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ABSTRACT

Metal-poor stars trace the earliest phases in the chemical enrichment of the Universe. They give clues about the early assembly of the
Galaxy as well as on the nature of the first stellar generations. Multi-object spectroscopic surveys play a key role in finding these fossil
records in large volumes. Here we present a novel analysis of the metal-poor star sample in the complete Radial Velocity Experiment
(RAVE) Data Release 5 catalog with the goal of identifying and characterizing all very metal-poor stars observed by the survey.
Using a three-stage method, we first identified the candidate stars using only their spectra as input information. We employed an
algorithm called t-SNE to construct a low-dimensional projection of the spectrum space and isolate the region containing metal-poor
stars. Following this step, we measured the equivalent widths of the near-infrared Ca ii triplet lines with a method based on flexible
Gaussian processes to model the correlated noise present in the spectra. In the last step, we constructed a calibration relation that
converts the measured equivalent widths and the color information coming from the 2MASS and WISE surveys into metallicity and
temperature estimates. We identified 877 stars with at least a 50% probability of being very metal-poor ([Fe/H] < −2 dex), out of
which 43 are likely extremely metal-poor ([Fe/H] < −3 dex). The comparison of the derived values to a small subsample of stars
with literature metallicity values shows that our method works reliably and correctly estimates the uncertainties, which typically have
values σ[Fe/H] ≈ 0.2 dex. In addition, when compared to the metallicity results derived using the RAVE DR5 pipeline, it is evident
that we achieve better accuracy than the pipeline and therefore more reliably evaluate the very metal-poor subsample. Based on the
repeated observations of the same stars, our method gives very consistent results. We intend to study the identified sample further by
acquiring high-resolution spectroscopic follow-up observations. The method used in this work can also easily be extended to other
large-scale data sets, including to the data from the Gaia mission and the upcoming 4MOST survey.

Key words. Galaxy: abundances – stars: abundances – methods: data analysis

1. Introduction

Metal-poor stars have been extensively used in stellar and
Galactic archaeology studies over the past few decades (e.g.,
? A catalog of the 877 candidates with estimated metallicities is

available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A19
?? CIfAR Senior Fellow.

Beers & Christlieb 2005). They offer an insight into the
nucleosynthesis in the early Galaxy (Karlsson et al. 2013)
and subsequent metal enrichment by supernovae of type II
(Bromm & Larson 2004; Frebel 2010; Chiappini 2013), with
special attention drawn toward carbon-enhanced metal-poor
stars (Carollo et al. 2012; Spite et al. 2013; Hansen et al. 2016)
and other evolved stars. The most metal-poor stars in the halo
(with metallicities [Fe/H] < −4.0) are also believed to be the
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oldest1. Therefore, they allow us to study the conditions in the
young Universe in which they were born (Frebel & Norris 2013).
In addition, the Galaxy’s accretion history can be better under-
stood by observing metal-poor stars in the Galactic halo and sur-
rounding dwarf galaxies (Tolstoy et al. 2009; Starkenburg et al.
2010, and references therein).

Given the broad range of studies that can be conducted
with metal-poor stars, the systematic search for them began
early on (Beers & Christlieb 2005, and the references therein).
Great success was achieved by the HK survey (Beers et al.
1985, 1992) and the Hamburg/ESO survey (HES, Wisotzki et al.
1996; Frebel et al. 2006; Christlieb et al. 2008), yielding more
than 1000 very metal-poor stars ([Fe/H] < −2.0) and a
few hundred extremely metal-poor stars ([Fe/H] < −3.0).
Higher resolution follow-up spectroscopy revealed that several
stars discovered by the HES are among the most metal-poor
stars known (Christlieb et al. 2002; Frebel et al. 2005). Follow-
ing their success, several wide-field sky surveys (Keller et al.
2007; Fulbright et al. 2010; Aoki et al. 2013; Howes et al. 2014;
Allende Prieto et al. 2015; Li et al. 2015, among others) enabled
discoveries of new extremely metal-poor stars, including the
current metal-poor record holder SM 0313-6708 (Keller et al.
2014) with an upper limit estimate of [Fe/H] = −7.3. Cur-
rently, there are several hundred known stars with metallicities
of [Fe/H] < −2.5 (Norris et al. 2013) and just over 20 stars with
[Fe/H] < −4.0 (Frebel et al. 2015). More candidates have since
been identified (Placco et al. 2015). The metallicity distribution
function (MDF) of the metal-poor end is relatively unconstrained
because only a few metal-poor stars are known, and any addi-
tional discoveries of new candidates advance our knowledge of
the detailed shape of the complete metal-poor MDF.

