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Abstract. In this article, we compare the performance of
three regionalization approaches in improving the at-site es-
timates of daily precipitation. The first method is built on
the idea of conventional RFA (regional frequency analysis)
but is based on a fast algorithm that defines distinct ho-
mogeneous regions relying on their upper-tail similarity. It
uses only the precipitation data at hand without the need for
any additional covariate. The second is based on the region-
of-influence (ROI) approach in which neighborhoods, con-
taining similar sites, are defined for each station. The third
is a spatial method that adopts generalized additive model
(GAM) forms for the model parameters. In line with our goal
of modeling the whole range of positive precipitation, the
chosen marginal distribution model is the extended general-
ized Pareto distribution (EGPD) to which we apply the three
methods. We consider a dense network composed of 1176
daily stations located within Switzerland and in neighboring
countries. We compute different criteria to assess the mod-
els’ performance in the bulk of the distribution and the upper
tail. The results show that all the regional methods offered
improved robustness over the local EGPD model. While the
GAM method is more robust and reliable in the upper tail,
the ROI method is better in the bulk of the distribution.

1 Introduction

Flood events occurring at different timescales pose hazards
that are of enormous consequences for life and property.
Even though necessary for risk assessments and safe design,
reliable prediction remains a challenge and a difficult task.
Usually, in the context of risk assessment, river flows are

simulated via hydrological models. These models take as in-
puts, among others, meteorological data such as temperature
and precipitation. However, whatever the complexity of the
model and how it represents the underlying hydrological be-
havior of the catchment, the accuracy, robustness, and relia-
bility of the flood predictions rely on the quality of the input
data.

Precipitation intensities, the key input signal, are modeled
using probabilistic methods. Within this framework, a good
probabilistic model should predict rainfall intensities of any
return level, whether low, medium, or extreme, with reliable
accuracy. Gamma distribution, a common choice over mod-
els such as log-normal, Weibull, and exponential, fails in this
respect, as the tail is too light to model heavy intensities
(Katz et al., 2002). Models based on the classical extreme
value theory (EVT), such as generalized Pareto (GP), can
model the upper tail, but one has to choose another model
for the other intensities below the chosen threshold.

Since generalized Pareto distribution (GPD) has been fa-
vored in hydrological applications (see, e.g., Langousis et al.,
2016), many authors in the framework of modeling the full
range of observations have considered different approaches
to adding flexibility to this model. A common approach is
the use of mixture models where GPD is combined with an-
other appropriate model for the bulk of the distribution (see
the review in Scarrot and MacDonald, 2012). Mixture mod-
els, however, have the drawback of inflating the number of
parameters to estimate (Naveau et al., 2016) and thus com-
plexify statistical inference.

As an alternative, Naveau et al. (2016) proposed a model
which is an extension of the GP (afterward called extended
generalized Pareto distribution – EGPD). It has the advan-
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tage of avoiding the need for threshold selection (a drawback
of GP) while being parsimonious by avoiding the use of mix-
tures. The model is Gamma-like in the lower tail and heavy-
tailed (GP) in the upper tail, with a smooth transition in be-
tween. It is able to model adequately the entire range of posi-
tive precipitation, and many authors within the framework of
rainfall modeling have used this model (e.g., Blanchet et al.,
2015; Evin et al., 2018; Tencaliec et al., 2020; Le Gall et al.,
2022).

Modeling the whole range of precipitation has various
practical applications. For instance, in flood risk assessments,
where stochastic precipitation generators are used to simulate
long series of positive precipitation, extremes included (e.g.,
in Evin et al., 2018). The simulated precipitation is then used
as input to conceptual hydrological models for the simulation
of long series of river flows. Other practical applications are
in the evaluation of numerical weather simulations or inves-
tigation of the climatology of rainfall events as outlined by
Blanchet et al. (2019).

Although EGPD uses all the data to estimate the param-
eters, the shape parameter which controls the upper-tail be-
havior remains difficult to estimate based on a few decades
of data, the usual length of precipitation data. This is because
there are usually few extremes exhibiting much variability.
As precipitation is spatial by nature, several studies (Cun-
nane, 1988; Burn, 1990; Hosking and Wallis, 2005) proposed
the use of observations surrounding the local station to in-
crease the number of data available for estimation, thereby
reducing the uncertainty involved in the estimation.

Different methods exist in the literature to use information
surrounding the station at hand (see Cunnane, 1988; Hosking
and Wallis, 2005). Methods based on regional homogene-
ity (e.g., the method of Hosking and Wallis, 2005) pool all
observations in hydrologically similar sites to increase the
sample size and so yield more accurate estimates of the pa-
rameters. Hydrologically similar sites are first defined using
cluster analysis and are then subjected to some statistical
homogeneity tests on the scaled observations. Thereafter, a
chosen distribution is fitted to the scaled observations in the
identified region, and all stations within this region would
share the same regional parameters. Station-specific parame-
ters and quantiles can then be inferred by appropriate scaling.
This method has been applied by various authors (e.g., Gaál
and Kyselý, 2009; Malekinezhad and Zare-Garizi, 2014) and
to various distributions such as the GEV and GP. Variants of
this method exist, such as the region of influence (ROI) pro-
posed by Burn (1990), which avoids defining fixed regions
but assigns homogeneous regions (neighborhood of differ-
ent shapes according to the method) for each site. Scaled ob-
servations within the neighborhood of each station are then
used to estimate the regional parameters of that station. This
method has been applied by various authors (see Gaál et al.,
2008; Kyselý et al., 2011; Carreau et al., 2013; Evin et al.,
2016; Das, 2017, 2019).

