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Reservoir Imaging Using Ambient Noise Correlation
From a Dense Seismic Network

M. Lehujeur' (), J. Vergne' (), J. Schmittbuhl® (), D. Zigone', A. Le Chenadec’, and EstOF Team"*?

"Université de Strasbourg, CNRS, IPGS UMR7516, et EOST UMS830, Strasbourg, France, 2ES-Géothermie, Haguenau, France,
3GEIE-EMC, Kutzenhausen, France

Abstract in September 2014, a dense temporary seismic network (EstOF) including 288 single-component
geophones was deployed during 1 month in the Outre-Forét region of the Upper Rhine Graben (France),
where two deep geothermal projects (Soultz-sous-Foréts and Rittershoffen) are currently in operation. We
apply ambient seismic noise correlation to estimate the empirical Green’s function of the medium between
the ~41,200 station pairs in the network. The noise correlation functions obtained are comparable to those
from previous studies based on the sparse long-term networks settled in the area mostly to monitor the
induced seismic activity. However, the dense spatial coverage of the EstOF network improves our ability to
identify the main phases of the Green's function. Both the fundamental mode and the first overtone of the
Rayleigh waves are identified between most station pairs. P waves are also evidenced. We analyze the
statistical distribution of the Rayleigh wave group velocity between station pairs as a function of the period
(between 0.8 and 5 s), the station pair orientation, the distance over wavelength ratio and the signal-to-noise
ratio. From these observations, we build a high-resolution three-dimensional S wave velocity model of the
upper crust (down to 3 km deep) around the regional deep geothermal reservoirs. This model is consistent
with local geological structures but also evidences nonlithological variations, particularly at depth in the
basement. These variations are interpreted as large-scale temperature anomalies related to deep
hydrothermal circulation.

1. Introduction

The Outre-Forét region (northern Alsace, France) has long been known for its important geological resources.
It has been extensively studied over the last century for the exploitation of oil (Haas & Hoffmann, 1929;
Schnaebele, 1948) and more recently through the development of deep geothermal energy (Baillieux
et al,, 2013; Munck et al.,, 1980; Pribnow & Schellschmidt, 2000), in which the pilot geothermal project
of Soultz-sous-Foréts has played a major role in the development of enhanced geothermal systems
(EGS; Bresee, 1992; Genter et al, 2003, 2010; Gérard & Kappelmeyer, 1987; Huenges & Ledru, 2011;
Olasolo et al., 2016). In this context, a large collection of data has contributed to the assessment of the oil
and heat reservoirs in the region. The extended knowledge includes the surface geology, borehole lithology,
thermal field, fault network, and numerous geophysical and geochemical surveys (e.g., magnetotellurics,
gravimetry, fluid monitoring, and microseismicity), making the region attractive for testing new reservoir
imaging methods.

Part of the data has been concatenated to produce a first 3-D geological model at the scale of the Upper
Rhine Graben (GeORG Team, 2013). This knowledge has been completed with the recent development of
the deep geothermal power plant near Rittershoffen, where several geophysical surveys have been con-
ducted to plan the drilling of two boreholes reaching the granitic basement (Baujard et al,, 2015, 2017).
The microseismic activity associated with the development phase of the reservoir has also provided useful
information about the orientation and the mechanical behavior of the main faults (Lengliné et al., 2017;
Maurer et al., 2015). The development of deep geothermal energy strongly relies on an appropriate knowl-
edge of the geological structures at depth. This is particularly true for EGS projects that are targeting areas
where positive temperature anomalies are related to the hydrothermal circulation of natural hot brine in
fractures and fault zones located deep at the transition between the sedimentary cover and the crystalline
basement (Guillou-Frottier et al., 2013; Magnenet et al., 2014).

Classical reservoir imaging, in particular, for oil and gas exploration, is based on active seismic surveys that
rely on artificial impulsive sources (explosions and vibrator trucks). However, such operations have a high
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cost compared to the overall budget of a deep geothermal project and
might affect the social acceptance of the project, especially in urban areas.
An emerging alternative is ambient seismic noise imaging, which is a pas-
sive and low-cost approach. The feasibility of using ambient seismic noise
<. . J%F&" - o —" as a source for the exploration of a geothermal field was identified several
Q\»d o 0 04d 0 'See 3 -.p,,\ decades ago (Liaw & McEvilly, 1977). More recently, the cross correlation of
‘ 1?'25% 5,\0%:%;;' 2 o oo ambient seismic noise records to obtain empirical Green's functions
°2 00 X Itz.,..KUHL‘ o between pairs of receivers (Lobkis & Weaver, 2001; Shapiro & Campillo,
:Gulgg; ° °‘: o o D'Q%" o koo 0 ﬁ 2004) has become a standard technique for passive imaging (e.g., Lin
bo s o3 o.% S Oy 2 3028 7 et al,, 2009; Shapiro et al., 2005; Stehly et al., 2009; Zigone et al., 2015) or
d Beofello e monitoring (Brenguier et al., 2008; Sens-Schonfelder & Wegler, 2006) at

various scales. Such techniques have been applied to geothermal fields

; both for exploration (Tibuleac et al.,, 2009; Tibuleac & Eneva, 2011) and

_ % i monitoring purposes (Hillers et al., 2015; Obermann et al., 2015), relying

\% on permanent or semipermanent seismic networks usually installed to
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monitor the induced seismic activity. At Soultz-sous-Foréts, the potential
of such techniques was first demonstrated by Calo et al. (2013) based on
8.16° a 22-station network. A comprehensive study of the properties of the

ambient seismic noise recorded in the area has revealed a strong directiv-
Figure 1. Map of the EstOF network (black dots). The two geothermal sites ity of the ambient seismic noise at periods between 1.and 5 s that mainly
Soultz-sous-Foréts and Rittershoffen are shown as red stars. Yellow squares  Ofiginates from the Northern Atlantic Ocean and the Mediterranean Sea
indicate the long-term monitoring network used by Lehujeur et al. (2016). (Lehujeur et al., 2015). Such directivity patterns in the ambient seismic

Nodes 220, 172, and 133 (blue circles), equipped with © Fairfield Nodal Zland  nojise may affect the tomographic models obtained with sparse seismolo-
sensors, were installed close to the long-term stations SCHL (equipped with a gical networks (Lehujeur et al.,, 2016).