An earlier study of very metal-poor stars that were found
with the Radial Velocity Experiment (RAVE) survey was per-
formed by Fulbright et al. (2010) on a sample of ∼200 000 stars
available in the survey at the time. The authors identified metal-
poor candidates based on the atmospheric parameters derived
from the RAVE spectra. They obtained high-resolution observa-
tions for a subset of 112 stars and used them for calibrating the
remainder of the selected candidate sample. With the RAVE ob-
servations meanwhile completed, this study aims to find all very
metal-poor star in the final RAVE sample and therefore to ex-
tend the previous work by introducing a more robust three-stage
analysis of the spectra and the calibration relation.

This article is structured as follows. Section 2 gives an
overview of the RAVE spectra acquisition and reduction pro-
cedures and highlights the importance of having a separate pro-
cessing pipeline for very metal-poor stars in addition to the main
pipeline, which is successfully used on the large majority of
other RAVE stars. In Sect. 3 we present a method for isolating
the very metal-poor sample, followed by a review of the method
used for line profile modeling in Sect. 4. Its output along with
stellar color information is used to derive metallicity values of
candidate stars (Sect. 5). In Sect. 6 we analyze the calibrated
sample and compare our measurements to those RAVE stars that
have also been observed by other studies targeting metal-poor
stars. In this way, we obtain a list of all metal-poor candidates
in RAVE to be confirmed by high-resolution follow-up observa-
tions. We conclude with a discussion of the potential impact our
method might have on future massive spectroscopic surveys.

1 In the bulge, very old stars are found at higher metallicities of
[Fe/H] ≈ −1.5 (Chiappini et al. 2011).

2. Observations and spectral analysis

The RAVE survey (Steinmetz et al. 2006) started collecting first
spectra in 2003 and ran until 2013. Its main goal was to measure
radial velocities and atmospheric parameters of predominantly
disk stars (Zwitter et al. 2008; Siebert et al. 2011). During this
period, it gathered 574 630 spectra of 483 330 stars using the
Six Degree Field (6dF) multi-object spectrograph installed on
the 1.2 m UK Schmidt Telescope of the Australian Astronomi-
cal Observatory. The input catalog for the survey was initially
based on the Tycho-2 (Høg et al. 2000) and SuperCOSMOS
(Hambly et al. 2001) catalogs with derived and direct I-band
photometry, respectively, but was later switched to 2MASS po-
sitions (Cutri et al. 2003) and the I-band photometry from the
DENIS catalog (Epchtein et al. 1997). Stars selected for ob-
servation were chosen to be in the magnitude range between
9 < IDENIS < 13 and to avoid the Galactic plane and the bulge.
The spectral range includes the near-infrared Ca ii triplet region
and covers the wavelengths of 8410–8795 Å.

After the extraction of the spectra from the CCD image, the
sky emission lines are subtracted, the continua of spectra are
normalized, and the spectra are shifted to the rest-frame veloc-
ity according to individual radial velocity measurements. The
typical resolving power of the spectra is around R ∼ 7500
and the median signal-to-noise ratio per pixel value, S/N, is
∼50. The latest version of the stellar parameters catalog pro-
vided by Kunder et al. (2017) as the fifth data release (DR5)
includes effective temperatures, surface gravities, and metallic-
ities of 457 588 stars. The processing pipeline used to derive
the parameters employs the MATISSE (a projection algorithm,
Recio-Blanco et al. 2006), DEGAS (a classification algorithm),
and a library of precomputed synthetic spectra to extract the pa-
rameters from the observed spectra. It excludes the central re-
gions of the Ca ii lines because difficulties arise from modeling
those lines (Kordopatis et al. 2011). In addition to the informa-
tion provided by the parameter estimation pipeline, Boeche et al.
(2011) computed individual abundances for Al, Fe, Mg, Ni, Si,
and Ti for a subset of cooler stars with higher quality spec-
tra. The mean uncertainties for these measurements are in the
range of ∼0.2 dex. Distances to the observed stars as the missing
piece to obtain the full six-dimensional kinematical information
were first computed by Breddels et al. (2010) and later revised
by Zwitter et al. (2010), Burnett et al. (2011), and Binney et al.
(2014). Most of the stars in the sample were also observed by the
2MASS survey, so there are J, H, and KS band apparent magni-
tudes available as well as all four bands in the WISE catalog
(Wright et al. 2010).

