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Abstract. Urbanization resulting from sharply increasing
demographic pressure and infrastructure development has
made the populations of many tropical areas more vulnerable
to extreme rainfall hazards. Characterizing extreme rainfall
distribution in a coherent way in space and time is thus be-
coming an overarching need that requires using appropriate
models of intensity–duration–frequency (IDF) curves. Us-
ing a 14 series of 5 min rainfall records collected in Sene-
gal, a comparison of two generalized extreme value (GEV)
and scaling models is carried out, resulting in the selection
of the more parsimonious one (four parameters), as the rec-
ommended model for use. A bootstrap approach is proposed
to compute the uncertainty associated with the estimation of
these four parameters and of the related rainfall return lev-
els for durations ranging from 1 to 24 h. This study confirms
previous works showing that simple scaling holds for char-
acterizing the temporal scaling of extreme rainfall in tropical
regions such as sub-Saharan Africa. It further provides con-
fidence intervals for the parameter estimates and shows that
the uncertainty linked to the estimation of the GEV param-
eters is 3 to 4 times larger than the uncertainty linked to the
inference of the scaling parameter. From this model, maps of
IDF parameters over Senegal are produced, providing a spa-
tial vision of their organization over the country, with a north
to south gradient for the location and scale parameters of the
GEV. An influence of the distance from the ocean was found
for the scaling parameter. It is acknowledged in conclusion
that climate change renders the inference of IDF curves sen-
sitive to increasing non-stationarity effects, which requires
warning end-users that such tools should be used with care
and discernment.

1 Introduction

The fast-growing pressure of mankind on planet Earth causes
populations to be increasingly exposed to hydrometeorolog-
ical hazards such as torrential rains and floods (IPCC, 2012;
Mechler and Bouwer, 2015). Hydrologists are thus more
compelled than ever to deal with the problem of assessing the
probability of extreme rainfall events at different timescales
and for various return periods, depending on the area of the
target catchment and the issue at stake, most notably human
life protection and infrastructure dimensioning. A classical
way of synthesizing the results of such studies is the produc-
tion of so-called rainfall intensity–duration–frequency (IDF)
curves, which provide estimates of rainfall return levels over
a range of durations. In doing so, scientists face two sets of
difficulties: one related to data availability and the other to
the necessity of a proper methodological framework.

On the data side, the frequency analysis of extremes re-
quires long and continuous records of rainfall at the same
location, something fairly common at a daily time step albeit
unavailable in some regions. Moreover, a complicating fac-
tor is that, in many cases, it is necessary to consider sub-daily
time steps. However, long-term records of sub-daily rainfall
are much less numerous or much less reliable and accurate
than daily series.

The methodological challenge arises from the complex
combination of factors that cause rainfall to be strongly vari-
able at all scales (from the microphysics droplet scale to syn-
optic scale), as a result of the nonlinear interaction of dif-
ferent atmospheric processes (e.g., Schertzer and Lovejoy,
1987). This implies that it is not at all obvious to find a proper
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theoretical framework to compute IDF curves in a way that
ensures coherency between timescales. Early works on IDF
proposed empirical methods consisting of first adjusting a
frequency distribution model fitted to rainfall series {R(D)}
for each duration D of interest and then fitting the IDF for-
mula {iT (D)} fitted independently to each series of quantiles
derived from the first step and corresponding to a given return
period T (see, e.g., Miller et al., 1973; NERC, 1975). This
has the advantage of being easily implementable and is thus
commonly used by hydrological engineers and operational
climate and hydrological services. However, because of un-
certainties in the computation of the quantiles derived for the
different durations, the scaling formulation may be physi-
cally inconsistent and may lead to gross errors such as par-
asitic oscillations or intersections between IDF curves com-
puted for two different durations (see Koutsoyiannis et al.,
1998, for more details). As a remedy to such inconsisten-
cies, Koutsoyiannis et al. (1998) were the first to propose a
general IDF formulation that remains consistent with both
the foundations of the probabilistic theories and the physical
constraints of scaling across durations. Another notable ad-
vance was provided by Menabde et al. (1999), who demon-
strated that the changes in rainfall distribution with duration
formulated by Koutsoyiannis et al. (1998) can be expressed
as a simple scaling relationship, opening the path for using
the fractal framework in order to describe the temporal scal-
ing between IDF curves established over a range of durations
in various regions of the world (see, e.g., Yu et al., 2004;
Borga et al., 2005; Gerold and Watkins, 2005; Nhat et al.,
2008; Bara et al., 2009; Blanchet et al., 2016; Rodríguez-
Solà et al., 2016; Yilmaz et al., 2016).

However, having a consistent scaling framework does not
eliminate the crucial sampling issues associated with the es-
timation of the parameters of the IDF model. This involves
significant uncertainties in the final determination of rain-
fall return levels, a question rarely addressed in the litera-
ture; on that subject, see the pioneering work of Mélèse et al.
(2017), which presents and compares different methods for
computing IDF confidence intervals (on a GEV and scaling
model) over the Mediterranean region. It is especially im-
portant to investigate this issue in tropical regions such as
sub-Saharan Africa, where a number of new infrastructure
projects are in the pipeline while at the same time a sig-
nificant increase of flood risks and related human casualties
has been reported over the past two decades (Di-Baldassarre
et al., 2010; Tschakert et al., 2010; IPCC, 2014).

Several recent studies have dealt with the question of IDF
calculation for different West African countries. Some fo-
cused on analyzing the behavior of the extreme rainfall dis-
tribution at a given location (such as Soro et al., 2008, 2010,
for Côte d’Ivoire) while others (such as Mohymont and De-
marée, 2006, for Congo and Oyegoke and Oyebande, 2008,
for Nigeria) looked at the scaling behavior over durations.
Van-De-Vyver and Demarée (2010) also analyzed the scal-
ing properties of rainfall over a range of durations for a cou-

ple of stations in Congo, finding the value of the main scaling
parameter to be larger than the one obtained for Uccle in Bel-
gium, implying that the small durations are heavily driving
the behavior of extreme rainfall at larger durations for a trop-
ical climate. De Paola et al. (2014) have also inferred IDF
curves from disaggregated daily rainfalls for three African
cities (Addis Ababa, Ethiopia; Dar Es Salaam, Tanzania; and
Douala, Cameroon).

More recently, Panthou et al. (2014b) and Agbazo et al.
(2016) showed that the generalized extreme value (GEV)
and simple scaling framework is well-suited to estimate rain-
fall return levels in a coherent way at various durations for
an array of stations covering a mesoscale area of typically
a dozen thousands km2 in southwest Niger and in northern
Benin, respectively. While Agbazo et al. (2016) assumed a
Gumbel distribution of the annual maxima, Panthou et al.
(2014b) used the approach in its broader formulation, show-
ing that the annual maxima distribution was heavy-tailed
(positive value of the shape parameter of the GEV). Indeed,
such heavy-tailed behavior in daily rainfall samples is gener-
ally found: in the African region (e.g., Panthou et al., 2012;
Giugni et al., 2015) but also all around the world (e.g., Kout-
soyiannis, 2004b; Papalexiou and Koutsoyiannis, 2013).