In contrast to the aforementioned methods that generally
rely on some covariates such as spatial coordinates to de-
fine the homogeneous regions, another variant, recently de-
veloped by Le Gall et al. (2022), defines homogeneous re-
gions based on the similarity of their upper-tail behavior.
This method avoids the use of any covariate but relies com-
pletely on the precipitation data at hand. The upper-tail be-
havior for each station is summarized based on a ratio of
probability-weighted moments (PWMs) (refer to Eq. 4). Sub-
sequently, a clustering algorithm is used to partition these
ratios into distinct homogeneous regions, and then regional
parameters can be estimated.

Spatial methods exist in which all the observations from
all the stations are pooled and then used to estimate the spa-
tial surface for each of the model parameters. The surface
for each of the model parameters is defined as a function of
some well-chosen covariates such as longitude, latitude, or
altitude. Estimating the parameters involves simply the es-
timation of the coefficients of these relationships. From the
fitted surfaces, station-specific model parameters can be in-
ferred as a function of the covariates at that specific loca-
tion. Surfaces that are smooth and flexible can be obtained by
fitting generalized additive models (GAMs) to the relation-
ships (see Chavez-Demoulin and Davison, 2005; Blanchet
and Lehning, 2010; Youngman, 2019, 2020). Other alterna-
tives to the classical RFA include the Bayesian spatial mod-
eling (see Madsen et al., 1995; Cooley et al., 2007) and those
discussed in Cunnane (1988).

Recent analyses have been done to compare the perfor-
mance of regional approaches with a particular interest in
distributions allowing one to model extremes only. Gaál
et al. (2008) compared different versions of the ROI method
against the classical RFA method of Hosking and Wallis
(2005). The ROI versions were distinguished by the choice
of the distance metric and the maximum threshold to de-
lineate neighborhoods. For all the methods, GEV distribu-
tion was assumed to be the underlying distribution. The au-
thors, through a Monte Carlo simulation study, concluded
that the ROI approach was superior to the classical RFA in-
volving distinct clusters. In an interpolation framework, Car-
reau et al. (2013) compared three methods: spatial interpola-
tion of locally estimated parameters, the ROI method, and a
rainfall generator called SHYPRE. For the first two methods,
GEV distribution was assumed. The authors found compara-
ble performance between the ROI and SHYPRE and a lack
of robustness in the method based on interpolation of local
parameters. Deidda et al. (2021) also used GEV to compare
the classical RFA of Hosking and Wallis (2005) and geosta-
tistical interpolation of locally estimated parameters. They
highlighted the limitation of the former in yielding distinct
regions and being of less accuracy compared to the latter.
Other comparisons include those of Gaál and Kyselý (2009),
Kyselý et al. (2011), and Das (2019).

Our approach differs from the aforementioned studies in
the following respects. First, in contrast to the case where the
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Figure 1. Description of the data used for the study. (a) Map of Switzerland and the neighboring areas showing the locations of the 1176
daily stations. The color indicates the length of the series, a minimum of 20 years and a maximum of 156 years. (b) Bar plot showing the
number of stations installed in each country for each decade.

underlying distributions are basically for modeling only ex-
tremes (e.g., Burn, 1990; Gaál et al., 2008; Gaál and Kyselý,
2009; Kyselý et al., 2011; Carreau et al., 2013; Evin et al.,
2016; Das, 2019; Deidda et al., 2021), we consider the EGPD
that models low, medium, and extreme precipitations. This is
in line with our goal of having a robust and reliable model
that can model the whole distribution and not only the ex-
tremes. Secondly, our comparison approach is more general
and is based on Garavaglia et al. (2011) and Renard et al.
(2013), focusing on the predictive ability of the models in
a cross-validation framework similar to the case of authors
such as Blanchet et al. (2015) and Evin et al. (2016) rather
than simply based on quality of fit (e.g., Gaál et al., 2008;
Kyselý et al., 2011; Deidda et al., 2021). Finally, in our con-
tribution, we compare new methods not previously compared
viz-a-viz. The first method defines distinct homogeneous re-
gions based on their similarity in upper-tail behavior (Le Gall
et al., 2022). The second method is based on the ROI ap-
proach framework of Evin et al. (2016). The last method is a
spatial approach that assumes the GAM forms for the model
parameters. For all the methods, we assume the EGPD to be
the underlying marginal distribution. We apply this compar-
ison to a dense network of over 1100 daily stations located
within Switzerland and in the neighboring countries.

The paper is organized as follows: Sect. 2 presents the data
and the study area. Section 3 introduces the competing mod-
els, while Sect. 4 describes the comparison methodology as
well as the criteria used. The results are presented in Sect. 5.
Finally, we discuss the conclusion and the relevant perspec-
tives in Sect. 6.

2 Data and study area

The comparison is made considering daily precipitation ob-
servations from 1176 stations shown in Fig. 1. Of this total,
500 are located within Switzerland and 676 in the neighbor-
ing countries. The data have a variable length ranging from a
minimum of 20 years to a maximum of 156 years, from 1863
to 2019. The bar plot in Fig. 1 shows the number of stations
installed in each country during each decade of the study pe-
riod. While the main study area is Switzerland, we use the
data in the neighboring countries simply to improve the es-
timates of the stations located around the border of Switzer-
land. Consequently, although we use all the stations (both
within and outside) for regionalization and model fitting, we
apply the performance criteria only to the stations located in
Switzerland.

