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Climatic and Morphometric
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Changes in the Andes (8–55°S): New
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Over the last decades, glaciers across the Andes have been strongly affected by a loss of
mass and surface areas. This increases risks of water scarcity for the Andean population
and ecosystems. However, the factors controlling glacier changes in terms of surface area
and mass loss remain poorly documented at watershed scale across the Andes. Using
machine learning methods (Least Absolute Shrinkage and Selection Operator, known as
LASSO), we explored climatic and morphometric variables that explain the spatial variance
of glacier surface area variations in 35 watersheds (1980–2019), and of glacier mass
balances in 110 watersheds (2000–2018), with data from 2,500 to 21,000 glaciers,
respectively, distributed between 8 and 55°S in the Andes. Based on these results and by
applying the Partitioning Around Medoids (PAM) algorithm we identified new glacier
clusters. Overall, spatial variability of climatic variables presents a higher explanatory
power than morphometric variables with regards to spatial variance of glacier changes.
Specifically, the spatial variability of precipitation dominates spatial variance of glacier
changes from the Outer Tropics to the Dry Andes (8–37°S) explaining between 49 and 93%
of variances, whereas across theWet Andes (40–55°S) the spatial variability of temperature
is the most important climatic variable and explains between 29 and 73% of glacier
changes spatial variance. However, morphometric variables such as glacier surface area
show a high explanatory power for spatial variance of glacier mass loss in some
watersheds (e.g., Achacachi with r2 � 0.6 in the Outer Tropics, Río del Carmen with r2

� 0.7 in the Dry Andes). Then, we identified a new spatial framework for hydro-glaciological
analysis composed of 12 glaciological zones, derived from a clustering analysis, which
includes 274 watersheds containing 32,000 glaciers. These new zones better take into
account different seasonal climate and morphometric characteristics of glacier diversity.
Our study shows that the exploration of variables that control glacier changes, as well as
the new glaciological zones calculated based on these variables, would be very useful for
analyzing hydro-glaciological modelling results across the Andes (8–55°S).
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1 INTRODUCTION

The Andes contain the largest concentration of ice in the
southern hemisphere outside the Antarctic and its periphery
(RGI Consortium, 2017). Andean glaciers have been affected
by an almost continuous negative mass balance and consecutive
shrinkage since the middle of the 20th century (Rabatel et al.,
2013; Zemp et al., 2019). Despite considerable efforts in recent
years regarding quantifications of glacier changes (e.g., Meier
et al., 2018; Braun et al., 2019; Dussaillant et al., 2019; Seehaus
et al., 2019, 2020), there is still much to investigate in order to
analyze the controlling factors of these changes and to determine
the hydrological significance of this glacier surface and mass loss
on fresh water resources (e.g., Vuille et al., 2018; Masiokas et al.,
2020). A better understanding of glacier changes across the Andes
could contribute to anticipate and mitigate the related
consequences and hazards at watershed scale, for instance in
terms of water supply for roughly 45% of the population in
Andean countries (Devenish and Gianella, 2012) and for
ecosystems (Dangles et al., 2017; Zimmer et al., 2018; Cauvy-
Fraunié & Dangles, 2019), primarily during the dry season (Mark
et al., 2005; Baraer et al., 2012; Soruco et al., 2015; Guido et al.,
2016; Ayala et al., 2020).

Glaciological studies carried out on a limited number of
glaciers in the Outer Tropics (8–17°S) have underlined that
atmospheric warming is an important control on the current
glacier change mainly through the precipitation phases and
consecutive albedo effect (Favier et al., 2004; Rabatel et al.,
2013). The surface area and elevation of glaciers are
morphometric variables that have also been identified to
modulate the magnitude of glacier mass loss (e.g., Rabatel
et al., 2006, 2013; Soruco et al., 2009). In the Southern Andes
(17–55°S), studies focusing on long-term behavior of glaciers
(i.e., since the mid-20th century) highlight a high correlation
between precipitation and glacier mass balance in the Dry Andes
(Rabatel et al., 2011; Masiokas et al., 2016; Kinnard et al., 2020),
and with temperature in the Wet Andes (Masiokas et al., 2015;
Abdel Jaber et al., 2019; Falaschi et al., 2019). These variables,
primarily temperature and precipitation, have been widely used
across the Andes to simulate glacier changes and related
hydrological contribution through conceptual and physically-
based hydro-glaciological models from a local scale to the
scale of the Andes (Sicart et al., 2008; Ragettli and Pellicciotti,
2012; Huss and Hock, 2015, 2018; Soruco et al., 2015; Ayala et al.,
2016, 2020; Bravo et al., 2017; Mernild et al., 2018; Burger et al.,
2019; Shaw et al., 2020).

However, these studies did not quantified the relevance of
morphometric variables to estimate glacier changes such as
elevation and aspect, or glacier surface area and slope; these
variables have already been significantly correlated to glacier
changes in studies either dedicated to the Tropical and
Southern Andes (e.g., Soruco et al., 2009; Rabatel et al., 2011)
or in other mountain ranges (e.g., Rabatel et al., 2016; Brun et al.,
2019; Bolibar et al., 2020; Davaze et al., 2020). In addition,
simulations of glacier changes are traditionally conducted
using geodetic mass balance products and few in situ glacier
measurements available for calibration/validation purposes.

However, glacier surface area changes are not frequently
considered in hydro-glaciological simulations (e.g., Ayala et al.,
2020; Baraer et al., 2012) and therefore this represents a source of
uncertainty in long-term simulations of glacier changes and
related impacts.

Currently, several glaciological datasets are available across the
Andes thanks to local and international initiatives. Products
estimating the geodetic glacier mass balance (GMB) for the
whole Andes were recently published (Braun et al., 2019;
Dussaillant et al., 2019), while glacier inventories have been
made freely available (ANA, 2014; DGA, 2014; IANIGLA-
CONICET, 2018; Seehaus et al., 2019, 2020). At the Andes
scale, Dussaillant et al. (2019) estimated a negative GMB of
−0.72 ± 0.22 m w.e. yr−1 (2000–2018), with most negative
values in Patagonia (−0.86 ± 0.27 m w.e. yr−1) followed by the
Outer Tropics (−0.42 ± 0.23 m w.e. yr−1), compared to moderate
losses in the Dry Andes (−0.31 ± 0.19 m w.e. yr−1). Similar results
were observed by Braun et al. (2019) for the Patagonian glaciers
(0.91 ± 0.08 m w.e. yr−1) over a slightly shorter period
(2000–2011/2015). Both works used version 6.0 of the
Randolph Glacier Inventory (RGI Consortium, 2017) to map
glacier outlines for GMB estimations, which includes fewer
glaciers compared with national inventories (Zalazar et al.,
2020). Conversely to GMB, no product is available for the
whole Andes for glacier area variation (GAV). However, many
studies have pointed out a negative GAV at a multidecadal time
scale across all glacierized regions from the Outer Tropics to
Tierra del Fuego (8–55°S). For example, Seehaus et al. (2019,
2020) observed an average GAV of -29% (±1.8% a−1)
(2000–2016) in the Outer Tropics. In the Dry Andes, an
average GAV of -29% (1955–2007) was estimated in the
Desert Andes (Rabatel et al., 2011), similar to that observed by
Malmros et al. (2016) in the Central Andes (average of −30 ± 3%,
1955–2014). However, a sharp contrast was observed in the Wet
Andes, where the Lakes District shows a GAV between -87%
(1975–2007) and -20% (1961–2007) on different volcanoes
(Rivera and Bown, 2013), in the North Patagonia this
reduction was -25% (1985–2011, Paul and Mölg, 2014), and
from the Northern Patagonian ice-field to Tierra del Fuego,
Meier et al. (2018) estimated an average GAV of -9 ± 5%
(1986–2016) including several exceptions of glacier advance,
e.g., Glacier Pio XI in the Southern Patagonian ice-field (Hata
and Sugiyama, 2021; Rivera and Casassa, 1999; Wilson et al.,
2016).