It is worth noting that both Panthou et al. (2014b) and
Agbazo et al. (2016) made use of the high-quality and fine
timescale resolution data collected by the AMMA-CATCH
research observatory (Lebel et al., 2009). This data set homo-
geneously covering a wide range of time steps (from 5 min
upward) over more than 20 years is unique in tropical Africa.
This means than in every other area, the parameters of the
scaling relationship will have to be inferred from a very lim-
ited number of sub-daily rainfall series, not all of them being
of equal length, thus raising the question of which parame-
ters have the largest influences on the final uncertainties of
rainfall return levels. This issue is extremely important when
dealing with large regions (such as a whole country) over
which the scaling parameters may vary spatially, making it
not straightforward to infer rainfall return levels for sub-daily
durations when only daily data are available.

Focusing on Senegal, a region of contrasted coastal to in-
land semi-arid climate, our paper’s ambitions are both to
address the uncertainty issue not dealt with in the above-
mentioned papers and to provide IDF curves for a region
located at the western edge of the Sahel, evaluating the spa-
tial variability generated by the transition from the coast to
inland. In addition to its methodological bearing, the paper
aims at making these IDF curves widely accessible to a large
range of end-users in the whole country by mapping the val-
ues of the scaling parameters and of the rainfall return levels.
Furthermore, selecting an IDF model that is the least sensi-
tive possible to data sampling effects and computing the as-
sociated IDF confidence intervals facilitates updating of the
IDF curves when new data are available.
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2 Data and region

2.1 Senegal climatological context

Senegal is located at the western edge of the African conti-
nent between latitudes 12 and 17◦ N (Fig. 1a). The climate of
Senegal is governed by the West African monsoon (Lafore
et al., 2011; Janicot et al., 2011; Nicholson, 2013), result-
ing in a two-season annual cycle: a dry season marked by
the predominance of maritime and continental trade winds
in winter, and a rainy season marked by the progressive in-
vasion of the West African monsoon (Fig. 2a to c) during
the summer. The length of the rainy season varies by lati-
tude and ranges roughly from 5 months (early June to the
end of October) in the south to 3 months (mid-July to mid-
October) in the northern part of Senegal. Rainfall amounts
peak in August and September, coinciding with the period
when the Intertropical Convergence Zone (ITCZ) reaches its
northernmost position over Senegal.

There is a strong north–south gradient of the mean annual
rainfall (Fig. 2d) ranging from 300 mm in the north to more
than 1000 mm in the south (Diop et al., 2016). This gradient
is mainly explained by the number of rainy days (in average
between 20 and 80 from north to south) and to a lesser extent
by the mean intensity of rainy days (in average between 10
and 15 mmday−1); see Fig. 2e and f.

The rains are mainly caused by mesoscale convective sys-
tems sweeping the country from east to west (Laurent et al.,
1998; Mathon et al., 2002; Diongue et al., 2002). Occa-
sionally, cyclonic circulations off the Senegalese coast direct
moisture-laden air flow over the western part of the coun-
try, dumping heavy rains that often cause floods in coastal
cities. Due to its convective nature, rainfall in West Africa is
strongly variable in space and time, especially at the event
scale for which large differences in rainfall amounts are fre-
quently observed at two nearby points (Sane et al., 2012).
The rain durations are also generally short, except in the rare
case of stationary convective systems (blocked situation).

Senegal regularly undergoes heavy damaging downpours.
A recent example is the rainfall event that occurred in Dakar
in the morning of 26 August 2012, causing the largest flood
in the last 20 years in the city. An amount of 160 mm was
recorded at the Dakar-Yoff station, a large quantity but not
a historical record for daily rainfall at this station. Rather,
this event was exceptional because of its intensities at short
durations (54 mm were recorded in 15 min and 144 mm in
50 min), far exceeding the previous records in Dakar-Yoff.
Such rainfall intensities and their associated disasters justify
the importance of better documenting extreme rainfall distri-
butions at short timescales.

2.2 Rainfall data

The archives of climate and hydrological services of West
African countries sometimes contain large amounts of sub-

daily rainfall records. However, most of the time these
records are stored in paper strip chart formats, requiring the
tedious task of digitization in order to use them in numerical
applications.

The present study has been made possible thanks to the
important work of analyzing and digitizing rain gauge charts
carried out for the main synoptic stations of Senegal. This
process was undertaken by the hydro-morphology laboratory
of the Geography Department at the University Cheikh Anta
Diop of Dakar (UCAD) in collaboration with the National
Agency of Civil Aviation and Meteorology (ANACIM) that
provided the rainfall paper charts.

Senegalese synoptic stations are equipped with tipping
bucket rain gauges; the receiving ring is 400 cm2 and a bucket
corresponds to 0.5 mm of rain. The roll rotation is daily. The
chart analysis has been performed with the software “Plu-
vio” developed by Vauchel (1992) allowing the computation
of 5 min time step digitized rainfall series from the paper di-
agrams. It is a long and laborious task, which has the advan-
tage of allowing a careful “chart by chart” checking of the
quality of the records before digitization. For more informa-
tion on the digitization process, the reader may refer to the
publications of Laaroubi (2007) and Bodian et al. (2016).

A total of 23 tipping bucket rain gauges were analyzed,
with data going back to 1955 for the oldest and to 2005 for
the most recent. As the assessment of extreme rainfall distri-
butions is known for being highly sensitive to sampling ef-
fect and erroneous data (Blanchet et al., 2009; Panthou et al.,
2012; Panthou et al., 2014b), particular attention was paid to
check and select the most appropriate series. The data selec-
tion had to reconcile two constraints: (i) keeping the data set
as large as possible and (ii) eliminating series that contain too
much missing data.

The procedure for classifying 1 station year as valid or not
is the following: (i) the annual number of 5 min data and the
annual amount of rain are computed, (ii) the mean interan-
nual values of these two statistics are computed on the whole
series, (iii) a year is classified as valid if either the number
of 5 min rain data or the amount of rainfall is comprised be-
tween 1/2.5 and 2.5 times their mean interannual values, and
(iv) other years are classified as missing and removed from
the whole series. Since missing years influence the mean in-
terannual values, step (ii), (iii) and (iv) are repeated until all
remaining years are classified as valid (note that, in fact, no
station year had to be excluded after the initial step). All valid
years for all series are plotted in Fig. 3. In order to keep the
IDF fitting robust, only series with at least 10 years of valid
data have been used. This led us to retain 14 stations with
record length varying from 10 (Fatick station) to 44 years
(Ziguinchor station) with a median of 28 years. This data set
has the advantage of spatially representing the entire country,
but as the length of the series varies, the quality of the IDF
estimates might differ from one station to another. This effect
will be analyzed more precisely in Sect. 5.2.1.
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Figure 2. Rainfall regime statistics obtained from daily rain gauges over the 1950–2015 period: (a) mean seasonal cycle at four stations,
(b) start of the rainy season, (c) end of the rainy season, (d) mean annual rainfall, (e) mean intensity of wet days, and (f) mean number of wet
days.