The majority of the spectra are dominated by the Ca ii lines
located at 8498 Å, 8542 Å, and 8662 Å. In addition to these lines,
numerous other metallic lines are present in the spectra. Hot-
ter stars (A and earlier types) exhibit strong hydrogen lines,
while cooler M-type giants have a strong TiO molecular band.
These features enable the parameter estimation pipeline to deter-
mine the values of the atmospheric parameters across the broad
range in temperature, gravity, and metallicity. However, with in-
creasingly lower metallicity ([Fe/H] < −2.0), metallic lines
in addition to the Ca ii triplet become indistinguishable from
the background noise at typical S/N values. At lowest metal-
licities ([Fe/H] < −3.0), other metallic lines are undetectable
even at higher S/N values, and only the three weak Ca ii lines
are clearly distinguishable (see examples in Fig. 1). As a conse-
quence, the RAVE stellar parameter pipeline has difficulties de-
livering accurate parameters in this part of the parameter space.
In many cases, the pipeline does not converge or it finds more
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Fig. 1. Three examples of very metal-poor RAVE spectra with typical
S/N values of ∼50. The top spectrum belongs to the star with the lowest
metal abundance in the catalog, CD -38 245. The parameter values for
the top spectrum were adopted from Hansen et al. (2013), the parame-
ters for the middle spectrum from Carrera et al. (2013), and for the bot-
tom spectrum we used parameters from Ruchti et al. (2013). Note the
degeneracy between the shape of the Ca ii lines of cooler giants with
lower metallicities and warmer turn-off stars with higher metallicities.

than one solution, after which the average is taken as the fi-
nal guess. Another reason for the poor performance in the very
metal-poor regime is the fact that local thermodynamic equilib-
rium (LTE) spectral models cannot describe the Ca ii spectral
line sufficiently well. Starkenburg et al. (2010) studied the dis-
crepancies between the observations and the models and derived
a correction term. However, this correction cannot be simply ap-
plied to the values derived by the parameter estimation pipeline.
The correction itself is strongly dependent on the effective tem-
perature and metallicity as an input, which are challenging to
obtain spectroscopically without large uncertainties in the metal-
poor regime. A more detailed explanation is given in Sect. 5.

3. Identification of metal-poor FGK stars

Among the main goals of the RAVE survey are the measure-
ments of the stellar radial velocities and the determination of at-
mospheric parameters and chemical abundances of stars. Adding
the stellar evolutionary models to the equation also enables the
determination of the distances to the stars and consequently to
the study of the motion of stars and their chemical composi-
tion in different layers of the Milky Way. The DR5 processing
pipeline is optimized to handle a wide range of different normal
star spectra in the observed sample, but it might not deliver op-
timal results for a subset of objects with more peculiar spectra
(e.g., spectroscopic binaries, active stars, cool giants, and metal-
poor stars, Matijevič et al. 2010, 2011; Žerjal et al. 2013). For
this reason, these types of objects need to be studied separately.
Very metal-poor stars are particularly problematic because their
spectra are so featureless. As the central parts of the lines are ex-
cluded during the pipeline processing, there is little information
left in the spectrum for the pipeline to rely upon. Consequently,
the derived parameters, including the metallicity, are (sometimes
strongly) affected (see Sect. 6 for details on how the metallicity
estimates are affected).

The first step in the analysis is to isolate the sample of can-
didate metal-poor stars. Fulbright et al. (2010) used a criterion
based on the metallicity and effective temperature derived in
Data Release 2 (Zwitter et al. 2008) to select the very metal-poor
candidates for further analysis. Such a selection can be made
very quickly since it uses readily available information. A draw-
back lies in the fact that some of the stars for which the pipeline
results might have overestimated the metallicity could be ex-
cluded from the candidate list. Similarly, metal-richer stars with
underestimated metallicities can contaminate the candidate sam-
ple. In order to avoid having to rely on a less reliable parameter-
based selection, we opted to use the available spectra as the only
source of information based on which we isolated the very metal-
poor candidates.

One of the approaches that are suitable to isolate the metal-
poor sample from the whole RAVE database is the projec-
tion of the spectra from their original wavelength space to a
low-dimensional space where similar spectra are placed closely
together. Afterward, a swift visual inspection is enough to
find a group of interest that can be extracted by setting a
bounding shape surrounding the region in the low-dimensional
space. One such dimensionality reduction method (locally lin-
ear embedding) was used for classification purposes of RAVE
spectra by Matijevič et al. (2012). For the purpose of select-
ing the metal-poor stars, we chose to use the method called
stochastic neighbor embedding (SNE, Hinton & Roweis 2002;
van der Maaten & Hinton 2008). Various tests on different data
sets proved that this method very efficiently projects complex
data sets onto a plane while retaining groups of similar data
points. We refer to the original papers for a more thorough re-
view of the method and only give a brief description here.

First, we resampled all radial-velocity-corrected and normal-
ized spectra in the RAVE database to a common wavelength
range between 8450 and 8750 Å in D = 768 equally spaced
wavelength bins. This step needs to be performed because spec-
tra are not sampled at the same wavelength points. The wave-
length range was slightly reduced from the original (about 30 Å
on each side) to avoid having to consider missing information
in spectra with a large radial velocity correction. The num-
ber of bins were chosen so that the sampling remains roughly
equal to the original and unnecessary over- or undersampling
is avoided. Spectra with S/N values below 10 were excluded,
which reduced the sample size by about 20 000 stars. They do
not carry enough information for subsequent analysis and make
the low-dimensional projection less transparent, therefore they
do not need to be kept in the dataset. In this way, we produced
a data matrix whose rows represent the individual spectra. Al-
ternatively, each spectrum fi can now be viewed as a point in
the D-dimensional space. We wish to evaluate how similar these
points are to each other.