Trillium compact 120-s velocimeter), LAMP and GUNS (equipped with L4C-
1 Hz velocimeters). Sltz = Soultz-sous-Foréts, Rtt = Rittershoffen, Htt = Hatten,  Here we focus on the EstOF temporary seismic network. We investigate
B = Betschdorf, Ha = Haguenau, See = Seebach, 5ff = Soufflenheim. The solid  the potential of dense networks operating over short time periods (i.e.,
white line corresponds to the French-German border. 1 month) to image the deep geothermal reservoir at a regional scale (i.e.,
several tens of kilometers). Such dense networks with hundreds to thou-
sands of sensors are increasingly used to build high-resolution velocity models from ambient seismic noise
in various environments, such as the sea bottom (Mordret et al,, 2013), urban areas (Lin et al., 2013; Nakata
et al, 2015), fault zones (Ben-Zion et al., 2015; Roux et al., 2016), or volcanic edifices (Brenguier et al.,, 2016;
Nakata et al.,, 2016; Wang et al,, 2017). The recent development of “node”-like seismometers including all
necessary components (digitizer, sensor, battery, etc.) into one single portable and wireless box is greatly
contributing to the emergence of such large N-arrays for passive imaging purposes (Hand, 2014). In the fol-
lowing, we present the acquisition and the main characteristics of the ambient seismic noise records we
obtained from the EstOF dense network in northern Alsace, France. We report on the main seismic phases
that are recovered from the noise correlation processing. We determine the surface wave dispersion curves
from the noise correlation functions, and we invert these curves to build a 3-D shear wave velocity model of
the studied area. The model is finally discussed in the light of existing geophysical data in the region.

longitude (°)

2. Data and Methods
2.1. Data

The EstOF network was deployed in 2014 from 25 August to 30 September (37 days). The main part of the
network was composed of 259 stations settled on a 19 by 19 grid with an average interstation distance of
14 km. It covered a surface area of approximately 490 km? including the two deep geothermal sites
Soultz-sous-Foréts and Rittershoffen, in the Outre-Forét region, France (Figure 1), between the city of
Haguenau, 30 km to the north of Strasbourg, and the French-German border. A subnet of 29 stations was
deployed on a denser grid around the geothermal site Rittershoffen with an interstation distance of 500 m
(Figure 1). From 8 to 18 September, the stations from the subnet were removed and used to swap the stations
of the main network to recharge the batteries and download the data. The stations were equipped with
©Fairfield Nodal Zland nodes, which included a 10-Hz 1C vertical geophone, a 24-bit digitizer with a 2-Gb
recording capacity, a GPS antenna and a lithium-ion battery with an autonomy of approximately 20 days.
The sampling frequency was set to 250 samples per second. The data recovery over the whole period was
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Figure 2. Analysis of the noise spectrum. (a) Probability density distribution of the power spectral density in acceleration
combined for all the 1-hr noise windows of the 288 EstOF stations; thin white lines correspond to the 5, 16, 50, 84, and
95% percentiles from bottom to top. Black dashed curves correspond to the lower and upper noise models (Peterson,
1993). The red solid line indicates the theoretical instrumental noise level of the sensor used. (b, c) Comparison of the
temporal evolution of the power spectral density between (b) the broadband station SCHL (Trillium compact 120 s) and (c)
the EstOF station 220 (©Fairfield Nodal, Zland). Note that the variations of the secondary microseismic peak are recorded on
Zland sensors up to 5 s and sometimes 7 s (black arrows in (b) and (c)).

approximately 97%. Few perturbing events occurred during the experiment since no stimulation was
conducted at the geothermal power plants and only a few local natural earthquakes were identified
during the recording period (12 events with local magnitudes between 0.9 and 2.4 in a radius of 100 km
around the studied area, from the RéNaSS catalog, RENASS, 2017). To minimize the impact for landowners,
the nodes were deployed along pathways in agreement with local communities. The nodes were buried at
30 cm and coupled to the ground with 15-cm metallic spikes. The whole network was deployed in
2.5 days by seven teams of two or three people.

2.2. Methods

2.2.1. Noise Processing and Correlation

For each station, we first split the continuous noise records into 1-hr-long windows without overlaps. We
compute the power spectral density (PSD, McNamara & Buland, 2004) of the raw waveforms and correct
the amplitude of the PSD using the modulus of the theoretical instrumental response in acceleration. We
use the PSD as a data quality estimator to reject the windows with anomalously low noise levels (below
—160 dB) in the 0.1-10 s period band corresponding to instrumental malfunctions (less than 0.7% of
the data).