3 Theoretical background

3.1 General IDF formulations

3.1.1 Empirical IDF formulations

IDF curves provide estimates of rainfall intensity for a range
of durations {D} and for several frequencies of occurrence
(usually expressed as a return period T ). Each curve cor-
responds to the evolution of a return level (iT ) as a func-
tion of rainfall duration D. Historically, several empirical
formulations of IDF curves have been proposed. All can be
described by the following general equation (Koutsoyiannis

et al., 1998):

iT (D)= w(T )×[D+ θ(T )]
η(T ), (1)

where w, θ , and η are parameters to be calibrated from rain-
fall observations.

3.1.2 Koutsoyiannis scaling relationship

Koutsoyiannis et al. (1998) have demonstrated that the em-
pirical formulations (Eq. 1) can be expressed as follows:

iT (D)= a(T )× bKoutso(D), (2)

where bKoutso(D) is the scaling function:

bKoutso(D)= (D+ θ)
η. (3)
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The advantage of Eq. (2), as compared to Eq. (1), is to
separate the dependency on T (return period) from the de-
pendency on D (duration): a(T ) only depends on T , and
bKoutso(D) only depends onD. A consequence is that for the
particular case of D0 = 1− θ :

iT (D0)= a(T ). (4)

Then, it becomes a classical frequency analysis of the ran-
dom variable I (D0) to estimate the return levels iT (D0) –
i.e., evaluate P [I (D0)≤ i(D0)]. Then, Eq. (2) can be refor-
mulated as an equality of distribution of random variables I :

I (D)
d
= I (D0)× bKoutso(D). (5)

3.1.3 Simple scaling relationship

In the particular case of θ = 0, Eq. (5) becomes

I (D)
d
= I (D0)× bSiSca(D), (6)

bSiSca(D)=D
η, (7)

where bSiSca(D) is a simple scaling formulation of b.

3.2 IDF scaling formulations in the frame of the
extreme value theory

In the scaling approach described above, the estimation of
rainfall return levels requires a statistical model of rainfall
intensity distribution since Eqs. (5) and (6) take the form of
an equality of distributions. The extreme value theory (EVT,
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end): (a) in calibration mode; (b) in validation mode; left panel for
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Coles, 2001) is the most commonly used framework for de-
riving these models.

3.2.1 Block maxima framework in extreme value
theory

EVT proposes two methods to extract samples of extreme
values from a time series (Coles, 2001): block maxima analy-
sis (BMA), which consists of defining blocks of equal lengths
(often one year in hydrology) and extracting the maximum
value within each block; and peak over threshold (POT),
which consists of extracting all the values exceeding a given
threshold.

Compared to BMA, POT has the advantage of allowing
the selection of more than one value per year, thus increasing
the sample size used for inferring the model. However, the
choice of an appropriate threshold is often difficult (Frigessi
et al., 2002). Here the BMA approach was preferred as it is
more straightforward to implement.

In BMA, when the block is large enough (which is ensured
for annual maxima), the EVT states that the generalized ex-
treme value (GEV) distribution is the appropriate model for
block maxima samples (Coles, 2001). The GEV distribution

is fully described by three parameters: the location (µ), the
scale (σ ), and the shape (ξ ), which are respectively related
to the position, the spread and the asymptotic behavior of the
tail of the distribution:

FGEV(i;µ,σ,ξ)=exp

{
−

[
1+ ξ

(
i−µ

σ

)]− 1
ξ

}

for 1+ ξ
(
i−µ

σ

)
> 0. (8)

A positive (negative) shape corresponds to a heavy-tailed
(bounded in the upper tail) distribution. When ξ tends to 0,
the GEV reduces to the Gumbel distribution (light-tailed dis-
tribution):

FGUM(i;µ,σ)= exp
{
−exp

[
−

(
i−µ

σ

)]}
. (9)

3.2.2 GEV parameter formulation in a scaling
framework

Menabde et al. (1999) have derived the equations merging
the scaling formulations presented above (both bSiSca and
bKoutso) with the extreme value distributions (see also Pan-
thou et al., 2014b; Blanchet et al., 2016). In this approach,
the I (D) samples are modeled by a GEV distribution for
which the location and scale parameters are parameterized
as a function of D as follows:

I (D)∼ GEV {µ(D);σ(D);ξ} , (10a)
µ(D)= µ0× b(D), (10b)
σ(D)= σ0× b(D). (10c)

The return levels are easily obtained at all durations D as
follows:

iT (D)= F
−1
GEV

(
D,1−

1
T

)
. (11)

This formulation is equivalent to the following:

iT (D)= F
−1
GEV

(
D0,1−

1
T

)
× b(D) (12)

with D0 = 1− θ .
Note that Eqs. (10) to (12) are valid for both bSiSca and

bKoutso. In log–log space, the IDFSiSca return levels have a
linear shape, indicating a single temporal scaling regime,
while those of IDFKoutso could present a more or less pro-
nounced curvature, indicating a transition between two tem-
poral scaling regimes.

4 Methodology: inference, evaluation, and uncertainty
of IDF models

In this study, two IDF models are compared: the IDFKoutso
obtained from the Koutsoyiannis scaling bKoutso, and the
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Figure 6. Comparison between IDFSiSca and IDFKoutso in calibration mode. Top panels: location parameter – µ(D) [mmh−1]; scale pa-
rameter – σ(D) [mmh−1]; and shape parameter – ξ [–]. Bottom panels: return levels – iT [mmh−1] – obtained for different return periods
T ranging from 2 to 100 years displayed.

IDFSiSca obtained from the simple scaling bSiSca. Both mod-
els describe the distribution of extreme rainfall intensi-
ties across durations but they differ in their formulation
and in their number of parameters: IDFSiSca has four pa-
rameters {µ0,σ0,ξ,η}, while IDFKoutso has five parame-
ters {µ0,σ0,ξ,η,θ}. BMA samples from which the two
scaling models are inferred and evaluated are built by
using 1-year block lengths, in order to ensure indepen-
dence between the elements of the sample. At each sta-
tion, the extreme rainfall sample thus consists of annual
maximum intensities i(D) with D ranging from 1 to 24 h:
{1,2,3,4,6,8,10,12,15,18,24} h. The lower bound of this
range (1 h) was selected in order to limit the risk of under-
estimating the true annual maximum intensity when evalu-
ating at shorter durations (close to the 5 min fixed window
of the raw series). The upper bound of the range (24 h) was
chosen because it is a standard duration for hydrological ap-
plications and climate studies, but also because it is much
more frequently recorded (by daily rain gauges). Note that
for each duration D, a rolling mean of length D is applied to
the 5 min rainfall series before extracting the maxima. This
ensures that the extracted maxima are not underestimated,
which is the case when using a fixed window.