For every point in the D-dimensional space we define a
Gaussian probability distribution centered on each point with a
variance σ2

i . The similarity between this point and the jth point
in the set is formalized through the conditional probability p j|i
that fi would pick f j as its neighbor if neighbors are picked ac-
cording to the probability given by the Gaussian distribution,

p j|i =
exp

(
−‖ fi − f j‖

2
)
/2σ2

i∑
k,i exp

(
−‖ fi − fk‖

2) /2σ2
i

· (1)

Throughout the text we use bold lower case symbols to denote
vectors (i.e., f = { fi}) and bold upper case letters for matrices
(i.e., C). In a low-dimensional space, a similar expression can be
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written for the projected spectra yi and y j,

q j|i =
exp

(
−‖yi − y j‖

2
)

∑
k,i exp

(
−‖yi − yk‖

2) · (2)

The variance in the last expression is set to 1/2 for simplicity.
This only affects the scaling of the final projection and therefore
is of little importance. The probabilities p j|i and q j|i are equal
when yi and y j correctly model their high-dimensional equiva-
lents. In practice, this never occurs. To approach this condition
as closely as possible, we require that the difference between the
distribution is as small as possible. This is achieved by minimiz-
ing the sum of the Kullback-Leibler divergence (Kullback 1959)
over all data points. The cost function that we minimize is given
by

C =
∑

i

∑
j

p j|i log
p j|i

q j|i
· (3)

For the computations in this work we used an improved version
of the method called t-distributed stochastic neighbor embedding
(t-SNE) with the Barnes-Hut algorithm (Barnes & Hut 1986)
used for faster cost function gradient approximation. The im-
plementation we used was provided by van der Maaten (2014).
There are two free hyper-parameters (perplexity and θ) that gov-
ern how the projection is generated. Perplexity controls the vari-
ance of the Gaussian distribution in Eq. (1) and effectively deter-
mines the breadth of the region inside which the neighbors are
sought (equivalently, the number of neighbors that a given spec-
trum is compared to). The second parameter θ ranges from 0 to
1 and is used to control the speed of the Barnes-Hut algorithm.
Greater values allow the algorithm to operate faster, but it also
becomes less accurate. When set to 0, the gradient is computed
naively without approximations. In the final projection we set
the value of perplexity to 50 and θ to 0.5. This enabled the calcu-
lation of the 2D projection of ∼420 000 spectra within a day on
a single CPU core. We also computed a 3D projection, but it did
not provide any benefits over the 2D projection for the selection
purposes.

The final projection with overplotted parameters is shown
in Fig. 2. Different regions of the projection correspond to stars
with similar atmospheric parameters. The top part of the mani-
fold includes mostly warmer dwarfs. The bottom part is mostly
populated with cooler giants, with the exception of the island at
the bottom, where A-type main-sequence stars reside. The out-
skirts of the projection, including the peninsula and islands, are
occupied by peculiar classes of stars, while the main manifold
includes the majority of the spectra (∼90%) for which the pa-
rameters can be reliably derived using the main pipeline (i.e.,
normal stars). There are five distinct regions where the median
metallicity from DR5 is very low. Inspection of the underlying
spectra reveals that only one of these regions hosts spectra of
metal-poor stars, while the others are populated by less com-
mon types of spectra that the pipeline confuses with metal-poor
stars. The region that includes mostly very hot stars (OBA-type)
also includes some peculiar spectra with strong emission lines as
well as a few spectra with very shallow Ca ii lines. The circled
region in Fig. 2 also includes a handful of metal-poor candidates.
We included the latter two groups along with the marked upper
right region (FGK-type in Fig. 2) in our metal-poor candidate
sample that we analyzed further. Altogether, 3174 spectra were
selected as our metal-poor candidates. The remaining three pe-
culiar classes include M-type giants with temperatures below the
limit of the synthetic spectral grid used by the pipeline (3000 K).

t-SNE x dimension
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Fig. 2. Bottom diagram: t-SNE projection computed from all available
RAVE spectra with S/N > 10. The individual points are binned into
hexagons for easier visualization. The color scale encodes the median
DR5 metallicity in each hexagon. The labels mark five groups for which
the parameter estimation pipeline gives very low metallicities. The cir-
cled region also includes a few K-type metal-poor candidates that were
included in the analysis. Top three diagrams: similar, but effective tem-
perature, gravity and classification from Matijevič et al. (2012) are over-
plotted. The colors in the upper right diagram indicate different classes
of peculiar spectra, while the white region contains normal single stars.