The average shape of the probability density function of the PSD (Figure 2a) is characterized by high ampli-
tudes for periods below 1 s that correspond to anthropogenic sources with marked daily and weekly periodi-
cities (Figures 2b and 2c). The secondary microseismic peak that dominates the ambient seismic noise
spectrum everywhere on Earth between periods 2 and 10 s (Peterson, 1993; Figure 2a, black dashed lines)
generally exceeds the instrumental noise level of the nodes at periods above 1 s, despite their low cutoff per-
iod (0.1 s) and the related increase of the instrumental noise level at long periods (Figure 2a, red curve). A
comparison of the noise spectrograms between one of the EstOF nodes (node 220) and station SCHL
equipped with the broadband velocimeter and installed a few meters away is shown in Figures 2b and 2c.
First, the figure indicates that individual EstOF nodes capture anthropogenic noise at short periods with good
quality (e.g., daily variations below 1 s). Second, the figure confirms that the temporal variations of the
secondary microseismic peak are detected by the EstOF sensors at periods up to 5 s and occasionally 7 s
for most energetic events (see the black arrows at day 270 in Figures 2b and 2¢) even if the instrumental noise
levels at long periods blur the records.

Prior to cross correlation, we process noise windows as proposed by Bensen et al. (2007). Each noise window
is detrended, tapered in the time domain using a cosine taper and downsampled at 25 samples per second.
We uniformize the spectrum modulus between 0.1 and 10 s (spectral whitening) and clip the amplitudes in
the time domain within the range +3 times the standard deviation of the trace. No deconvolution of the
instrumental response is applied to the waveforms because all the sensors of the network are the same. In
such a case, the deconvolution has no effect on the noise correlation functions (NCFs) because (1) the

LEHUJEUR ET AL.

6673



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Solid Earth

10.1029/2018JB015440

—13.01,10.34 |

SCHL — LAMP, 114 days

R, =27.06,22.07 |

220 — 172, 34 days

—14.15,7.57)

amplitude (a.u)

KUHL — LAMP, 5 years
122 — 172, 34 days

(R, =41.17,28.48 |

[R,=8.77,11.13]

(R, =44.27,32.38]

~3\[= KUHL-GUNS, 5 years
—10/| — 122-133, 33 days . _direct arrivals coda
-50 -25 0 25 50
lag-time (s)

Figure 3. Comparison of noise correlation functions (NCFs) between three
pairs of nodes in the EstOF network (220-172, 122-172, and 122-133, red)
and three pairs of stations in the long-term network (SCHL-LAMP, KUHL-
LAMP, KUHL-GUNS, black, NCFs after Lehujeur et al., 2016). The NCFs are
band-pass filtered between 1 and 5 s. Amplitudes are expressed in arbitrary
units. The numbers Rc and Ra (for causal and acausal sides, respectively)
indicate the ratios between the peak amplitude in the direct arrivals window
(group velocity between 0.3 and 3.5 km/s, green) and the coda window
(group velocity between 0.15 and 0.3 km/s, blue). Rc and Ra are computed
for both waveforms in each subplot (black and red numbers, respectively, for

the long-term

and EstOF networks).

phase of the NCF depends only on the phase difference between the sen-
sors, which remains the same whether or not the deconvolution is per-
formed, and (2) the effect of the deconvolution on the noise spectrum
is canceled by the spectral whitening filter. The noise correlation func-
tions are computed for all 41,284 station pairs, averaged over time and
derived in time (Roux, Sabra, Gerstoft, et al., 2005; Snieder, 2004). We arbi-
trarily orient the station pairs so that the signal observed on the positive
side (causal side) of the NCF corresponds to sources located on the west
side of the network.

2.2.2. Noise Correlation Functions, Comparison to Previous Data Set,
and Dominant Wave Types

We compare the EstOF NCFs with the results of a previous study by
Lehujeur et al. (2016), who used the ambient noise cross-correlation tech-
nigue in the same region on a seismic network of 34 stations devoted
mainly to the monitoring of seismicity (Figure 1, yellow squares). This
sparse network is composed of both permanent and long-term temporary
stations. The NCFs from this network were computed with several months
to several years of noise. As the instruments were not similar for all the sta-
tions, the preprocessing of the noise waveforms included a deconvolution
of the instrumental response (see Lehujeur et al., 2016). Some nodes of the
EstOF network are located next to long-term stations (e.g., SCHL, LAMP,
GUNS, Figure 1), which allows us to compare the noise correlation wave-
forms between the two data sets (Figure 3).

For periods between 1 and 5 s, the NCFs of the EstOF network (computed
with approximately 30 days of data, Figure 3, red) have some similarities
with the NCFs of the long-term network (several months to several years
of data, Figure 3, black). The phase and amplitude are consistent in both
networks. The asymmetry between causal and acausal sides is also consis-
tent in this period range. Higher amplitudes are observed on the causal
side due to prominent microseismic sources located in the northern
Atlantic Ocean for back azimuths approximately 290-310°N (Lehujeur

et al., 2015, 2016). For waveforms of both networks, we compare the ratio between the peak amplitude of
direct arrivals (green time window, Figure 3) and the root-mean-square of the NCF in the coda part (blue
time window, Figure 3). This ratio (Figure 3, black and red numbers, noted Rc for causal and Ra for acausal
sides of the NCF) is used as an indicator of the NCF convergence (Bensen et al., 2007). The ratio is generally
lower in the EstOF case, due to the shorter recording duration. However, the difference remains small com-
pared to the difference between the recording durations used to compute the NCFs, suggesting that 30 days

— 220-172 — 122-172

— 122-133

cummulated time (days)

Figure 4. Convergence of the noise correlation function for three pairs of
nodes in the EstOF network (220-172, 122-172, and 122-133). The ratio (R)
between the peak amplitude in the direct arrival window (group velocity
between 0.3 and 3.5 km/s) and the coda window (group velocity between
0.15 and 0.3 km/s) is measured for both causal (thick curves) and acausal
sides (thin curves).

of noise is sufficient to reach an acceptable signal-to-noise ratio and to
perform tomography. The evolution of this ratio as a function of the
cumulated time (Figure 4) confirms that the NCF waveforms stabilize after
5 to 20 days, depending on the station pair and the side of the NCF. For
some station pairs, we observe a decrease in the signal-to-noise ratio on
the causal part of the NCF between 5 and 10 cumulative days (pairs
122-172, 122-133, Figure 4, thick curves), which coincides with a
decrease in the amplitude of the secondary microseismic peak between
days 245 and 250 (Figure 2b).