Daily precipitation in Switzerland is characterized by sea-
sonality arising from multiple moisture sources brought by
prevailing winds (Sodemann and Zubler, 2009; Umbricht
et al., 2013; Giannakaki and Martius, 2015). It is also char-
acterized by spatial variability in both intensity and occur-
rence resulting from the complex topography (Sevruk, 1997;
Sevruk et al., 1998; Frei and Scha, 1998; Molnar and Bur-
lando, 2008; Isotta et al., 2014). Winter receives the least pre-
cipitation, and summer is the main season of precipitation all
over Switzerland. An exception is in the case of Ticino in the
south, where fall is the main season. This region is also sub-
ject to the heaviest precipitation. In the north of the country,
the topography plays an important role: the northern rim and
the Jura mountains receive heavier precipitation compared to
the plateau.
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As a result of the marked seasonality and the importance
of taking it into account (Leonard et al., 2008; Garavaglia
et al., 2011), we apply a seasonally based analysis approach.
We divide the data into the four distinct seasons of 3 months
each: winter (December, January, February), spring (March,
April, May), summer (June, July, August), and fall (Septem-
ber, October, November).

3 Candidate methods

In this section, we start by presenting the marginal distribu-
tion (EGPD). We then give a brief description of three dif-
ferent methods of regionalization that we will use to improve
the local estimates of the EGPD. They are (i) regional fre-
quency analysis based on the upper-tail behavior, (ii) the ROI
approach, and (iii) the spatial method using GAM forms. Fi-
nally, we summarize the regional models that are developed
based on the three outlined methods of regionalization as ap-
plied to the EGPD.

3.1 Marginal distribution of positive rainfall

We use the marginal distribution of rainfall proposed by
Naveau et al. (2016), which is able to model sufficiently the
full spectrum of positive (non-zero) rainfall. The model is
EVT compliant in the upper and lower tails while provid-
ing a smooth transition in between. It provides an alternative
to the light-tailed distributions such as Gamma, which can
underestimate extremes (Katz et al., 2002). Four parametric
families of this model have been proposed by Naveau et al.
(2016) and more recently a non-parametric scheme of the
transition function by Tencaliec et al. (2020). However, the
simplest of the parametric family is parsimonious and can
adequately model precipitation intensities without the need
for GPD threshold selection (Naveau et al., 2016; Evin et al.,
2018; Le Gall et al., 2022). We therefore use this model in
our study.

LetX be a random variable representing positive daily pre-
cipitation intensity that is distributed according to the EGPD;
then, the cumulative distribution function (CDF) is given by

F(x)= P(X ≤ x)=G
[
Hξ

( x
σ

)]
, (1)

where G is any CDF that ensures a smooth transition be-
tween the EVT-compliant upper and lower tails, and

Hξ

( x
σ

)
=

{
1− (1+ ξ x

σ
)
−1/ξ
+ if ξ 6= 0,

1− exp(−x/σ) if ξ = 0,
(2)

with a+ =max(a,0).
For the parsimonious model we use, the functionG is sim-

ply defined as G(v)= vk . Therefore, the model is given as

F(x)=
[
Hξ

( x
σ

)]k
. (3)

The model has three parameters. k > 0 controls the lower
tail, ξ ≥ 0 controls the upper tail, and σ > 0 is the scale pa-
rameter.

Inference of the model parameters can be done through
maximum likelihood estimation (MLE) or through the
method of PWMs.

3.2 Methods of regionalization

3.2.1 RFA based on upper-tail behavior

Classical regional frequency analysis (Hosking and Wallis,
2005) defines regions that are homogeneous up to a scaling
factor. To identify the regions, covariates have to be carefully
chosen, which usually include at-site characteristics such as
geographical and atmospheric characteristics. However, this
information might not be generally available at each station.
Homogeneity tests then have to be applied to confirm that the
regions are sufficiently similar.

Le Gall et al. (2022) proposed a fast and efficient method
to delineate regions based on the homogeneity of their upper-
tail behavior. The method relies on the precipitation data at
hand, only without the need for additional covariates. More
so, regions identified are inherently homogeneous, thereby
avoiding the need for the application of some homogeneity
tests. For each station i, a ratio ω given in Eq. (4) that is
based on PWMs is obtained.

ω̂ =
3α̂2− α̂0

2α̂1− α̂0
− 1, (4)

where α̂j denotes the PWM of order j .
The authors showed that ω summarizes the upper-tail be-

havior of the data at hand, and for the EGPD model, this de-
pends mainly on the ξ parameter (the effect of k is not very
significant; see Le Gall et al., 2022). Stations with high val-
ues of ω have high intense extremes, and those with low val-
ues have less intense extremes. The idea is to classify or form
regions with similar values of ω, which is possible using any
of the clustering algorithms, such as K-means, hierarchical
clustering, or partitioning around medoids (PAM). For details
of these clustering methods, see Kaufman and Rousseeuw
(2005).

3.2.2 RFA based on the ROI approach

The ROI method (Burn, 1990) is similar in concept to the
classical RFA method. It circumvents the drawback of hav-
ing contiguous regions separated by distinct boundaries that
result in “undesirable step changes of the variables and esti-
mated quantiles” (Gaál et al., 2008). Instead of defining dis-
tinct homogeneous regions separated by some boundaries, a
region of influence is assigned to each station. All the scaled
observations in the identified ROI are used to estimate its
regional parameters. To apply this method, several choices
have to be made. These involve the choice of the scale factor,
distance metric, radius delimitation, and homogeneity test.
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Table 1. Summary of the regional models that are compared in this study. The first model is the local EGPD model, the next three models
are based on regional homogeneity, and the last model is a spatial method based on GAM. The second column gives the name of the model.
The next three columns are the parameters of the EGPD model and indicate whether the parameter is estimated locally (from the data of the
station at hand only) or through regionalization. The last column gives a reference to the section where the method is described.

S/N Model κ σ ξ Ref. section

1 Local EGPD Local Local Local 3.1
2 Omega_EGPD Local Local Regional 3.3.1
3 ROI_EGPD_Full Neighborhood Neighborhood Neighborhood 3.3.2
4 ROI_EGPD_Semi Local Local Neighborhood 3.3.3
5 GAM EGPD Spatial Spatial Spatial 3.3.4

The choices influence the application of the method and have
to be carefully and objectively decided on. Different authors
in the application of the methods have explored some or all
of these factors, starting from Burn (1990) and in Gaál et al.
(2008).

