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Abstract. The amount of ice discharged by an ice stream de-
pends on its width, and the widths of unconfined ice streams
such as the Siple Coast ice streams in West Antarctica have
been observed to evolve on decadal to centennial timescales.
Thermally driven widening of ice streams provides a mech-
anism for this observed variability through melting of the
frozen beds of adjacent ice ridges. This widening is driven
by the heat dissipation in the ice stream margin, where strain
rates are high, and at the bed of the ice ridge, where sub-
temperate sliding is possible. The inflow of cold ice from
the neighboring ice ridges impedes ice stream widening. De-
termining the migration rate of the margin requires resolv-
ing conductive and advective heat transfer processes on very
small scales in the ice stream margin, and these processes
cannot be resolved by large-scale ice sheet models. Here,
we exploit the thermal boundary layer structure in the ice
stream margin to investigate how the migration rate depends
on these different processes. We derive a parameterization
of the migration rate in terms of parameters that can be es-
timated from observations or large-scale model outputs, in-
cluding the lateral shear stress in the ice stream margin, the
ice thickness of the stream, the influx of ice from the ridge,
and the bed temperature of the ice ridge. This parameteriza-
tion will allow the incorporation of ice stream margin migra-
tion into large-scale ice sheet models.

1 Introduction

The Siple Coast ice streams are fast-moving regions within
the West Antarctic ice sheet. They exhibit temporal changes
on decadal to centennial timescales in their spatial con-
figuration, for example slowdown and reactivation cycles
and changes in ice stream width (Stephenson and Bind-
schadler, 1988; Retzlaff and Bentley, 1993; Harrison et al.,
1998; Hamilton et al., 1998; Echelmeyer and Harrison, 1999;
Fahnestock et al., 2000; Conway et al., 2002; Catania et al.,
2006, 2012; Bindschadler et al., 2000; Stearns et al., 2005;
Hulbe and Fahnestock, 2007). The widening and narrowing
of ice streams can strongly affect mass discharge from an ice
stream: simplified ice stream models show that the ice stream
velocity and discharge strongly increase with stream width
(Raymond, 2000). Correctly modeling the evolution of ice
streams, including the migration of their margins, is there-
fore essential for reliable predictions of the evolution of the
Antarctic ice sheet (Bamber et al., 2000)

Ice streams are bordered by slowly moving ice, called ice
ridges, and the close proximity of fast to slowly moving ice
is reflected in a sharp gradient in basal resistance between
ridge and stream (Bentley et al., 1998). The question of mar-
gin migration is tightly linked to the question of how this
gradient is sustained. In the absence of freezing in the bed,
subglacial drainage can in principle widen ice streams, if wa-
ter transport is in the direction of effective pressure gradients
(Haseloff, 2015). In this scenario, infinite widening can be
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suppressed by the formation of ice ridges (e.g., Kyrke-Smith
et al., 2014). This leads to a gradient in ice overburden pres-
sure that counteracts gradients in effective pressure, so that
there is no net water pressure gradient driving flow of water
towards the ridge. Alternatively, Perol et al. (2015) propose
the existence of a channel co-located with the ice stream mar-
gin, which theoretically locks the position of the margin into
place: margin migration now requires a reorganization of the
subglacial drainage system.

However, if freezing in the bed is possible, a thermal bar-
rier can form in the bed which suppresses widening through
subglacial drainage (Haseloff, 2015). The existence of such
a thermal barrier is supported by radar observations un-
der some ice streams and ridges, where strong contrasts in
basal reflectivity from stream to ridge have been interpreted
as transitions from a temperate to a frozen bed (Bentley
et al., 1998; Catania et al., 2003). Under these conditions,
the inwards migration (or narrowing) of an ice stream re-
quires freezing of the entire sediment column (Appendix B
of Schoof, 2012). As melt water can be supplied to sections
of the bed with active freezing from other regions of the ice
stream via subglacial drainage, this necessitates taking into
account the ice-stream-wide energy balance. Consequently,
the inwards migration of ice streams is the result of insuffi-
cient heat dissipation over the width of the entire ice stream
(Haseloff, 2015). However, as shown in Haseloff (2015), this
process can at least in principle be modeled with large-scale
ice sheet models without recourse to a boundary layer.

In this scenario the outwards migration of ice stream mar-
gins requires melting of the frozen sediment under the ice
ridge. By contrast with a narrowing ice stream, however, it
is not necessary for the entire thickness of the sediment col-
umn to melt out: only part of it needs to be unfrozen to permit
sliding, and we will later idealize this by assuming that slid-
ing is possible as soon as the melting point is reached at the
bed. This, however, also underlines the asymmetry between
widening and narrowing of an ice stream, which motivates us
to focus on the harder problem of widening, which requires
heat to be transferred into the bed. Several studies show that a
strong gradient in basal resistance created by a thermal tran-
sition leads to significant englacial heat production in the ice
stream margins (Raymond, 1996; Jacobson and Raymond,
1998; Schoof, 2006; Suckale et al., 2014; Perol and Rice,
2015). Combined with conductive heat transfer, this heat dis-
sipation can lead to the outwards migration of the margins by
warming the bed outside the active ice stream (Schoof, 2012;
Haseloff et al., 2015). This migration is counteracted by ad-
vective cooling through the inflow of ice from the ice ridge,
driven by an elevation difference between ice ridge and ice
stream. The rate of migration is highly sensitive to the rela-
tive strength of these two processes (Jacobson and Raymond,
1998; Haseloff et al., 2015).

Existing studies that derive a migration rate from this
competition between dissipation, conduction, and advection
(Schoof, 2012; Haseloff et al., 2015) assume that the tran-
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sition from a temperate to a frozen bed is co-located with
an abrupt transition from free slip to no slip. However, it
is unlikely that such a transition occurs in reality: the basal
shear stress goes to infinity at a no-slip-to-free-slip transition.
Therefore a no-slip boundary condition on the cold side re-
quires slip to be suppressed there for any amount of basal
shear stress (Fowler, 2013). Instead, we expect sliding to
occur, either due to mechanical failure or due to a residual
premelted water film at the ice—bed contact (Fowler, 1986;
Echelmeyer and Zhongxiang, 1987; Cuffey et al., 1999;
Schoof, 2004; Platt et al., 2016; Elsworth and Suckale, 2016).
Both of these processes would lead to subtemperate sliding,
that is, sliding at temperatures below the melting point. Ad-
ditionally, the high stress concentrations may be alleviated
by mechanical failure or damage production in the ice itself
(Pralong and Funk, 2005).

In the presence of subtemperate slip, we expect significant
changes to the velocity field, which is responsible for advec-
tion of heat, and to the spatial distribution of heat dissipation.
In particular, heat is then dissipated at the frozen ice-bed in-
terface. This is the very location where warming has to occur
in order for the ice stream margin to migrate outwards. We
therefore expect subtemperate slip to have a significant influ-
ence on the rate at which ice stream margins can migrate.

To determine the rate of margin migration, we have to con-
sider the thermal and mechanical transitions from ice ridge to
ice stream flow, which take place over a distance of just a few
ice thicknesses. This is narrow in comparison to the width of
the ice ridge and the ice stream, and it can be captured by
a boundary layer model (Haseloff et al., 2015). The physics
captured by the boundary layer model are not necessarily in-
cluded in large-scale ice sheet models and require very high
resolution of the computational grid (Haseloff et al., 2015).
The purpose of this paper is therefore twofold: (i) to use the
margin boundary layer model of Haseloff et al. (2015) to in-
vestigate how subtemperate slip changes the heat production
and temperature field in the ice stream margin, and thereby
the rate at which ice streams can migrate outwards, and (ii) to
derive parameterizations of the margin migration rate which
can be used in large-scale ice sheet models. Both of these
points go beyond the work in Haseloff et al. (2015): the pa-
rameterizations we derive in particular show how the limit of
rapid advection of heat across the shear margin can be used
to simplify the boundary layer model and arrive at tractable
forms of the migration rate that could be implemented in
computational models in the form of either semi-analytical
formulae or lookup tables.

This paper is laid out as follows: we state the model
in Sect. 2. Typical solutions of the model are presented in
Sect. 3, where we also explain how we determine the migra-
tion velocity. The dependence of the migration velocity on
forcing parameters is determined in Sect. 4, and in Sect. 4.3—
4.4 we derive a parameterization of the migration velocity as
a function of these forcing parameters. We discuss our results
in Sect. 5.

www.the-cryosphere.net/12/2545/2018/
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2 The model

The model for ice stream margins we use here is derived in
Haseloff et al. (2015). Let (x, ', z) be a fixed coordinate sys-
tem. The model assumes a well-developed ice stream, whose
principal flow direction is aligned with the positive x direc-
tion, as shown in Fig. la. The y’ axis is transverse to the
ice stream, and the z axis is vertical. The ice stream is bor-
dered by slowly moving ice ridges. The model for the ice
stream margin is located at the transition from ice stream
flow regime to ice ridge flow regime, providing the coupling
between the two.

In contrast to typical “shallow” ice stream and ice sheet
models (Fowler and Larson, 1978; Morland and John-
son, 1980; Hutter, 1983; Muszynski and Birchfield, 1987,
MacAyeal, 1989; Blatter, 1995; Pattyn, 2003), which assume
a small aspect ratio between vertical and lateral extent, the
width of the margin region captured by the boundary layer
model is on the order of the ice stream thickness. Conse-
quently, the far fields of the ice ridge and ice stream are at-
tained at y 4= oo (see Fig. 1b).

The asymptotic analysis in Haseloff et al. (2015) shows
that the boundary layer evolves rapidly in comparison to the
ice stream and ice ridge, and is consequently quasi-static,
with the only time-dependence arising from the moving tran-
sition between a frozen and a temperate bed at £yn,(x,?).
Morever, Haseloff et al. (2015) show that the surface of
the ice stream margin is flat at leading order and located at
z = hg, where kg is the ice thickness of the ice stream.

The ice-bed interface is assumed to be flat and located at
z = 0. Note, however, that this assumption does not preclude
the application of our results to ice streams with a weak topo-
graphic control, as found in many regions of the Siple Coast:
this assumption merely requires the elevation gradient of the
bed to be sufficiently small that the bed elevation does not
vary significantly over lateral distance of a few ice thick-
nesses.

We define the margin location y’ = —yn(x, £) as the point
where the bed goes from being at the melting point to be-
low the melting point. To facilitate our analysis, we imme-
diately change to a moving coordinate frame in which the
transition from a temperate to a frozen bed is stationary at
y = 0; see Fig. 1b. In other words, if y’ is the stationary co-
ordinate with y’ = 0 in the ice stream center and the margin

at y’ = —ym(x, 1), then the lateral coordinate y of the margin
model is linked to y’ through
y=Y+ym(x,0). (1

with y = 0 at the transition from frozen to temperate bed (see
Fig. 1b). y increases towards the ice stream, with negative y
corresponding to the ice ridge side of the domain. The bound-
ary layer is moving at velocity —dyy, /0t with respect to the
fixed y’ axis.

The boundary layer is effectively two-dimensional: the ice
stream is much longer than a single ice thickness, and there-
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fore along-flow variations in mechanical and thermal condi-
tions in the x direction are much smaller than corresponding
variations in the transverse and vertical directions. In other
words, the x coordinate is passive and (y, z) are the indepen-
dent variables in the model.

We assume that the thermal state of the ice—bed interface
controls the basal boundary conditions for the ice. This re-
quires us to model the thermal response not only of the ice
but also of the bed. We therefore specifically include the bed
in the domain and apply a geothermal heat flux at z — —oo.
At the lateral domain boundaries at y & oo, far-field bound-
ary conditions are determined by coupling with stream and
ridge.

Force balance can be separated into a downstream com-
ponent, with u denoting the velocity component in the x di-
rection, and a transverse component in the (y, z) plane, with
(v, w) denoting the corresponding transverse velocity plane.
In the downstream direction, the velocity u is determined by

0 ou +8 ou _o @)
ay oy 0z \"Taz) =

with n as the viscosity. The transverse velocity field is de-
termined by the two-dimensional Stokes and mass balance
equations:

a ov d v ow ap
—2n— )+ = —4+—)|—-=—=0, 3a
8y(n3y) Z[n(az 8y)} dy Gy
ad dv  Jw ad ow ap
— —4+—)|+=—2n—)—-—=0, 3b
ay["(az y)} az("az) 9z (36)
d d
Py (e)
ay 0z

The viscosity n depends on all three velocity components
through Glen’s law (Paterson, 1994):

AVUn au ) Joul* Jov  owl?
n= i |5y — —+ —
2 dy 9z dz  dy
1-n
v |2 awl|? | ™
+2|—| +2|— , 4
ay 0z :| “®

with A being the usual viscosity parameter and n the rheol-
ogy exponent. For simplicity, we neglect the effect of tem-
perature on viscosity here.