To further compare the wavefield reconstructed with the two data sets, we
apply a band-pass filter between periods 0.28 and 5 s (0.2 to 3.5 Hz) to the
NCFs and stack them in distance bins of 150 m (Figure 5). The resulting
wavefield is converted from the time-distance to the frequency-wave
number domain (F-K) using a 2-D Fourier transform (Figures 5b and 5d).
The wavefields obtained with the two data sets show similar arrivals
on both sides of the NCFs. The higher spatial resolution of the EstOF
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Figure 5. Comparison between the noise correlation functions obtained with the EstOF short-term dense seismic network
(a, b) and the long-term sparse network for seismic monitoring of the area (c, d, correlation functions after Lehujeur et al.,
2016). The filtered correlation functions are averaged in distance bins of 150 m (a, ¢) and converted to the frequency-wave
number domain (b, d). Black arrows indicate repetitive artifacts from the EstOF instruments in the time-distance (a) and
frequency-wave number (b) domains.

distance (km)

0.0
—2.5
-5.0
—7.5
-10.0
-12.5
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-17.5
-20.0

phase velocity (km/s)

0.5 1 2 5 0.5 1 2 5
period (s) period (s)

Figure 6. Average noise correlation wavefield obtained with the EstOF network. (a) Noise correlation functions averaged
over distance bins of 150 m and cleaned up in the frequency-wave number domain to retain phase velocities between
0.7 and 7 km/s, periods between 0.28 and 5 s (0.2-3.5 Hz) and wavelengths below 20 km. (b, c) Modulus of the 2-D Fourier
transform of the noise correlation functions, displayed in the period-phase velocity domain for causal and acausal sides,
respectively. Amplitudes are color coded and expressed in decibels. White and red squares indicate the theoretical

Rayleigh wave group velocity dispersion curves for the fundamental mode (R0) and the first overtone (R1), respectively. The
label P indicates P waves.
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Figure 7. Comparison between the theoretical traveltimes predicted using
ray tracing in the 1-D P wave velocity model for Soultz-sous-Foréts (a) and
the noise correlation functions of the EstOF network (b). The causal and
acausal sides from Figure 6a are band-pass filtered between 0.28 and 1.67 s
(0.6-3.5 Hz) and averaged to highlight the P wave phase.

network improves our ability to identify the main phases of the signal in
both the time-distance (Figures 5a and 5c¢) and frequency-wave number
domains (Figures 5b and 5d). This improvement is particularly significant
for the acausal side of the correlation functions. The EstOF NCFs suffer
from repetitive spikes that occur with a periodicity of 2 s in the time
domain (see black arrows in Figure 5a) and an apparent zero wave number
(i.e., infinite phase velocity, see black arrows in Figure 5b). Such artifacts
are not visible on the long-term networks equipped with higher-quality
seismometers (Figures 5c and 5d). They are likely caused by the GPS time
synchronization within the EstOF sensors, as reported in other studies that
used similar equipment (Wang et al., 2017).

To analyze the dominant wave types that emerge from the signal, we filter
the average NCFs of the EstOF network (Figure 5a) in the F-K domain (or
equivalently in the period-phase velocity domain). The F-K filter isolates
phase velocities between 0.7 and 7 km/s, periods between 0.28 and 5 s
(0.2-3.5 Hz) and wavelengths below 20 km (Figure 6). The fundamental
mode and first overtone of the Rayleigh waves dominate at periods
between 0.8 and 5 s (Figures 6b and 6c¢). These two arrivals are in good

group velocity (km/s)

agreement with the theoretical dispersion curves predicted using the one-dimensional depth velocity profile
for Soultz-sous-Foréts (Beauce et al.,, 1991; Charléty et al., 2006, Figures 6b and 6c, red and white squares). We
also identify arrivals with higher velocity, approximately 5 km/s, which we interpret as P waves (see label P on
Figure 6c). This wave type has already been observed in some previous studies based on ambient noise cor-
relation (e.g., Nakata et al., 2016; Roux, Sabra, Kuperman, Roux, 2005). To verify this statement, we compute
the theoretical P wave traveltimes in the 1-D velocity model for Soultz-sous-Foréts (Figure 7a). To the first
order, these predictions of the P wave arrivals are in good agreement with the averaged causal and acausal
noise correlation wavefield in the time-distance domain (Figure 7b, red dots). In the following, we focus
on only the surface wave component of the wavefield, which has a higher signal-to-noise ratio, making
tomography easier.

2.3. Group Velocity Dispersion Measurements

Using both causal and acausal NCFs, we obtain more than 80,000 estimates of the medium Green's functions
between EstOF node pairs. We decompose them in the time-frequency domain using the multiple Gaussian

036-210 filter approach (e.g., Dziewonski et al., 1969; Levshin et al., 1992). We build

dispersion diagrams using the envelope of the analytical signal filtered
around several periods (Figure 8). For each period, we normalize the envel-
ope amplitude by the standard deviation of the filtered trace (Figure 8,
color scale). We automatically pick all the local maxima of the diagrams
using the discrete derivatives of the envelope. For each local maximum
(Figure 8, black circles), we collect (1) the instantaneous period T, (2) the
group velocity V, (3) the amplitude of the dispersion diagram at the pick
location SNR, (4) the period-dependent ratio between the interstation
distance and the wavelength d/A (computed using the theoretical phase
dispersion curve of the fundamental mode of the Rayleigh waves in the
Soulz model, Figure 6¢, white curve), and (5) the back azimuth measured
in degrees, clockwise from north (5 ranging from 180 to 360°N for the cau-

1 2

instanteous period (s)

Figure 8. Example of a group velocity dispersion diagram obtained for the
causal side of the EstOF station pair 036-210 (Figure 1). Colors indicate the
ratio between the envelope of the analytical signal and the standard devia-
tion of its real part for each instantaneous period. Dots indicate the local

maxima retained by the automatic picking algorithm. White curves indicate
the theoretical group velocity dispersion curves for the fundamental mode
and the first two overtones using the Soultz-sous-Foréts velocity model.

sal side and from 0 to 180° for the acausal side of the NCFs, according to
the chosen convention for the orientation of the station pairs).