In this work, we follow the objectively selected steps and
choices similarly to Evin et al. (2016) in the application of the
method in the southeastern part of France. The authors ap-
plied the method by considering peaks over threshold (POT)
(exceedances of a 70 % quantile) of central rainfalls (largest
observations in 3 d rainfall events) and of some distributions
(exponential, GPD, and Weibull). We apply the same proce-
dure but to positive rainfall and the EGPD model.

3.2.3 Spatial method based on the GAM

In contrast to the previous methods where regionalization is
based on homogeneity of normalized data or upper-tail simi-
larity, this is a regression-based method for fitting the param-
eters of models by allowing for spatial non-stationarity of the
parameters. Accordingly, we pool all the observations from
all the stations to estimate flexible and smooth spatial sur-
faces for each parameter, relying on the basis that pooling of
spatial information can help improve the at-site estimates and
hence the extreme quantiles. In particular, we let the parame-
ters have a GAM form, represented by smoothing splines. In
effect, we assumed them to have some form of flexible rela-
tionship with some covariates x, which can be explained by
GAM forms.

3.3 Regional models

This section summarizes the regional models that are com-
pared in the study. The models are built based on the concepts
of the three regionalization methods outlined in Sect. 3.2. Ta-
ble 1 presents the four models plus the local EGPD model.

3.3.1 Omega_EGPD model

This model is built based on the regionalization method de-
scribed in Sect. 3.2.1, i.e., RFA based on upper-tail behavior.
To build this model that relies on regionalization of the shape
parameter, the following steps are followed.

1. For each station i, i = 1, . . .,N use the positive data to
estimate the ratio ω̂i .

2. Identification of homogeneous regions: use an ap-
propriate clustering algorithm alongside an internal
validation criterion to decide on the optimal num-
ber of homogeneous clusters based on the estimated
ω̂1, . . ., ω̂i, . . ., ω̂N . In our case, after doing a simulation
study (result not shown), we settled on the PAM algo-
rithm and three criteria, silhouette (Rousseeuw, 1987),
Davies–Bouldin (DB) (Davies and Bouldin, 1979), and
S_Dbw (Halkidi and Vazirgiannis, 2001).

3. For each homogenous region C,

a. fit EGPD locally to find (ki , σi , and ξi),

b. find the regional shape parameter ξr as the average
of all ξi in that region, and

c. fit EGPD locally again to find new estimates k̂i,new
and σ̂i,new, given the estimated ξr .

We have also explored other options to estimate ξr after
obtaining the homogeneous regions.

– The first method involves pooling all the observations
in a homogeneous region (cluster) after scaling them
by their mean and then fitting a regional EGPD to esti-
mate the regional parameters (k(R), σ (R), and ξ (R)). We
then retain ξ (R) and then refit an EGPD locally to esti-
mate ki and σi . Every station in that cluster will have
similar ξ (R) but locally estimated ki and σi .

– The second approach is similar to the main method,
where we take the average of the locally estimated ξ ,
but here we take a weighted average. The idea is that, for
each cluster, the locally estimated ξ for the medoid sta-
tion (the station with the least average dissimilarity to all
the other stations in the same cluster) should be assigned
the highest weight in the average. All other stations
should then have weights as a function of their dissim-
ilarity to this medoid. Thus, very similar stations to the
medoid should have higher weights, while those that are
less similar should have smaller weights. The dissimi-
larity is measured by the Manhattan distance |ωm−ωi |,
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where ω is given in Eq. (4), while the indices m and i
denote, respectively, the medoid and the station i.

After testing these three approaches to estimate ξr , by
measuring the accuracy of the resulting quantile–quantile
plot according to the normalized root mean square error
(NRMSE) (see Sect. 4 for details of this criterion), results
(not shown here) showed that the first method, where we
simply take the average of the locally estimated ξ , resulted
in the least error. We thus retain this approach in our subse-
quent analysis.

3.3.2 ROI EGPD full model

This model is based on the method of ROI described in
Sect. 3.2.2.

Let Xi ∼ EGPD(ki,σi,ξi) be the random variable of daily
positive rainfall at station i which is distributed according
to EGPD. We also assume that Yi = Xi

mi
is the daily positive

rainfall normalized by a scale factor mi . If we consider sev-
eral stations (whose data have been normalized as well) that
have a similar distribution to Yi and use the data to estimate
the regional parameters k(R), σ (R), and ξ (R), then Yi will have
parameters (k(R),σ (R),ξ (R)) . Accordingly, by back transfor-
mation, the unnormalized random variable Xi will have the
parameters (k(R),miσ (R),ξ (R)). This shows that for a ran-
dom variable that is distributed according to EGPD, after re-
gionalization, the parameters k and ξ are those obtained re-
gionally, while the scale parameter σ has to be multiplied by
the scale factor for that station.

The general procedure of application is summarized be-
low, and the details can be found in Evin et al. (2016).

1. For each station and season, exceedances of a thresh-
old of 95 % quantile (POT) are selected and scaled by a
factor. The scale factor is the mean of all positive daily
precipitation.

2. We start the search from a radius of 2 km starting from
the current station. If we find other stations within this
radius, we apply the homogeneity test to the scaled POT
found in step 1. If the test is positive, we increase the
radius by another 2 km and repeat the test. We stop the
search when the test fails or when we reach a maximum
radius beyond which we doubt the existence of homo-
geneity. We use 100 km as the upper bound.