4.1 IDF model inference

Different fitting methods have been tested to adjust the IDF
model parameters to rainfall data. One of them (the two-step
method) is applicable to both IDFKoutso and IDFSiSca models.

Note that two other methods specifically dedicated to the
IDFSiSca model were also tested: one based on the moment
scaling function (as in e.g., Borga et al., 2005; Nhat et al.,
2008; Panthou et al., 2014b), and one based on the global
maximum likelihood estimation (as in Blanchet et al., 2016).
As they did not perform better than the two-step method, they
are not presented here.

The fitting of the scaling b(D) is based on the equality
of distribution given in Eq. (5) for IDFKoutso and Eq. (6) for
IDFSiSca. If these equations hold, the scaled random variables
I (D)/b(D) have the same distribution as the random vari-
able I (D0) for all durationsD. This means that the observed
scaled samples i(D)/b(D) have similar statistical properties
for each duration D. Based on this property, the parame-
ters of b(D) are calibrated in order to minimize a statistical
distance between the different scaled samples i(D)/b(D).
As suggested by Koutsoyiannis et al. (1998), the difference
in medians computed by the Kruskal–Wallis statistic ap-
plied on multi-samples (Kruskal and Wallis, 1952) was cho-
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Figure 7. IDFSiSca return level plots obtained at four emblem-
atic stations over Senegal (a–d: Saint-Louis, Dakar, Tambacounda,
and Ziguinchor). Shaded area represents the 90 % confidence inter-
val. The markers represent the observed annual maxima intensities
i(D).

sen to characterize the distance between the scaled samples
i(D)/b(D).

Once the scale relationship is identified (b̂), scaled samples
i(D)/b̂(D) are computed and pooled in a single sample since
they are expected to follow the same GEV distribution (see
Eq. (12). The GEV parameters are estimated on this aggre-
gated scaled sample by using the L-moments method. This
method was retained as it is more suitable for small samples
(Hosking and Wallis, 1997) than the maximum likelihood es-
timation algorithm, which sometimes fails in optimizing the
likelihood for small samples.

4.2 Model evaluation and selection

With the aim of selecting the best IDF model from the two
compared IDF formulations (IDFKoutso and IDFSiSca), a pro-
cess of model evaluation and comparison is proposed here by
looking at both their flexibility (the models are fitted on a cal-
ibration sample) and their robustness (the models are fitted in
a predictive mode on samples not used for calibration).

The flexibility characterizes the capacity of a model to fit
the observed data that are used to calibrate its parameters.
To evaluate flexibility, the IDF models are fitted at each sta-
tion, then different scores are computed to assess the fitting
performances.

The robustness, on the other hand, aims at evaluating
whether or not the IDF model is too flexible due to the model
having too many parameters with respect to the number of
observations. It thus depends on the sensitivity of the IDF
model parameters to sampling effects: the less the model pa-
rameters are sensitive to sampling effects, the more robust
the model. As the two models tested here have a different
number of parameters (4 for IDFSiSca, 5 for IDFKoutso), there
is particular interest in comparing how the goodness of fit
for each model is degraded when shifting from the calibra-
tion mode to the predictive mode. The predictive capacity
of the IDF models is assessed by using a classical calibra-
tion/validation process. At each station, a subset of data is
used to fit the IDF model; a second independent subset is
used to validate it. The same scores used in the calibration
mode are computed for the validation subset. Rather than us-
ing two consecutive sub-periods, one for the calibration sam-
ple and one for the predictive sample, a year-to-year separa-
tion was used to build the two subsets. This limits the risk of
obtaining samples made of years belonging predominantly to
a dry period or to a wet period.

The flexibility and the predictive capacity of the IDF mod-
els are quantified based on two types of scores: global and
quantile–quantile.

The two global scores used are the statistics returned by
two goodness of fit (GOF) tests: Kolmogorov–Smirnov (KS)
and Anderson–Darling (AD). Each test computes a statis-
tic based on the differences between a theoretical cumula-
tive distribution function (CDF) and the empirical CDF. The
null hypothesis is that the sample is drawn from the fitted
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Figure 9. Evolution of the spread of the 90 % confidence interval
of return levels depending on the return period. The red color of the
spread is due to the uncertainty of GEV(24 h) fitting, while the blue
color of the spread is due to the uncertainty of the scaling. Results
for all stations have been combined. The mean, min, max, and 50 %
confidence interval of the spread obtained at the different stations
are also shown.

model. The test also returns the corresponding p value (prob-
ability of type 1 error). The p value is used as an accepta-
tion/rejection criterion by fixing a threshold (here 1, 5, and
10 %). These tests and p values were computed for each rain-
fall duration at each station.

GOF tests allow for evaluating the entire distribution but
do not guarantee that all quantiles are correctly estimated.
Thus, as a complement, quantile-based scores are also com-
puted. They characterize the relationship between theoretical
(obtained from the fitted CDF) and empirical (obtained from
the empirical CDF) quantiles. The root-mean-square error
(RMSE), the mean error (ME), and the mean absolute error
(MAE) quantile-based scores are computed. The full presen-

tation of these scores can be found in Panthou et al. (2012).
A weighted version of these scores is also used in order to
assign greater weight to unusual quantiles, as proposed by
Begueria and Vicente-Serrano (2006) and also presented in
Panthou et al. (2012).

4.3 Uncertainty assessment

From a methodological point of view, the central contribu-
tion of this paper is its attempt at quantifying the uncertainty
associated with IDF calculation in a scaling framework. This
involves two distinct aspects. One is the uncertainty linked
to the estimation of the scaling parameters. The other is the
uncertainty linked to the inference of the GEV parameters.
This second component is especially important to consider
when applying a scaling model to a location where only daily
rainfall series are available, which is the ultimate purpose of
regional IDF models. Indeed, in some regional studies, the
scaling parameters will have to be inferred from the very few
stations where rainfall is recorded at sub-daily time steps; if
they display variations in space, then they will have to be
spatially interpolated so as to provide scaling parameter at
any location of interest, notably at the location of daily rain-
fall stations. At these stations, the scaled GEV distribution is
thus estimated from the daily observations only, making the
inference far less robust than when using a richer scaled sam-
ple obtained from observations ranging from 1 h (or less) to
1 day.