The ice stream imposes a lateral shear stress g as a far-
field boundary condition. Additionally, the plug flow in the
ice stream requires a vertically uniform across-stream veloc-
ity in this far field, so

ou ov
N——>Ts,

ay 3z

-0, w—>0 fory— oo. (@)

Towards the ice ridge, we expect a shearing flow in the trans-
verse direction and negligible flow in the downstream direc-
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Figure 1. Panel (a) shows large-scale model geometry: we assume an ice stream flowing in positive x direction. At its sides, the ice stream
is bordered by slowly moving ice ridges. Panel (b) shows boundary layer geometry, which moves at the rate vy, = dyy /0t through the ice

stream/ridge geometry shown in panel (a).

tion:
u—0
n+1
L+ g 1_(1_i) fory - —oo, (6)
(n+1) hy hs
w—0

with g, being the ice flux from the ice ridge towards the ice
stream and /g the ice thickness of the ice stream; the form of
v corresponds to a “shallow-ice”-type shearing flow with a
temperature-independent rate factor A.

We assume that basal melting has a negligible effect on ice
velocities, so

w=0 atz=0. @)

On the temperate (stream-ward) side of the ice-bed interface,
we assume that the basal shear stress is negligible compared
with the shear stresses in the ice, leading to a free-slip bound-
ary condition:

ou dv
n—=n—=0 fory>0,z=0. ®)

0z 0z
In posing this boundary condition for an ice stream that
is actively widening, we are assuming that an infinitesimal
amount of melting of the bed suffices to allow for slip: once
the thermal barrier at the bed is breached, we only need a
very thin ice-free layer in order for slip to occur. This is con-
sistent at least with the idea of a plastic bed, where slip can
happen on a plane, or with a hard bed.

To the extent that additional degrees of freedom (other
than temperature) are involved in sliding, the main concern
would presumably be water pressure at the bed or within the
till, rather than the thickness of the unfrozen till layer. Our
assumption of a free slip once the melting point is reached
is best justified (see Haseloff et al., 2015) if we suppose that
the unfrozen bed is hydraulically well connected, so that the
water pressure in the parts of the bed that have just become
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unfrozen quickly equilibrates with water pressure elsewhere
under the ice stream (and hence basal friction is comparable
to the rest of the active ice stream). Shear stresses experi-
enced by the margins of the ice stream are large compared
with basal drag throughout the ice stream (Haseloff et al.,
2015), and this implies that basal friction is small at leading
order everywhere where the melting point is reached. There
are undoubtedly other, more elaborate models for basal shear
stress of the unfrozen bed; ours is the simplest possible case
to analyze.

Where the bed is frozen, we consider two different possi-
bilities. The first assumes that no slip is possible, so that the
basal boundary condition for y < 0 is

(9a)

We also investigate the possibility of slip at significant basal
friction on the frozen bed. For simplicity we use the simplest
possible version of this problem and assume that the frozen
ice-bed contact fails at a fixed yield stress 7. (Schoof, 2004,
2010):

u=v=0 fory<0,z=0.

. ou u dv v
either n— =,

— N =
9z /2 1 02 naz ‘il +2

Vu?+v2>0
'\ v\

or Jn—) +{n—=) <t VuP+v2=0
9z 0z

for y <0, z=0.

(9b)

The no-slip case (Eq. 9a) can be obtained formally by putting
7. = oo in Eq. (9b).

The upper surface is traction-free and flat at leading or-
der. In practice, this implies vanishing shear stress and nor-
mal velocity, with vanishing normal stress accounted for by
a first-order correction to the constant leading-order surface
elevation. If the actual upper surface is located at hg+s’ with
s’ <& hg, then

0
oy _w=0, 2 pipes’ =0 atz=hs. (10)

0z 9z 0z
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Thus, even though our model geometry is a parallel-sided
strip, it takes into account the first-order surface slope to-
wards the ice ridge.

Note that we have formulated the flow problem in such a
way that it can be solved without reference to the temperature
field. Physically, however, we require that the temperature
T is below the melting point Ty, for y <0, z =0 and that
the temperature is at the melting point for y > 0, z =0. To
ensure that these conditions are met, we have to solve the heat
equation in the ice (0 < z < hg) and in the bed (z < 0). The
englacial heat production in the ice is balanced by conductive
and advective heat transport, as well as a pseudo-advective
term which is the result of the ice stream margin migrating at
the rate

- 0Ym
Y’

an
into the ice ridge. (Physically, this term represents the effect
of having to warm the initially cold ice in the ice ridge as
the margin migrates into the ridge.) In the bed, no heat is
dissipated and the bed is assumed to be static, so that we
have a balance between the same pseudo-advective term and
diffusion of heat:

oT oT oT
pCp\VmT— +v—tw_—

w
ay ay 9z
2T 9T
—k(m-l-ﬁ):a for0 <z <hs, (12a)
aT 2T 9°T
pbedcp,bedvm@_kbed(aiyz-FTzz)=0 forz <0, (12b)

where we used the margin migration velocity vy, as defined
by Eq. (11). p and ppeq are the densities of ice and bed, re-
spectively; ¢, and c¢p ped are specific heat capacities; and k
and kpeq are thermal conductivities (see Table 1). The heat
production term a provides the thermomechanical coupling:

A~Vn (loul? |oul® |ov N aw|?
a=——- _— —_— J— _
21/n \ | 3y 9z 9z = dy
2 2\ 2
3 3 "
12| 4028 . (13)
ay 0z

Advection from the ice ridge prescribes a far-field tem-
perature profile 7;(z), while there are no significant lateral
temperature gradients towards the ice stream far field:

oT
— =0
dy

T=T() fory— —o0, fory —oco0. (14)

To be consistent with a conduction-dominated temperature
field, we assume for the far-field ridge temperature

Tﬁ%(hs—z) ifz>0
T, = (15)
k
T, + qﬁ:" (h = dz) ifz<0.
&
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We will show in Sect. 4 that the migration velocity is sensi-
tive only to the far-field temperature at the bed, so the spe-
cific form of T; is immaterial. Here we have assumed a linear
profile for simplicity.

At the surface at z = hg, we assume a constant surface
temperature Ts, and towards z — —o0 we assume a constant
geothermal heat flux ggeo:

aT

T =T, atz = hq, _kbeda_ — (geo @S T —> —OO. (16)
z

Finally, at the bed, we impose the following boundary condi-
tions and inequality constraints:

T <T, and

aT It oT |~ 0 if 7. =00
—k—| +koed —

0z 31’ [‘L’C\/I/tz—i-vz if 7, <00
fory <0, z=0, (17a)
T =T, and
—ka—T++kbed8—T<[O if 7. = 00

9z 0z oo ift. <00
fory >0, z=0. (17b)

The two cases of 1. correspond to whether subtemperate slip
is or is not possible (z. being finite or infinite, respectively).

The equalities in Eq. (17) arise from the construction of
our model: we have chosen the location y = 0 to separate a
region with a temperate bed (y > 0) from one where the bed
temperature must be below the melting point but where it is
not otherwise prescribed. In the latter case, a flux condition is
necessary to ensure conservation of energy at the bed. Conse-
quently, the temperature inequality in Eq. (17a) is an intrinsic
part of how we have defined our domain, with the transition
from a subtemperate to temperate bed occurring at y =0 in
our traveling coordinate system.

The flux constraint in Eq. (17b) by contrast is really a con-
straint on freezing rates on the temperate side of the thermal
transition at the bed, and in imposing it we are assuming that
the margin is migrating into the ice ridge at a rate vy > 0.
A local analysis of the temperature field near y = 0 (see Ap-
pendix A for a summary and Sect. S2 in the Supplement and
Schoof, 2012, for details) demonstrates that, if the temper-
ature constraint in Eq. (17a); is satisfied, then the net heat
flux out of the bed for small y > 0 either approaches 400
or equals the basal dissipation rate attained at small nega-
tive y < 0. When the margin migrates towards the ice ridge,
we assume an infinite basal freezing rate cannot occur on
the temperate side of the thermal transition at y =0, z =0,
leaving only the possibility of a finite heat flux (the second
version of the inequality in Eq. 17b,). For the case of no sub-
temperate slip, this corresponds neatly to having no freezing
at the bed at all on the temperate side of the transition (see
also Haseloff et al., 2015; Schoof, 2012). For the case of sub-
temperate slip, our formulation of having an abrupt transition

The Cryosphere, 12, 2545-2568, 2018



2550

Table 1. Parameter values used in the sample calculations presented
here. Ice stream thickness /s, lateral inflow of ice from the ridge gy,
and marginal lateral shear stress ts are highlighted as they repre-
sent coupling with ice ridge and ice stream dynamics. hg and 7
correspond to the values observed at the upper margin of Whillans
ice stream (Harrison et al., 1998), which migrates at a rate of 7 to
30m yr71 (Hamilton et al., 1998; Harrison et al., 1998; Echelmeyer
and Harrison, 1999). The g, estimate is based on an inflow velocity

oflOmyr_l.

Description Symbol Value  Units
Viscosity parameter A 1.6x 10715 kpa=3s~!
Rheological exponent n 3

Specific heat capacity Cps Cp bed 2 K kg’1 K1
Acceleration due to gravity g 9.81 ms2
Thermal conductivity k, kped 23 Wm k™!
Geothermal heat flux qgeo 6x1072 Wm2
Density of ice P 920 kgm™3
Density of bed Pbed 920 kgm3
Surface temperature Ts -25 °C

Melting point Tm 0 °C

Basal yield stress of ice ridge ¢ kPa

Ice stream thickness hg 900 m

Marginal inflow of ice qr 104 m? yr!
Marginal lateral shear stress Ts 200 kPa

from a finite value of . to free slip implies a discontinuity
in basal heat production and consequently requires a finite
but non-zero basal freezing rate near the origin. In order to
maintain the bed at the melting point, that finite freezing rate
has to be compensated for by subglacial drainage (that is, a
finite supply of latent heat into the very tip of the temperate
bed region). We anticipate that future versions of this model
will consider smooth transitions from subtemperate to tem-
perate sliding, for instance by allowing the yield stress to ap-
proach zero continuously as a function of 7'. This, however,
is computationally extremely onerous, and we persist with
our simpler version of the basal physics here.

The inequality constraints serve the role of determining a
unique migration rate vy,. If we were to dispense with them,
we could solve Egs. (12a)-(16) with an arbitrary choice of
vm. However, for fixed model parameters, an arbitrary choice
of vy, will see one of the inequality constraints in Eq. (17)
violated, and their role is therefore to specify the migration
rate (see Sect. S1, and Schoof, 2012). That migration rate is
then a function of geometrical and forcing parameters such as
hs, Ts, qr, and ggeo. Ts and g, in particular represent the far-
field forcing due to coupling with ice stream and ice ridge.
For instance, from the perspective of the ice stream, tg is the
lateral shear stress it imposes on the boundary, while from the
perspective of the ice ridge, g; is the rate at which it supplies
mass to the ice stream through the margin.

The Cryosphere, 12, 2545-2568, 2018
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3 Solution of the model

We solve the coupled mechanical and thermal system
Egs. (2)—(17) with the finite-element solver Elmer/Ice
(Gagliardini et al., 2013). The computational domain is a rel-
atively large elongated rectangle which represents the mar-
gin cross section in the (y, z) plane. It consists of an ice and
a sediment subdomain. We apply the boundary conditions
Egs. (5)—(6) and Egs. (14)—(16) at the relevant sides of the
domain, rather than at +00.

The solutions to the problem are uniquely determined by
the lateral shear stress g, the ice thickness /g, marginal in-
flow of ice from the ridge ¢, the geothermal heat flux ggeo,
and the surface temperature T, in addition to material prop-
erties such as thermal conductivity, heat capacity, density,
rheological parameters for the ice, and the basal yield stress
7.. We will treat the majority of these material properties as
fixed (see Table 1) but consider carefully the effect of chang-
ing the basal yield stress.

3.1 Ice flow and heat production

We begin with solutions to the ice flow problem (Eqs. 2—
10). In our model, we are treating viscosity and basal yield
stress as independent from temperature. At present, this is
necessary to allow the computation of more than a handful of
solutions in a reasonable amount of time, mostly due to the
difficulty involved in computing the migration rate from the
inequality constraints (Eq. 17). The latter requires very fine
grids and a costly iterative scheme (Haseloff et al., 2015). We
anticipate that future versions of the model will consider two-
way coupling between the mechanical and thermal processes,
but in our simplified version we are able to compute solutions
to the mechanical problem in isolation: given kg, s, gy, Tc and
the rheological properties A and n, we are able to compute
velocity and pressure in the ice.

The downstream velocity u is vertically uniform in the ice
stream far field and increases with a prescribed lateral gra-
dient of 2A7}'; see Eq. (5). Figure 2a;—c; show contours of
u for different . plotted in the (y, z) plane, computed using
the parameters in Table 1. Panels a,—c» show the correspond-
ing across-flow field (v, w), whose magnitude is significantly
smaller than the downstream velocity. Hence gradients of the
downstream velocity u dominate the heat production rate,
while the velocity (v, w) in the transverse plane accounts for
the advection.

In the case of no slip on the cold side of the margin (y < 0),
stress is concentrated around the transition from no slip to
free slip at the origin. This translates to very high dissipation
rates (a) as shown in Fig. 2a3. It can be shown that there
is in fact a singularity in shear stress, and consequently the
heat production rate goes as a ~ 1/r at the origin in this case
(Sect. S3; Rice, 1967).