Such an approach avoids analyzing all the individual dispersion dia-
grams and can detect multiple modes as observed on many station pairs
for periods between 1 and 2 s (Figure 8 and Text S2 in the supporting
information). The large number of automatic picks obtained for periods
below 1 s (Figure 8) illustrates the difficulty of recovering Green’s func-
tion in the anthropogenic period band in this region (Lehujeur et al,
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Figure 9. Five-dimensional distribution of automatic picks [period (7), group velocity (V), signal-to-noise ratio (SNR), dis-
tance over wavelength (d/A), and back azimuth (8)]. Each subplot corresponds to a 2-D slice across this distribution fixing
the three other dimensions to a prescribed range (indicated with superscript stars). Colors correspond to probability
densities. Rectangles illustrate the cluster of data selected for tomography with periods between 2.57 and 3.02 s (T*).
White and red squares on subplot (a) correspond to the theoretical group velocity dispersion curves for the fundamental
and first overtone, respectively, of the Rayleigh waves in the Soultz-sous-Foréts velocity model. White dashed curve on
subplot (b) indicates the interpreted azimuthal bias on the measured group velocity.

2015, 2017). Although unlikely, dispersion picks with high group velocities are preserved to analyze their
repeatability over the whole data set.

To get an overview of the automated pick distribution for all station pairs, we isolate slices across the five-
dimensional (5-D) pick domain (T, V, §, SNR, d/4), (see Figure 9). The distribution of periods (T) versus group
velocities (V) for fixed ranges of back azimuth (f), distance over wavelength (d/4), and SNR (Figure 9a) is a
plane section through this 5-D domain. It highlights a bimodal average group velocity dispersion curve in
good agreement with the theoretical curves for the fundamental mode and first overtone (white and red
squares, respectively).

For periods above 2 s, we notice that the group velocity (V) stabilizes for back azimuths (5) near the two domi-
nant noise directions observed in this region (Figure 9b): the Atlantic Ocean (back azimuth ~150°) and the
Mediterranean Sea (back azimuth ~280°, Lehujeur et al., 2016). These directions are characterized by high
pick densities in all the plane sections of the 5-D distribution (Figures 9f, 9i, and 9j), and they slightly change
with the period (T, Figure 9j). For some directions, the picked group velocity diverges toward unrealistically
high values (see the white dashed curve in Figure 9b). This divergence of the apparent group velocity as a
function of the back azimuth results from directive and not fully diffuse seismic noise (Pedersen & Kriiger,
2007). The azimuthal biases increase with increasing period (and wavelength, e.g., Yao & Van Der Hilst,
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Figure 10. Influence of the period on the distribution of automatic group velocity dispersion picks. (a, b, c) Periods between
3.19 and 3.75 s, (d, e, f) periods between 1.70 and 1.88 s. SNR = signal-to-noise ratio.

2009) and become very strong for periods above 4 s (Figure 10b). These directivity patterns in the noise also
affect the phase of the correlation functions (Text S1).

To improve the Rayleigh wave tomography and avoid spurious effects, we select clusters of picks in this 5-D
domain for the inversion. To define the boundaries of each cluster, we first adjust the period range to a nar-
row band centered on a specific period and adjust the velocity range accordingly depending on the targeted
mode number (e.g., Figures 9a, 10a, 10d). We then adjust the back azimuth range to avoid directions where
the velocity measurements are presumed to be strongly affected by the azimuthal biases (Figures 9b, 10b,
and 10e). The distance over wavelength ratio is taken above 2 when possible (Figure 9c). For periods above
3 s, we are forced to reduce this threshold to 1 (Figures 10a-10c) to include enough interstation paths for
tomography. This choice also contributes to strong azimuthal biases visible in the back azimuth group velo-
city domain, with significant pick densities for group velocities up to
5 km/s and above (Figure 10b). We finally adjust the lower SNR boundary
in the SNR-velocity domain, since low-SNR picks are often associated with
unrealistic velocity values (Figure 9d). For periods below 2 s, we isolate
picks with SNR above 4, which is observed to improve the distinction
between the fundamental mode and the first overtone (Figure 10f). We
obtain 15 clusters of picks from periods near 0.6 to 4.2 s, and we attribute
a mode number to each of them (0 for the fundamental mode or 1 for the
first overtone) depending on its position in the period group-velocity
domain (Figure 11). The dispersion curves obtained are relatively smooth
and consistent between similar interstation paths. These clusters of picks
are then used as input for Rayleigh wave tomography.

2

3. Results

period (s)

Figure 11. Position of the 15 clusters used in the period group-velocity
domain. Numbers indicate the station pairs retained in each cluster. White
(red) rectangles indicate clusters labeled fundamental mode (first overtone).
Solid curves indicate the theoretical group velocity dispersion curves for
the Soultz model.