Therefore, in the following, the uncertainty assessment at
a given location will be addressed separately for the two situ-
ations: (i) firstly, when observations at this location are avail-
able over a whole range of time steps; (ii) secondly, when
only daily observations are available.
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Figure 10. Maps of IDFSiSca parameters: µ0 [mmh−1], σ0
[mmh−1], ξ [–], and η [–].

4.3.1 Global IDF model uncertainty when
multi-timescale samples are available

Confidence intervals for IDF parameters and return levels
are estimated using a non-parametric bootstrap (Efron and
Tibshirani, 1994). For each station, it consists of fitting IDF
curves to bootstrap samples (i(D)boot) obtained from the
original i(D) samples. The entire process consists of four
steps:
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Figure 11. Maps of return levels intensities (from IDFSiSca) for dif-
ferent return periods (T = 2, 10, and 100 years a–c) for the refer-
ence duration (1 h): iT (D = 1) [mm h−1].

1. The vector of years is resampled with replacement
(Monte-Carlo resampling) until its length equals the
length of the original vector.

2. Once a year y is drawn in the bootstrap sample of years
and the annual maximum for that year is retained for
each duration D in order to build the bootstrap sample
of rainfall intensities i(D)boot. This guarantees the co-
herence between the samples at different durations.

3. The IDF model is fitted on the bootstrap sample
i(D)boot.

4. The obtained parameters – {µ0,σ0,ξ,η,θ}boot for
IDFKoutso and {µ0,σ0,ξ,η}boot for IDFSiSca – and the
associated return level iT (D)boot are stored.

These four steps are repeated 1000 times leading to gen-
erate 1000 i(D)boot samples and corresponding vectors of
length 1000 for the different IDF parameters and IDF return
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levels stored in step 4. Confidence intervals are computed on
these vectors. It is important to emphasize that these confi-
dence intervals are a measure of the global uncertainty asso-
ciated with the inference IDF model (uncertainty due to the
inference of the scaling relationship and uncertainty gener-
ated by the inference of the parameters of the scaled GEV).

4.3.2 Scaling versus GEV related uncertainty when
only daily samples are available

When only daily observations are available, the GEV param-
eters are inferred on the corresponding annual block max-
ima sample of daily data, which contains far less information
that the scaled samples used for fitting a scaled GEV when
multi-timescale observations are available. The GEV param-
eters for the sub-daily time steps are then deduced from the
daily GEV parameters using scaling parameters that must be
inferred from nearby multi-timescale observations. In some
cases this might generate a GEV model that differs signifi-
cantly from the GEV model that would have been fitted di-
rectly on the observations at the proper time steps if they
were available. This effect is studied here by assuming that
only the daily data were available for fitting the GEV at our
14 stations and by implementing the bootstrap approach in a
way that allows separating the uncertainty linked to the GEV
parameter inference and the uncertainty linked to the infer-
ence of the scaling parameters. Analyzing the uncertainty in-
volves two independent bootstrap resampling processes.

The first bootstrapping method used consists in resam-
pling i(24h) based on 1000 bootstrap drawings and fitting
1000 GEV(24 h) to these bootstrap samples. These 1000
GEV(24 h) are then downscaled to a target duration D using
Eq. (10), yielding 1000 different GEV(D) (only the results
obtained for the 1 h duration are presented here). The scal-
ing parameters used to inform Eq. (10) are those computed
from the complete multi-timescale samples as explained in
Sect. 4.1. This process yields a sample of 1000 GEV at 1 h
duration – denoted {GEV(1 h)}GEV. The dispersion of these
1000 GEV(1 h) is linked to the sole sampling effect under-
lying the adjustment of the initial GEV(24 h), assuming the
scaling parameters to be perfectly known.

In a parallel way, the uncertainty associated with scal-
ing is evaluated by generating 1000 downscaled samples.
The reference GEV(24 h) fitted on the original sample
i(24h) is downscaled using 1000 scaling parameters from
the bootstrap procedure described in the previous section
(Sect. 4.3.1). This produces a sample of 1000 GEV(1 h) de-
noted {GEV(1 h)}Scal, whose internal dispersion is only influ-
enced by the uncertainty in inferring the scaling parameters,
assuming the reference GEV(24 h) to be perfectly known.

5 Results

5.1 Model evaluation and selection

The model evaluation results are presented in Figs. 4, 5 and
Table 1. In these figures and table, the Panels (a) and (b) re-
late to the calibration and validation results, respectively.

Figure 4 presents the GOF p value of the KS test obtained
for both models (IDFSiSca and IDFKoutso) in calibration and
validation mode at each station (the AD test gives similar
results, not shown). In Fig. 5, all stations are gathered in one
single q–q plot from which global scores are computed. All
global results (non-weighted and weighted q–q scores) are
reported in Table 1.

5.1.1 Flexibility and robustness

Figure 4a shows that for all stations and durations, the KS p
values are higher than 10 % (i.e., the risk of being wrong by
rejecting the null hypothesis “observations are drawn from
the models” is greater than 10 %). This means that both IDF
models fit the observed data with a reasonable level of con-
fidence in calibration and have thus good flexibility skills.
The global scores reported in Fig. 5a and Table 1 show that
in calibration, IDFKoutso slightly outperforms IDFSiSca. This
result was expected as IDFKoutso has an additional degree of
freedom (θ parameter) compared to IDFSiSca.

With regards to the validation mode, four stations display
p values below 10 % at almost each duration (Fig. 4b); glob-
ally, both models display a similar number of occurrences of
p values below 10 % (37 for IDFSiSca and 35 for IDFKoutso)
as well as below 5 % (21 for IDFSiSca and 20 for IDFKoutso)
and below 1 % (1 for IDFSiSca and 2 for IDFKoutso).

The global q–q plots in Fig. 5 and the statistics summa-
rized in Table 1 confirm that the two IDF models perform
very similarly in validation. IDFSiSca has slightly smaller bi-
ases (mean errors) while RMSE and MAE are slightly better
for IDFKoutso.

5.1.2 Model selection

In addition to performing closely to each other in both cal-
ibration and validation modes, the two models yield very
similar parameters and return levels, as may be seen from
Fig. 6. It is worth noting that the fitted values of the addi-
tional parameter θ of the IDFKoutso model range from −0.02
to 0.39, which is relatively close to zero compared to the [1–
24 h] range of durations considered here. This means that the
IDFKoutso model is de facto very close to the IDFSiSca model,
which is a simplification of the IDFKoutso model assuming θ
being equal to zero.

Consequently, while there is no factual reason for con-
sidering one of the models to be better than the other, the
IDFSiSca model will be retained, according to the following
considerations.
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Table 1. Global quantile–quantile scores results for the different IDF models: (a) calibration mode and (b) validation mode. All scores are
expressed in mm h−1.