3. The distance metric we use is the “crossing distance”
(Gottardi et al., 2012) given in Eq. (5). This distance
takes into account the effect of elevation and is summed
over all the pixels along a straight line between two tar-
geted stations. We use a weight on elevation equal to
20 similarly to Evin et al. (2016) to account for the ef-
fect of relief. Again, following the same authors, we use
the test of Hosking and Wallis (2005) on mean and L co-
efficient of variation (L CV).

d =

√∑
pixels

(
1x2+1y2+ 201z2

)
(5)

4. We estimate the regional parameters by a weighted
MLE on the scaled positive observations in the ROI.
The target station has the highest weights, and the closer
the station, the higher the weights.

The full regional model is such that Xi ∼

EGPD(k(R),miσ (R),ξ (R)). We call this model
ROI_EGPD_Full afterward.

3.3.3 ROI_EGPD_Semi model

This model follows exactly as ROI_EGPD_Full in the pre-
ceding section. The only difference is that here we retain
the regional shape parameter ξ (R) obtained from the neigh-
borhood and then estimate the two other parameters locally,
i.e., from only the data at station i. We refer to this model as
ROI_EGPD_Semi.

The semi-regional model is such that Xi ∼

EGPD(ki,σi,ξ (R)).

3.3.4 GAM EGPD model

For this spatial EGPD model, we have X(x)∼

EGPD(σ (x),k(x),ξ(x)), where x denotes some co-
variate and each of the model parameters depends on some
form of x. The relationship between the model parameter
(say α) and the covariate x is through an identity link:

α(x)= β0+

K∑
k=1

Dk∑
d=1

βkdbkd(x), (6)

where βkd and bkd are, respectively, the basis coefficients and
the basis functions.K is the number of smooths andDk is the
dimension (number of knots) for smooth k.

For the choice of spatial covariates, we use longitude, lat-
itude, and mean daily precipitation because they give a bet-
ter Akaike information criterion (AIC) (Akaike, 1974). To
fit EGPD with the GAM, we extended the functions already
available in the evgam R package (Youngman, 2020).

4 Comparison and evaluation criteria

This section presents the comparison framework and the per-
formance criteria used to compare the regional models.

4.1 Comparison framework

The evaluation framework and criteria are as proposed by
Garavaglia et al. (2011) and Renard et al. (2013). Gar-
avaglia et al. (2011) and the references therein argued that
the classical statistical goodness-of-test fits such as the
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Kolmogorov–Smirnov test (Kolmogoroff, 1941; Sminorv,
1944), the Anderson–Darling test (Anderson and Darling,
1952), and the Cramer–von Mises criterion (Cramer, 1928;
Darling, 1957) lack the ability to assess the models’ ability
to predict unobserved values and that they are also not very
efficient for three-parameter distributions.

Accordingly, we follow a split sampling procedure and a
cross-validation framework. For each station i, we used 1/3rd

of the data by choosing every third observation to reduce
temporal dependence. Then, we divide the non-zero obser-
vations into two equal sub-samples of the same length but in
different years that are randomly chosen. We call the first and
second sub-samples S(1)i and S(2)i . We then fit models F̂ (1)i

and F̂ (2)i on sub-samples S(1)i and S(2)i , respectively. We then
compute the criterion C(12)

i at station i by comparing F̂ (1)i

vs. S(2)i (i.e., a model fitted on sub-sample 1 vs. observations
in sub-sample 2). In the same way, we compute the criterion
C
(21)
i . Given that we haveN stations, and soN values of both
C
(12)
i and C(21)

i , the regional score is obtained as the average
of these scores. This procedure is repeated 50 times to obtain
50 regional averages of these indices.

4.2 Evaluation criteria

For each method, four (4) criteria C are computed. We first
judge the methods based on how they accurately fit all the
observations at each site. Next, we compare them in terms
of their robustness in extrapolation, i.e., how stable a high
quantile estimate is, depending on which sub-sample is used
in the estimate. We finally judge the performance based on
the reliability to predict rainfall maxima.

In the following paragraphs, we describe the four criteria
used for the comparison.

4.2.1 Accuracy of the whole distribution

The accuracy of the model in predicting the positive obser-
vations at a given station is given by the NRMSE (Blanchet
et al., 2019). For each site i, the positive observed values in
S
(2)
i are associated with their empirical return periods. We

then use the fitted model on S(1)i , i.e., F̂ (1)i , to estimate the
modeled quantiles associated with these return levels and fi-
nally to compute the NRMSE associated with these quan-
tiles. The normalization is by the average daily rainfall. This
score is given as

NRMSE(12)
i =

{
1
n
(2)
i

∑n
(2)
i

k=1

(
r
(2)
i,Tk
− r̂

(1)
i,Tk

)2
}1/2

1
n
(2)
i

∑n
(2)
i

k=1r
(2)
i,Tk

, (7)

where NRMSE12
i is the score computed at station i, r(2)i,Tk is

the kth observation of return period T in S(2)i , and r̂(1)i,Tk is the

corresponding T return level estimated from F̂
(1)
i . The de-

nominator 1
n
(2)
i

∑n
(2)
i

k=1r
(2)
i,Tk

is the average daily rainfall at site i.

Details on the score are given in Blanchet et al. (2019).
Finally, the regional score computed over the N stations,

i.e., NRMSE(12)
reg , is given as

NRMSE(12)
reg = 1−

1
N

N∑
i=1

NRMSE(12)
i . (8)

NRMSE(21)
reg is computed in a similar way. We thus finally

have 2× 50 values of NRMSEreg resulting from the cross-
validation in both periods. NRMSEreg = 1 means a perfect
model, and the closer the value is to 1, the more accurate the
model is.

4.2.2 Continuous ranked probability score (CRPS)

The CRPS has been used as a metric to compare the perfor-
mance of two competing probabilistic forecast models (Jor-
dan et al., 2018). It gives a combined measure of both the
spread and reliability of a forecast distribution, given the ob-
servation or outcome that is observed.