3.1. Group Velocity Maps

For each cluster of picks (i.e., each period and mode number), we compute
a group velocity map using “Gaussian surface wave tomography”, which
assumes straight interstation rays and approximates the surface wave sen-
sitivity kernels by a narrow region surrounding the interstation path.
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Figure 12. Rayleigh wave group velocity dispersion maps at several periods and for the fundamental mode (mode 0, a-d)
or the first overtone (mode 1, g, f). The amplitudes correspond to velocity variations relative to a reference group
velocity, specified in the subplot title of each map.

Taking into account the true diffraction kernels and the ray bending effects could increase the accuracy of the
resulting maps (Ritzwoller et al., 2002). However, it would render the tomographic inversion nonlinear and is
beyond the scope of this study. The period range extends from 0.6 to 4.5 s for the fundamental mode and
from 0.7 to 1.9 s for the first overtone (Figure 11). The inversion is regularized with a damping parameter,
which controls the relative weight of the quadratic data misfit and the norm of the model, and a
smoothing parameter to control the nondiagonal terms of the covariance matrix of the prior model (we
assume that the velocities in two cells i, j of the dispersion map have a linear correlation coefficient with
the form exp(—dj/s), where dj; is the distance between the two cells and s is the smoothing coefficient).
These regularization parameters are adjusted individually for each map to minimize both the misfit
between the observed and predicted traveltimes and the norm of the velocity anomalies. For each map,
we compute the resolution matrix following Tarantola (2005). Pixels outside the resolved zone (i.e., cells for
which the diagonal term of the resolution matrix is too low) are masked in the final maps. The resulting
maps are shown in Figure 12 at different periods both for the fundamental mode (Figures 12a-12d) and
for the first overtone (Figures 12e and 12f). The average velocity obtained increases with the period
(Figure 12, see the reference velocity in the subplot titles). The relative velocity variations of the group
velocity exhibit similar patterns for all periods and mode numbers. In particular, the prominent high-
velocity zone observed to the northwest is in good agreement with the northern Vosges massif. Further
details are provided in section 4.

3.2. Depth Inversion

To build a three-dimensional S wave velocity model of the area, we invert the bimodal (fundamental mode
and first overtone) Rayleigh wave dispersion curves obtained in each pixel of the group velocity maps
(Figure 12). Such inversion can be performed using a linearized approach (Aki & Richards, 2002; Dorman &
Ewing, 1962; Herrmann, 2013; Xia et al., 1999), which is fast but highly sensitive to the depth model chosen
to initiate the inversion. Here we use a Monte Carlo approach (e.g., Maraschini & Foti, 2010; Shapiro &
Ritzwoller, 2002; Socco & Boiero, 2008), which can explore a larger parameter space and identify multiple
solutions. The one-dimensional depth model is parameterized with nine layers including a half-space at
the bottom (Table 1). We invert for the S wave velocity and the depths of the interfaces. Since the computa-
tion of Rayleigh wave group velocity dispersion curves further requires a Vp and a density model, we also
invert for the Vp over Vs ratio and the density in each layer, but we impose a stronger prior constraint on these
variables based on borehole observations as detailed below. We estimate the posterior probability density
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Ta.ble1 ) ' S distribution of the model space by combining prior probability density
Prior Boundaries of Uniform Probability Distributions Used for Each Parameter functions of the model and data spaces (Tarantola, 2005). We estimate

of the Depth Model . .
the quality of a depth model using

Top depth Vs range Vp/Vs Density rgnge
Layer number range (km) (km/s) range (g/cm”) Ik (m) = log Pm (m) + log o (g (m)) M
1 0.0 0.2-1.5 1.9-2.15 2.3-25
2 0.05-0.2 0.2-1.7 1.9-2.15 23-25 where llk is the logarithm of the likelihood, m is an array of parameters
3 0.2-04 05-20 1.9-2.15 235-26 corresponding to a depth model, py, is the prior probability density func-
4 s Lo Ll i tion of the model space, pp is the probability density function of the data
5 0.6-1.0 1.0-3.0 1.8-2.15 24-2.6 R R . .
6 1.0-15 10-325 18215 2.45-2.65 space, and g is the theory function used to compute dispersion curves.
7 15-2.0 13-35 1.7-2.0 245-27 Taking the logarithm of the likelihood increases the stability of the
8 2.0-2.5 1.3-3.5 1.7-2.0 25-27 metropolis algorithm.
Half space 2.5-3.0 3.2-36 1.7-19 2.6-2.7

The prior probability density function of the model space (py in equa-
tion (1)) is defined as the product of uniform probability density func-
tions on each parameter of the model (Table 1). The prior constraints
on Vs and Vp/Vs in each layer are adjusted after borehole observations
at Rittershoffen (Maurer et al,, 2016) and Soultz-sous-Foréts (Beauce et al, 1991; Charléty et al, 2006;
Cuenot et al., 2008; Dorbath et al., 2009). These measurements have revealed Vp over Vs ratios of approxi-
mately 1.73-1.75 in the granitic basement and very high values up to 2.15 in the upper part of the sedi-
mentary cover. The S wave velocity of the half space is constrained to the narrow range 3.2-3.6 km/s
according to velocities observed in the granitic basement at both Rittershoffen and Soultz-sous-Foréts
(Beauce et al., 1991; Maurer et al., 2016). The prior constraints on density parameters are set after gravi-
metric models of the Upper Rhine Graben (Rotstein et al., 2006). To increase the smoothness of the depth
models, we impose additional prior constraints to the offsets between neighboring layers using uniform
probability laws. The Vp and Vs offsets are restricted to the range —0.5 to +1.5 km/s. We impose a decreas-
ing Vp over Vs ratio with depth (offsets bounded to the range —1.0, 0.0) and increasing density (offsets
between 0.0 and +1.0 g/cm?).