In the present study, our goal is to identify the main climate
and morphometric variables that explain the spatial variance of
glacier changes across the Andes (8–55°S) using GAV over the
1980–2019 period and GMB over the 2000–2018 period. Our
approach is based on machine learning tools. The main
explanatory variables of GAV and GMB will be identified at
watershed scale using the Least Absolute Shrinkage and Selection
Operator (LASSO) linear regression algorithm (Tibshirani, 1996),
which has shown good results at glacier scale in the Alps (Bolibar
et al., 2020; Davaze et al., 2020). These results will be used to
determine new glaciological zones (hereafter named “clusters”)
across the Andes, composed of glacierized watersheds with
similar morphometric and climatic characteristics. This
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clustering will be performed via the Partitioning AroundMedoids
(PAM) algorithm (Kaufman and Rousseeuw, 2008). We therefore
propose an alternative to the glaciological zones used to date
(hereafter named “classic zones”) based mainly latitudinal ranges
(Barcaza et al., 2017; Dussaillant et al., 2019; Lliboutry, 1998;
Masiokas et al., 2009; Sagredo and Lowell, 2012; Troll, 1941;
Zalazar et al., 2020), and we provide a hydro-glaciological analysis
framework based on the explanatory variables of glacier changes
spatial variance across the Andes.

Section 2 presents the material and methods used here. In
Section 3, we describe glacier changes (GAV andGMB) and show
results regarding the controlling factors of glacier change at
watershed scale and cluster scale across the Andes. Finally, in
Section 4 we discuss our results and advantages associated with
carrying out future glacier change simulations.

2 MATERIALS AND METHODS

2.1 Glacier Area Variation Across the Andes
2.1.1 Collected Glacier Inventories
Glacier inventories have been published since 1950-60s with
several updates in Perú, Bolivia, Chile and Argentina. For this
current work, we collected data from national institutions,
published studies, and the international GLIMS initiative
(Raup et al., 2007). All collected glaciers inventories are listed

in Table 1 (Supplementary Figure S3). Glacier outlines were
delineated based on aerial photographs and satellite images using
visual identification (manual mapping) or by applying an
automatic identification for the most recent inventories based
on satellite data. In the latter case, automatic delineations were
adjusted by visual checks and manual correction whenever
needed. In many cases, remote sensing approaches were
completed by several field campaigns for in situ verifications.
These inventories can contain either one glacier outline per
glacier (mono-temporal inventories) or several outlines from
different years for each glacier (multi-temporal inventories).
They have different spatial scales, from specific watersheds to
national and multinational extensions.

2.1.2 Glacier Inventories Merging
Based on the most recent glacier inventories made by a
government initiative in Perú, Chile and Argentina (ANA,
2014; DGA, 2014; IANIGLA-CONICET, 2018), which are
hereafter called the national glacier inventories (NGIs), and
the Seehaus et al. (2020) glacier inventory in Bolivia. For
Argentina, we do not consider some missing glaciers outlines
in the inventory (without polygons), located in the Patagonian
ice-field, due to this, the total glacierized area will decrease. It was
possible to generate a merged product with glacier outlines from
these four Andean countries, where each glacier has an identifier
(ID). This ID allows to extract information from each glacier,

TABLE 1 | List of different glacier inventories is used to generate the multi-temporal glacier surface areas dataset across the Andes between 8–55°S.

Country Location,
watersheds

Latitude
range

Year
range

Total
glacier
surface
area
[km2]

Glacier
number

Type
of resource

Delineation
technique

References

Perú Across Perú 8.2–15.8°S 1955–1962 2,487 3,331 O M Hidrandina (1989)
Across Perú 8.3–16.2°S 2005–2012 1,299 2,679 S A + M ANA (2014)
Across Perú 8.4–18.4°S 2000–2016 4,901* 5,835* S A Seehaus et al. (2019)
Across Perú 8.4–15.9°S 2016 1,118 2,259 S A + M INAIGEM (2018)

Bolivia Cordillera Real 16.1–16.3°S 2006 23 86 S M Soruco et al. (2009)
Cordillera Real 15.8–17.1°S 2000–2016 730* 976* S A Seehaus et al. (2020)

Chile Maipo 33.1–34.3°S 1955–1976 626 1,466 O M Marangunic (1979)
Cachapoal watershed 34.3–34.7°S 1955 323 273 O M Caviedes (1979)
Tinguiririca watershed 34.6–34.9°S 1955 166 312 O M Valdivia (1984)
Atacama 18.4–29.8°S 1955–1976 54 11 O M Garín (1987)
Isla Riesco 53.2°S 1984 20 17 S A + M Casassa et al. (2002)
Gran Campo Nevado 52.6–53.1°S 1998 254 75 O + S A + M Möller et al. (2007)
Copiapó 27.7–28.6°S 2002 23 92 O + S A + M Vivero (2008)
North and volcanoes 29.3, 37.9–41.2°S 1961–2011 123* 103* O + S A + M DGA (2011)
Volcanoes 35.2–41.1°S 1961–2011 83* 163* O + S A + M Rivera & Bown (2013)
Across Chile 17.6–55.4°S 1996–2009 23,641 24,109 O + S A + M DGA (2014)

Barcaza et al. (2017)
North of Chile 26.5–29.7°S Until 2015 95 884 S A + M García et al. (2017)
Olivares watershed 32.9–33.5°S 1955–2013 1,289* 428* O + S A + M Malmros et al. (2016)
Maipo 33.1–34.3°S 2018 366 1,232 S A + M AMTC (2019)

AR Across Argentina 22.1–54.9°S 2004–2015 5,749 17,957 O + S A + M IANIGLA-CONICET (2018)
Zalazar et al. (2020)

CL and AR Patagonia and Tierra del Fuego 45.5–55.5°S 1984–2017 117,216* 41,062* S A Meier et al. (2018)
PE, BO and CL PE, BO and CL 8.8–55.3°S 1955–2011 107,245* 35,950* O + S A + M GLIMS (Raup et al., 2007)

Country code: AR, Argentina; CL, Chile; PE, Perú; BO, Bolivia.
Type of document: O, Orthophotographs; S, Satellite images. Delineation technique: A, automatic; M, manual.
*Multitemporal glacier surface area inventory.
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such as: coordinates of the centroid, glacier surface areas (and
corresponding dates), elevation (maximum, minimum and
mean) and aspect (Degree). The slope variable (Degree) was
extracted for each glacier from the Shuttle Radar Topography
Mission (SRTM) v4.1 product with a pixel size of 100 m (Farr
et al., 2007). Here, the surface slope of all glaciers was estimated
with the DEM in order to have values quantified in the same way,
since no slope data are available for some inventories.

The following procedures and limitations were applied: 1) the
glacier inventories were processed in the World Geodetic System
(WGS84) and the slope data was extracted using Universal
Transverse Mercator (UTM) coordinate system; 2) a glacier is
considered to be a polygon found entirely within a single
watershed, so that the same glacier cannot be located in two
or more watersheds; and 3) rock glaciers and debris-covered
glaciers were not considered.

2.1.3 Glacier Area Variation Algorithm
The multi-temporal glacier surface areas dataset (Table 1) is used
to apply a linear regression for each glacier (surface area � f
(time)), where glacier areas per each year until 2018 were used. In
order to have a homogeneous dataset across the Andes, we
consider the surface area changes over the 1980–2019 period
from linear regression of multi-temporal glacier surface areas
(glacier outlines) identified in the national glacier inventories. For
each glacier, we obtained the slope of linear regression and a
coefficient of determination that are both used to evaluate the
regressions. After that, we only retain the glaciers that meet the
following criteria:

- Glaciers are assumed to show a reduction in the surface area
since 1980 up to 2019 (Malmros et al., 2016; Meier et al., 2018;
Rabatel et al., 2011; Rivera and Bown, 2013; Seehaus et al.,
2019, 2020; Soruco et al., 2009). Therefore, we keep the glaciers
for which the linear regression slope between the glacier
surface area and date (year) is negative. A positive slope
can be found due to differences in the method used to
identify glacier outlines, given that all inventories did not
use the same criteria to define accumulation zone limits. An
example of a positive slope is observed in the Patagonian ice-
fields from Meier et al. (2018) in comparison with the Chilean
glacier national inventory (Barcaza et al., 2017; DGA, 2014).
Another reason for the positive slope is the source date of
certain inventories, since discrepancies were observed between
the Chilean and Argentine national glacier inventories versus
the GLIMS inventory data.
- Taking the above information into account, glaciers that
show a positive linear regression slope or a negative slope with
r2 < 0.7 are removed.
- Subsequently, when looking at the values of the linear
regression slope (GAV rates by year), we identified high
GAV rates for some glaciers. For example, if a glacier with
a surface area of 3 km2 shrinks to 0.01 km2 within a 1-year
interval (i.e., a reduction of 99.7%, which is very unlikely) the
slope of resulting linear regression is -2.99 km2 yr−1. Due to the
above, such glaciers with a linear regression slope lower than -1
were considered as outliers and consequently discarded.