For a given observation xi,t at station i and time step t
that is contained in S(1)i , we have 50 of its quantile estimates
coming from the 50 fitted models F (2)i (models fitted with
data not containing xi,t ). If the method used to estimate all
50 models is accurate enough, then these 50 quantile esti-
mates should be similar (low spread) and very close to the
observed value xi,t . The same applies to an observation xi,t
contained in S(2)i when compared to its quantile estimates
from the 50 models of F (1)i . Thus, the CRPS of xi,t should
be low, and when applied to all the observations at station i,
the average, CRPSi , should also be low.

The CRPSi averaged over the observed data from time
steps t = 1 to t = Ti at station i is given as

CRPSi =
1
Ti

Ti∑
t=1

∫
R

{Fi,t (y)−H(y− xi,t )}
2dy, (9)

where H(z) denotes the Heaviside function that is 0 if z ≤ 0
and 1 otherwise. Fi,t (y) and xi,t are the CDF of the 50 esti-
mates and the observed value at time step t of station i, re-
spectively. Note that, for the cross-validation, if xi,t belongs
to S(1)i (S(2)i ), then Fi,t (y) will be the CDF of the 50 quan-
tile estimates of the 50 models F (2)i (F (1)i ). The smaller the
CRPS score, the better the model.

Given that we have N stations, in the end, we will have
N values of CRPS computed for each of the competing
models. This is different from the other criteria, with 50 or
100 values per model.
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4.2.3 Stability of the high quantile estimate

The robustness of a model is measured by the stability of
a high quantile estimated from two sub-samples. A robust
model should have a similar estimate of, say, a 100-year
event, when the sub-sample/calibration data are changed.
The SPAN criteria (Garavaglia et al., 2011; Blanchet et al.,
2019) give the measure of the stability of a chosen quantile
estimated from two sub-samples.

The score is computed as the absolute difference between
the two quantile estimates divided by their average and is
given as

SPANi,T =
2
∣∣∣r̂(1)i,T − r̂(2)i,T ∣∣∣(
r̂
(1)
i,T + r̂

(2)
i,T

) , (10)

where r̂(1)i,T and r̂(2)i,T are the T -year return levels estimated

from F̂
(1)
i and F̂ (2)i , respectively, at station i.

The score is computed for all the N stations, and the re-
gional score SPANreg,T is computed as

SPANreg,T = 1−
1
N

N∑
i=1

SPANi,T . (11)

In the end, we have 50 values of SPAN. A robust model
should have a SPANreg,T of 1; therefore, the closer the value
is to 1, the more stable/robust the model is.

4.2.4 Reliability in predicting the maximum observed
value

The reliability of a model is defined as its ability to associate
the correct probability with a given observation. Specifically,
the FF criteria measure the reliability of the model in pre-
dicting the maximum value in a given sample. The score is
defined as

FF(12)
i =

[
F̂
(1)
i

(
(2)

max
i

)]n(2)i
, (12)

where FF(12)
i are the cross-validation criteria computed at

station i by predicting the probability of the maximum value
in sub-sample 2, S(2)i , of sample size n(2)i using the model
F̂
(1)
i fitted on sub-sample 1, S(1)i .
According to Renard et al. (2013) and Blanchet et al.

(2015), if the model is reliable, then FF(12)
i is the realization

of a uniform distribution. Accordingly, if we compute the
score for all the stations, i.e., FF(12)

1 , . . .,FF(12)
i , . . .,FF(12)

N ,
we should end up with a set FF(12) ofN realizations of a uni-
form distribution. Blanchet et al. (2015) therefore concluded
that the area between the density of FF(12) and a uniform
density should be close to zero.

The regional score FF(12)
reg is computed as

1−AREA(FF (12)), and FF(21)
reg is computed in a simi-

lar way. The closer the value is to 1, the more reliable the

model is in prediction of the maxima. We have at the end
2× 50 values of FFreg.

5 Results

5.1 Estimated regions with RFA by upper-tail behavior

Figure 2 shows the optimal number of clusters identified for
each season. We have three clusters in the case of winter
(DJF), two in spring (MAM), three in summer (JJA), and
two in fall (SON). Notably, although the spatial coordinates
are not used, the identified clusters are somehow spatially
plausible for each season. Stations in the south are generally
in the same cluster. In the north, the stations located in the
northern rim and the Jura generally fall in the same cluster.
This is partly according to our knowledge of the spatial pat-
tern of heavy precipitation in the respective seasons. A few
stations for each season, however, appeared in clusters dif-
ferent from their neighbors.

5.2 Estimated regions with the ROI method

Figure 3 presents the neighborhoods found for each station.
In panel a is the map of Switzerland showing the stations
with the size corresponding to the size of the radius identified
and the color indicating a local fit will be done (for stations
without any neighbors) or a regional fit (for stations with at
least one neighbor). For those without neighbors, the search
sometimes terminated at a very small distance. This means
that, although they have proximate neighbors according to
the crossing distance, the homogeneity test failed. For some
stations, however, no neighbors are found. These are stations
whose closest neighbors are at large crossing distances, and
the test failed after application.

In Fig. 3b, the histogram of the neighborhood size, as well
as the average number of neighbors identified for each class,
is shown. Only a few stations reach the bound of 100 km. The
observed seasonal differences are due to the seasonality and
spatial variability of daily precipitation in Switzerland. We
recall that the identification of the regions for each station is
based on the homogeneity of the scaled extremes. The oc-
currence of these extremes and their quantity, which affects
the test of homogeneity (Evin et al., 2016), depends on the
season and hence the observed seasonal differences.