The prior probability density function of the data space (pp in equation (1)) is defined using lognormal prob-
ability laws for each point in the dispersion curve, and we assume that the group velocity measurements are
independent (i.e., we use a diagonal data covariance matrix, Tarantola, 2005).

For each location, we invert the observed dispersion curves with 12 independent Markov chains running in
parallel. The moves between subsequent models explored by the random walk process are governed by a
Gaussian proposal probability density function, whose covariance matrix is taken as diagonal. The diagonal
terms are adjusted along the inversion to stabilize the acceptance ratio of the chains to approximately 25%
(i.e, on average, one model is kept for four tests). The forward computation of the dispersion curves for each
depth model is done with the programs by Herrmann (Computer Program in Seismology, Herrmann, 2013).
Each chain runs until 1,000 models have been retained. We end up with 12,000 models kept from the ~48,000
tests for each inversion. The first models generated by the chains have very low likelihood values due to unsa-
tisfied prior conditions. We also observe Markov chains that are trapped in local maxima of the posterior
probability density function (for instance, models that fit the data reasonably well but do not fulfill the prior
conditions). To exclude such models, we select only the 2,000 best models found by the 12 chains. This num-
ber is set empirically based on the analysis of the evolution of the model likelihood of the Markov chains. The
median of these 2,000 best models is retained as the solution to the inversion. We use the median rather than
the mean since it is less sensitive to outliers. We run 498 inversions independently for each pixel in the
resolved zone of the dispersion maps (Figure 12). For all inversions, we obtain a relatively uniform distribution
of Vp/Vs and density between the imposed boundaries (not shown) due to the low sensitivity of Rayleigh
wave velocities to these parameters (e.g., Xia et al., 1999, see Text S3). We combine the 1-D S wave velocity
models obtained in every pixel to form a 3-D model (Figure 13).

To quantify the data fitting, we compute the dispersion curves corresponding to the solution of the depth
inversions (Figures 14b-14d, thick black depth models) and compare them to the dispersion curves from the
dispersion maps (Figures 14b-14d, red dispersion curves). We observe lower likelihood values in the
northwestern and southeastern part of the model (Figure 14a), which probably results from an increased
complexity of the model in these regions. The solution obtained near the geothermal site of Rittershoffen
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Figure 13. Three-dimensional S wave velocity model. (a—f) Horizontal slices at different depths. Colors indicate velocity var-
iations relative to a reference velocity indicated in the subplot title. The black dashed line indicates the position of the
section of subplot (g). (g) Northwest-southeast section across the model. Amplitudes correspond to velocity variations
relative to the median velocity at each depth (upper section) or to absolute velocity (lower section). The S and R labels
indicate the positions of the Soultz-sous-Foréts and Rittershoffen sites, respectively. The horizontal dashed lines indicate
the depth of the slices (a—f). Black and white solid lines indicate the main faults and the top of the granitic basement,
respectively (GeORG Team, 2013).

is in good agreement with sonic measurements performed in borehole GRT1 (Figure 14d, purple curve, from
Maurer et al., 2016).

4, Discussion

The primary pattern that emerges from both the group velocity dispersion maps and the inverted S wave
velocity model is a positive velocity anomaly to the northwest, which corresponds to the northern Vosges
massif (Figures 12 and 13, see the high-velocity zone to the northwest) separated from the sedimentary plain
of the Rhine by the Rhenish fault, a major geological discontinuity characterized by marked changes in the
topography (Hochwald crest, Figure 1) and the surface geology (Ménillet et al., 1989) and dominating the
Bouguer anomaly map of the Upper Rhine Graben (Corpel & Debeglian, 1994; Edel et al., 2007; Rotstein
et al., 2006; Schill et al., 2010).

The S wave velocity obtained at shallow depth is correlated with the surface geology. Three patches with low-
velocity anomalies are observed on the eastern side of the map (Figure 13a, between Haguenau and
Soufflenheim, southeast of Rittershoffen and near Seebach). These three zones are in good agreement with
low-density zones revealed by gravity data (Corpel & Debeglian, 1994) and may correspond to areas covered
with shallow and poorly consolidated layers formed by fluvial, lacustrine, and marshy deposits during the
Pliocene and loess deposits during the Quaternary (Aichholzer et al., 2016; GeORG Team, 2013). Such low-
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Figure 14. Fit to the dispersion curves for each location in the model. (a) Log-likelihood of the solution of the depth inver-
sion (median of the 2,000 best models) for each location in the model (color bar). A value of 0 corresponds to a perfect fit to
the observed dispersion curves. (b, ¢) Results of the depth inversion at three example locations (black dots on map a).
The dispersion curves to invert are displayed in red. RUO and RU1 correspond to the group velocities of the fundamental
mode and first overtone of the Rayleigh waves, respectively. The colored curves correspond to the 2,000 best models
obtained, and in the corresponding dispersion curves, colors correspond to log-likelihood values. Dashed black models
indicate the prior boundaries imposed on the inversion. Solid black models indicate the 1st, 16th, 84th, 99th (thin), and 50th
(thick) percentiles of the posterior distribution. Purple curve on subplot (d) corresponds to S wave sonic measurements
performed in borehole GRT1 at Rittershoffen (Maurer et al., 2016).

velocity anomalies do not exist in the southwestern quadrant of the map (from Haguenau to Betschdorf) and
north of Soultz-sous-Foréts, where most of the Pliocene-Quaternary formations have been eroded, together
with the upper part of the Tertiary layers (Froidefontaine and Pechelbronn formations, Aichholzer et al., 2016).