- Large glaciers associated with the Patagonian ice-fields that
are calving were filtered out. This criterion was chosen because
most of the contours of these glaciers show high differences in
accumulation zones, where we cannot discriminate if glacier
reduction is for differences in accumulation zones or for
frontal retreat. In addition, for these glaciers, the water
temperature is an important calving process (Sakakibara
et al., 2013; Sakakibara and Sugiyama, 2014), that we have
not considered in our study.

These filters allowed to obtain GAV data for 4,865 glaciers out
of a total of 9,229 glaciers analyzed, where the average number of
data used per glacier for estimate GAV was four outlines
(polygons). The mean statistical significance (p-value) of GAV
was < 0.001.

2.2 Glacier Mass Balance
The average annual glacier-wide mass balance for each glacier
was recalculated for the 2000–2018 period from the glacier
change elevation produced by Dussaillant et al. (2019) using
ASTER stereo images and applying the ASTERiX methodology.
In contrast with Dussaillant et al. (2019), who used the Randoph
Glacier Inventory (RGI Consortium, 2017) to calculate the
glacier-wide mass balance, we used glacier outlines from the
national glacier inventories compiled for Perú, Bolivia, Chile and
Argentina (8–55°S). The specific glacier mass balance (mb) was
estimated using the glacier surface elevation change by cell (∼30 ×
30 m) and a glacier ice density of 900 kg/m3 (Cuffey and Paterson,
2010). Finally, in order to obtain a comparative indicator of mass
change we calculated the glacier mass balance per glacier (GMBn)
as the addition of mb (Eq. 1).

GMBn � ∑
n

i�1
mbi (1)

In addition, we did not extrapolate the glacier change elevation
for data gaps which occur in some glaciers of the Patagonian ice-
fields. The mass balance uncertainty per glacier was estimated
using the random error methodology that considers uncertainties
on surface elevation change, glacierized area and the volume to
mass conversion factor (Brun et al., 2017). In the supplementary
material, the GMB derived by Dussaillant et al. (2019) and the
ones from the present study are compared considering 1°

latitudinal ranges.

2.3 Terra Climate Dataset
The TerraClimate dataset comprises a global dataset based on
reanalysis data since 1958, with a 4 km grid size at a monthly time
scale. This dataset was validated with the Global Historical
Climatology Network using 3,230 stations for temperature (r �
0.95; mean absolute error 0.32°C) and 6,102 stations for
precipitation (r � 0.90; mean absolute error 9.1%) (Abatzoglou
et al., 2018). Here, variables such as the mean temperature,
maximum temperature, minimum temperature and
precipitation were processed. Based on these four variables, we
calculated monthly averages for the periods 1980–2019 and
2000–2018, resulting in 36 (except mean temperature) and 48
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climate variables, respectively. These variables were extracted for
each grid cell where a glacier was found.

A monthly scale was necessary in order to be able to consider
the seasonal differences across the Andes. Most of the glaciers are
contained in a single TerraClimate cell, however, for the large
glaciers of the Patagonian ice-fields, we only consider cells that
encompass the centroid of those glaciers. Mean temperature was
estimated from the maximum and minimum monthly
temperatures. The mean temperature was not considered for
the GAV analysis because the LASSO method should not have
more variables than glaciers as samples in linear regression.
Below, we show that smallest number of samples by watershed
are 35 glaciers for the GAV analysis. For precipitation, we
consider snowfall and rainfall together, i.e., we do not perform
a phase discrimination using a temperature threshold.

2.4 Explanatory Variables of GAV and GMB
2.4.1 Data Pre-processing and Watershed Delineation
Morphometric and climate variables extracted from the national
glacier inventories and TerraClimate dataset allowed to create
two matrices for GAV (1980–2019) and GMB (2000–2018),
respectively. The spatial domain at which the GAV and GMB
analyses are carried out is the watershed. The watersheds were
estimated using the ArcGis v10.6 software. The SRTM v4.1
product with a 100 m resolution (Farr et al., 2007) allowed
estimating watershed contours by means of the flow direction
and accumulation modules. For the Chilean Patagonian islands,
we used the watershed classification provided by the Dirección
General de Aguas of Chile (Benítez, 1978). Overall, we identified
274 watersheds with a surface area ranging from 260 to 8,095 km2

(mean 2,058 ± 1,271 km2), with a glacierized surface area > 0.01%
and hosting at least 10 glaciers. Each watershed has an
identification (ID) associated with the glacier central
coordinates (centroid).

2.4.2 Explanatory Variables Estimation Using the
LASSO Method
Correlations between variables with respect to GAV and GMB for
each glacier at watershed scale were estimated through LASSO
(Tibshirani, 1996) on at least 35 and 50 glaciers by watersheds for
GAV and GMB, respectively. This consideration is associated
with the existence of glacier change data inside of each watershed,
and because LASSO needs a sample minimum greater than a
number of predictive variables of GAV and GMB. Recently,
Bolibar et al. (2020) and Davaze et al. (2020) have shown
satisfactory results using this algorithm in the Alps but at
glacier scale and using temporal series. Classical linear
regression methods calculate a coefficient values that maximize
the r2 value andminimize the error using all available explanatory
variables, which results in a high variance and low bias model.
The LASSO algorithm trades some of variance with bias to reduce
the predictive error and to discard variables that do not explain a
sufficient amount of variance in data. To reduce the prediction
error, the cross-validation (CV) method is applied, which allows
to select an optimal value of lambda penalty parameter. It consists
of choosing a set of values for lambda where the error is calculated
for each value and lambda value that gives least error is chosen.

Afterward, the model is used with a chosen lambda value. We
used the package “glmnet” in R to implement the LASSO
algorithm (Friedman et al., 2010; Simon et al., 2011),
considering 80% of data for training and remaining 20% to
evaluate the error at watershed scale. Because no test method
exists yet to evaluate the LASSO algorithm performance
(Lockhart et al., 2015), we used the root mean square error
(RMSE) derived from the LASSO algorithm to evaluate the
results and we implemented the p-value test from the multiple
linear regression method (MLR) to evaluate statistical
significance of variables selected by the LASSO algorithm.

Additionally, to analyze the explanatory variables contribution
of GAV and GMB at cluster and classic zone scales, we group the
monthly climate variables selected by the LASSO algorithm to a
single one, where the percentage of variance explained by each
monthly variable will be combined. For example, OT3 (with data
from seven watersheds for GMB) groups 25 values of
morphometric and monthly climate variables, repeating some
variables between watersheds, but identifying 15 unique variables
for the whole cluster. In each watershed, the sum of each
variable’s value contributes 100% to the explained variance
(r2). Subsequently, the percentages of repeated climatic
variables are added where, for example, monthly values of PJul
present in three watersheds (three values) will be added and called
PJul. As a result, the 25 variables’ value become 15 and when
added together contribute 100% of the explained variance. In
summary, precipitation variables (composed of 9 monthly values)
contribute 82% to the GMB variance in OT3, followed by slope
(13%), surface area (2%), and other variables (3%).

2.5 Clustering Analysis to Define New
Glaciological Zones Derived From the
Explanatory Variables of GAV and GMB
A clustering analysis is used to group together glacierized
watersheds with similarities by taking the relevant
morphometric and climate variables of the GAV and GMB
analysis into account. In order to do this, we use the
Partitioning Around Medoids (PAM) algorithm (Kaufman and
Rousseeuw, 2008), and the Hopkins and Gap statistical methods
were used to estimate clustering tendency and optimal number of
clusters, respectively (Lawson and Jurs, 1990; Tibshirani et al.,
2001). We used the package “cluster” in R to implement the PAM
algorithm (Maechler et al., 2021), organizing variables in columns
and watersheds in rows to run the PAM algorithm and all
subsequent tests. The Hopkins method shows a value of 0
when a dataset is optimal for performing a clustering analysis,
whereas a value of 1 shows that data is already clustered. We used
this test to show the high diversity between glacierized watersheds
across the Andes. In hydrology, homogeneous hydro-
meteorological regions are commonly identified using a
clustering analysis to transfer information toward ungauged
watersheds, assuming a similarity approach. For example, the
fuzzy clustering algorithm uses climate variables to determine
homogeneous regions (Hall and Minns, 1999; Dikbas et al., 2012;
Sahin and Kerem, 2012; Bharath and Srinivas, 2015; Matiu et al.,
2020). Sometimes, geomorphological variables are also
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considered (e.g., Pagliero et al., 2019). Inside the fuzzy clustering
algorithm, the PAM algorithm divides a dataset into groups
where each one is represented by one of data points in the
group. These points are called a medoids cluster, which is an
object within a cluster for which average difference between it and
all other clustering members is minimal (Kaufman and
Rousseeuw, 2008; Lee et al., 2020). This method, using
k-medoids, represents an improvement on the k-means
algorithm; it is less sensitive to outliers because it does not use
an average as central object (Arora et al., 2016; Lee et al., 2020).
Finally, explanatory capacity of each variable in the GAV and
GMB represented variances is given for each watershed and then
at cluster scale.