For decreasing 7. (rows b and c of Fig. 2), the slip tran-
sition around the origin is smoothed, as a finite region with
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Figure 2. Influence of the subtemperate yield stress ¢ on the mechanical fields in the ice stream margin. s is the lateral shear stress in the
margin. Rows of panels are labeled (a—d), with suffixes 1-3 indicating columns. Panels (aj—cj): contours of downstream velocity component
u at contour intervals of 4Omyr_1; bold line indicates u = 40myr_1. Panels (ap—cp): transverse velocity field (v, w) shown as arrows;
shading indicates magnitude of the transverse velocity. Panels (a3—c3): contours of heat production a at contour intervals 2.6 x 1074 Wm™3,
a=2.56x10"3Wm™3 shown as a bold line. Panels (d1—d3) show the velocities and heat dissipation at the bed. Note that no heat is
dissipated at the bed where the velocities are zero. Calculations were done with the values listed in Table 1 and . as indicated.

y < 0 forms where the yield stress t. is attained and slid-
ing occurs. Panels d; and d, show the velocities # and v at
the bed (z =0). Allowing slip for y <0 leads to two ma-
jor changes in the heat production. First, the englacial heat
production is reduced and the singularity at y = 0 is at least
partially alleviated (see Fig. 2bs—c3; the local analysis with
n =1 presented in Sect. S2 indicates that a may still have a
logarithmic singularity). Secondly, heat dissipation is intro-
duced along the ice-bed interface (see Fig. 2d3). We will dis-
cuss below how this shift in the location of heat production
affects the temperature field in the ice.

Figure 2ay—c, show the transition of the transverse veloc-
ity component v from a shearing flow to a plug flow. At the
boundaries of the domain the vertical velocity component w
is zero. However, near the origin, we can observe a down-
wards motion of ice towards the bed, offsetting the accelerat-
ing transverse flow. As for u, allowing for subtemperate slip
in a small region at y < 0 leads to a more gradual increase in
velocities around the origin (see Fig. 2d; and d»).

www.the-cryosphere.net/12/2545/2018/

3.2 Temperature field

To solve the heat equation (Eq. 12), we need to know the
migration rate vy, which enters as a parameter. Without the
inequality constraints (Eq. 17a; and 17b;), any value of vy,
could be used to solve the heat equation. However, with an ar-
bitrary choice of vy, one or the other of these two inequalities
is generally violated, which allows us to determine vy, with
an adapted bisection method: the upper limit of the search
interval is a migration velocity that is too big and there-
fore leads to a singular freezing rate on the ice stream side
for y > 0, in violation of Eq. (17b),. The lower limit of the
search interval leads to temperatures exceeding the melting
point at the frozen side for y < 0, violating Eq. (17a);. At
every iteration, we halve the search interval and continue the
search in the upper half if Eq. (17a); is violated at the mid-
point and in the lower half otherwise (see Sect. S1 for de-
tails).

The Cryosphere, 12, 2545-2568, 2018



2552

Increasing 7y :

7, = 100 kPa
U = 0.6 m yr—!

M. Haseloff et al.: Subtemperate slip in ice stream margins

7, = 150 kPa
Um = 3.7 m yr!

7s = 200 kPa
Uy = 13.7 m yr!

900
; o
E =
® &~
0f ] —t
-4000 0 4000  -4000 0 4000  -4000 0 4000
Increasing g, : ¢ = 10* m? yr! ¢ =2 x 10* m? yr! ¢ =4 x 10* m? yr!
Uy =124 m yr! U = 9.5 m yr! Um =5.1m yr!
900
: ©
£ E
® &~
0 —
-4000 0 4000  -4000 0 4000  -4000 0 4000
Decreasing . : T, = 27, Te =T, 7. = 0.57,
900 Uy = 12.4 m yr! Uy = 15.6 m yr! U = 80.5 m yr!
; o
E 5
® &~

-4000 0 -4000 0

y in m

4000

y in m

-4000 0

y in m

4000 4000

Figure 3. The effect of shear heating (represented by t5), advection (represented by ¢r), and subtemperate basal sliding (represented by ¢)
on the temperature field in an ice stream margin; same plotting scheme as in Fig. 2. Solid black lines show contours in 5 °C intervals with the
contour of 7'=0°C in red. Thin dashed lines indicate the ice—bed interface and the location of the cold—temperate transition at the ice—bed
interface. Red shading indicates the formation of temperate ice. Note that 7' should be interpreted as a proxy for moisture content when
T > 0. In this case we can identify ¢ = pcpT/(pwL), with ¢ being the volumetric moisture content of the ice, pw the density of water, and
L latent heat per unit mass. Panels (a—c) have g = 0, 7. = oo (i.e., no subtemperate slip), and values of 5 as indicated above the panel.
Panels (d—f) have tg = 200 kPa and 7. = oco. Panels (g-i) have tg =200 kPa and ¢, = 10* m? yr_l. The yellow lines in panels (g—i) mark the
extent of the subtemperate slip region. All other values as listed in Table 1.

In Fig. 3 we show temperature fields calculated with
migration velocities that satisfy the inequality constraints
(Egs. 17a—17b). Each panel shows solutions obtained with a
different combination of lateral shear stress g, lateral inflow
of cold ice g, and basal yield stress 7. Increasing t; while
holding all the other parameters constant (top row) leads to
more heating of the ice around the slip transition point and
inside the ice stream. Consequently, the migration velocity
increases. This gives the bed and the ice to the left of the tran-
sition point less time to heat up, and temperatures decrease
there. The opposite effect can be observed for an increase of
the lateral inflow of ice (second row), which reduces the mi-
gration velocity and leads to a warmer bed. However, due to
greater advection velocities, temperatures in the ice are lower
(Fig. 3d-f).
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Introducing subtemperate slip (decreasing t.) leads to ad-
ditional heat dissipation along the ice-bed interface on the
ridge side (y < 0). This heat can thaw the frozen bed, thereby
increasing the migration velocity. However, as in the case of
increasing T this gives the ice less time to heat up. Conse-
quently, temperatures in the ice decrease as 7. does.

Note that all the temperature fields shown in Fig. 3 have
T > 0 in some parts of the ice. The boundaries of these re-
gions are marked by a bold red line. In these regions of the
ice stream, we solve the same heat equation as in the remain-
der of the domain (see also Schoof, 2012; Haseloff et al.,
2015). Obviously, ice cannot have a temperature in excess
of its melting point, and 7 cannot be interpreted as tem-
perature where T > 0. Effectively, we assume a very spe-
cial case of an enthalpy gradient model (Aschwanden et al.,

www.the-cryosphere.net/12/2545/2018/



M. Haseloff et al.: Subtemperate slip in ice stream margins

2012; Schoof and Hewitt, 2016; Hewitt and Schoof, 2017):
where T > 0, the product pc, T (which is generally the spe-
cific heat content per unit volume of ice) must instead be
interpreted as the latent heat content per unit volume of the
ice. That is, pc, T should be interpreted as pw L@, where py
is the density of water, L is latent heat per unit mass, and
¢ is the volumetric moisture content of the ice. This allows
us to identify ¢ = pc,T/(pwL), so T is nothing more than a
proxy for moisture content when 7' > 0.

By solving the heat equation where 7" > 0, we make two
main assumptions. First, qualitatively, we assume that mois-
ture flows down gradients of moisture, which is the assump-
tion common to enthalpy gradient models and permits the
same diffusive model to be applied regardless of whether the
melting point has been reached or not. The second, quantita-
tive assumption we make is that the corresponding diffusiv-
ity remains the same for cold and temperate regions. This is
consistent with prior work but also an obvious area for fu-
ture model improvement. We will return to a discussion of
the limitations imposed by this assumption in Sect. 5.

Importantly, the region of temperate ice in the bottom two
rows of Fig. 3 does not form directly above the transition
from subtemperate slip to free slip at the origin but is shifted
significantly (by up to several ice thicknesses) towards the
ice stream. This is the result of lateral advection of ice and
of subtemperate sliding, which generates additional heat and
requires less localized englacial heating (compare the local
form of the temperature field in Appendix A and Sect. S2
with Appendix A of Schoof, 2012). This shift of the tem-
perate region away from the slip transition suggests that the
thermal physics around the transition from frozen to unfrozen
bed may be relatively unaffected by the choice of temperate
ice model (e.g., Aschwanden et al., 2012; Schoof and Hewitt,
2016; Hewitt and Schoof, 2017).

4 Migration velocity as a function of forcing
parameters

We now turn to a systematic investigation of the dependence
of the migration velocity on the ice ridge and ice stream pa-
rameters. As we have pointed out, the solution to the veloc-
ity and temperature problem is determined uniquely once we
know the applied lateral shear stress g, the inflow rate of cold
ice gr, and the geothermal heat flux gge, (or equivalently,
the far-field bed temperature on the ridge side of the mar-
gin Ty), as well as ice thickness hg, basal yield strength t,
and the remaining material properties of ice and bed. Impor-
tantly, that solution includes the margin migration rate vy,
which is therefore a function of these physical parameters
and material properties: defining the far-field basal tempera-
ture through

h
TbZTS+qge];) Sa
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we can write
Um Zf(hSa qr, T, Ts, Tp;
A» Cp’ Cp,bedy g’ kv kbed, n, 10’ ,Obedv Tm’ TS) (18)

We emphasize ice thickness hg, inflow rate g, lateral shear
stress s, and far-field bed temperature under the ridge T in
particular as these are parameters that reflect the coupling of
the margin to dynamics of ice ridge and ice stream. Conceiv-
ably, one might want to run a simulation that relies on sim-
plified models of ridge and stream without having to resolve
the margin region itself. The goal of a systematic solution of
our margin model in that case is precisely to compute the mi-
gration rate vy, as a function of parameters that are controlled
by the ridge and the stream: doing so allows the margin to be
treated as a free boundary in a larger-scale model. We also
emphasize the role of basal yield stress t. as we are inter-
ested in how allowing for varying degrees of subtemperate
sliding changes the relationship between margin migration
rate and the forcing the margin experiences from ridge and
stream.

It is clear that vy in Eq. (18) depends on a large num-
ber of physical parameters, and the computational effort re-
quired to find the function appears to be intractable. How-
ever, we can reduce the parameter space to a minimum by
non-dimensionalizing the model: doing so demonstrates that
many combinations of parameter values actually correspond
to scaled versions of the same calculation, which we then
have to do only once. This is done in Sect. 4.1. An addi-
tional advantage is that non-dimensionalization allows us to
identify systematically which processes dominate the tem-
perature field and migration rate (see Sect. 4.2). This leads to
further simplification that allows us to give semi-analytical
versions of Eq. (18) in a number of parameter regimes, which
we study subsequently in Sect. 4.3—4.4.

4.1 Non-dimensionalization

The goal of this section is to express the model in the most
succinct form possible. To do so we introduce

n+2 q T
n+1Atrh? pg’

[z1=hs, [s']= [u]l = Ahst,

n+2gq
= i (T]=Tn—T;s
and put (y,z)=[z](Y,Z2), u=[ulU, (v,w)=[v](V,W),
s'=1[s"18", p=pgls'1P, and T =[T)T + Ty,. This allows
us to absorb quantities such as the ice thickness, inflow rate,
and dimensionless lateral shear stress in the ice stream mar-
gin into five dimensionless parameters:

[v]

19)

AriHp2 (n+2) pcpgr Ty, — Ty
o= , re= ) = 5
k(T — Ty) n+1) &k T — T
2
SN e L (20)
T n+1Atlh?
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Note that our parameter « is defined slightly differently from
its counterpart in Schoof (2012) and Haseloff et al. (2015):
if we replace Ty, by 7T in the denominator of Eq. (20);, we
obtain the version of « used in the latter two papers. We can
interpret the parameters above as a dimensionless shear heat-
ing rate o, a Péclet number (or measure of advection versus
conduction) Pe, a dimensionless measure of the far-field bed
temperature v (v is between 0 and 1 for a ridge bed temper-
ature Ty below the melting point Tr,, as we assume here), a
dimensionless basal yield stress 7, and a ratio of transverse
to downstream velocities €. Using the values in Table 1, we
get Pe =314, 0 =592, v =0.9, and ¢ = 0.04.

Note that a large Péclet number is what we would expect
in a spatially confined region like an ice stream margin: con-
duction of heat is relatively ineffective, and advection mostly
dominates. Large « reflects the strength of heat production,
which must balance the fast rates of advection of cold ice
implied by large Pe. Note that & remains small as long as the
across-margin flow is significantly smaller than the down-
stream flow, which we assume to be the case. Terms of O (¢g)
are retained only in order to regularize the viscosity in the
ice ridge, where gradients in # vanish. In the numerical solu-
tions presented in this study, we use ¢ =0.01, and we have
confirmed that smaller values of ¢ do not change our re-
sults. O (1) values of ¢ would imply that there is significant
englacial heat production in the ridge; see Haseloff (2015)
and Haseloff et al. (2015). This heat production should pre-
vent the ice ridge bed from remaining frozen, contradicting
our basic assumption that the shear margin is co-located with
a thermal transition at the bed. t is poorly constrained, and
we will consider different parameter regimes of T below. Ad-
ditionally, we have the following ratios of material properties

k
_ PbedCp, bed k= bed. @1
PCp k

With the definitions above, the velocity in the downstream
direction is determined by the scaled version of Eq. (2),

0 (OUY, 0 (UY_ o
ay \Mov ) Taz\Maz) T

and the across-stream flow is described by Eq. (3):

D (V) v, oW (L,
oy Moy ) ez M \az T oy ay

0 oV ow 0 ow JP

a_Y[“(a_z+a_Y)}+a_z(2“a_z)_a_z:0’ (230)
A% ow
3—Y+8—Z=0. (23C)

1 is the non-dimensional viscosity:

1 [lau
B=50m | oy
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The boundary conditions in the ice stream far field (Eq. 5)
are now
oU aV

u——>1, ——>0, W—-O0forY — oo. 25)
Y 0Z

Towards the ice ridge, we obtain from Eq. (6)
U—>0,Vo>1—>1-2"t", W—>0forY > —oco. (26)

At the ice surface, we have from the boundary conditions
(Eq. 10)

ou oV W =0, 2 ow P+S =0atzZ=1. (27)
_— = —_— = =0, _— = = al = 1.
Koz =Haz oz

As before, basal melting has a negligible effect on ice veloc-
ities, and Eq. (7) becomes

W=0atZ=0. (28)

On the temperate side of the bed, we have free slip from
Eq. (8):

W _ W% gaz=0,v>0 (29)
Roz “Haz = 82=% 0 =2%

On the frozen side of the bed, we can either have no slip
(Eq. 9a),

U=V=0atZ=0,Y <0, (30a)

or we allow subtemperate slip, requiring from Eq. (9b)

Y U Vv v
either y— =7———, — =T
"oz VU2 + 622 "oz VU2 + 22

VU2 +e2V2>0

U 2+ L AV 2<
or — e — T,
Moz Koz) =

forY <0, Z=0.