Similarly, the temperatures of the A-type group stars are above
the upper temperature limit of the grid (8000 K). The last group
consists of spectra of stars that show signs of chromospheric
activity (Žerjal et al. 2013). A common feature in these spec-
tra are elevated cores of the Ca ii lines, which effectively makes
them shallower than their non-active counterparts. For this rea-
son, they are confused with metal-poor stars by the RAVE DR5
pipeline.

4. Line profile modeling

Determining the elemental abundances requires measuring the
equivalent widths (EWs) of the spectral lines. Typical very
metal-poor star RAVE spectra with modest resolving power and
S/N have hardly any features that are distinguishable from the
noise except for the near-infrared calcium triplet lines (Fig. 1).
Any abundance analysis has to be based on these lines. These
lines were recognized as a very good metallicity indicator
decades ago by Armandroff & Zinn (1988). Many researchers
have adopted and extended this approach in the following years.
Starkenburg et al. (2010) and Carrera et al. (2013) showed that
the relation between the calcium abundance and metallicity per-
forms well even for extremely metal-poor stars. According to
Da Costa (2016), the relation has a small spread for very metal-
poor stars.

Initially, investigators obtained EWs by simply numerically
integrating observed spectral lines over a predefined spectral
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window. The major drawback of this procedure is that any other
signal that is present in the spectral range will also contribute to
the EW measurement. To avoid this, Gaussian profiles were fit
to the Ca ii triplet lines and the best-fit synthetic profiles were in-
tegrated instead. Other functions such as Lorentzian, Moffat, or
a combination of a Lorentzian and Gaussian profiles were also
used to account for more complex line shapes in spectra of cer-
tain types of stars (e.g., Rutledge et al. 1997; Cole et al. 2004;
Grocholski et al. 2006; Carrera et al. 2007; Vásquez et al. 2015).

The most common procedure undertaken to fit the chosen
profile to the spectral line in the literature is to define the cost
function and minimize it using one of the robust solvers such as
a Levenberg-Marquardt algorithm. Often, a standard χ2 statistic
is used as a measure of the difference between the data and the
model. This is easily justified if we assume that the noise in the
data is independent (white, uncorrelated) and is drawn from a
single distribution (i.e., a Gaussian with some variance). In this
case, the logarithm of the likelihood of the parameters can be
written as

ln p( f |x,σ, θ) = −
1
2

N∑
i=1

 ( fi − mθ(xi))2

σ2
i

+ ln(2πσ2
i )
 . (4)

We have denoted the observed flux measurements with fi mea-
sured at N wavelength points xi. The uncertainties of the mea-
surements are σi. Individual model fluxes are computed where
the data is sampled. The model mθ parameters are denoted by
θ. In case of constant σi, Eq. (4) reduces to the standard defini-
tion of χ2. However, this expression is only valid if the assump-
tions we made about the noise are not violated. When a profile
is fit to the spectral lines, this often does not hold. Three ma-
jor contributors to the correlations in the noise are i) fringing;
ii) the residual signal left in the data during the reduction phase
since the normalization procedure is not perfect; and iii) weaker
and blended spectral lines that lie in the vicinity of the spectral
lines of interest. The second effect is inevitably introduced when
the spectrum is normalized. Some sort of polynomial function is
typcially used to model the continuum of the spectrum. As this
never perfectly matches the real continuum, a slowly oscillating
signal remains in the normalized spectrum. The third contribu-
tion can also be rarely avoided. The weakest lines might not be
resolved, but they can still induce correlations between adjacent
flux points, making the noise non-white. The same is true for the
weak lines that are blended with a much wider profile of the line
of interest. Failing to take these effects into consideration when
fitting a profile can lead to biased estimates of the parameters
as well as underestimated uncertainties, the latter aspect being
particularly misleading. Although we might not be specifically
interested in what caused the correlations or what the values of
the parameters that describe them are, it is vital to have enough
flexibility in the model to be able to account for them.

4.1. Noise model for Gaussian processes

One of the possibilities to add an extra layer of flexibility to
model the noise in the spectra is to use a Gaussian processes
framework (Rasmussen & Williams 2005). They have been suc-
cessfully applied to many fields in astronomy in the recent years.
Way et al. (2009) used it to model SDSS galaxy redshifts and
Gibson et al. (2012) and Evans et al. (2013) modeled instrumen-
tal systematics in transmission spectroscopy with the help of
Gaussian processes. This approach gained significant popularity
in modeling the residual signal in time series analysis. Several

authors used them for studies of exoplanets and stellar variabil-
ity (e.g., Dawson et al. 2014; Aigrain et al. 2015; Barclay et al.
2015; Rajpaul et al. 2015). Czekala et al. (2015) used Gaussian
processes to account for the mismatches between the observed
and synthetic stellar spectra. We only give a short derivation of
the formalism regarding Gaussian process. For a more thorough
description we refer to Rasmussen & Williams (2005).