Considering the sensitivity of the watersheds to cluster
assignment by the PAM algorithm, we performed a sensitivity
analysis associated with the removal of variables or group of
variables and also by changing the variable values. Considering
1,000 iterations of the PAM algorithm, in each iteration, different
variables were removed from the dataset. For example, monthly
Tmax, then monthly Tmin and after monthly precipitation were
excluded, then morphometric variables were also excluded one by
one. On the other hand, in each new iteration the variable values
were increased or decreased considering factors between 0.9 and
1.1. Factor values were random for each variable associated with a
watershed and were updated for each new iteration. The
evaluation was conducted using 274 watersheds and

considering comparisons between the PAM runs (the most
frequent assignment of a cluster to a watershed) using: 1) only
climatic variables, 2) only morphometric variables, and 3)
morphometric and climatic variables (removing one variable
or a group of variables at each PAM iteration), in relation to
each single PAM run removing one morphometric variable or a
group of climatic variables. This means that each single PAM run
removing one morphometric variable or a group of climatic
variables were evaluated with regards to (i), (ii), and (iii)
through the coefficient of determination.

2.6 Methodological Workflow
This section considered the next overall steps: In step 1) “Glacier
area variations 1980–2019”, the glacier inventories used to
identify each glacier and how its surface area has changed are
used. The morphometric variables (surface area, elevation and
aspect) are extracted from these inventories and from SRTM data
(slope). In step 2) “Glacier mass balance 2000–2018,” the
procedure used to obtain glacier mass change data based on
the ASTERIX product (e.g., Dussaillant et al., 2019) is applied. In
step 3) “Morphometric-climatic variables matrix”, the monthly
climate values (precipitation and temperature) are extracted and
implemented in a matrix with the morphometric variables. In
step 4) “Explanatory variables of GAV (4a) and GMB (4b)”, the
matrix of variables is used to derive relationships to explain GAV
and GMB through the LASSO algorithm. In step 5) “Clusters”, a

FIGURE 1 | The workflow to obtain the explanatory variables of the glacier area variation (GAV) and glacier mass balance (GMB) spatial variances is presented. The
final results are used to estimate clusters between 8–55°S using the explanatory variables of glacier changes. The numbers from 1 to 5 refer to the 5 steps described in
the text.
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clustering analysis is carried out based on the explanatory
variables of GAV and GMB.

Figure 1 illustrates the methodological workflow used in this
study. It is composed of five steps that are first used to identify the
explanatory variables for GAV over the 1980–2019 period and
GMB over the 2000–2018 period. Then, the workflow allows to
cluster watersheds based on the explanatory variables of recent
glacier changes from the Outer Tropics to Tierra del Fuego
(8–55°S).

3 RESULTS

3.1 Morphometric and Climate Settings
From the national glacier inventories, we considered and
identified 44,853 glaciers with a total glacierized area of
29,387 km2 between 8 and 55°S. Of this glacierized surface
area, 95% (33,000 glaciers, 27,793 km2) corresponds to free-
of-debris glaciers, while 3% (10,881 glaciers, 1,041 km2) are
rock glaciers (not considered in this study) and 2% (972
glaciers, 552 km2) are debris-covered glaciers (not
considered in this study). Within the studied countries,
Chile has the largest glacierized area comprising 78% of the
total, followed by Argentina (16%), Peru (5%) and Bolivia
(1%). Due to data lacks on glacier outlines of the Southern
Patagonian Icefield (on the Argentinean side mainly), these
were not considered in this analysis. Therefore, our final
sample contains 85% (31,963) of glaciers covering 71%
(24,888 km2) of the glacierized surface area across the
Andes identified here.

Following the classic zones defined based on former studies
(Troll, 1941; Lliboutry, 1998; Masiokas et al., 2009; Sagredo and
Lowell, 2012; Barcaza et al., 2017; Dussaillant et al., 2019; Zalazar
et al., 2020), 72% of the glacierized area are concentrated in South
Patagonia and North Patagonia between 42 and 53°S, where
glaciers have a mean elevation of 1,560 m a.s.l. The Tierra del
Fuego zone (53–55°S) concentrates 14% of the glacierized area
with amean elevation of 830 m a.s.l. The longest latitudinal extent
north of the North Patagonia include zones from the Outer
Tropics to the Lakes District (8–42°S) which only contains
14% of the glacierized area. Along this extent (8–42°S), the
Outer Tropics (8–17°S) and the Central Andes (30–37°S) zones
contain 6% of the glacierized area each. The highest mean
elevations of glaciers are found in the Desert Andes (5,575 m
a.s.l.) followed by the Outer Tropics (5,177 m a.s.l.).

From a climatic point of view, the mean annual temperature
over the 1980–2019 period at glacier elevation tend to decrease
from the Outer Tropics (3.2°C) to the Central Andes (-2.7°C).
Southward of the Lakes District, the mean annual temperature
increases (5.4°C) above the values found in the north and then
decreases toward Tierra del Fuego (3.8°S). With regards to
precipitation, the mean annual amount decreases from the
Outer Tropics (912 mm yr−1) to the Dry Andes (151 mm yr−1),
from where it increases to Southern Patagonia (1,770 mm yr−1).
Southward, Tierra del Fuego shows a lower amount of
precipitation, even less than the Lakes District
(1,105 mm yr−1). In addition to observed morphometric and

climatic differences between the classic zones, it is also possible
to identify major differences inside these zones at grid scale (1 × 1°)
as shown in the supplementary material (Supplementary Figure
S1 and Supplementary Figure S2).

3.2 Glacier Surface and Mass Loss
Across the Andes between 8 and 55°S, the mean GAV was
estimated to be -31.2 ± 0.6%. This was quantified from data
available on 21% (5,160 km2) of the glacierized area across the
Andes (Figure 2A). The Outer Tropics showed a reduction of
−41 ± 0.01% whereas a reduction of −30 ± 0.6% was found for the
Southern Andes. For these two regions, these estimates are based
on 50 and 19% of the glacierized area, respectively. In the
Southern Andes, the Desert Andes (17–30°S) shows the largest
shrinkage (−53 ± 0.002%), followed by the Central Andes
(30–37°S) with a GAV of −39 ± 0.01%. In the Wet Andes
(37–55°S), the Lakes District shows a GAV of −52 ± 0.1%,
followed by North Patagonia (−32 ± 1.3%), South Patagonia
(−28 ± 1.4%) and Tierra del Fuego (−24 ± 0.4%). For these GAV
estimates, the proportion of glacierized area considered varies
from one zone to another, comprising 23% of the glacierized area
in the Central Andes, 20 and 13% in North and South Patagonia,
respectively, and 33% in Tierra del Fuego. In smaller glacierized
zones of the Andes (representing 2% of the total), GAV estimates
for the Desert Andes and the Lakes District is based on 13% of the
glacierized area. Regarding GAV statistical significance, the mean
p-value was < 0.001. However, 11 of 48 latitudinal ranges from 8
to 55°S showed p-values > 0.05. These are located at 12–14°S,
15–16°S, 18°S, 36°S, 38°S, 40°S, and 46–47°S.

Additionally, the GMB is estimated to be -0.82 ± 0.12 m w.e.
yr−1 when considering 96% (23,978 km2) of the glacierized
area of the Andes between 8 and 55°S (Figure 2B). The Outer
Tropics show a lower mass loss (−0.47 ± 0.03 m w.e. yr−1)
compared to the southern Andes (−0.84 ± 0.13 m w.e. yr−1). In
the Dry Andes, the Central Andes show a greater loss (−0.43 ±
0.05 m w.e. yr−1) compared to the Desert Andes (−0.22 ±
0.03 m w.e. yr−1). In the Wet Andes, North Patagonia
presents the greatest loss with −0.96 ± 0.18 m w.e. yr−1,
followed by South Patagonia (−0.9 ± 0.27 m w.e. yr−1), the
Lakes District (−0.72 ± 0.08 m w.e. yr−1), and Tierra del Fuego
(−0.56 ± 0.24 m w.e. yr−1). The proportion of glacierized area
considered to estimate that GMB is greater than 94% in most of
the zones, except in the Central and Desert Andes where these
percentages are 72 and 47%, respectively. Table 2 summarizes
GAV and GMB for the classic zones, while differences
observed in the GMB estimation by this work, Dussaillant
et al. (2019), Braun et al. (2019) and Seehaus et al. (2019, 2020)
are shown in the supplementary material (Supplementary
Figure S4 and Supplementary Table S1).