VU2 +e2v2=0
(30b)

Note that the ice flow problem depends only on n, ¢, and 7.

For later convenience, we write the thermal problem in
terms of a reduced temperature ® through 7 = (1 —v)® —
(1 —v) —vZ: 0 is the deviation from the linear temperature
field that would result from geothermal heat flux and conduc-
tion alone, given the imposed surface boundary value. Writ-
ing the heat equation (Eq. 12a—12b) in terms of ® yields

00 00 00 v
Vn—+Pe|\V—+W—+ w

aY aY Z 1—v

—82®+—82® Afor0<Z<1 (31a)

_ = or < <1, a
Y2 = 9z2
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GIC) 3?0 9%
meﬁ—x(m+ﬁ)=0f0r2<0, (31b)
with the heat production term
o LU, U

C2l/n gy dZ
1+n
+&2 8V+8WZ—|-2 8V2+2 oW EN (32)
8 — — — —
0Z JY oY 0Z ’

where we have retained the small O (g2) term, analogous to
that in Eq. (24). We have also introduced Vy, as the dimen-
sionless speed with which the ice stream margin migrates
outwards. It is related to the dimensional migration speed
through

k

= . 33
m= (33)
The boundary conditions (Eqs. 14—16) are
®=0atZ=1, (34a)
— —> 0for Z - —o0, (34b)
0Z
® —0forY — —o0, (34¢)
00
FTa — Ofor Y — oo. (34d)

Finally, we have the inequality constraints determining the
migration velocity, which are

® <1 and

_@++K@‘—:Io, if T = 00
0Z 0Z atVUZ+e2V2, ift <o0
forY <0, Z=0, (35a)
®=1 and

eIt se|” [0, ifr=o00

Y/ +KBZ SIoo, if T <o0
forY >0, Z=0. (35b)

We have now arrived at a model in which a (unique) di-
mensionless margin migration velocity Vy, is defined by four
dimensionless groups that depend on forcing from the ice
stream and ridge (o, Pe, v, and 7) and on the material con-
stants y, «, and n:

Vin= f(a, Pe, v, T, 1, y, k). (36)

The remainder of this paper focuses on determining the
form of the function f. For comparison with previous work
(Schoof, 2012; Haseloff et al., 2015), we additionally assume
y =k =1 and n = 3, so that V};, can only depend on Pe, «,
v, and t. We start by treating o and Pe as O (1) parameters in
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the next section to build intuition for the dependence of Vi,
on Pe, o, v, and T and then investigate the physically more
realistic case in which both Pe and « are large in Sect. 4.3—
4.4.

4.2 Migration velocities at O (1) values of « and Pe

In Fig. 4 we plot V},, against « at fixed values of the other pa-
rameters. We see a qualitatively similar picture to the cases
described in Schoof (2012) and Haseloff et al. (2015), which
assumed a constant viscosity (n = 1): outward migration of
the margin requires a minimum value of «. Once that is
reached, the migration speed increases with o (Fig. 4a). In-
creasing advection (Pe > 0) in the heat balance reduces the
corresponding migration speed Vy,. This is because heat pro-
duction is now balanced not only by migration into the cold
ice of the ridge but also by the influx of cold ice into the
boundary layer (represented by Pe). In addition, for every
fixed Péclet number there is a minimum nonzero value of
o that generates a positive migration rate, as already found
by Haseloff et al. (2015).

Solutions of V, for different v between 0.1 and 0.9 are
shown in Fig. 4b. Note that the migration velocity is not very
sensitive to changes in v: for increasing v, there appears to
be a small @-independent shift of Vi, to smaller values. Con-
sequently, relative differences in the migration rate should
become smaller for increasing values of «. If there are ad-
ditional dependencies of Vy, on v, these are small enough to
be invisible. This behavior is consistent with the analysis for
large o that we present later in Sect. 4.3.

We have seen in the discussion of the mechanical fields in
Sect. 3.1 that subtemperate slip (t < 00) introduces dissipa-
tion along the ice-bed interface. Decreasing t leads to more
subtemperate slip and therefore to more dissipation at the bed
on the cold side of the margin. Consequently we expect the
migration velocity to increase with decreasing 7. Figure 4c
confirms this. However, relatively small values of t<1 are
needed before there is a noticable effect on the migration ve-
locity.

A noticable feature of Fig. 4 is not only that V, depends in
qualitatively expected ways on «, Pe, and t. We also notice
that the dependence of Vy, on « often appears to be nearly
linear and that V}, is insensitive to changes in v. This sug-
gests that — despite f being a function of «, Pe, T, and v —
it may be possible to find parameter regimes in which sim-
ple representations of f are available. In the remainder of
the paper, we show that it is possible to derive such repre-
sentations when the dimensionless heating rate « is large.
Our estimates in Sect. 4.1 have already indicated that this is
the relevant regime that real ice stream margins should find
themselves in. We begin by focusing on the case of no slip on
the cold side, for which the relationship between Vi, and « in
Fig. 4 appears to be nearly linear: we are able to demonstrate
that this is the case, and we give a formula for the resulting
dependence on not only « but also Pe. Subsequently, we ad-
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20 30
ol o

Figure 4. Dependence of non-dimensional migration velocity Vi, on lateral advection (parameterized by Pe, a), far-field bed temperature
(parameterized by v, b), and basal shear stress on subtemperate side of the bed (parameterized by 7, ¢). Unless indicated otherwise, we used

Pe=10,v=0.5, and T = 00.

dress the more complicated case of finite t, concluding with
formulae for Vi, in the parameter regimes of large and mod-
erate subtemperate slip.

4.3 Large heat production without subtemperate slip

We initially restrict ourselves to the case of no subtemper-
ate slip and consider the case of large «: our estimates in
Sect. 4.1 indicate that this limit is likely to apply in practice.
Combined with a large heat production rate, the same esti-
mates lead us to expect a large Péclet number: ice is a rela-
tively poor thermal conductor, and advection dominates con-
duction at the scale of a single ice thickness. Mathematically,
this corresponds to advection and heating terms in the heat
equation dominating over diffusion in Eq. (31) over most of
the domain. However, this is no longer true close to the tran-
sition from no slip to free slip where there is a small region
in which conduction also contributes to the local energy bal-
ance. The physics in this region determine the migration rate:
conduction is an essential part of how the margin migrates, as
it controls how heat production causes the cold part of the bed
to warm, and how much heat is extracted from the temperate
part of the bed. The analysis below therefore focuses on this
small region (known technically as a “conductive boundary
layer”; see Fig. 5a).

In what follows we give a brief description of how we can
derive a model that ties migration velocity to heat production
and transport in the conductive boundary layer. The reader
not concerned with the technical details will find the result
of this analysis in Eq. (43).

The non-dimensional mechanical problem (Egs. 22-30b)
is parameter-free in the absence of subtemperate slip (the 7 =
oo case above). However, to analyze the temperature field in
the boundary layer, we need to know the behavior of flow
velocity and heat production near the transition from no slip
to slip. In Sect. S3, we show that A, U, and (V, W) exhibit
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power-law behavior near the origin:
A~ A 'R
2 1-n
U~\/2—"1AF Heos9 AL Rt as R=VY2+22 -0,
n+
(V. W)~ (Vo Wyp)R?

(37)

with 8 =0.5 for n =1 and g ~0.271 for n =3, and Ay,
Vs, and Wy functions of the angle ¢ between the vector
(Y, Z) and the Y axis and independent of any other model
parameters. Here, R = /Y2 + Z?2 is distance from the ori-
gin. Knowledge of Eq. (37) enables us to study the behavior
of the temperature field close to R = 0.

For large o, heating near the origin behaves as oA ~
aR™!. As described above, we are looking for a region
in which this heating rate is partially balanced by conduc-
tion. This happens at distances from the origin that scale as
Ry = a L. To resolve this region, weset (Y, Z) = Ry (Y, 2),
A=Ry"'A, and (V,W)=R,?(V,W) using Egs. (37);
and (37)3, and put ® = ©. If the boundary layer sets the
migration rate, then the effect of the margin migrating into
colder ice must also enter into the energy balance of the
boundary layer at leading order. In order for this to happen,
we need a large migration velocity with Vi, ~ «, which we
capture by rescaling the migration velocity as
Vim=a V. (38)
We can simultaneously consider conditions under which ad-
vection due to motion of the ice also contributes to the cool-
ing of the conductive boundary layer, in addition to migration
into cold ice. It turns out that this requires o ~*#) Pe to be
of O(1); i.e., the Péclet number must scale as Pe ~ o' T#. We
therefore put

A = PeTi7 (39)

Q| =

and consider the case of A ~ O(1) (known technically as a
“distinguished limit”). The case of slow advection is captured
by taking the limit of small A. Fast advection of cold ice into
the margin (A >> 1) does not permit a widening of the ice
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Figure 5. Boundary layer structure for asymptotic calculations with large o and Pe, without subtemperate slip (a) and with subtemperate
slip (b). The background temperature profiles are enlargements of typical profiles in this asymptotic limit, with same color scale as in Fig. 3.
In the outer advective boundary layer the temperature field close to the bed is advected from the ice ridge towards the inner conductive
boundary layer. In the case of a no-slip—free-slip transition at the bed the conductive boundary layer consists of a small region around the
slip transition (a). In the case of subtemperate slip, the conductive boundary layer is a region of small vertical extent which stretches along
the length of the subtemperate slip region (b). Within the conductive boundary layer, heat dissipation is balanced by diffusion.
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Figure 6. Asymptotic behavior of Vm = Vma ! for the case without subtemperate slip. In this case we expect a limiting behavior of
Vin = f (A) fora>1and A = Pel/(U+P g1 gee Eq. (41). Panel (a): Vin against « for different values of constant Pe. Convergence to a
constant value confirms the limiting behavior predlcted by Eq. (41). Panel (b): Vim against Pe for different values of A. Note that holding A
constant as Pe changes implies that o changes proportional to Pel/U+B) Panel (¢): Vin against A at constant Pe = 1019, corresponding to
different values of f(A). Filled markers show the same data as in panel (b). The open triangles and squares additionally show results for two
different temperature fields in the ridge far field with same non-dimensional bed temperature ® = 0 at Z = 0, as indicated in the legend.
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stream as we are assuming here, and we exclude the case of
large A from consideration.

With these changes of variables and parameter definitions
in place, Eq. (31) becomes (neglecting an O(a™") term)

~ 30 -390 ~930
Vin— + AP (v—~ + W—~)
Y Y aZ

0 9’0\ ~ ~
—(T+T)=A for0 < Z, (40a)
oYz  9z2
~ 90 (3’0 3’0 ~
"oy (3Y2 822) (406)

with boundary conditions given by the t =00 case in
Eg. (35) and each variable being replaced by its rescaled ver-
sion (i.e., ® being replaced by ®, ¥ by Y, and Z by Z).
This boundary layer model contains only Vy, and A as pa-
rameters; if (as we expect) there is a unique migration veloc-
ity Vim which solves this problem for given A, then we have
Vi = F(A). _

However, we are still missing conditions on ® at large dis-
tances from the origin, as we exit the conductive boundary
layer and enter a region in which diffusion does not play the
same leading-order role (see Fig. 5a). These far-field condi-
tions dictate how cold the ice that is advected into the con-
ductive boundary layer is and therefore control in part the
strength of conductive heat loss. In order to conclude that
Vi depends on the parameters in the original scaled model
(Eq. 31) only through A, we need to be certain that these
far-field conditions on © also depend only on A. It turns out
that these far-field conditions are determined by heat trans-
port in a slender region near the bed. This region is marked
with “advective boundary layer” in Fig. 5a; it extends above
the origin and towards the cold ice ridge. In this region, shear
heating is balanced predominantly by advection of cold ice
into the margin and by the effect of having to warm up ice to-
wards the melting point as the margin migrates into the ridge.
It can be shown that, at leadingv order, the heat equation in
this region again contains only V;, and A as parameters and,
consequently, that the far-field conditions to Eq. (40) depend
only on Vi, and A as required. This is somewhat tedious, and
we give details in Sect. S4. Ultimately, we are able to confirm
theoretically that

Vin = f(A). (41)

Our goal now is to check numerically that this relationship is
obtained from direct solutions of Egs. (22)—(35) when « and
Pe are made sufficiently large, and to find the approximate
form of the function f. Note that we have gone from having
a complicated function of 16 variables in Eq. (18) to being
able to express the migration rate as a function of a single
variable A (which in turn depends on o and Pe). Approximat-
ing a function of a single variable numerically, for instance
in the form of a lookup table, is obviously much simpler than
having to solve numerically for a large number of indepen-
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dent variables, justifying the perhaps somewhat obscure pro-
cedure that has led us to this point (and its equivalent forms
for other parameter regimes to follow later).