We start by rewriting Eq. (4) in a more general form using
matrix notation,

ln p( f |x,σ, θ) = −
1
2

rT C−1r −
1
2

ln |C| −
N
2

ln(2π), (5)

where C = σI is a diagonal covariance matrix with σ2
i s along

the diagonal and r = f − mθ. To account for more complex
correlations between flux points, we can expand the covariance
matrix with an additional kernel Kα by adding it to the diagonal
covariance matrix,

C = σI + Kα. (6)

The parameters α describe the noise model. There are a num-
ber of kernels to choose from. The squared exponential kernel,
where the correlations between the individual points (i, jth ele-
ment of the matrix) are expressed as

kα(xi, x j) = A2 exp
(
−

(xi − x j)2

2w2

)
, (7)

is a simple but convenient choice for modeling a smooth corre-
lation between data points. Other kernels are better suited when
modeling less smooth variations or periodic signals, for example.
Rasmussen & Williams (2005) give an overview of the possible
choices. In the last equation, the two kernel parameters α are
the amplitude of the variations A and their characteristic length-
scale w. The higher the value of the latter parameter, the longer
the correlations that are described by this kernel. After defining
the kernel, we can generate zero mean random functions y∗ over
a selected domain x∗ by drawing from the normal distribution

y∗ ∼ N(0,Kα(x∗, x∗)). (8)

Different kernels can be easily added together to produce more
complex covariance functions when necessary.

A more powerful aspect of Gaussian processes is their ability
to make predictions given the data and their uncertainties. For a
wavelength point x∗ somewhere inside of the wavelength range
x, it can be shown that the average predicted flux at this point is
equal to

f̄∗ = kT
∗C−1 f , (9)

where k∗ = k(x∗) is a vector of covariances between the test point
x∗ and the wavelengths of the observed spectrum. The variance
(or square of the uncertainty) of this newly predicted point is

Var( f∗) = k(x∗, x∗) − kT
∗C−1k∗. (10)

The first term on the right side of the equation is simply A2 for
the case of the squared exponential kernel. With this feature we
can make a prediction around the mean profile in such a way
that the Gaussian processes component takes over the deviations
from the mean profile and effectively describes the noise.

There are number of available software packages that effi-
ciently implement Gaussian processes related computations. For
the purpose of modeling the noise in the Ca ii line profiles, we
used the implementation provided by Ambikasaran et al. (2016).
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Fig. 3. Bottom panel: priors imposed on the length scale of the three
squared exponential kernels used for the profile noise modeling. The la-
bels µ and σ denote the mean and the standard deviation of each Gaus-
sian distribution, respectively. The thick gray line is the sum of all three.
Each of the top three panels shows three functions generated by each
kernel and w values randomly drawn from the corresponding prior. The
amplitudes were chosen so that they roughly match the typical varia-
tions in the RAVE spectra. The functions are separated by 0.05 in the
vertical direction for clarity.

4.2. Complete model

To describe the shapes of all three Ca ii lines, we adopted a Voigt
profile (a convolution of a Lorentzian profile with a Gaussian).
Rutledge et al. (1997) noted that in the metal-poor regime, these
lines are well described by a Gaussian function, but to give more
freedom to the profile in case there is a need to model possibly
more extended wings of the lines, the Voigt profile was chosen.
A Voigt profile has three parameters, the amplitude β, the scale
parameter of the Lorentzian profile γ, and the standard deviation
of the Gaussian Σ. We modeled each of the three lines indexed
by l with its own Voigt profile, so that

ml = Voigt(xl; βl, γl,Σl, λ0). (11)

We also allowed the centers of the profiles to vary in wavelength
by λ0. This parameter was shared by all three profiles, because
possible radial velocity offsets were assumed to be equal for all
three lines. The vector xl denotes the spectral range of each line.
Altogether, we have ten profile parameters θ = (θ1, θ2, θ3, λ0),
three for each of the line profiles, and one for the common wave-
length shift.

The choice of the kernel used in the noise modeling is arbi-
trary as there is no prescription of which one is best used in a
given situation. We used three separate squared exponential ker-
nels added together, each for a different variation length-scale.
We constrained them to a selected range by imposing three prior
distributions on the parameters w of each of the three kernels.
This enabled us to have a relatively flat but still smooth probabil-
ity over a broader range of variation scales. The limits were cho-
sen so that on the short-scale end the prior probability becomes

very low for variation lengths comparable to the distance be-
tween pixels. On the longer side, we cut off the scale length at
about twice the size of the wavelength window that is used for
the profiles (∼50 Å). In this way, we allow for almost constant
offsets (almost non-varying functions) within the window. The
priors are shown in Fig. 3. For illustration, we also plot the func-
tions generated by each of the kernels according to Eq. (8) with
length-scale parameters wκ for individual kernels κ randomly
drawn from the corresponding prior. We assumed that the cor-
relations in the noise are similar across the ranges of all three
lines, so we only use a single three-kernel model for all three.