Regarding the relationship between GAV and GMB at
watershed scale (n � 107; for 3,978 glaciers with a minimum
of 10 and maximum of 176 per watershed), Figure 3 shows that
even if the two variables are statistically correlated for several
watersheds (mostly located in the Southern Andes between 45
and 50°S), no correlation is found across the Andes. This result
justifies identifying separately the morphometric and climate
controls for GAV and on the other hand for GMB,
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considering that the GAV and GMB data include different time
ranges with different response times and glacier dynamics.

3.3 Explanatory Variables of Glacier
Changes Across the Andes
The explanatory capacity of variables on the spatial variance of
GAV (1980–2019) and GMB (2000–2018) in Perú, Bolivia,
Argentina, and Chile were obtained from 35 watersheds for
GAV and from 110 watersheds for GMB (Figure 4A) through
the LASSOmethod. The watersheds where the GAV variance was
predicted show a mean coefficient of determination of 0.49
(RMSE � 0.85 km2; p-value from MLR < 0.05; number of
glaciers � 2,484). The lower number of glaciers considered
here with regard to the total GAV data (4,865 glaciers) is due
to removal of watersheds that do not have a glacierized area >
0.01% of watershed area and a minimum of 35 glaciers. For the
remaining 35 watersheds, the LASSO algorithm identified 39

explanatory variables for the GAV dataset. However, this number
of explanatory variables differs between watersheds, with a
maximum of 21 variables identified by LASSO in some
watersheds. Similarly, the GMB analysis considered a
minimum of 50 glaciers per watershed, resulting in a mean
coefficient of determination of 0.35 for the 110 watersheds
(RMSE � 0.35 m w.e. yr−1; p-value from MLR < 0.05; number
of glaciers � 20,740) (Figure 4B). The reduction in the number of
glaciers (from 31,963 to 20,740) used in the LASSO analysis was
due to the smallest number of glaciers considered by watershed.
For these 110 watersheds, the LASSO algorithm identified 54
explanatory variables (43 explanatory variables in certain
watersheds). These results are presented for the classic zones
in the supplementary material (Supplementary Table S2), while
the coefficient of determination for LASSO and MLR (p-value)
results are shown in Supplementary Figure S5.

Based on the 39 variables that explain the GAV variance, on
average for the entire study region (8–55°S), the morphometric

FIGURE 2 | The latitudinal GAV (1980–2019) and GMB (2000–2018) across the Andes (8–55°S) are presented in this figure. (A) For each 1° latitudinal bar of GAV
(red bars) the GAV error (red lines), and percentage of the mean GAV (gray texts) are presented, while the glacierized area used in GAV estimation (gray bars), as well as
the percentage of this glacierized area with regards to the total estimated by the national inventories (red text) are shown. (B) The GMB (red bars), the GMB error (red
lines), and the related glacierized area (gray bars) are presented, indicating the percentage of the glacierized area used in the GMB estimation with regard to the total
estimated in the national inventories (gray text). The GMB estimation contains 96% (23,978 km2) of the glacierized area distributed between 26,856 glaciers considered
in this study.
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variables such as surface area (16%) and elevation (7%) are
those that contribute most, whereas highest contribution of a
climate variable is only 5% (TmaxJan). However, if we combine
the contribution of monthly climate variables to the GAV
variance, the order of explanatory variables changes (e.g., the
contribution of monthly climate variables are combined in a
single percentage for precipitation, Tmax and Tmin). As such,

the climate variables explain 65% of the GAV variance (with
temperature and precipitation contributing 35 and 30%,
respectively), whereas surface area and elevation explain 16
and 15% of variance, respectively, followed by slope (4%) and
aspect (1%). Looking at the GMB variance, on average across
the Andes, surface area of glaciers (26%) is the variable that
contributes highest percentage, followed by TmaxNov (5%)

TABLE 2 | GAV (1980–2019) and GMB (2000–2018) for the classic zones of the Andes.

Zones Latitude
(°S)

Glacierized
area
[%]

Glacierized
area
[km2]

GAV
used
area
[%]

Mean
GAV [%]

GAV
st.
Dev.
[%]

GMB*
used
area
[%]

Mean GMB
[m w.e. yr−1]

GMB st.
Dev.

[m w.e. yr−1]

Outer Tropics 8–17 6 1,555 50 −41.0 ± 0.01 25 94 −0.47 ± 0.03 0.49
Desert Andes 17–30 1 217 13 −53.3 ± 0.002 27 47 −0.22 ± 0.03 0.17
Central Andes 30–37 6 1,398 23 −39.0 ± 0.01 27 72 −0.43 ± 0.05 0.31
Lakes District 37–42 1 351 13 −51.7 ± 0.1 30 98 −0.72 ± 0.08 0.40
North Patagonia 42–48 31 7,638 20 −32.2 ± 1.3 27 99 −0.96 ± 0.18 0.34
South Patagonia 48–53 41 10,303 13 −27.6 ± 1.4 25 98 −0.90 ± 0.27 0.82
Tierra del Fuego 53–55 14 3,426 33 −23.9 ± 0.4 24 98 −0.56 ± 0.24 0.81
Southern Andes 17–55 94 23,333 19 −29.5 ± 0.6 26 96 −0.84 ± 0.13 0.56
Andes 8–55 100 24,888 21 −31.2 ± 0.6 27 96 −0.82 ± 0.12 0.56

*This “GMB, used area” comprises glacier surface area of each glacier where GMB, data is available.

FIGURE 3 | The distribution of the 274 glacierized watersheds (glacier cover > 0.01%) across the Andes (8–55°S) and the GAV (1980–2019) and GMB
(2000–2018) correlation at watershed scale for 107 watersheds are presented, with its statistical significance and number of glaciers considered in each
watershed.
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FIGURE 4 | The coefficient of determination and RMSE values are presented for 35 watersheds using the GAV 1980–2019 data (A) and for 110 watersheds using
the GMB 2000–2018 data (B). The values for each watershed were obtained through the LASSO algorithm, which identified the explanatory variables of the GAV and
GMB spatial variances. All 274 glacierized watersheds (> 0.01%, number of glaciers >10) identified here are presented (clear gray).
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and slope (3.5%), with PApr contributing only 3.3%. As
observed for GAV, when monthly explanatory variables are
combined, the order of explanatory variables with regards to
the GMB variance changes. Therefore, the climate variables
explain most of the GMB represented variance with 66%
compared to the morphometric variables, with temperature
contributing 37% and precipitation contributing 29% of the
represented variance. Surface area is the morphometric
variable that contributes highest percentage to the GMB

variance (26%), followed by elevation (4%), slope (4%) and
aspect (0.2%).

3.3.1 New Classification Zones of Andean Glaciers
We performed a cluster analysis based on 274 watersheds (31,963
glaciers) using the explanatory variables selected by the LASSO
algorithm. Considering the assumption that variables that explain
the glacier change spatial variance in 35 watersheds for GAV and in
110 watersheds for GMB can explain glacier change in rest of

FIGURE 5 | The 12 clusters of the glacierized watersheds across the Andes (8–55°S) and the behavior of climatic and morphometric variables. The average values
of variables (for 274 watersheds and using 31,963 glaciers) are presented for the 12 clusters identified (PAM algorithm) using the GAV and GMB explanatory variables
(LASSO algorithm). These clusters are found in three regions: Outer Tropics (OT; 8–17°S), Dry Andes (DA; 17–37°S) andWet Andes (WA; 37–55°S). (A) shows the cluster
distribution across the Andes and the classic zones, from north to south are: Outer Tropics (OT; 8–17°S), Desert Andes (DA; 17–30°S), Central Andes (CA;
30–37°S), Lakes District (LD; 37–42°S), North Patagonia (NP; 42–48°S), South Patagonia (SP; 48–53°S) and Tierra del Fuego (TF; 53–55°S). (B) presents the climatic
variables (1980–2019) which are grouped into the summer (DJF), autumn (MAM), winter (JJA), and spring (SON) seasons for the Southern Hemisphere. The sum of the
precipitation and the extreme temperatures averages are shown here. Additionally, morphometric variables associate with the glacierized area (i.e., surface area,
elevation, slope, and aspect) are shown.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 71301111