RMSE (classic) RMSE (weighted) Mean error (classic) Mean error (weighted) MAE (classic) MAE (weighted)

(a)

IDFKoutso 1.60 8.61 −0.12 −0.78 0.72 1.61
IDFSiSca 1.83 9.17 −0.05 −0.67 0.81 1.79

(b)

IDFKoutso 3.87 12.13 −0.17 −0.71 1.91 3.12
IDFSiSca 3.96 12.40 −0.10 −0.60 1.94 3.15

1. The model is more parsimonious, with no clear advan-
tage brought by the fifth parameter of the IDFKoutso
model.

2. The model is easier to implement, especially from the
perspective of regional studies involving the mapping
of the scaling parameters.

3. The model a straightforward link between the formu-
lation of the IDFSiSca model and that of the Montana
formula (see Appendix) commonly used in national or
regional agencies; this makes the formulation of the fi-
nal IDF product easier to grasp by end-users, thus facil-
itating its adoption and use.

5.2 Assessing uncertainties

5.2.1 Global IDF model uncertainty when
multi-timescale samples are available

The bootstrap approach presented in Sect. 4.3.1 yields con-
fidence intervals representing the global uncertainty linked
to sampling in a situation where several samples at different
time steps are available at the same location. More precisely,
it makes a Monte-Carlo exploration of how the aggregated
scaled sample built from the multi-timescale initial samples
may vary depending on the random variations of each ini-
tial sample. The results are presented in Fig. 7 for four major
cities spread over Senegal. Three of them have all of their
GOF p values above 0.1, in both calibration and validation
modes (Fig. 4), while the fourth (Dakar) has its GOF p val-
ues mostly below 0.1 in validation mode, a few of them being
even below 0.05 (meaning that, at that particular station, the
model is less skillful).

The 90 % confidence intervals of the IDF curves are dis-
played as colored stripes in Fig. 7. As intuitively expected
for a given station, the higher the return periods considered,
the larger the confidence intervals. Equally in agreement with
knowledge and practice is the fact that, for a given parameter,
the largest uncertainty intervals are usually obtained for the
shortest series (Fatick, Podor, and Thies), while the longest
series (Dakar-Yoff, Tambacounda, Kaolack, and Ziguinchor)

display the narrowest intervals (Table 2). However, this rela-
tion weakens when considering higher moments or higher re-
turn periods: the coefficients of correlation between the con-
fidence interval width and the sample size (available number
of years) are r2

= 0.80 for µ, r2
= 0.88 for σ , r2

= 0.69 for
ξ , r2
= 0.55 for iT = 2 and iT = 10, and r2

= 0.04 only for
iT = 100. The presence of very rare events in an observed
sample is another factor widening the confidence intervals
because some bootstrap samples will include these values,
while others will not.

When comparing the confidence intervals computed for
each parameter of the scaled GEV, it appears that their width
is well correlated between µ and σ (r2

= 0.82) and much
less so between µ or σ and ξ (r2

= 0.32 between σ and
ξ ). The widths of the confidence intervals are quite large for
both σ and ξ , which was expected since 8 stations out of
14 have a sample size smaller than 30. The uncertainty on
ξ is a sensitive issue, since the confidence interval may in-
clude negative values, implying a bounded behavior (Weibull
domain of attraction), whereas a light (zero shape value –
Gumbel domain of attraction) or heavy (positive shape value
– Fréchet domain of attraction) behavior is usually expected
for rainfall extremes. However, it is slightly positive on av-
erage (+0.046), which is in agreement with the results ob-
tained by Panthou et al. (2012, 2013); Panthou et al. (2014b)
that point to a dominantly heavy-tailed behavior in the cen-
tral Sahel region.

5.2.2 Scaling versus GEV related uncertainty when
only daily samples are available

As previously explained, at stations where only daily data
are available, the sub-daily GEV distributions have to be es-
timated from this limited set of 24 h values. This significantly
increases the uncertainty, as seen in Fig. 8. In this figure, the
total uncertainty on the 1 h GEV distribution is divided into
(i) the uncertainty linked to the initial fitting of the 24 h dis-
tribution – GEV(24 h) uncertainty – and (ii) the uncertainty
generated by using the scaling relationships of Eqs. (10b)
and (10c) in order to downscale to 1 h distribution GEV(1 h)
– scaling uncertainty. This decomposition is carried out by
following the procedure presented in Sect. 4.3.2. The results
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Table 2. IDFSiSca fitted parameter values and 90 % confidence interval estimated by bootstrap (in brackets).

N µ σ ξ η iT=2(D = 1) iT=10(D = 1) iT=100(D = 1)
Unit # mmh−1 mmh−1 – – mm h−1 mmh−1 mmh−1

Dakar-Yoff 38 28.9 [26.1;32.9] 12.5 [10.1;14.9] 0.08 [−0.12;0.21] −0.86 [−0.89;−0.83] 34 [30;38] 60 [52;67] 99 [73;123]
Diourbel 33 38.5 [33.3;44.7] 16.1 [12.3;19.3] −0.07 [−0.28;0.09] −0.88 [−0.91;−0.86] 44 [38;51] 72 [63;80] 101 [82;121]
Fatick 10 41.1 [34.4;51.4] 13.6 [6.3;18.9] 0.08 [−0.31;0.34] −0.89 [−0.93;−0.84] 46 [37;58] 75 [55;86] 117 [79;141]
Kaolack 34 41.7 [38.3;47.0] 14.8 [11.3;19.2] 0.21 [−0.07;0.36] −0.89 [−0.92;−0.87] 47 [43;54] 85 [69;102] 158 [99;225]
Kedougou 27 47.3 [42.9;53.6] 14.2 [10.0;17.9] −0.00 [−0.24;0.18] −0.89 [−0.92;−0.87] 53 [47;60] 79 [71;85] 113 [99;123]
Kolda 28 46.0 [42.1;52.7] 16.8 [12.4;22.1] 0.19 [−0.08;0.33] −0.85 [−0.88;−0.82] 52 [47;60] 93 [76;110] 170 [110;224]
Linguere 28 33.4 [30.1;38.2] 11.3 [8.8;14.0] 0.10 [−0.20;0.24] −0.89 [−0.92;−0.86] 38 [34;43] 62 [51;73] 99 [66;132]
Matam 28 33.4 [28.4;39.6] 14.4 [10.5;18.0] −0.04 [−0.23;0.12] −0.90 [−0.93;−0.87] 39 [33;46] 65 [55;72] 95 [79;107]
Nioro-Du-Rip 18 54.6 [48.3;63.4] 15.1 [10.0;23.7] 0.24 [−0.05;0.35] −0.92 [−0.95;−0.86] 60 [53;71] 100 [77;121] 183 [107;221]
Podor 14 28.3 [23.2;39.2] 12.5 [6.9;17.7] −0.02 [−0.44;0.26] −0.92 [−0.98;−0.89] 33 [26;45] 56 [44;65] 83 [68;97]
Saint-Louis 32 30.6 [26.0;35.8] 14.6 [11.3;17.5] −0.21 [−0.40;−0.03] −0.88 [−0.91;−0.84] 36 [31;41] 57 [49;64] 74 [60;88]
Tambacounda 37 39.9 [36.6;44.2] 13.7 [11.1;16.0] −0.07 [−0.27;0.09] −0.87 [−0.90;−0.84] 45 [41;49] 69 [62;75] 94 [77;114]
Thies 23 36.3 [32.8;43.1] 11.5 [7.7;16.4] 0.22 [−0.01;0.34] −0.88 [−0.92;−0.85] 41 [36;49] 70 [57;83] 127 [90;156]
Ziguinchor 44 46.1 [42.0;50.8] 15.5 [12.2;18.4] −0.07 [−0.21;0.05] −0.80 [−0.82;−0.77] 52 [47;57] 78 [71;84] 106 [96;116]