To combine this, we write down the total likelihood for all
three profiles l as

ln p( f |x,σ, θ,α) =

3∑
l=1

ln pl( fl|xl, σl, θl,α), (12)

where the individual likelihoods are given in Eq. (5) and now
also include the kernel parameters α = (α1,α2,α3). Each of the
ακ has two components, the amplitude and the length scale. The
components of the three covariance matrices that enter the upper
equation through the individual likelihoods are equal to

ci j,l =

3∑
κ=1

kακ (xκ,i, xκ, j) + σlδi j. (13)

The missing index l next to the Gaussian processes kernel in-
dicates that the kernel does not change among the profiles, but
we allow the white-noise component σl to vary among them. We
also assume that the white-noise component is equal for all the
points within the range of a single profile as we have no infor-
mation on individual flux point uncertainties. We approximate
its value as S/N−1 within the profile range. The symbol δi j is the
standard Kronecker delta.

The likelihood in Eq. (12) can be maximized to obtain the
best-fitting values for all 16 parameters in the model (ten for
the profiles and six for the kernels). However, we can also com-
pute the posterior distributions of all the parameters by imposing
prior distributions on the rest of the parameters in addition to the
length-scales. The posterior follows from the Bayes rule,

ln p(θ,α| f , x,σ) = ln p( f |x,σ, θ,α) + ln p(θ,α) − ln Z. (14)

The last term on the right-hand side is an unimportant normal-
ization constant for our purposes and only scales the posterior
distribution.

4.3. Sampling the posterior distribution

Using Eq. (14), we can generate the posterior distribution by
sampling it with a Markov chain Monte Carlo (MCMC) sam-
pler, for example. For this study we used a popular imple-
mentation of an affine-invariant ensemble sampler called emcee
(Goodman & Weare 2010; Foreman-Mackey et al. 2013). The
procedure was as follows. Each of the 3174 metal-poor candi-
date spectra was analyzed separately. First, we isolated the Ca ii
lines by selecting ±12 Å regions from the center of each line
(8498.02 Å, 8542.09 Å, 8662.14 Å), which resulted in each line
and its surroundings being sampled at 64 wavelength points. The
uncertainty for all measured flux data points was assumed to
be the same and was computed as the inverse of the S/N de-
rived by the DR5 pipeline. We initialized the positions of the
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Fig. 4. Bottom part: one extremely metal-poor star spectra of RAVE. The metallicity of this star was estimated by our study to be [Fe/H] =
−3.04 ± 0.22 dex and the measured S/N per pixel is ∼52. The gray box marks the region around the central Ca ii line for which the two solutions
and their difference are plotted above. The gray shaded areas give ±1σ Voigt profile solutions for the regular χ2 approach (top) and the noise-
modeled approach (bottom) with measured equivalent widths of the lines given next to each solution. In the latter case there is also a full model
±1σ region shown in red (see text for details). The inset shows 20 draws from each of the three Gaussian process kernel posteriors using Eq. (9).
The second and third group are vertically shifted by 0.1 and 0.2 for clarity.

emcee walkers in a small Gaussian ball centered on the average
values for length scales and profile parameters obtained from
a few test runs. We tested how varying the initial locations in-
fluenced the final distribution and found that within reasonable
limits no changes are observed. Amplitudes of the Gaussian pro-
cess kernels were drawn from a uniform distribution across the
prior space. We have already specified the prior distributions for
length scales. For amplitude priors we chose flat distributions in
natural logarithm between −50 and 50. Wavelength offsets were
constrained with a uniform prior between −5 Å and 5 Å. The re-
maining profile parameters (βl, γl,Σl) were required to be greater
than zero.

After running the sampler for 200 iterations (per ensemble
member), we restarted the sampling with initial locations of the
members around a Gaussian ball centered on the highest likeli-
hood point thus far. We ran the sampling for another 700 itera-
tions. After the first set of samples was obtained, we recalculated
the S/N to obtain a better estimate within each profile range.
This was achieved by generating the prediction of the long and
medium length-scale noise component using Eq. (9) with appro-
priate kernels (κ = 2, 3). After subtracting the average profile
and the generated correlated noise from the data, we calculated
the standard deviation of the residuals and treated this as our new
S/N value. This is of course not a perfect estimate since there are
still some short-scale correlated variations present in the remain-
der, but it is a better approximation than our initial value. From
this point on, each of the three line regions has its own S/N es-
timate. We repeated these steps by first running the sampler us-
ing the new S/N for 1000 iterations, repositioning the walkers,
and finally running it for 6000 iterations. The whole procedure
is computationally quite intensive as it involves the calculation
of the inverses of three covariance matrices with each iteration.