Caro et al. Controls of Andean Glacier Changes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Andean watersheds, we use 42 relevant variables selected by LASSO
for the GAV and GMB datasets. These 42 variables are 12 monthly
values for three climate variables (precipitation, Tmax and Tmin)
and six values for morphometric variables (area, slope, aspect, max.
elevation, min elevation and mean elevation). Tmean variable was
not considered because it showed lowest explanatory capacity of the
glacier changes spatial variance. According to the Hopkins method,
our dataset shows a high potential to form clusters (the Hopkins test
result is equal to 0.1), while the GAP statistic method allowed to
quantify the cluster optimal number as 12. Concerning to the PAM
algorithm sensitivity, PAM runs using climatic variables and
morphometric-climatic variables showed a lower explained
variance by the predictors if precipitation or Tmax variables are
removed (see Supplementary Figure S6 in the supplementary
material). This means that the cluster assignment of each
watershed changes more if these two variables are not present in
the cluster analysis. In comparison, the removal of morphometric
variables and Tmin showed PAM runs with greater explained
variances, meaning that the cluster assignment of each watershed
is less sensitive to the removal of these variables. In contrast, PAM
runs using onlymorphometric variables showed a lower explanatory
capacity of the variance, associated with an increase of the change to
the cluster assignment of each watershed. About increase and
decrease of the variable values between 0 and 10%, a way to add
uncertainty to variable values, it was not observed any change in the
cluster assignment of each watershed.

One cluster in the Outer Tropics (OT1) does not have data of
GAV and GMB in some watersheds for estimating the
explanatory variables of glacier changes. However, this zone is
different from the two others in the Outer Tropics (i.e., OT2 and
OT3) due to lower extreme temperature and mean glacier size
values, for example. These numeric results are presented in the
supplementary material (Supplementary Table S3).

Figure 5A shows the map that results from the clustering. A
clear latitudinal distribution can be seen between 25°S and 40°S,
with some overlaps resulting from similar morphometric and
climatic configurations between watersheds located on eastern
and western sides of the Andes. Here, one interesting latitudinal
overlap example can be observed in Dry Andes. A watershed
located in DA3 (id � 25,001; p � 185 mm yr−1; elevation �
6,039 m a.s.l.) close to DA1 watersheds (id � 26,426; p �
79 mm yr−1; elevation � 5,753 m a.s.l.) shows higher
precipitation and elevation. However, in the Outer Tropics
and the Wet Andes the clusters in general are not delimited
with respect to latitude. An exception is the WA2 cluster, which
covers watersheds west and east of the mountain range.
Watersheds that show similar morphometric and climatic
configurations are clustered even if they are not contiguous to
one another. An example of this can be seen from watersheds
inside W5 and W6 clusters, where they present close values of
aspect, slope, and elevation, even the temperature values are close,
but the precipitation presents high differences within the clusters
even higher than between the two clusters. In addition, Tierra del
Fuego is longitudinally split into two clusters (WA4 and WA6).

Figure 5B provide more details about the 12 clusters and their
relevant morphometric and climatic characteristics. Considering
the glacierized surface area in this work, which comprises 71% of

the total surface area of the inventoried glaciers in the Andes, the
Outer Tropics (8–17°S) comprise three clusters (OT1, OT2, OT3)
concentrating 5.7% of the total glacierized area. OT3 contributes
to 67% of the glacierized area in the Outer Tropics (3.8% in the
Andes; 921 km2). OT3 includes glaciers in Peru, Bolivia and
volcanoes in northern Chile and western Bolivia. Within the
Outer Tropics, the three clusters show an annual precipitation
range between 782 mm yr−1 (OT3) and 1,654 mm yr−1 (OT1),
concentrated during the DJF season (up to 500 mm) in all of the
clusters and with a marked dry season in JJA (less than 100 mm).
Tmax shows similar values throughout the year for all three
clusters, and is slightly higher in OT2 (13.1°C), whereas Tmin
shows a seasonal variation with higher values in DJF (OT2; 0.3°C)
than in JJA (OT3; -10.3°C). With regards to the morphometric
variables, cluster OT3 shows the largest mean glacier surface area
(0.6 km2), an average glacier elevation (5,335 m a.s.l.), and the
lowest slope (24°). The Dry Andes (17–37°S) gather three clusters
(DA1, DA2, DA3) which represent 6.7% of the total glacierized
area. In this region, many glaciers (19–26°S) inside watersheds
with a lower glacierized areas (glacierized watershed < 0.01%)
were excluded. DA2 contains the most extensive glacier coverage
with 52% (3.4% of the total for the Andes; 807 km2). Within these
three clusters, the annual amount of precipitation increases
southward, with 150 mm yr−1 in DA1 and 483 m yr−1 in DA3.
Precipitation is mainly concentrated during JJA in DA2-DA3 and
is more evenly distributed in DA1. The extreme temperatures
show the highest values in the DJF season (both for Tmax which
reaches a maximum of 14°C and Tmin which reaches a minimum
of -2.3°C) and lowest values in JJA (Tmax < 0.5°C; Tmin < -11°C).
The largest average glacier surface area is found in DA2 (0.3 km2)
and the smallest is in DA1 (0.1 km2) where glaciers are also found
at the highest elevation (5,389 m a.s.l.) and have the lowest slope
(19°) of all the Andes.

The Wet Andes (37–55°S) comprise 87.7% of the total
glacierized area of the Andes, distributed in six clusters (WA1
to WA6), where WA3 contains 34% (30.1% in the Andes;
7,205 km2) and WA4 29% (25.9% in the Andes; 6,194 km2) of
the glacierized area in the Wet Andes. The annual amount of
precipitation differs considerably between the clusters ranging
from 2,858 mm yr−1 (WA5) to 784 mm yr−1 (WA4).
Precipitation is concentrated in JJA in WA1 and WA2
(approximately 580 mm) and MAM-JJA in WA3 to WA6
(approximately 800 mm). Extreme temperatures in the Wet
Andes present maximum values in DJF (Tmax of roughly
20°C and Tmin of roughly 5°C) and minimum values during
JJA (Tmax of roughly 5°C and Tmin of roughly -0.8°C). With
regards to morphometric variables, the largest mean glaciers size
is found in WA3 (8 km2), and a decrease in the glacier mean
elevation is observed from WA1 to WA6, with an average
difference of 1,500 m. The slope is similar in all of the Wet
Andes (25–26°) clusters although it is slightly lower inWA1 (21°).

3.3.2 Explanatory Variables at Cluster and Watershed
Scale
The explanatory variables of the GAV and GMB represented
variances at watershed scale are presented in detail for GAV
(Figure 6) and GMB (Figure 7), using the 12 clusters. In the
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Outer Tropics, the explanatory variables of the GMB variance in
cluster OT2 are precipitation (71%, PAug and PDec mainly) and
temperature (19%). In cluster OT3, on average, the GAV variance
is explained by precipitation (50%) and temperature (10%), with
an increased explanatory power for precipitation (82%, mainly
PSep and POct) in the GMB variance. In OT3, for the Achacachi
watershed (id � 16,031; GAV r2 � 0.7; GMB r2 � 0.6) POct and PSep
are most relevant for the GMB and GAV variances, followed by
the surface area and slope.

In the Dry Andes, the explanatory variables in cluster DA1 are
precipitation (93%) and temperature (5%) for GAV. The variance
of GMB is mainly explained by precipitation (49%) and surface
area (49%). In DA1, the Río del Carmen watershed (id � 29,516;

GMB r2 � 0.7) shows that precipitation and surface area have a
similar contribution to the GMB variance. In cluster DA2, the
explanatory variables of the GAV and GMB variances are
precipitation (> 67%) followed by temperature (> 16%). One
of the most glacierized watersheds of the Dry Andes is the
Olivares watershed (id � 33,350; GAV r2 � 0.9; GMB r2 � 0.4)
for which PDec and PApr and surface area explainmost of the GAV
variance, and POct, PAug and PJun explain most of the GMB
variance. In cluster DA3, the explanatory variables of the GAV
and GMB variances are precipitation (> 57%), followed by
elevation (34%) for GAV and temperature (37%) for GMB. In
this cluster, for the UpperMaipo (id � 33,987; GAV r2 � 0.6; GMB
r2 � 0.4) and Cachapoal (id � 34,366; GAV r2 � 0.8; GMB r2 � 0.4)

FIGURE 6 | Relevance of the morphometric and climatic variables identified by LASSO algorithm to the spatial variance of GAV (1980–2019) across the Andes
(8–55°S). The GAV explanatory variables, at watershed scale, is added to represent the 100% associate to each GAV r2 (variance by watershed). Other relevant data as
RMSE and the number of glaciers used in estimations are showed. Due to data limitation, the results are available for 8 of the 12 clusters.
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FIGURE 7 | Relevance of the morphometric and climatic variables identified by LASSO algorithm to the spatial variance of GMB (2000–2018) across the Andes
(8–55°S). The GMB explanatory variables, at watershed scale, is added to represent the 100% associate to each GMB r2 (variance by watershed). Other relevant data as
RMSE and the number of glaciers used in estimations are showed. Due to data limitation, the results at watershed scale are available for 11 of the 12 clusters.
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watersheds, PDec (GMB) and POct (GAV) are the most relevant.
Whereas in the Atuel watershed (id � 34,929; GMB r2 � 0.5),
TmaxNov explains most of the GMB variance.