N corresponds to the number of available years, thus the number of annual maxima.

are given for the two longest series of our data set (Dakar
Yoff, 38 years; Ziguinchor, 44 years), which display two dif-
ferent behaviors. At Dakar Yoff, the GEV(24 h) uncertainty
becomes distinctly larger than the scaling uncertainty from
the 10-year return period onwards; at Ziguinchor, this oc-
curs only from the 100-year return period onwards. Associ-
ated with this difference is the fact that the downscaled GEV
model (dots in Fig. 8) diverges from the reference scaled
model (continuous line in Fig. 8) for Dakar Yoff while they
are almost identical for Ziguinchor. At Dakar, the width of
the 90 % confidence interval associated with the estimation
of GEV(24 h) reaches 130 mm h−1 for a return period of 500
years, compared to 30 mm h−1 for the confidence interval as-
sociated with the scaling uncertainty. At Ziguinchor the val-
ues are respectively 50 and 20 mmh−1.

Figure 9 synthesizes the results obtained at all stations,
essentially confirming that the inference of the daily scale
GEV(24 h) is a far more important source of uncertainty than
the inference of the scaling relationship when it comes to
estimating the GEV(1 h). Figure 9 displays the minimum,
mean, and maximum uncertainty spread obtained on the 14
stations for GEV(24 h) (red) and the scaling relationship
(blue); the 50 % shaded interval contains the seven central
values. In order to be able to compute these spreads, the val-
ues are expressed as a percentage of the rainfall value given
by the GEV(1 h) for each station at a given return level. It was
found that the spreads due to the GEV(24 h) fit using daily
samples are 3 to 4 times larger than those due to the scaling
estimate for the 100-year return level and 5 times larger for
the 500-year return level.

5.3 IDF products

5.3.1 IDF curves

A typical representation of IDF curves is given in Fig. 7. As
a result of the IDF model formulations and the fitting on a

unique scaled sample (for both IDFKoutso and IDFSiSca), the
return level curves are parallel (they do not cross) and the
intensities decrease as the duration increases. The log–log
linearity between return levels and durations comes from the
simple scaling formulation (the curves would be bent but still
parallel for the IDFKoutso model). Rainfall return levels are of
a similar order of magnitude for the four stations, although
a north–south gradient is apparent, with rainfall intensities
gradually increasing from Saint-Louis to Dakar and from
Dakar to Ziguinchor. At the 2-year return period, rainfall
intensities vary from roughly 40 mmh−1 (between 33 and
60 mmh−1 when considering all 14 stations) for the 1 h du-
ration to approximately 3 mmh−1 (between 2 and 5 mmh−1)
for the 24 h duration. For any station, the return levels for
the 10-year and 100-year return periods are approximately
1.5 and 2 times higher than the 2-year return levels, respec-
tively; these ratios hold at all timescales (from 1 to 24 h) as
a result of the log–log linearity of the intensity versus the
duration. As already discussed in Sect. 5.2, the novelty of
these IDF curves is the fact that they are provided with their
confidence intervals, allowing the user to get a representation
of the uncertainty surrounding the estimated intensity return
levels, which is linked to both the sample size and by the
quality of the whole GEV and scaling model.

5.3.2 IDF mapping for Senegal

Maps of the four IDF parameters (GEV+ scaling) over all
of Senegal are plotted in Fig. 10. They have been produced
by kriging the parameters inferred at each of our 14 stations.
Two of these parameters (ξ and η) are independent of the
duration D, while µ and σ are functions of D; these two pa-
rameters are thus mapped for the reference duration of 1 h
only (corresponding thus to µ0 and σ0). They both display
a clear north–south increasing gradient, a feature already
found by Panthou et al. (2012) for the central Sahel: the loca-
tion and scale parameter ranges from around 30 mm h−1 and
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10 mmh−1 in the north, respectively to around 50 mm h−1

and 15 mmh−1 in the south, respectively. While there are
different factors that may explain this gradient, it is clearly
coherent with the similar gradient of the mean number of
wet days (Fig. 2) that makes the occurrence of a rainfall in-
tensity less frequent in the north than in the south, simply
because there are fewer rainfall events there (as evidenced
for the whole region by Le Barbé et al., 2002).

Regarding the two non-duration dependent parameters (ξ
and η), the shape parameter ξ does not display any clear
spatial organization while the scaling parameter η displays
a southwest–northeast gradient (with values ranging from
−0.8 to −0.9). This suggests that, in addition to the latitu-
dinal effect, the distance from the ocean might also influence
the temporal structure of rainfall events. The values of the
scaling parameter are very close to those observed by Pan-
thou et al. (2014b) over the AMMA-CATCH Niger network
located near Niamey.

The general pattern of the maps of 2-year and 10-year re-
turn levels given in Fig. 11 is almost entirely driven by the
north–south rainfall gradient. The pattern of the 100-year re-
turn level is a bit less regular, with the distance to the ocean
seeming to play a role in the western part of the country and a
higher patchiness that is certainly largely due to the sampling
uncertainty at such a low frequency of occurrence.

6 Conclusions and discussion

6.1 Main results

This study of extreme rainfall over Senegal for durations
ranging from 1 to 24 h confirms previous research report-
ing that a single temporal regime of scale invariance (sim-
ple scaling) seems to hold in tropical Africa for this range
of timescales (Panthou et al., 2014b; Agbazo et al., 2016;
Ghanmi et al., 2016). Whether this range could be extended
to sub-hourly and/or sup-daily rainfall intensities is an open
research question, out of the scope of this paper, but that can
be addressed using the recent methodology developed in In-
nocenti et al. (2017). The simplified GEV and scaling formu-
lation proposed by Panthou et al. (2014b) with four param-
eters (three for the GEV and one for the scaling) performs
similarly to the five parameter formulation of Koutsoyiannis
et al. (1998). This simplified formulation permits an easier
study of the sampling uncertainties associated with the infer-
ence of the 4 parameters, carried out by a bootstrap resam-
pling in the observed sample of extreme rainfall at 14 sta-
tions. Thus in addition to more solidly establishing that scal-
ing is an appropriate hypothesis for this region of the world,
our study provides for the first time a comprehensive assess-
ment of the different uncertainties affecting the IDF curves
produced by the model (other studies dealing with uncer-
tainty focus on the whole IDF uncertainty, such as Mélèse
et al., 2017).