In our subsequent experiments, we keep these neigh-
borhoods and fit accordingly the model versions de-
scribed in Sects. 3.3.2 and 3.3.3, i.e., ROI_EGPD_Full and
ROI_EGPD_Semi. For all the stations without any neighbor-
hood, we simply fit a local EGPD model.

5.3 Choice of covariates in the GAM

Following the outlined methodology for the spatial model in
Sect. 3.2.3, we present in this part the choice of covariate
combinations made for the EGPD model.
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Figure 2. Maps of Switzerland showing the optimal number of clusters identified with the PAM algorithm for each season. For each season,
the regions identified are color-coded. From top left, going clockwise, DJF (two clusters), MAM (two clusters), JJA (three clusters) and SON
(three clusters).

Figure 3. Properties of the ROI identified for each station. (a) Seasonal maps showing the size of the ROI per station. For each season, the
size of the circle is proportional to the ROI size: the smallest is 0 (km), and the largest is 100 (km). The color of the circle indicates whether
a local fit is done or a regional fit. (b) Histogram of the size of the ROI identified. The red points indicate the average number of neighbors
identified for each ROI class.

We use longitude, latitude, and the mean daily precipita-
tion to explain the parameters of EGPD, that is, k, σ , and ξ .
Other covariates would be possible, but we use these ones
because they are readily available, and so estimation at un-
gauged locations would be possible. After testing different
combinations of the covariates, we use the following forms
for the relationships

k = s(m), (13)
σ = s(lon, lat)+ s(m), (14)
ξ = s(lon, lat), (15)
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Figure 4. Criteria applied to the bulk of the distribution for each season. Left: accuracy of the whole distribution as measured by the NRMSE;
each box plot contains 100 values. Right: CRPS score; each box plot contains 500 points, 1 per station.

where s(lon, lat) means a thin plate spline smooth s on the
longitude lon and latitude lat, and s(m) means a cubic spline
on the mean daily precipitation (m).

Although all three model parameters have to be positive,
we still used the identity link function to reduce the com-
plexity in the generation of the gradients of the negative like-
lihood function of the EGPD model (necessary for model fit-
ting in GAM; see Wood et al., 2016). We, however, imposed
constraints on the likelihood function to ensure that the pa-
rameters remain positive.

5.4 Model comparison

In this section, we present the results of the comparison be-
tween the competing models, as judged by the criteria in-
troduced in Sect. 4. We remind the reader that the sampling
was repeated 50 times for all the models, and so, for clarity,
we show the box plots of the criteria. Each box plot con-
tains 50 values of the criteria obtained per run in the case of
SPAN, 100 in the case of FF and NRMSE, and 500 in the
case of CRPS (500 corresponds to the number of stations in
Switzerland which the criteria were computed on).

First, the accuracy/reliability of the models in the bulk of
the distribution as measured by the NRMSE is shown on the
left of Fig. 4. The results are shown per season, and the closer
the value is to 1, the more accurate the model is. From this
result we can clearly see that, for all seasons, the two mod-
els based on ROI are the most reliable. The ROI_EGPD_Full

model (where we regionalize according to the ROI method,
all three parameters of the EGPD model) is the best model
compared to ROI_EGPD_Semi model 4 (where only the
shape parameter is regionalized but the other two parameters
are locally estimated). The performance of the other regional
models is similar, and there is no large improvement in these
models over the local EGPD model according to these crite-
ria.

The CRPS score gives a combined measure of the spread
and reliability of the competing models. A model should not
only assign the correct probabilities to the observations, but
the spread of the probabilities estimated from the different
sub-samples (100 in our case) should also be low as well. We
computed this score for all the positive observations at every
station. The best model should have the smallest score.

The plot on the right of Fig. 4 presents the seasonal box
plots for the CRPS of the five models. Each box plot consists
of 500 points, 1 per station (recall the scores are computed for
only the 500 stations located within Switzerland). From the
box plots and the medians, it is clear that ROI_EGPD_Full
has the smallest value of this score. For all seasons (except
summer), the local model has the largest score, showing that
the models offer improvement over the local model.

The stability/robustness of the estimate of a 100-year re-
turn level in between two periods as measured by the SPAN
criteria is shown on the left of Fig. 5. Obviously, all the re-
gional models show clear improvement in robustness over
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Figure 5. Criteria applied to the upper tail for each season. Left: robustness of the local EGPD and the four candidate models, as measured
by the SPAN criteria. The stability is measured with respect to a 100-year return-level estimate. Each box plot contains 50 values. Right:
reliability in prediction of the maxima as measured by the FF criteria; each box plot contains 100 values.

the local EGPD model. The spatial model (GAM_EGPD)
shows the highest robustness over all the models, except in
fall, when it is slightly overtaken by the ROI_EGPD_Full
model. The results also show that, of all four regional mod-
els, the RFA model based on the upper tail (Omega_EGPD)
has the smallest robustness. In the case of the two ROI
models, ROI_EGPD_Full is more robust compared to the
ROI_EGPD_Semi model. The former involves regionalizing
all three model parameters, while the latter involves only the
shape parameter regionalization. Looking at the two models
where only the shape parameter is regionalized, the model
based on ROI (ROI_EGPD_Semi) is more robust in all the
seasons compared to the model based on upper-tail behavior
that involves clustering (Omega_EGPD).

Finally, the FF score measures the reliability of the mod-
els in the upper tail, more precisely in the prediction of the
maximum observed value. This criterion is also optimized at
a value of 1. The plot on the right of Fig. 5 shows generally
high values of this score for all the models, indicating that
they are generally reliable in the prediction of the maximum
observed value. For all the seasons, all the regional models
appear to be more reliable compared to the local model. An
exception is however in the case of Omega_EGPD in winter
and ROI_EGPD_Semi in summer (looking at the median).
In fall and summer, the GAM_EGPD model emerges as the
most reliable. While in winter ROI_EGPD_Full is the most
reliable, ROI_EGPD_Semi is the most reliable in spring.

