0.10
B0 0.75 90 0.20 0.75 65 0.35
B1 0.75 270 0.20 0.93 152 0.12
C0 0.75 135 0.40 0.79 133 0.62
C1 0.75 315 0.40 0.95 331 0.30
D0 0.75 180 0.80 0.83 173 0.93
D1 0.75 0 0.80 0.83 358 0.91
E0 0.75 225 1.60 0.74 223 1.50
E1 0.75 45 1.60 0.76 45 1.98
F0 0.75 270 3.20 0.75 270 3.33
F1 0.75 90 3.20 0.75 90 3.39
G0 0.75 315 6.40 0.58 313 7.19
G1 0.75 135 6.40 0.63 133 7.19
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Figure 11. First and third columns: Best-fit model for the interferometric spot recovery test. The surface temperature ranges from a spot temperature of Tspot = 4100 K
to a photospheric temperature of Tphot = 5100 K. Second and fourth columns: Reduced χ2 surface for the starspot size indicated by the best-fit model (lower values are
white and higher values are dark blue). The red crosses × indicate where the center of the best-fit spot is located. The green crosses × indicate where the center of the
spot is positioned. Each row is labeled on the left and corresponds to the appropriately labeled row of test and recovered spot parameters in Table 5.
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indicated by the best-fit model (lower values are white and higher values are dark blue). The red crosses × indicate where the center of the best-fit spot is located. The
green crosses × indicate where the center of the spot is positioned. Each row is labeled on the left and corresponds to the appropriately labeled row of test and
recovered spot parameters in Table 5.
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