The limiting behavior (Eq. 41) can also be written as

~f Pel/(+8)
Vm=af| —— ).
o

Immediately, we see that for no advection (Pe = 0) we expect
a linear relationship between migration rate Vy, and heat-
ing rate o, which the results in Schoof (2012) and Haseloff
et al. (2015) already hinted at for large «. In fact, a linear
relationship does not require vanishing Pe: it suffices that
Pe/0+B) jo — 0. We confirm this behavior numerically in
Fig. 6a, where Vi, is plotted against « for different fixed val-
ues of Pe. Vi, converges to approximately 1.68 for each value
of Pe, with the rate of convergence dependent on Pe (Fig. 6a).

A more general scenario is to consider « — oo and Pe —
oo in such a way that A is finite, in which case we cannot
neglect the effect of advection. Figure 6b shows the conver-
gence of Vi, to its limiting form f(A) as we make Pe (and
hence «) large while holding A fixed. Note that holding A
fixed means that & must grow in lockstep with Pe!/(1+#) The
approach to the limit can be relatively slow, though the lim-
iting value gives a good order-of-magnitude estimate of the
actual migration rate even for smaller values of Pe.

Finally, by plotting the converged values of Vi, at large
Pe against A, we can find the function f(A) in Eq. (41).
Figure 6¢ shows Vi, plotted against A for a fixed value of
Pe = 10", which is large enough for the limiting value to
have been approached closely in all the examples shown in
Fig. 6b. We can fit a linear relationship to the computational
data, of the form

f(A) =Cy — CpeA, (42)

with Cy A~ 1.68 and Cp. ~ 0.19, preserving the limiting
value of f(0) identified above. Written in terms of the origi-
nal migration velocity Vi, = a f (A), this is the same as

1
Vi = Cya — Cp.Pe 8 (43)

for o > 1 and Pe > 1. As previously noted (see also Schoof,
2012; Haseloff et al., 2015), a finite heating rate « is required
in order to cause outward migration of the margin, and the
formula above is only valid for arguments « and Pe that en-
sure Vi, > 0.

The migration rate in the limit of large « and Pe is set by
heat generation and transport in a small conductive boundary
layer near the no-slip-to-free-slip transition. As we have dis-
cussed above, the conductive boundary layer is subject to the
advection of cold ice from the far field. That advection takes
place from the ice ridge towards the margin, and, crucially,
the ice that eventually enters the conductive boundary layer
always remains close to the bed. As a result, the conductive
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boundary layer is not sensitive to the details of the tempera-
ture profile with which ice enters the margin from the ridge,
except for the basal temperature of ice in the ridge: ice at
higher elevations simply passes over the boundary layer and
does not affect the energy balance that controls the migration
rate at leading ordgr. In technical terms, the far-field bound-
ary conditions on ® come from matching with the advective
boundary layer alluded to above, which itself occupies only a
small region near the bed and therefore has inflow boundary
conditions dictated by the near-bed temperature prescribed in
the limit Y — —o0; see Sect. S4 for details.

We can confirm computationally from solutions to
Eq. (31) that Vi, is insensitive to the temperature profile im-
posed on the left-hand boundary. Still using large values of
a and Pe, we solve Eq. (31) with the purely diffusive tem-
perature profile prescribed in Eq. (34c) replaced by several
nonlinear ones that have the same temperature at the bed
as Eq. (34c), but with a steeper temperature gradient near
the bed. The corresponding migration rates are displayed as
open (empty) markers in Fig. 6¢, and we find close agreement
between results obtained from different far-field temperature
profiles.

4.4 Large heat production with subtemperate slip

In the last section, we considered large dissipation rates and
rapid advection of ice but not subtemperate slip. The migra-
tion velocity Vp, is then determined by heat production and
transport in a small conductive layer around the no-slip-to-
slip transition. The extent of that boundary layer scales as
Ry, =a~!. Here, we extend the analysis for large « and Pe
to account for subtemperate slip. When we allow for sub-
temperate slip in our model, sliding occurs on a patch of
bed of finite size R., and the size of that patch relative to
the size of the diffusive boundary layer R, becomes a key
consideration (see Fig. 5b). We need to distinguish two ba-
sic cases, Ry ~ R. and R, ~ O(1). We treat the former case
first. Our modus operandi also remains the same as in the
previous section: by rescaling the dimensionless temperature
model (Eq. 31) to capture the leading-order behavior in the
conductive boundary layer that determines the migration ve-
locity, we derive a simplified form for the migration rate Vp,
as a function of the dimensionless parameters «, Pe, v, and t,
and test that relationship by solving Eq. (31) directly in the
appropriate parameter regime.

4.4.1 A small slip region: 7 ~ o!/®+D » 1

Consider a slip region that is similar in size to the conductive
boundary layer of Sect. 4.3. To have such a small slip re-
gion, the dimensionless yield stress T must be large. 7 scales
as T~ |dU/3Y|"/", and with Eq. (37) we find that dimen-
sionless stresses in the ice scale as R;l/("H) =/ 0+D jp
the conductive boundary layer of Sect. 4.3. These must now

be comparable to the dimensionless yield stress of the bed;
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hence

T~ Oll/ (n+l)_

As we reduce t from an effectively infinite value (so there
is no slip, as in Sect. 4.3) until it is comparable to /et
the magnitudes of velocity components and heat production
rate in the conductive boundary layer remain the same as
in Sect. 4.3, but the dependence of velocity and heat pro-
duction on position starts to change, so the analytical for-
mulae (Eq. 37) no longer apply directly. (Technically, these
formulae remain valid at distances r from the origin for
which R, < r <« 1.) Knowing that the magnitudes remain
the same, however, we can use the same rescglirlg as in
Sect. 4.3; put R, =~ !; and set (Y,Z) =Ry (Y, Z), A=
Ry'A U=RY"VT, (v,W)=R,P(V, W), and 6 =
0.

The resulting mechanical problem is detailed in Sect. S5.
We do not go into detail here: the point is that the velocity
(U,V,W) and hence the heat production rate A are fully
determined if the ratio of yield stress t to typical stress level
o'/ in the conductive boundary layer is given. We write
that ratio (effectively, a dimensionless slip parameter) here in
the form

M= (g, (44)

Note that Sect. 4.3 effectively treated the case of no slip, I' =
0, and we seek to generalize this here. The corresponding
problem for temperature © again takes the form of Eq. (40).
In addition to .A now being dependent on the slip parameter
I, the boundary conditions at the bed also depend on I': we
have from Eq. (35a)—(35b) that

+

90| -1~
=T |U]

37

90

— onZ = 0, Y < 0, (45a)
0Z

O=1 onZ=0,Y>0, (45b)

with the inequality constraints on flux and temperature still
taking the same form as in Eq. (35a)—(35b).

In other words, the conductive boundary layer problem
now depends on an additional parameter through I': with the
abrupt transition from no slip to free slip (Sect. 4.3), we had
Vi = f(A) = Cy — Cpo A, while now we have

Vin = 2(A, 1), (46)

with f(A) = g(A,0). To confirm that Eq. (46) holds, we fix
A and I" to specific values and increase «. This implies that
Pe = (a/A)'TP and 7 = («/ E)l/(l“'") both increase in lock-
step with «. Convergence of V, to a value that depends only
on A and I" for « — oo then confirms Eq. (46).

Owing to the high computational cost of solving Eq. (31),
especially in the limits of large Pe and o (when advection
dominates and the conductive boundary layer requires high
mesh resolution), we test for convergence of Vy, in this pa-
rameter limit for a total of 39 combinations of A and I,
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Figure 7. Panel (a): asymptotic behavior for t >> 1 where we expect a limiting behavior of \7m =g(A,T) for a > 1; see Eq. (46). Con-
vergence to constant values confirms the limiting behavior. Note that « is plotted on a logarithmic scale. Panel (b): velocities against
I =t~ @+Dqy at constant values of A = Pel/1+A)~1 a5 indicated by color and o = 10735 Note that T — 0 corresponds to T — 00,

the limit without subtemperate slip.

where we have restricted ourselves to only three values of
A and focused on the effect of changing the slip parame-
ter I". Figure 7a shows the expected convergence in the limit
of large a. As in Sect. 4.3, convergence often requires quite
large values of «. The limiting value of Vi, is plotted against
I" for the three different values of A used in Fig. 7b.

As already observed in Sect. 4.2, decreasing the basal
shear stress increases the migration velocity due to increased
dissipation on the cold side of the bed. We observe the same
here, in the sense that increasing I' o« 7~ "*+1) increases the
migration velocity. We also reproduce the limiting behavior
for ' = 0 (r — 00), in which case we expect to reproduce
the migration rate predicted for the no-slip-to-free-slip tran-
sition case of Sect. 4.3. In fact, Fig. 7b shows that relatively
large values of I' ~ 10 are needed to see a significant de-
parture of migration velocity Vi, from its limiting value for
I' = 0. Unfortunately, computational constraints make it im-
possible for us to find a simple closed-form approximation
for g analogous to Eq. (42): we simply do not have enough
data to construct such an approximation. However, we will
present a solution to this issue in Sect. 4.4.3.

442 An O(Q) slip region: Tt ~ 0O (1)

We now turn to the case of T ~ 1, in which the lateral shear
stress 7 exerted by the ice stream on the margin is compara-
ble with the yield strength . of the frozen bed. In this limit,
we expect the subtemperate slip length scale to be compara-
ble with ice thickness, so R; ~ O(1) (see also Fig. 2). The
region in which there is significant dissipation along the bed
is now much larger than in the previous section. As a re-
sult, the region in which dissipation is balanced substantially
by conduction now has a horizontal extent comparable with
ice thickness, too. For large «, however, we still have a con-
ductive boundary layer whose vertical extent remains small:
large temperature gradients are needed in order to account
for the large amounts of dissipation, and such temperature
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gradients have to correspond to O (1) temperature changes
occurring over small vertical distances. In fact, that vertical
distance still scales as Ry = a~!. The primary difference is
therefore that the boundary layer now has an O(1) extent in
the horizontal, equal to the size of the slip region.

With an O(1) region of slip at the bed, there are no
simplifications to the mechanical problem (Egs. 22-30b):
we are no longer confining our attention to a small region
around the origin. The solution to the mechanical problem
is fully specified if we know t, so (U, V, W) are functions
of t only. The horizontal velocity components (U, V) are
of O(1). If we are concerned with the conductive bound-
ary layer near the bed, then we only need the vertical ve-
locity component near the bed. Since W =0 at the bed it-
self, we find that W ~ Z in the boundary layer. This al-
lows us to rescale as (Y,Z)=(Y* R,Z*), (U, V,W)=
(U*, V*, RyW*), A= A* and ® = ®* The leading-order
version of the heat equation (Eq. 31) is thus (neglecting terms
of O(a™1))

90* 9O* 90* 92e*
Vv Qlv* w* - =0, 47
mays * ( ay= T az*) 9272 (472)
90*  92E*
* —
N T i 0, (47b)
where we defined
Vi Pe
* J— J—
Vin = 2 Q= 2 (48)

and retained €2 as an O(1) quantity: doing so with a > 1 is
again to look at a distinguished limit, analogous to treating
A as O(1) in Sect. 4.3. The rescaled version of the heat flux
constraint (Eq. 35a;) is

9e* | N O*
dZ* aZ*

=t|U"|.

Again, there are far-field boundary conditions on ®*. These
arise purely by advection into the boundary layer, and that
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advection occurs from the ice ridge, which fixes the far-
field temperature at ®* =0 as Y* — —o0, so there is no
additional parameter dependence through the far-field condi-
tions. The thermal problem (Eq. 47) contains only the dimen-
sionless parameters 2 and 7 (the latter both explicitly and
through the velocity field). This indicates that the rescaled
migration velocity V;} only depends on €2 and t:
Vi=g"(R.1) (49)
fora> 1, Pe~a?, and 7 ~ 1. Expressed in terms of the
original migration velocity Vy,, we have

Pe
Vi = a’g* (—2, 7:) )
o

Once more we confirm that the formula (Eq. 49) holds by
computing V,* for different fixed 2 and r while increasing «.
In this case, we can observe convergence at moderately large
values of a ~ 10% to 10° (Fig. 8a). Again, smaller values of
7 lead to larger values of V., and increasing Pe (and hence
) leads to decreasing V- (Fig. 8b). Note that the solutions
shown are computationally expensive: the conductive bound-
ary layer invariably requires local mesh refinement, and in
the parameter regime considered here it extends over a larger
part of the domain, with the size of the region that requires
mesh refinement depending on t. As a result, we are not able
to compute solutions for very large values of « at all values
of 7. Therefore, computational constraints once more mean
that we are unable to sample a large enough region of the
two-dimensional parameter space to give a simple formula
for the function g*.