At greater depths, the similarity between the observed velocity and the known lithology is not straightfor-
ward. The northeastern zone of the map (Seebach area) exhibits low velocities at depths greater than
1.4 km, which might correspond to a zone with thicker and more fractured sedimentary cover (GeORG
Team, 2013). We do not identify a clear correlation between the variations in the S wave velocity and the
known depth of the granitic basement, observed at 1.4-km depth at Soultz-sous-Foréts and 2.2 km at
Rittershoffen (Aichholzer et al., 2016; Baujard et al., 2017). Furthermore, a velocity contrast between the
two sides of the Rhenish fault is visible at depths below ~1.5 km (Figures 13d-13g), where the fault is pre-
sumed to separate two similar geological units, that is, the granitic basement (Debelmas, 1974;
Kappelmeyer et al., 1992; Schnaebele, 1948). This effect could result from the poor sensitivity of surface waves
to deep interfaces (Text S3), leading to a low vertical resolution for the velocity model. We cannot rule out the
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possibility that the observed deep velocity contrasts are caused by underestimated velocity anomalies in the
shallow part of the model, leading the depth inversion process to deteriorate the deepest part of the model
in order to fit the observed dispersion maps. This question could be addressed either by adding more prior
constraints on the shallow part of the model based on the numerous borehole measurements conducted in
the area over the last decades to study the first kilometer of sediments (e.g., Aichholzer et al., 2016; Dezayes
et al,, 2005; Hooijkaas et al., 2006) or by analyzing Rayleigh waves at periods below 0.8-1 s (i.e., within the
anthropogenic period band), since these periods can be helpful to constrain the shallow structures and there-
fore improve the inversion at depth (Lehujeur et al., 2017).

The lateral variations observed at depth and particularly in the basement could also indicate that parameters
such as the fluid content, the mechanical damage, or the temperature significantly influence the observed
S wave velocity (Fjar et al.,, 2008; Guéguen & Palciauskas, 1994; Paterson & Wong, 2005). For instance, we
observe horizontal variations of approximately 30% peak to peak within the granitic basement along the
NW-SE section (Figure 13g) that are not consistent with the lithology (GeORG team, 2013). Interestingly,
the lateral scale of these variations is comparable to the typical scale of the hydrothermal cells in this region
(2-6 km, Guillou-Frottier et al., 2013; Magnenet et al., 2014), which are correlated with both the temperature
(Clauser et al.,, 2002) and the density field (Baillieux et al.,, 2013). As a result, we suggest that the S wave
velocity variations we obtain through seismic noise tomography may be related to the natural hydrothermal
circulation responsible for the thermal anomalies in the region.

5. Conclusion

Miniaturized and wireless seismological equipment is much simpler to deploy than conventional seismologi-
cal stations, in terms of both site selection and installation. It allows operators to deploy large and dense seis-
mological networks in a short period of time, which minimizes the deployment costs and the impacts on the
population. The ability of such instrumentation to record ambient seismic noise at periods up to approxi-
mately 5 s allows us to probe the first few kilometers of the crust using surface waves. The recording duration
is a key parameter in noise correlation studies, since it must be sufficient to allow convergence of the NCFs.
No general rule can be established to determine the shortest duration required, since it may vary with the
site, the period band, or the processing applied before correlation (e.g., Bensen et al., 2007; Groos et al.,
2012). In the EstOF case, we can recover the fundamental mode and first overtone of the Rayleigh waves after
30 days of continuous recording, with a signal-to-noise ratio that is sufficient to perform tomography. For
most station pairs, the quality of the obtained NCFs is comparable to the quality of those obtained with noise
records of more than 1 year in the same area (Figures 3 and 5).

The large amount of data produced with such types of networks requires automated processing procedures
to measure the interstation traveltimes. The automatic picking approach we use minimizes user interventions
in the data processing, but interpretation of the statistical distribution of the group velocity picks (Figures 9
and 10) remains necessary to prevent mode number misidentification or azimuthal biases due to imperfectly
diffusive seismic noise, both of which could lead to significant errors in the final velocity model.

To the best of our knowledge, the EstOF array is the largest and densest passive seismological network ever
deployed in the Outre-Forét region. The ambient seismic noise overlies the instrumental noise level at peri-
ods up to approximately 5 s, which allows us to exploit the lower period part of the oceanic secondary micro-
seismic peak and thus to probe the subsoil at the depth of the geothermal reservoir using surface waves. The
fundamental mode and first overtone of the Rayleigh waves clearly dominate the noise correlation functions
in the studied period band, although P waves have been identified in the signal. We obtain Rayleigh wave
traveltime estimates between more than 41,000 virtual source-receiver pairs, which allows us to discriminate
observations from a statistical point of view. In particular, this process allows us to mitigate the influence of
directivity patterns in the ambient seismic noise induced by the dominant sources in the Atlantic Ocean and
Mediterranean Sea and the non fully diffusive properties of the seismic noise.

The obtained Rayleigh wave group velocity maps and 3-D S wave velocity model of the Outre-Forét region
exhibit significant velocity anomalies that are consistent with previous geological and geophysical observa-
tions. However, several questions remain about the influence of nonlithological parameters on the observed
velocities such as the fluid content, the mechanical damage or the temperature. Future work could concen-
trate on the interpretation of the obtained velocity model and the potential use of such techniques in a
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purely explorational context. The accuracy of the final model may also be improved by considering the ray-
bending effects due to large velocity variations in the studied region using methods based on ray tracing
(e.g., Fang et al., 2015; Saygin & Kennett, 2010) or eikonal tomography for phase velocity (e.g. Lin et al,,
2013; Ritzwoller et al.,, 2011).

The velocity model obtained might also be used to locate the induced seismicity observed at the geothermal
power plants, which could potentially provide further information about the response of the geothermal
reservoir to stimulations and could help operators to minimize the operational risks.
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