To conclude, we present an overall summary of the results
in Table 2 by focusing on the median of the box plots. We
also show the map of the seasonal 100-year return level pre-
dicted with the ROI_EGPD_Full model in Fig. 6. The maps
reveal a clear seasonality and spatial pattern. Ticino in the
south is subject to the highest levels, especially in the fall,
where up to 400 mm can be expected.

6 Conclusions and discussion

The objective of this contribution was to compare three meth-
ods to improve the at-site estimates of daily precipitation.
By considering a dense network of 1176 stations mainly lo-
cated in Switzerland, we compared methods based on differ-
ent philosophies to regionalize the estimation of daily precip-
itation. The first method defines homogeneous regions based
on their upper-tail similarity. No covariate is used in the de-
lineation of regions, but only the precipitation data at hand.
The second method avoids defining “hard” clusters but as-
sumes that every station has its homogeneous region that can
be identified using homogeneity tests. The third method is
spatially based, so all the data are used to estimate smooth
and flexible surfaces for the model parameters. Pooling the
data to estimate the surfaces thus ensures sharing of infor-
mation between stations. Using these methods, we built four
regional EGPD models and compared them. The comparison
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Table 2. Summary of the comparison results from the four criteria used. For each season and criterion, the model with the highest median is
shown. In the case of the CRPS score, however, the model with the smallest median CRPS is shown.

Season NRMSE CRPS SPAN 100 FF

Winter ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD ROI_EGPD_Full
Spring ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD ROI_EGPD_Semi
Summer ROI_EGPD_Full ROI_EGPD_Semi GAM_EGPD GAM_EGPD
Fall ROI_EGPD_Full ROI_EGPD_Full ROI_EGPD_Full GAM_EGPD

Figure 6. Map of Switzerland showing the 100-year return level for the four seasons as predicted with the ROI_EGPD_Full model.

is based on the accuracy, robustness, and reliability of the
models in a cross-validation framework. More precisely, we
assessed the performance in both the bulk of the distribution
(NRMSE and CRPS) and the upper tail (SPAN and FF).

In contrast to most comparative studies of regionalization
approaches that focused on extreme distributions (GEV or
POT), we assumed the daily data to follow the EGPD. This
distribution can adequately model the full spectrum of pre-
cipitation intensities. It has the elegant property of being
EVT compliant in both the upper and lower tails while pro-
viding for a smooth transition in between.

The results showed that regionalization offers improve-
ment in robustness and reliability even in the case of a full-
scale model (EGPD) that includes all the data in the estima-
tion of its parameters.

From the four criteria used, the performance depends on
the season, but we can still draw the following conclusions.

– In terms of the reliability/accuracy over the whole distri-
bution, the ROI model (ROI_EGPD_Full), with all pa-
rameters regionalized, emerged as the most accurate.

– Reliability in the prediction of the maxima, as measured
by FF, indicated that the GAM is the most reliable, espe-
cially in the seasons with the heaviest rainfall (summer
and fall).

– The GAM emerged as the most robust (SPAN) and is
followed closely by the ROI model (ROI_EGPD_Full).

In conclusion, two models compete hand in hand: the
ROI model (ROI_EGPD_Full) and the GAM. When we fo-
cus on the bulk of the distribution (NRMSE and CRPS),
ROI_EGPD_Full is the best model. When we however focus
on the far tail (FF and SPAN), the GAM is the best. As Gar-
avaglia et al. (2011) pointed out, the two properties of relia-
bility and robustness are complementary. For two models of
similar reliability, the model with the best robustness should
be preferred. Given this, the GAM on EGPD, combining both
properties in the upper tail, can be said to be the preferred
method. We note, however, a major drawback of the GAM.
It requires significant computational time as compared to the
ROI, especially in our case, where we have a dense network
(1176 stations) with long series (up to 156 years for some
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stations), and we use all the positive precipitation. In prac-
tice, thus, it would be much easier to use ROI compared to
the GAM, given that the performance of both is similar and
the former is more reliable when we consider the whole dis-
tribution (a feature of interest in our case), not only maxima.

It is worth noting that, in the course of the present study,
we focused our evaluation at the station level, where we have
observations. A further step will be to assess the models more
generally by looking at their performance at ungauged lo-
cations in spatial cross-validation as done by Blanchet and
Lehning (2010), Carreau et al. (2013) or more generally the
framework proposed by Blanchet et al. (2019). In this re-
spect, the spatial model based on the GAM offers a key ad-
vantage over the other methods since it inherently results in
a regional model that can be applied everywhere. In the case
of the other methods, however, the step of choosing the ap-
propriate interpolation technique has to be considered. It is
also worth mentioning the inherent drawback of conventional
RFA approaches involving “hard” clustering, in this case the
Omega_EGPD model. They are known to produce abrupt pa-
rameter shifts (in our case, the shape parameter) along the
boundaries of the contiguous regions. Again, estimation at
ungauged locations between two homogeneous regions with
a significant difference in the regional shape parameter will
be a difficult decision. The method of ROI however circum-
vents some of the drawbacks of the conventional RFA ap-
proach.

Finally, our approach also assumed the spatial indepen-
dence of the observations. This assumption will however not
be true, especially since we have considered all the positive
precipitation. We however expect the benefit of the regional
approach to outweigh the consequences of ignoring the spa-
tial dependence (Hosking and Wallis, 1988), especially since
our interest is in the marginal distribution only (Zheng et al.,
2015). An interesting aspect is also to improve the method
based on omega (see 3.2.1) to take into account both the mar-
gins and the dependence between sites.
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