In the Wet Andes, the WA1 and WA2 clusters are located to
the north of the Patagonian ice-fields. InWA1, the GMB variance
is mainly explained by the surface area (94%) followed by
precipitation (6%). Meanwhile, in WA2, the variable that
mainly explains the GAV variance is temperature (95%),
whereas the GMB variance is mainly explained by area (43%)
and temperature (40%). The GMB variance in the Río Ñuble
watershed (id � 26,684; GMB r2 � 0.5), in WA1, is explained by
surface area followed by PFeb. In cluster WA2, the glacier surface
area explains most of the GMB variance in the Río Manso
watershed (id � 41,912; GMB r2 � 0.6), and TmaxDec and
surface area are the dominant variables in the Río Puelo
watershed (id � 42,059; GMB r2 � 0.4).

Clusters WA3 to WA6 are found between the Northern
Patagonian ice-field and the Cordillera Darwin. Cluster WA3

comprises the largest glacierized area in the Andes (30%).
Precipitation and temperature (36 and 29%) explained most
of the GMB variance, followed by surface area and slope
(16–13%). Close to the Southern Patagonian ice-field, in
the Río Serrano watershed (id � 51,222; GMB r2 � 0.9), the
glacier surface area, PFeb and PSep are the most statistically
significant explanatory variables. In WA4, the variables that
explain most of the GAV and GMB variances are temperature
(40–45%), followed by surface area (24–38%) and
precipitation (22–25%). This cluster contains watersheds
that are primarily located to the east of the Patagonian ice-
fields, and in the Cordillera Darwin to the east of Monte
Sarmiento. To the east of the Southern Patagonian ice-field,
the Lago O’Higgins watershed (id � 48,652; GMB r2 � 0.3)
shows the statistical importance of Tminsep and PMar and PApr.
On the southern side of Cordillera Darwin (id � 54,793; GAV
r2 � 0.5) the main explanatory variable is TmaxOct, whereas on
the northern side, it was found that morphometric and

FIGURE 8 | Explanatory variables of glacier changes across the Andes (8–55°S) since 1980 at watershed scale. (A) The 274 glacierized watersheds inside 12
clusters are shown on the map of South America. The glacierized area considered in estimates of the (B) GAV (1980–2019) and (C) GMB (2000–2018) explanatory
variables (light blue bars) are shown with regard to the percentage of explanatory variables for the GAV and GMB spatial variances (blank spaces are due to a lack of data
in that cluster).

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 71301115

Caro et al. Controls of Andean Glacier Changes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


climatic variables had a very limited explanatory capacity (id
� 54,195; GAV r2 � 0.3; GMB r2 � 0.2).

The WA5 andWA6 clusters are located on the western side of
the Patagonian Andes. Watersheds in WA5 are mainly found to
the west of the Southern Patagonian ice-field, in the coastal region
where the highest amount of precipitation in the Andes was
identified. For these watersheds, temperature is the most relevant
variable. For example, in Río Pascua watershed (id � 48,317; GAV
r2 � 0.4; GMB r2 � 0.3) TmaxJul and TminFeb are important in the
spatial variance of the glacier changes and in IslaWellington (id �
50,401; GAV r2 � 0.4) are TmaxSep and TmaxJan. Whereas in
WA6, the explanatory variables strongly differ between GAV and
GMB. The morphometric variables (30% elevation) explain 54%
of the GAV variance and climate variables (73% temperature)
explain 86% of the GMB variance. This cluster comprises
watersheds that are primarily distributed around the Northern
Patagonian ice-field and the south of the Southern Patagonian
ice-field down to Monte Sarmiento, where the largest ice
concentration outside the Patagonian ice-fields and Cordillera
Darwin is found.

3.3.3 Explanatory Variables at the Regional Scale
Figure 8 shows the explanatory variables of GAV and GMB
spatial variances at cluster scale. At first glance, it can be
observed that precipitation explains the highest percentage of
GAV and GMB variances for clusters located within the Outer
Tropics (OT1, OT2, OT3) and the Dry Andes (D1, D2, D3),
whereas temperature is most relevant variable in the Wet
Andes (WA1 to WA6). Within the Outer Tropics and the
Dry Andes clusters, precipitation explains between 49–93% of
the GAV and GMB variances, whereas temperature only
explains between 3 and 37%. In the Wet Andes, the
explanatory variables of GAV and GMB variances are
inverted, with temperature contributing between 29 and
73% of variation and precipitation between 1 and 36%.

In further detail, this explanatory power of precipitation in
the Outer Tropics and the Dry Andes clusters and of
temperature in the Wet Andes clusters is clear for seven
clusters that concentrate 77% of the Andean glacierized area
(OT2, OT3, DA2, DA3, WA9, WA10 and WA11). Other
clusters show differences in the main explanatory variables
for the GAV and GMB variances.

For instance, the DA1 cluster shows that climate variables
(98%) predominantly explain the GAV variance, manly for
precipitation (93%). On the other hand, GMB is explained in
similar proportion by climate (49%) and morphometric (51%)
variables, where the most important variables are precipitation
and surface area with 49% each. For cluster WA1, without GAV
variables identified, morphometric (94%) variables explain the
GMB variance through surface area (93.9%). In WA2,
temperature (95%) explain the GAV variance while the GMB
variance is dominated by morphometric variables (54%) being
more relevant surface area (43%) followed by temperature (40%).
In WA6, 54% of the GAV variance is explained by morphometric
variables (elevation alone explains 30%), and 86% of the GMB
variance is explained by climate variables, where temperature
explains 73%.

Finally, differences in explanatory power of morphometric
and climate variables for the GAV and GMB spatial variances
when considering the classic zones or the clusters can be observed
in the supplementary material (Supplementary Table S4 and
Supplementary Table S5).

4 SUMMARY AND CONCLUDING
REMARKS

This study is the first to explore climatic and morphometric
variables of the spatial variance of glacier changes through a
machine learning method across the Andes (8–55°S), in terms of
surface area variations since 1980 and mass balance changes since
2000. Overall, we found that the spatial variability of glacier
changes is primarily controlled by spatial variability of
precipitation from the Outer Tropics to the Dry Andes
(8–37°S) and of temperature in the Wet Andes (40–55°S).
These results, obtained at watershed scale, allowed to identify
12 new glaciological zones via a clustering analysis that depicts
more details compared with the classic zones based on latitude
ranges.

4.1 Overall Glacier Area and Mass Balance
Variations
At the scale of the entire study region, the mean GAV and GMB
were calculated at −31.2 ± 2% (1980–2019) and −0.82 ± 0.12 m
w.e. yr−1 (2000–2018), respectively. Our GMB estimation is close
to the one obtained by Dussaillant et al. (2019) of -0.72 ± 0.22 m
w.e. yr−1 (2000–2018), and more negative in comparison with
Braun et al. (2019) estimate (-0.61 ± 0.07 mw.e. yr−1; 2000–2015),
in both cases at the scale of the entire Andes. Differences between
the estimates are related to the use of different glacier inventories
to quantify the mass balance from glacier surface elevation
differencing data and mass balance calculations. In fact, some
glaciers found in the Patagonian ice-fields do not have elevation
difference information in the accumulation zone, therefore our
results may overestimate the negative mass balance here as we did
not extrapolate the glacier change elevation data to fill the gaps, as
done by Dussaillant et al. (2019). Our error estimations are lower
in comparison with Dussaillant et al. (2019), possibly due to the
outlines precision of glaciers identified from the national glacier
inventories compared to RGI v6.0. Despite the above, and as
shown in Supplementary Figure S4, considering ranges of 1°

latitude between 8–55°S, we did not observe relevant differences
in terms of average mass balance (< 0.3 m w.e.) in comparison
with the mass balance estimated in Dussaillant et al. (2019),
except between 48–49°S where we estimated a less negative mass
balance.