However, for small values of t <« 1, it is possible to
solve the boundary layer problem analytically, as shown in
Sect. S6. Effectively, this corresponds to finding the limiting
behavior of g* as T — 0, for which we obtain with n = 3 that

2
gf Q) ~ l[ o4 63ﬁ§21] , (50)

T 3157 64

where the solution is valid only when the term in square
brackets is positive: as before, a minimum value of o (equiv-
alent to a maximum value of Q o «~?) is required to ensure
outward migration of the margin. This limiting form is dis-
played in Fig. 8b along with the computationally obtained
migration velocities for nominally small values of 7 =1,
t =0.5, and T = 0.25 (note that Vy, ~ 71 so Vm does not
approach a finite value but diverges in a predictable fash-
ion). For t = 1 and T = 0.5, there is still a notable difference
between the numerical solution and the analytical solution
(Eq. 50), implying that these values of v do not yet satisfy
T < 1. However, for T = 0.25, the difference between the
numerical solution and the analytical solution is negligibly
small.
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4.4.3 Moderate slip: 1 € 7 < o!/1+7)

One of the difficulties we still face in making our results
directly applicable to large-scale models is that we have a
closed-form approximation for the migration rate Vy, for only
two parameter regimes. Both assume large dissipation rates
a > 1, which is realistic for abrupt ice stream margins. One
applies to the case of no subtemperate slip (Eq. 43), while
the other applies to extensive subtemperate slip (Eq. 50). The
obstacle to dealing with more moderate amounts of subtem-
perate slip is that the functions g and g* in Egs. (46) and (49)
are both functions of two independent variables and that they
are computationally expensive to evaluate.

There is one regime in which we can do better and re-
duce g and g* effectively to functions of a single variable:
both functions have to be valid representations of the mi-
gration velocity Vi, in the limit 1 « 7 < o'/ in which
=7 Uy and 7 are both large. In other words, in this
parameter regime, we expect that g and g* give the same an-
Swer:

Vin ~ag(A,T) ~ a?g* (2, 7).

If we denote the limiting forms of g and g* in the parameter
limit under consideration with a subscript 0, then eliminating
Q and 7 in favor of I', A, and « leads to

@B (A.T) =g} (Al+ﬂaﬂ—l’al/(1+n)r—1/(l+n)) .

By choosing Pe and t, we can vary A and I" independently
of «. Hence, for any given I and A, we can now pick @ =T
and are left with

Bo(A,T) =T (AT 1), (51

where we only need to evaluate g; at a fixed value of its
first argument in order to compute Vy,/I'. Define g(x) =
g5(x -8 1) for arbitrary x. It then follows that we can use
Eq. (51) and Vi = argo (A, T') to write

—(14n) 2 (T(l+n)Pel/(l—ﬂ)a—2/(l—ﬂ))'

Vm=rt a°g (52)

As promised, the migration rate once more reduces to a func-
tion g of a single variable.

Finding an approximation to g requires significantly fewer
function evaluations. Instead of varying t, Pe, and o, we only
need to vary the argument y = v pel/(1=F) g =2/(0=F) of
the function g. As before, we first confirm that Eq. (52) in-
deed holds by holding x fixed and increasing « (Fig. 9a).
Subsequently, we plot the limiting value of Vyz!*"a2
against y in Fig. 9b. A simple polynomial fit

00~ [e2( = 10 + s = 10)* (53)

with ¢o = 0.8, ¢4 = 125, and xo = 0.07 provides a good rep-
resentation of the computed migration rates. The expression
is again only valid for 0 < ¥ < xo: the maximum allowed
value of x oca™2/1=P) corresponds to the minimum dissi-
pation rate « that ensures outward margin migration.
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Figure 8. Panel (a): asymptotic behavior for T ~ 1 where we expect a limiting behavior of V. = Vma_2 = g*(Q, 1) for a > 1; see Eq. (49).
The limiting behavior is confirmed by convergence to constant values for « >> 1. Panel (b): asymptotic behavior of V}; against Q = Pea™2
along constant values of T at values of & where convergence is observed. Dashed lines show the analytical solution (Eq. 50), which is valid
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Figure 9. Asymptotic behavior for large o and Pe for the case of intermediate slip (1 < © Sal/ (141)) where we expect a limiting behavior of
Vit g=2 = g(x); see Eq. (52). Panel (a): ercl Jr"/052 against « for different values of x = tc(]Jr”)Pel/(l_ﬂ)a_z/(l_ﬂ) with Pe fixed
between 0 and 107 and t varying between 0.1 and 3.2. Convergence to constant values for o >> 1 confirms Eq. (52). Panel (b): values of

Vm‘L'Cl+n/0l2 at different x for o = 10 and T = 3.2.

5 Discussion and conclusions

In this study, we have investigated how different physical
processes determine the widening of ice streams that are
not topographically confined. We have considered the case
in which the transition from fast to slow or no sliding that
characterizes a typical ice stream margin is co-located with
a thermal transition at the bed. In this scenario, the often in-
tense dissipation of heat generated by the change in sliding
behavior can cause the corresponding transition from a tem-
perate to a cold bed to move, and the main objective of this
study is to determine the corresponding rate of margin migra-
tion into the cold region. This ice stream widening relies on
a delicate balance between heat dissipation, heat transport by
advection, and conduction to warm the initially cold bed out-
side the ice stream. We have specifically excluded the case
where heat loss dominates and the margin migrates into the
ice stream from consideration here, although similar physics
would allow inwards migration to be modeled (Schoof, 2012;
Haseloff, 2015).

How the margin location is determined here differs from
existing studies of heat transfer processes in Schoof (2004),
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Suckale et al. (2014), and Elsworth and Suckale (2016). In
all of these, the mechanical transition and the thermal transi-
tion are not co-located. Instead, these studies appeal to spa-
tial contrasts in basal friction caused by a heterogeneous
drainage system as a mechanism for fixing the margin lo-
cation independently of the thermal transition at the bed.
These approaches and our approach likely represent end-
members of how actual ice stream margins migrate, because
hydrologically driven margin migration is excluded in our
model: freezing in the bed leads to the formation of a thermal
barrier which we assume subglacial water cannot penetrate
(Haseloff, 2015). Observations suggest that the beds of ice
ridges are indeed frozen in some parts (Bentley et al., 1998;
Catania et al., 2003) but that widening of ice streams into
these regions is nevertheless possible (Stephenson and Bind-
schadler, 1988; Fahnestock et al., 2000; Conway et al., 2002;
Catania et al., 2012). It is therefore conceivable that drainage-
driven ice stream widening and thermally driven ice stream
widening are operating in different regions of the Siple Coast
ice streams, and future work should investigate the interplay
between these different processes.
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To model the migration of ice stream margins, we solve a
coupled model for ice flow and heat transport in the margin.
In this model, the migration rate is determined by imposing
constraints on the temperature and heat flux on the cold and
warm side of the margin. The migration rate depends on ma-
terial properties, ice geometry, lateral shear stress in the ice
stream margin, and the velocity with which the ice enters the
margin from the ridge. These dependencies can be expressed
in terms of a small number of non-dimensional combina-
tions of these parameters, although there is no closed-form
solution, and the migration rate is expensive to evaluate on
a case-by-case basis through the use of our model. In gen-
eral, we have been able to establish that larger lateral shear
stresses and less inflow of cold ice favor margin migration, as
does a lower basal yield stress on the cold side of the margin.

To go further and provide quantitative parameterizations
of the migration rate, we have exploited the fact that heat dis-
sipation is generally large. This has allowed us to construct
a number of approximate solutions for migration velocities
that we can give in closed form. Where the different param-
eterizations we have derived apply depends on the amounts
of subtemperate slip, controlled in our model by basal yield
stress 7. Note that all formulae given below are valid only
where they predict vy, > 0: in general, there is a minimum
value of dissipation rate required to produce any outward mi-
gration at all. In all cases, a Glen’s law parameter n = 3 has
been assumed.

For an infinite yield stress, which is equivalent to a sharp
transition from no slip to free slip, the migration rate is
(Eq. 43)

Athg
pcp(Tm — Tp)

(- pc”qr) if vy > 0.
peyhs \4 &

vm = 1.68

—0.19

(54)

The parameter A is the viscosity of ice, t is the lateral shear
stress in the ice stream margin, fg is the ice stream thick-
ness, g is the ice flux from the ice ridge into the ice stream,
Ty is the bed temperature in the ice ridge, Ty, is the melt-
ing point temperature, ¢, is the specific heat capacity of ice,
p is the density of ice, and k is the thermal conductivity of
ice. For an intermediate yield stress (73 < 7. < 00), we have
from Eq. (53)

ok ( ATéR? )z(rs)“
" pephs \k(Tn —Tv) )\

x [O.S(X —0.07)% +125(x — 0.07)4] ifom >0, (55)

with x given by

\'5  k(Tm—T)?]"!
= — —0C —_— 5
X=\T ) 4P A
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additionally, we must have 0 < y < 0.07. The upper limit on
x corresponds to the lower limit on heat dissipation which
is required for outwards migration. Finally, for a very small
yield stress (. < t5), we have Eq. (50)

kK ( Atih? )2 Ts
" pcphs \k(Tm — Tp) ] T
2
64 3157 pepgr ((K(Tm — To) \* e
X J— —
3157 256k Atih2 T

if vy > 0.

(56)

There are also parameter regimes for which we cannot pro-
vide such succinct formulae, but in these regimes the migra-
tion rate still increases with 7y and decreases with increasing
lateral inflow of ice g;-.

Equations (54)—(56) describe margin migration as the re-
sult of a balance between englacial heat dissipation, heat
dissipation along the ice-bed interface, and advective cool-
ing through the inflow of cold ice from the sides. The ther-
mally active region where these processes operate is a small
conductive boundary layer either around the no-slip/free-slip
boundary or along the region of subtemperate slip. While the
migration velocity is determined by a balance between heat
production and heat transport processes on very small scales,
Egs. (64)—(56) for vy only require knowledge of dynamic
quantities that can be obtained in large-scale ice sheet mod-
els (s, hs, gr, T, and 7).

To illustrate how different geometric conditions alter the
migration rate, we assume that the lateral shear stress is de-
termined by 7, = pg sina W /2, with sina = 1073 as the ice
stream surface slope, and plot the migration velocity as a
function of ice stream width W (Fig. 10). As one would
expect, the migration velocity increases with increasing ice
stream width W, because wider ice streams are faster and
therefore produce higher lateral shear stresses in the margin.
All three parameterizations predict migration velocities that
are on the order of the real-world migration velocities of 7
to 30myr~! established from relatively sparse observations
(Hamilton et al., 1998; Harrison et al., 1998; Echelmeyer and
Harrison, 1999). Note that the curves representing solutions
with subtemperate slip dip below the curve for the non-slip
case. These parts of the solution curves correspond to pa-
rameter regimes for which the approximate solutions are not
expected to be valid: subtemperate sliding always facilitates
margin migration relative to the no-slip case.

Since the parameter ranges where Eqs. (54)—(56) are appli-
cable for a given ice stream depend on the yield strength of
the subtemperate region, knowledge of the basal properties is
necessary. There are only very few observations which would
allow an estimate of the subtemperate basal yield strength
(Holdsworth, 1974; Echelmeyer and Zhongxiang, 1987; Cuf-
fey et al., 1999). Using the values reported in Cuffey et al.
(1999) for Meserve Glacier, Antarctica, gives an approximate
basal yield stress of 380kPa (neglecting the dependence on
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Figure 10. Margin migration velocities vy against ice stream width Ws. Equation (54) is valid for no subtemperate slip, 7. = co. Equa-
tion (55) is valid for intermediate values of the subtemperate yield stress, formally when 75 < 7o < ‘L'SZ[Ahg / (kT — kTp)] 174, Equation (56)
is valid for a small subtemperate yield stress (formally when ¢ < 15). Violation of the upper limit of validity of Eq. (55) leads to migration
velocities that are less than the migration velocities without subtemperate slip (marked with thin blue line), which is unphysical, as subtemper-
ate slip always increases migration velocities compared to no subtemperate slip. We used parameters listed in Table 1 and 75 = pg sina Ws/2

with sine = 1073.

the thickness of the interfacial water layers). As the typical
lateral shear stress of an ice stream margin can be estimated
from ty = pgsina W /2 to be in the range of 180 to 310kPa
(Table 3 of Joughin et al., 2002), this suggests that Eq. (55)
will be appropriate in most circumstances.

Naturally, migration rate increases with ice stream width,
hinting at the possibility of runaway widening of ice streams
in a positive feedback. Note, however, that plotting vy
against W is somewhat misleading, as we have assumed the
same ice thickness for different ice stream widths. In real-
ity, we expect a negative feedback, where wider ice streams
discharge more mass, thereby lowering the ice surface. This
would lead to a decrease in englacial and subglacial dissipa-
tion, and slow the widening of the ice stream. Investigating
this feedback requires combination of the parameterization
of vy with a large-scale ice sheet model.