The key advantage of the GEV and scaling approach for
computing IDF curves is twofold: (i) it ensures timescale co-
herency (for the range of explored durations) when working
at a regional scale, thus allowing for a coherent spatial in-
terpolation of the IDF model parameters over the region of
interest; and (ii) it offers the possibility of deducing GEV dis-
tributions for shorter durations at locations where only 24 h
data are available, thanks to this spatial interpolation. Both
properties have been used in this paper. First, a one at a time
simulation approach was used to explore the partition of the
overall uncertainty between the GEV inference uncertainty
and the scaling model inference uncertainty. One important
result in this respect is that the uncertainty produced by the
inference of the GEV parameters is 3 to 4 times larger than
the uncertainty associated with the inference of the scaling
relationship. This means that the scaling relationship requires
far fewer data to be inferred correctly than the GEV model.
Secondly, maps of the four IDF model parameters and asso-
ciated intensity return levels have been computed, allowing
for the retrieval of the general spatial pattern of these param-
eters over Senegal. The location (µ) and scale (σ ) parameters
of the GEV distribution, as well as the rainfall intensity lev-
els for the 2-year and 10-year return periods, display a clear
increasing gradient from north to south in line with the cli-
matological gradient of the mean annual rainfall and of the
occurrence of wet days. By contrast, for the temporal scaling
parameter η, the increasing gradient is rather oriented from
northeast to southwest, reflecting the influence of both the
occurrence of wet days and of the distance to the ocean. The
map of ξ is somewhat patchy, reflecting the fact that this pa-
rameter is usually difficult to estimate, but another important
result of this study is that its average value is slightly positive,
suggesting that the rainfall distribution is heavy-tailed as of-
ten observed in several regions in the world (Koutsoyiannis,
2004a, b). Also worth noting is the fact that the value of η is
close to −1 (ranging from roughly −0.9 and −0.8) indicat-
ing a steep decrease of intensities as the duration increases.
This is a common feature of short and intense rainfalls such
as those produced by convective storms. These values are
comparable to those found by Mohymont et al. (2004) in the
tropical area of central Africa, and to those obtained in the
Sahelian region of Niamey by Panthou et al. (2014b), close
to −0.9 in both cases. They are larger in absolute value than
those found in mid-latitude regions, as already underlined by
Van-De-Vyver and Demarée (2010).

A final consideration relates to the implementation of such
IDF models in operational services. While the theoretical
framework of coupling the GEV and scaling models might be
considered difficult to handle outside the world of academic
research, implementing them for producing IDF curves is rel-
atively easy, especially when using the simplified approach
tested here. This approach has the additional advantage of
producing relationships between rainfall return levels that
are formally equivalent to the so-called Montana relationship
(see Appendix), widely used in operational services, facilitat-
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ing the implementation and usage of our IDF model in me-
teorological/climatological services and hydrological agen-
cies.

6.2 Points of discussion and perspectives

In the perspective of extending this work to other tropical
regions of the world where sub-daily rainfall data might be
rare, it remains to explore the effect of using a fixed win-
dow to extract the daily rainfall annual maxima, whereas a
moving window was used for all durations (including 24 h)
in this study. As a matter of fact, daily records of rainfall are
carried out at a given hour of the day (usually 06:00 GMT
or local time), producing smaller totals than when a mobile
window is used to extract the daily rainfall maximum of a
given year. Since the scaling relationships that are used to de-
duce sub-daily statistics from these fixed-window 24 h max-
ima are tuned on multi-temporal maxima extracted using mo-
bile windows, there is a potential underestimation bias of the
sub-daily statistics inferred at 24 h stations that merits further
study.

Another critical question relates to using statistical infer-
ences that presuppose stationarity in time in a context of a
changing climate. Warming is already attested in the Sahel
and is bound to increase, involving possible changes in an-
nual rainfall patterns induced by changes in the positioning
of the Bermuda–Azores High and of the Saharan Heat Low.
Indeed, rainfall intensification in this region has already been
reported by Panthou et al. (2014a) and by Taylor et al. (2017),
likely in connection with an average regional warming of
about 0.18 Kdecade−1 over the past 60 years. While deal-
ing with this question was far beyond the scope of this paper,
it is a major challenge for both end-users and researchers.
It requires developing non-stationary IDF curves, one pos-
sible solution in this respect being to use both long histori-
cal rainfall series and the information that can be extracted
from future climate model projections (see, e.g., Cheng and
AghaKouchak, 2014).

At the same time it is important to emphasize that station-
arity is an elusive concept whose reality is never guaranteed
in nature, even without climate change. The Sahelian rainfall
regime, for instance, is known for its strong decadal variabil-
ity (Le Barbé et al., 2002) with potentially great impacts on
most extreme rainfall events (Panthou et al., 2013). The use
of long (multi-decadal) rainfall series to fit IDF curves can
thus reduce the sampling effects and reduce the IDF uncer-
tainties but they can also introduce some hidden biases linked
to this decadal-scale non-stationarity. This happened with the
dams built on the Volta River in the 1970s. The dams were di-
mensioned based on the rainfall information of the previous
three decades, which included two abnormally wet decades.
The reservoirs never filled up in the 1980s and 1990s. There-
fore, while IDF curves are intended to be disseminated to
a large community of end-users, users must be warned that
they are nothing other than a decision-making support tool to
be used with care and to be updated regularly.

Data availability. The data used here belong to the National
Agency of Civil Aviation (ANACIM), which is an institution of the
state of Senegal. They are not publicly accessible. The procedure to
obtain the data can be obtained by contacting ANACIM.
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Appendix A: Simple scaling IDF to Montana IDF

The IDF Montana formulation is as follows:

iT (D)= a(T )×D
bm . (A1)

The underscript m is used to differentiate the Montana for-
mulation from the scaling expression b in the main paper (m
stands for Montana). In our case, the scaling function is sim-
ple scaling (Eq. 12), thus Eq. (A1) becomes

iT (D)= F
−1
GEV

(
D0,1−

1
T

)
×Dη. (A2)

The two Montana parameters a and bm can be derived by
using the equality between the two formulations:

a(T )=F−1
GEV

(
D0,1−

1
T

)
, (A3)

bm(T )=η. (A4)

Note that when the simple scaling is verified then: (i) D0
is equal to 1, and depends only on the unit chosen to ex-
pressed the intensity of rainfall; and (ii) the assumption of
the dependence of bm on the return period T in the Montana
formulation is no longer valid (bm is equal to η for all return
periods).
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