Regarding GAV, the Desert Andes (-53 ± 0.002%) and the
Lakes District (-52 ± 0.1%), which include the smallest glacierized
surface areas, showed highest glacier shrinkage. The glacier
shrinkage estimated here is higher than the one estimated by
Rabatel et al. (2011) at -29% over the 1955–2007 period in the
Desert Andes and that the one reported by Paul and Mölg (2014)
at -25% over the 1985–2011 period in the Lake District, but it is
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worth noting that the study period are different and that we
consider in the overall study period used here the decade
2010–2020 during which glacier loss in these regions has
strongly increased (Dussaillant et al., 2019). Southward of
42°S, the mean GAV estimated here (-24 ± 0.4% to -32 ±
1.3%) was higher than that observed by Meier et al. (2018)
(-9 ± 5%, 1986–2016): this is likely related to differences in
the study periods and also because we did not consider the large
calving glaciers of the Patagonian ice-fields, where we found
glacier outlines inconsistences, particularly in accumulation
zones; these glaciers covering an area up to 13% of the total in
South Patagonia and 20% in North Patagonia. Overall, we
discarded the glacier growth due to methodological
limitations, but this should have a limited impact because
many studies have described a general glacier shrinking across
the Andes (e.g., Malmros et al., 2016; Meier et al., 2018; Paul and
Mölg, 2014; Rabatel et al., 2011; Rivera and Bown, 2013; Seehaus
et al., 2019, 2020), with few exceptions that have been reported
(Rivera and Casassa, 1999; Wilson et al., 2016; Hata and
Sugiyama, 2021).

Although our GAV estimates show r2 > 0.7, we identified 11
latitudinal ranges in which there are low statistical significance in
the relationship between GAV and morphometric or climatic
variables (p-value > 0.05), concentrated mainly in the Lakes
District (between 38 to 39°S and 40 to 41°S) and North
Patagonia (between 42 to 43°S and 46 to 48°S).

We found that the statistical relationship between GAV
and GMB is mostly non-significant across the Andes. This is
not really surprising as the considered time scales for GAV
and GMB are not the same and they are of different length. In
addition, GAV is related to glacier response times which
depends on glacier dynamics, and is therefore related to its
morphometric characteristic and thus specific to each glacier.
This response time may largely exceed the study period
length, particularly for outlet glaciers of the Patagonian
ice-fields where it can be on a secular time scale. One
consequence of this absence of a relationship between GAV
and GMB is that their explanatory variables were identified
separately.

4.2 Main Controls of Glacier Changes
In relation to the relevant variables at watershed scale for GAV (r2

� 0.5, n � 35) and GMB (r2 � 0.4, n � 110), we found that, on
average for the entire study region (8–55°S), climate variables
explain an highest percentage of the GAV and GMB spatial
variances with more than 65% (> 35% for temperature),
whereas the surface area is the most relevant (> 16%) for
morphometric variables. We observe a latitudinal limit from
37.5°S (DA3 in Argentina) to 39.9°S (WA2 in Chile) between
the explanatory capacity of precipitation and temperature in
GAV and GMB spatial variances across the Andes.
Precipitation explains highest percentage of GAV and GMB
spatial variances (ranging from 49 to 93% depending on the
clusters) for the Outer Tropics and the Dry Andes (8–37°S),
whereas temperature is the most relevant climate variable
(between 29 and 73% of explained spatial variance depending
on the cluster) for the Wet Andes (40–55°S). The importance of

precipitation in the GMB variability had already been observed in
several studies based on in situ glacier monitoring by Favier et al.
(2004) and Wagnon et al. (2001) in the Outer Tropics. More
specifically, Sicart et al. (2003, 2011) showed that during the
transition season (Sep-Dec) when ice melt increases, precipitation
frequency and intensity are key to modulating ablation because of
the impact on glacier surface albedo. In the Dry Andes, no link
was found between GAV or GMB which is in agreement with
Rabatel et al. (2011). In addition, Rabatel et al. (2011), Masiokas
et al. (2016) and Kinnard et al. (2020) pointed out the sensitivity
of GMB to precipitation. For this region, we also found that
glacier surface area has significant explanatory power for the
GMB variance (49% in DA1), which is in agreement with Rabatel
et al. (2011) who showed that small glaciers in the Desert Andes
have a very negative GMB in comparison with a moderate mass
loss for larger glaciers. With regards to the Wet Andes, in the
Patagonian ice-fields, spatial variances of glacier changes are
mainly controlled by the temperature (WA3 to WA6). This is
in agreement with Abdel Jaber et al. (2019) who found that the
mass loss in the Northern Patagonia ice-field is likely due to
higher temperatures. Outside the Patagonian ice-fields in east
(WA4), the glacier shrinkage could be explained by a temperature
increase as no change in precipitation was observed (1979–2002)
(Masiokas et al., 2015). In addition, Falaschi et al. (2019) found a
high correlation between GMB and temperature in Monte San
Lorenzo since 1958 to 2018 (temperature Oct to Mar, r � -0.86,
p-value � 0.1).

4.3 Clusters Without a Latitudinal
Distribution Across the Andes
In the present work, we used morphometric and climatic
variables associated with GMB data for 20,740 glaciers and
GAV data for 2,484 glaciers to propose a new classification
that comprises 12 clusters encompassing a total of 274
watersheds and 31,963 glaciers between 8 and 55°S. This
regional identification was based on the main explanatory
variables of glacier changes (GAV and GMB). Up to now,
only one type of classification of the glacier environments
based on latitudinal ranges has been used, first by Troll (1941)
and Lliboutry (1998), followed by recent studies (e.g., Barcaza
et al., 2017; Dussaillant et al., 2019; Masiokas et al., 2009, 2020;
Zalazar et al., 2020). Sagredo and Lowell (2012) proposed another
glaciological classification with nine zones between 8–55°S; this
was based on climate variables only, and with a small number of
glaciers (n < 234). Here, the clusters provide a classification with
greater detail allowing to better take the regional-scale diversity in
the glacier characteristics and evolution into account. For
instance, glaciers on volcanoes in northern Chile and western
Bolivia are no longer linked to the Dry Andes but clustered with
those of the Outer Tropics (OT3). In addition, watersheds located
at the same latitude sometimes belong to different clusters. These
results are in line with Ayala et al. (2020) who identified
significant differences (GMB, runoff contribution and glacier
elevation) between the southern (DA2) and northern (DA3)
watersheds inside the Río Maipo watershed. With regards to
the Outer Tropics and the Wet Andes, our results show that a
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latitudinal classification is not possible, which is in agreement
with previous studies (e.g., Caro et al., 2020; Sagredo & Lowell,
2012). Southward of 46°S, we found different clusters, from west
to east, related to the high contrast in precipitation and
temperature amounts (WA3 to WA6) related to the wet
western air masses originating from the Pacific Ocean
(Langhamer et al., 2018). Studies on the Patagonian ice-fields
have demonstrated this large difference in precipitation between
the western and eastern sides of the cordillera (Warren, 1993;
Barcaza et al., 2017; Bravo et al., 2019).

Despite these results, the sensitivity analysis showed that the
absence of the variables Tmax and precipitation causes a
rearrangement of the cluster assignment to each watershed,
while the absence of the morphometric variables and Tmin
does not show a major change in this assignment.

4.4 Implications in the Glacier Changes
Simulations at the Andes Scale
Results obtained through linear machine learning method
provide a new framework for glacier changes simulations
across the Andes. The increase in temperature-driven and
decrease in precipitation-driven glacier changes from the
Outer Tropics to the Wet Andes highlights that:

a) A reduction in annual precipitation and changes in their
monthly distribution will have a greater impact on glacier
mass loss in the Outer Tropics and the Dry Andes in
comparison with the Wet Andes. Conversely, changes in
monthly temperature will be more relevant to simulate
glacier mass loss in the Wet Andes.

b) The newly defined clusters will allow to orient the glacier
change simulations, based on the main variables that
control GAV and GMB across the Andes. For example,
for regional studies across the Dry Andes to the Wet Andes,
precipitation and temperature relevancies presented here
can be efficiently used to estimate the mass balance,
through the precipitation and ice melt factors that can
be derived from numerous studies (e.g., Ayala et al., 2020;
Bravo et al., 2017; Caro, 2014; Farías-Barahona et al., 2020;
Huss and Hock, 2018; Masiokas et al., 2016). In this
context, our results will be able to guide future regional
hydro-glaciological simulations at watershed and cluster
scales across the Andes.
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