In principle, incorporating ice stream widening with
Egs. (54)—(56) in large-scale models should be possible; de-
pending on the nature of the large-scale model, the formula of
the migration rate needs to be supplemented explicitly with
the continuity conditions on ice thickness and lateral inflow
of mass from Haseloff et al. (2015). There are some practical
challenges, however: to calculate the migration velocity, the
dynamic parameters A, Ts, and g must be determined at the
boundary between ice stream and ice ridge, which might not
necessarily align with the mesh or grid of the ice sheet model.
Additionally, the migration of this boundary at rates of a few
meters per year will likely be below the mesh resolution of
continental-scale models. In fact, high resolution is required
to resolve ice streams to begin with. Use of Egs. (54)—(56)
will therefore require methods that can adapt to moving ice
stream boundaries, similar to methods for grounding lines of
marine ice sheets (see, e.g., Durand et al., 2009; Gladstone
et al., 2012; Pattyn et al., 2012).
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Moreover, we have only considered the evolution of an
ice stream that is already fully evolved, but the physics gov-
erning the position of ice stream tributaries and ice stream
inception remain unclear. The position of ice stream trib-
utaries might be determined by geological factors (Peters
et al., 2006), but it is conceivable that thermal transitions at
the bed might play a role as well and that the pattern of ice
stream tributaries is the result of an instability (Hindmarsh,
2009; Brinkerhoff and Johnson, 2015).

Our model as stated in Sect. 2 makes several simplify-
ing assumptions. We allow for subtemperate slip if the basal
shear stress exceeds a constant yield stress 7. to avoid the sin-
gular transition from no slip to free slip. However, an abrupt
transition from a constant yield stress to free slip (corre-
sponding to a zero yield stress) is still unlikely to occur in re-
alistic situations. If subtemperate slip is facilitated by interfa-
cial films, then the basal yield stress will depend on the tem-
perature of the bed (Gilpin, 1979), and different temperature-
dependent sliding laws have been suggested (Shreve, 1984;
Fowler, 1986; Wolovick et al., 2014). Such a sliding law re-
quires a two-way coupling between the solution of the me-
chanical model and the thermal model, potentially introduc-
ing feedbacks between these two. We will investigate this in
a separate publication.

We also assume that the viscosity in the ice is indepen-
dent of the ice temperature (i.e., A is constant). Recent stud-
ies of the velocity field and temperature in the margin of
Whillans ice stream have found that matching observed pro-
files with numerical model results requires incorporating the
temperature-dependence of viscosity (Suckale et al., 2014).
However, in contrast to these studies, our boundary layer
model is not intended to reproduce velocity and tempera-
ture profiles over the entirety of an ice stream. Instead, we
focus on the processes in the ice stream margin that at lead-
ing order control margin migration. The asymptotic analy-
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sis of Sect. 4.2-4.4 would remain structurally the same if
we accounted for a temperature-dependent viscosity, though
the form of the englacial dissipation term would change, as
would, in most cases, the velocity. The most robust result in
this regard is likely to be the T ~ O(1) result of Sect. 4.4, in
particular the result (Eq. 50) for small t and a wide subtem-
perate slip region. For t ~ O(1) or smaller, englacial dissi-
pation affected by ice temperatures does not enter into the
leading-order basal energy balance that determines the mar-
gin migration rate, and the advection velocity that appears in
that energy balance problem is set by flow at the ice thick-
ness scale. In other words, the thermal boundary layer de-
scribed by Eq. (47) is not changed by having a temperature-
dependent viscosity. For a wide subtemperate slip region,
where lateral flow takes the form of a plug flow, it then turns
out that the derivation of Eq. (50) in the present paper (see
Sect. S6) remains the same for a temperature-dependent vis-
cosity. As advection above the basal thermal boundary layer
simply preserves the vertical temperature profile imposed by
far-field conditions in the ridge, the same depth-integrated
calculation as in the Supplement can be applied.

Finally, we have assumed that the dynamics of temperate
ice can be represented by a particular version of an enthalpy
gradient model (Aschwanden et al., 2012). We expect future
iterations of our model to incorporate ice dynamics which
can account for gravity-driven moisture transport in temper-
ate ice (e.g., Schoof and Hewitt, 2016). A more sophisticated
treatment of temperate ice is likely to be particularly relevant
when temperate ice forms near the transition from a cold to a
temperate bed: as we have seen, the Péclet number in a shear
margin is large, and temperate ice formation down-flow from
the cold—temperate transition is consequently unlikely to af-
fect the temperature field close to the transition, as 7" is dom-
inated by advection. This makes our results with moderate
to small 7. (or, more accurately, with moderate to small 1)
likely to be the most robust to changes in the temperate ice
model, since temperate ice forms some distance inside the
ice stream in that case (see for instance Fig. 3). We leave a
deeper investigation to future work.

Data availability. All numerical calculations were done with the
freely available finite-element solver Elmer/Ice (Gagliardini et al.,
2013).
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Appendix A: Temperature close to the cold—temperate
transition

Here we summarize the behavior of the velocity and temper-
ature fields close to a transition from frictional to free slip,
based on calculations given in full detail in Sect. S2. We
assume a constant viscosity n (i.e., we assume n = 1), and
we only consider the flow problem in the downstream di-
rection (parallel to the margin), corresponding to very small
distances from the origin, at which diffusion dominates heat
transport and deviations from the sliding velocity are small.
In this case we can treat the velocity as the sum of a constant
sliding velocity i, at the transition from frictional to free slip
and a correction u(y, z);i.e., u = u+u. The correction veloc-
ity then satisfies for z > 0
nV2i =0, (A1)
with V being the gradient operator in the transverse y—
z plane. u has to satisfy the boundary conditions

85_ Tc
"az_ 0

In Sect. S2, we show that this leads to a leading-order
heat dissipation term a = 17|VZZ|2 ~ rc2/(7'r2n)[log(r/r0)2 +
192] with r and ¢ polar coordinates (i.e., y =rcos? and
z = rsinv). Note that the heat production rate has only a log-
arithmic singularity in the present case, while there is a 1/r
singularity for a no-slip-to-free-slip transition; see Eq. (37).

With the heat dissipation a given, the temperature field
close to the transition point satisfies at leading order

tz=0,y<0
ar=ny= (A2)
atz=0,y>0.

153 2, 92
_kVAT — ﬂ—zn[log(r/ro) +v°] forz>0 (A3)
0 forz <0
with the boundary conditions
T(y,00=0 forz=0,y>0 (Ada)

+
—k[%—T] = ity and [T(y,0)]" =0 forz=0,y <0. (Adb)
|-

In the ice (0 < ¥ < m), the leading-order solution of this is
(see Sect. S2)

) 39
T(r,9) = aor'/?sin (E) + byrsin(¥) + air’?sin (7)

+ bor?sin(28) — %r sin(®)

Tcz 2 2
+ 0 (4n2knr log(r) ) ,

(ASa)
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and in the bed (m < ¥ < 2m) the leading-order solution is
o .
T(r,%) =agr /“sin 5 ~+ byrsin(1)

+air¥/?sin (%) + bor?sin(29). (A5b)
The term (tcup/ k)r sin() results from the interfacial heat-
ing along the ice-bed contact where subtemperate slip is pos-
sible. The 0(t3/(47'r2kn)r2 10g(r)2) term describes the con-
tribution from the englacial heating, which is small in com-
parison to the contribution from subtemperate slip. Note that
this is consistent with our results in Sect. 4.4.2, where we
found that the leading-order heat equation (Eq. 47) in the
conductive boundary layer does not feature the englacial heat
dissipation term, either.

If ag # 0, temperatures below the melting point for y < 0,
z=0 (on ¥ = m) require ap < 0. However, this leads to a
singular heat flux on the warm side (z =0, y > 0):

+ 1a7|7=0

r 00

oT
—k—
90z

ao

- _krl/z

=2

+0(1), (A6)

corresponding to a singular rate of freezing there. If we as-
sume, as we do here, that a singular rate of freezing is not
viable for a widening ice stream (see also Schoof, 2012), we
must have ap = 0. With this choice, the temperature field at
leading order is determined by the O (r) terms:

0 forz < 0.

forz >0

T(Z)"’blZ—[ (A7)

Consequently, at leading order a finite net negative heat flux
out of the bed —k[0 T/8z]f = 7.l is possible for y > 0, cor-
responding to finite (i.e., non-singular) freezing. This heat
flux is independent of the across-stream coordinate y and
continuous along y, in contrast to the case without subtem-
perate slip (see Schoof, 2012). Physically, this means that
the existence of subtemperate slip on the cold side requires
the removal of heat there and at the temperate side simulta-
neously. At the temperate side, where no heat is dissipated
along the bed, this heat must be supplied in a different form,
most likely as latent heat transported by subglacial drainage.
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The Supplement related to this article is available online
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Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Marianne Haseloff was supported by a Four
Year Fellowship at the University of British Columbia, NSERC
grant 357193-13, and the Princeton AOS Postdoctoral and Visiting
Scientist Program. Christian Schoof acknowledges NSERC grants
357193-13 and 446042-13. Numerical calculations performed
on WestGrid facilities were supported by Compute Canada. We
thank the editor Eric Larour and two anonymous referees for their
thorough reviews, which have helped to improve the paper.

Edited by: Eric Larour
Reviewed by: two anonymous referees

References

Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An en-
thalpy formulation for glaciers and ice sheets, J. Glaciol., 58,
441-457, https://doi.org/10.3189/2012J0G11J088, 2012.

Bamber, J. L., Vaughan, D. G., and Joughin, I.: Widespread Com-
plex Flow in the Interior of the Antarctic Ice Sheet, Science,
287, 1248-1250, https://doi.org/10.1126/science.287.5456.1248,
2000.

Bentley, C. R., Lord, N., and Liu, C.: Radar reflections reveal
a wet bed beneath stagnant Ice Stream C and a frozen bed
beneath ridge BC, West Antarctica, J. Glaciol., 44, 149-156,
https://doi.org/10.3189/S0022143000002434, 1998.

Bindschadler, R., Chen, X., and Vornberger, P.: The onset area
of Ice Stream D, West Antarctica, J. Glaciol., 46, 95-101,
https://doi.org/10.3189/172756500781833377, 2000.

Blatter, H.: Velocity and stress fields in grounded glaciers: a simple
algorithm for including deviatoric stress gradients, J. Glaciol.,
41, 333-344, https://doi.org/10.3189/S002214300001621X,
1995.

Brinkerhoff, D. J. and Johnson, J. V.. Dynamics of ther-
mally induced ice streams simulated with a higher-order flow
model, J. Geophys. Res., 120, 1743-1770, 2015JF003499,
https://doi.org/10.1002/2015JF003499, 2015.

Catania, G., Hulbe, C., Conway, H., Scambos, T. A., and Raymond,
C. E.: Variability in the mass flux of the Ross ice streams, West
Antarctica, over the last millennium, J. Glaciol., 58, 741-752,
https://doi.org/10.3189/2012J0G11J219, 2012.

Catania, G. A., Conway, H. B., Gades, A. M., Raymond,
C. F, and Engelhardt, H.: Bed reflectivity beneath inactive
ice streams in West Antarctica, Ann. Glaciol., 36, 287-291,
https://doi.org/10.3189/172756403781816310, 2003.

Catania, G. A., Scambos, T. A., Conway, H., and Ray-
mond, C. F.: Sequential stagnation of Kamb Ice Stream,
West  Antarctica, Geophys. Res. Lett., 33, 114502,
https://doi.org/10.1029/2006GL026430, 2006.

www.the-cryosphere.net/12/2545/2018/

2567

Conway, H., Catania, G., Raymond, C. F, Gades, A. M.,
Scambos, T. A., and Engelhardt, H.: Switch of flow di-
rection in an Antarctic ice stream, Nature, 419, 465-467,
https://doi.org/10.1038/nature01081, 2002.

Cuffey, K. M., Conway, H., Hallet, B., Gades, A. M., and
Raymond, C. F.: Interfacial water in polar glaciers and
glacier sliding at —17 °C, Geophys. Res. Lett., 26, 751-754,
https://doi.org/10.1029/1999GL900096, 1999.

Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E., and
Hindmarsh, R. C. A.: Full Stokes modeling of marine ice
sheets: influence of the grid size, Ann. Glaciol., 50, 109-114,
https://doi.org/10.3189/172756409789624283, 2009.

Echelmeyer, K. and Zhongxiang, W.: Direct observa-
tion of basal sliding and deformation of basal drift
at sub-freezing temperatures, J. Glaciol., 33, 83-98,
https://doi.org/10.3189/S0022143000005396, 1987.

Echelmeyer, K. A. and Harrison, W. D.: Ongoing margin mi-
gration of Ice Stream B, Antarctica, J. Glaciol., 45, 361-369,
https://doi.org/10.3189/50022143000001866, 1999.

Elsworth, C. W. and Suckale, J.: Rapid ice flow rearrangement in-
duced by subglacial drainage in West Antarctica, Geophys. Res.
Lett., 43, 11-697, https://doi.org/10.1002/2016GL070430, 2016.

Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A., and
Kvaran, G.: A millennium of variable ice flow recorded by
the Ross Ice Shelf, Antarctica, J. Glaciol.,, 46, 652-664,
https://doi.org/10.3189/172756500781832693, 2000.

Fowler, A. C.: Sub-temperate basal sliding, J. Glaciol., 32, 3-5,
https://doi.org/10.3189/S0022143000006808, 1986.

Fowler, A. C.: The motion of ice stream margins, J. Fluid Mech.,
714, 1-4, https://doi.org/10.1017/jfm.2012.504, 2013.

Fowler, A. C. and Larson, D. A.: On the Flow of Polythermal
Glaciers. I. Model and Preliminary Analysis, Proc. R. Soc. Lon.
Ser.-A., 363, 217-242, https://doi.org/10.1098/rspa.1978.0165,
1978.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier,
L., de Fleurian, B., Greve, R., Malinen, M., Martin, C., Raback,
P., Ruokolainen, J., Sacchettini, M., Schifer, M., Seddik, H.,
and Thies, J.: Capabilities and performance of Elmer/Ice, a new-
generation ice sheet model, Geosci. Model Dev., 6, 1299-1318,
https://doi.org/10.5194/gmd-6-1299-2013, 2013.

Gilpin, R. R.: A model of the °‘liquid-like’ layer between
ice and a substrate with applications to wire regelation
and particle migration, J. Colloid. Interf. Sci., 68, 235-251,
https://doi.org/10.1016/0021-9797(79)90277-7, 1979.

Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Resolu-
tion requirements for grounding-line modelling: sensitivity to
basal drag and ice-shelf buttressing, Ann. Glaciol., 53, 97-105,
https://doi.org/10.3189/2012A0G60A 148, 2012.

Hamilton, G. S., Whillans, I. M., and Morgan, P. J.: First point
measurements of ice-sheet thickness change in Antarctica, Ann.
Glaciol., 27, 125-129, https://doi.org/10.3189/1998A0G27-1-
125-129, 1998.

Harrison, W. D., Echelmeyer, K. A., and Larsen, C. F.: Measure-
ment of temperature in a margin of Ice Stream B, Antarctica: im-
plications for margin migration and lateral drag, J. Glaciol., 44,
615-624, https://doi.org/10.3189/S0022143000002112, 1998.

Haseloff, M.: Modelling the migration of ice stream margins, PhD
thesis, The University of British Columbia, Vancouver, Canada,

The Cryosphere, 12, 2545-2568, 2018


https://doi.org/10.5194/tc-12-2545-2018-supplement
https://doi.org/10.3189/2012JoG11J088
https://doi.org/10.1126/science.287.5456.1248
https://doi.org/10.3189/S0022143000002434
https://doi.org/10.3189/172756500781833377
https://doi.org/10.3189/S002214300001621X
https://doi.org/10.1002/2015JF003499
https://doi.org/10.3189/2012JoG11J219
https://doi.org/10.3189/172756403781816310
https://doi.org/10.1029/2006GL026430
https://doi.org/10.1038/nature01081
https://doi.org/10.1029/1999GL900096
https://doi.org/10.3189/172756409789624283
https://doi.org/10.3189/S0022143000005396
https://doi.org/10.3189/S0022143000001866
https://doi.org/10.1002/2016GL070430
https://doi.org/10.3189/172756500781832693
https://doi.org/10.3189/S0022143000006808
https://doi.org/10.1017/jfm.2012.504
https://doi.org/10.1098/rspa.1978.0165
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.1016/0021-9797(79)90277-7
https://doi.org/10.3189/2012AoG60A148
https://doi.org/10.3189/1998AoG27-1-125-129
https://doi.org/10.3189/1998AoG27-1-125-129
https://doi.org/10.3189/S0022143000002112

2568

available at: http://hdl.handle.net/2429/54268 (last access: 6 Au-
gust 2018), https://doi.org/10.14288/1.0166470, 2015.

Haseloff, M., Schoof, C., and Gagliardini, O.: A boundary layer
model for ice stream margins, J. Fluid Mech., 781, 353-387,
https://doi.org/10.1017/jfm.2015.503, 2015.

Hewitt, I. J. and Schoof, C.: Models for
ice sheets and glaciers, The Cryosphere, 11,
https://doi.org/10.5194/tc-11-541-2017, 2017.

polythermal
541-551,

Hindmarsh, R. C. A.: Consistent generation of ice-
streams via thermo-viscous instabilities modulated by
membrane stresses, Geophys. Res. Lett., 36, L06502,

https://doi.org/10.1029/2008GL036877, 2009.

Holdsworth, G.: Meserve Glscier Wright Valley Antarctica: Part
1, Basal Processes, available at: http://hdl.handle.net/1811/47277
(last access: 6 August 2018), 1974.

Hulbe, C. and Fahnestock, M.: Century-scale discharge stagnation
and reactivation of the Ross ice streams, West Antarctica, J. Geo-
phys. Res., 112, FO3S27, https://doi.org/10.1029/2006JF000603,
2007.

Hutter, K.: Theoretical Glaciology, D. Reidel Publishing
Company/ Terra Scientific Publishing Company, Japan,
https://doi.org/10.1007/978-94-015-1167-4, 1983.

Jacobson, H. P. and Raymond, C. F.: Thermal effects on the loca-
tion of ice stream margins, J. Geophys. Res., 103, 12111-12122,
https://doi.org/10.1029/98JB00574, 1998.

Joughin, 1., Tulaczyk, S., Bindschadler, R., and Price, S. E.:
Changes in west Antarctic ice stream velocities: Ob-
servation and analysis, J. Geophys. Res., 107, 2289,
https://doi.org/10.1029/2001JB001029, 2002.

Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hy-
drology and the formation of ice streams, P. Roy. Soc. A.-Math.
Phy., 470, 20130494, https://doi.org/10.1098/rspa.2013.0494,
2014.

MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment
— Theory and application to ice stream B, Antarctica, J. Geophys.
Res., 94,4071-4087, https://doi.org/10.1029/JB094iB04p04071,
1989.

Morland, L. W. and Johnson, I. R.: Steady mo-
tion of ice sheets, J. Glaciol,, 25, 229-246,
https://doi.org/10.3189/S0022143000010467, 1980.

Muszynski, I. and Birchfield, G. E.. A coupled ma-
rine ice-stream-ice-shelf model, J. Glaciol.,, 33, 3-15,
https://doi.org/10.3189/S0022143000005281, 1987.

Paterson, W. S. B.: The Physics of Glaciers, Elsevier, Oxford, 1994.

Pattyn, F.: A new three-dimensional higher-order thermomechani-
cal ice sheet model: Basic sensitivity, ice stream development,
and ice flow across subglacial lakes, J. Geophys. Res., 108, 2382,
https://doi.org/10.1029/2002JB002329, 2003.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler,
E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone,
R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee,
V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito,
F., and Vieli, A.: Results of the Marine Ice Sheet Model In-
tercomparison Project, MISMIP, The Cryosphere, 6, 573-588,
https://doi.org/10.5194/tc-6-573-2012, 2012.

Perol, T. and Rice, J. R.: Shear heating and weakening of the mar-
gins of West Antarctic ice streams, Geophys. Res. Lett., 42,
3406-3413, https://doi.org/10.1002/2015GL063638, 2015.

The Cryosphere, 12, 2545-2568, 2018

M. Haseloff et al.: Subtemperate slip in ice stream margins

Perol, T., Rice, J. R., Platt, J. D., and Suckale, J.: Subglacial hy-
drology and ice stream margin locations, J. Geophys. Res., 120,
1-17, https://doi.org/10.1002/2015JF003542, 2015.

Peters, L. E., Anandakrishnan, S., Alley, R. B., Winberry, J. P,
Voigt, D. E., Smith, A. M., and Morse, D. L.: Subglacial sedi-
ments as a control on the onset and location of two Siple Coast
ice streams, West Antarctica, J. Geophys. Res., 111, B01302,
https://doi.org/10.1029/2005JB003766, 2006.

Platt, J. D., Perol, T., Suckale, J., and Rice, J. R.: Determin-
ing conditions that allow a shear margin to coincide with
a Rothlisberger channel, J. Geophys. Res., 121, 1273-1294,
https://doi.org/10.1002/2015JF003707, 2016.

Pralong, A. and Funk, M.: Dynamic damage model of crevasse
opening and application to glacier calving, J. Geophys. Res., 110,
B01309, https://doi.org/10.1029/2004JB003104, 2005.

Raymond, C.: Shear margins in glaciers and ice sheets, J. Glaciol.,
42, 90-102, https://doi.org/10.3189/S0022143000030550, 1996.

Raymond, C. F.: Energy balance of ice streams, J. Glaciol., 46, 665—
674, https://doi.org/10.3189/172756500781832701, 2000.

Retzlaff, R. and Bentley, C. R.: Timing of stagnation of Ice
Stream C, West Antarctica, from short-pulse radar stud-
ies of buried surface crevasses, J. Glaciol.,, 39, 553-561,
https://doi.org/10.3189/S0022143000016440, 1993.

Rice, J.: Stresses due to a sharp notch in a work-hardening elastic-
plastic material loaded by longitudinal shear, J. Appl. Mech., 34,
287-298, https://doi.org/10.1115/1.3607681, 1967.

Schoof, C. On the mechanics of
shear margins, J. Glaciol., 50,
https://doi.org/10.3189/172756504781830024, 2004.

Schoof, C.:  Variational methods for glacier flow
over plastic till, J. Fluid Mech., 555, 299-320,
https://doi.org/10.1017/S0022112006009104, 2006.

Schoof, C.: Coulomb friction and other sliding laws in a higher-
order glacier flow model, Math. Mod. Meth. Appl. S., 20, 157—
189, https://doi.org/10.1142/S0218202510004180, 2010.

Schoof, C.: Thermally driven migration of ice-stream
shear  margins, J. Fluid Mech.,, 712, 552-578,
https://doi.org/10.1017/jfm.2012.438, 2012.

Schoof, C. and Hewitt, I.: A model for polythermal ice incorporat-
ing gravity-driven moisture transport, J. Fluid Mech., 797, 504—
535, https://doi.org/10.1017/jfm.2016.251, 2016.

Shreve, R. L. Glacier sliding at
ing temperatures, J. Glaciol., 30,
https://doi.org/10.3189/S0022143000006195, 1984.

Stearns, L. A., Jezek, K. C., and Van der Veen, C.: Decadal-
scale variations in ice flow along Whillans Ice Stream and
its tributaries, West Antarctica, J. Glaciol.,, 51, 147-157,
https://doi.org/10.3189/172756505781829610, 2005.

Stephenson, S. N. and Bindschadler, R. A.: Observed velocity fluc-
tuations on a major Antarctic ice stream, Nature, 334, 695-697,
https://doi.org/10.1038/334695a0, 1988.

Suckale, J., Platt, J. D., Perol, T., and Rice, J. R.: Deformation-
induced melting in the margins of the West Antarc-
tic ice streams, J. Geophys. Res., 119, 1004-1025,
https://doi.org/10.1002/2013JF003008, 2014.

Wolovick, M. J., Creyts, T. T., Buck, W. R., and Bell,
R. E.: Traveling slippery patches produce thickness-scale
folds in ice sheets, Geophys. Res. Lett, 41, 8895-8901,
https://doi.org/10.1002/2014GL062248, 2014.

ice-stream
208-218,

subfreez-
341-347,

www.the-cryosphere.net/12/2545/2018/


http://hdl.handle.net/2429/54268
https://doi.org/10.14288/1.0166470
https://doi.org/10.1017/jfm.2015.503
https://doi.org/10.5194/tc-11-541-2017
https://doi.org/10.1029/2008GL036877
http://hdl.handle.net/1811/47277
https://doi.org/10.1029/2006JF000603
https://doi.org/10.1007/978-94-015-1167-4
https://doi.org/10.1029/98JB00574
https://doi.org/10.1029/2001JB001029
https://doi.org/10.1098/rspa.2013.0494
https://doi.org/10.1029/JB094iB04p04071
https://doi.org/10.3189/S0022143000010467
https://doi.org/10.3189/S0022143000005281
https://doi.org/10.1029/2002JB002329
https://doi.org/10.5194/tc-6-573-2012
https://doi.org/10.1002/2015GL063638
https://doi.org/10.1002/2015JF003542
https://doi.org/10.1029/2005JB003766
https://doi.org/10.1002/2015JF003707
https://doi.org/10.1029/2004JB003104
https://doi.org/10.3189/S0022143000030550
https://doi.org/10.3189/172756500781832701
https://doi.org/10.3189/S0022143000016440
https://doi.org/10.1115/1.3607681
https://doi.org/10.3189/172756504781830024
https://doi.org/10.1017/S0022112006009104
https://doi.org/10.1142/S0218202510004180
https://doi.org/10.1017/jfm.2012.438
https://doi.org/10.1017/jfm.2016.251
https://doi.org/10.3189/S0022143000006195
https://doi.org/10.3189/172756505781829610
https://doi.org/10.1038/334695a0
https://doi.org/10.1002/2013JF003008
https://doi.org/10.1002/2014GL062248

	Abstract
	Introduction
	The model
	Solution of the model
	Ice flow and heat production
	Temperature field

	Migration velocity as a function of forcing parameters
	Non-dimensionalization
	Migration velocities at O(1) values of  and Pe 
	Large heat production without subtemperate slip
	Large heat production with subtemperate slip
	A small slip region: 1/(n+1)1
	An O(1) slip region: O(1)
	Moderate slip: 11/(1+n)


	Discussion and conclusions
	Data availability
	Appendix A: Temperature close to the cold--temperate transition
	Competing interests
	Acknowledgements
	References