Obtaining the posterior distribution for a single star takes around
half a CPU hour.

Equivalent widths were computed by randomly selecting
3000 points from the last 5000 iterations and generating each
of the three profiles individually. We note that only profile mod-
els were generated without noise contribution, but because we
are selecting the solutions randomly from the posterior distribu-
tion, this also ensures that we are correctly marginalizing over
the noise model parameters. We integrated the profiles over a
broad region (±∞, but in practice, this was done over ±75 Å)
to ensure that the signal from possibly extended tails is taken
into account. This was performed separately for each individual
line. It ensures that even when the wings of the profile are very
far reaching, the whole contribution is accounted for in the EW
measurement. Final EW estimates were calculated as means of
the posterior distributions of individual EWs and their uncertain-
ties as standards deviations of these distributions.

One of the great problems in using a MCMC sampler to sam-
ple from the posterior probability is knowing how many itera-
tions are required in order for the sampler to a reach stationary
state. We analyzed the convergence of the EWs for several cases.
The EW chains settle down after about 500 iterations starting
from the initial point, and subsequent variations are well within
the uncertainty and can therefore be neglected.

The results for one of the profiles are shown in Fig. 4. The
diagram shows a spectrum of an extremely metal-poor star with
a S/N typical for our sample. For clarity, the resulting profile
of only the strongest line is shown. The red band shows a ±1σ
deviation from the complete model. The gray band shows the
same, but only for the profile model (i.e., the difference between
the complete model and the noise). It is evident that there are
noticeable systematic differences between these two, meaning
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Fig. 5. Bottom diagram: comparison between the EWs measured using
the Gaussian processes (GP) and EWs coming from a simple χ2 analy-
sis. EW measurements for the line at 8498 Å are not shown. The inset
shows the histogram of the uncertainty ratios. Brighter colors of the dots
correspond to higher ratio values. Top diagrams: histograms of the dif-
ferences between the ith and the jth repeated observation for the lines
at 8542 Å and 8662 Å. The black histogram includes the measurements
generated by Gaussian processes, the gray histogram shows the χ2 de-
rived values. Gaussian distributions with equivalent standard deviations
Σ are overplotted, which should ideally be equal to 1.

that noise contributions are highly non-Gaussian. The complete
model traces the continuum and local variations very well. In
turn, the profile model in this case is consequently slightly
shallower. To assess how the solution behaves in absence of the
noise model, we fit the lines of the same spectrum with a simple
χ2 noise model by optimizing Eq. (4). The results are shown in
the same diagram. While the profiles might not look very dif-
ferent, their equivalent widths reveal how much influence the
more complex noise model has. The top profile has a signifi-
cantly larger EW, while its uncertainty is three times smaller than
in the bottom case. To illustrate how strong the noise model con-
tribution from the three different kernels is, we plotted 20 ran-
dom draws from the posterior and only generated a partial noise
model from each kernel.

To further explore how the addition of the noise model in-
fluences the EW measurements, we computed the χ2 solutions
for a subset of 153 stars for which we have at least one re-
peated observation and compared them to the complete model
solutions. The results are shown in Fig. 5. In most cases, the

χ2 measurements are overestimated compared to the Gaussian
process values. Even more importantly, the uncertainties for χ2

solutions are almost exclusively smaller than their counterparts
derived from Gaussian processes. We estimated how realistic the
uncertainties are for both models by computing the differences
between the ith and the jth repeated observation (computed for
all possible pairs where three or more observations were avail-
able) of the same star in units of the total uncertainty. For the χ2

model the results show that the uncertainties are heavily under-
estimated, while the Gaussian process model overestimates the
uncertainties by only a few percent, as shown in Fig. 5.

5. Metallicity calibration

A method of converting the equivalent widths of Ca ii lines into
metallicity2 estimates that became popular and was used in many
studies was first introduced by Armandroff & Da Costa (1991)
and Olszewski et al. (1991). Studying the stars in Galactic and
LMC clusters, they realized that the [Fe/H] and the difference
between the absolute magnitude of a star and the horizontal
branch of a cluster are roughly linearly related, offset by the sum
of the equivalent widths of the two strongest Ca ii lines (so-called
reduced equivalent width). Other investigators followed the
same idea and derived empirical relations for globular clusters
(e.g., Rutledge et al. 1997) and dwarf spheroidal galaxies (e.g.,
Tolstoy et al. 2001; Battaglia et al. 2008). Cole et al. (2004) and
Carrera et al. (2004) extended the calibration over a wider range
of ages, and Starkenburg et al. (2010) and Carrera et al. (2013)
derived the relation for very metal-poor stars. Da Costa (2016)
showed that the calcium near-infrared triplet measurements are
a reliable metallicity estimator and that basing metallicity esti-
mates on the Ca ii triplet does not introduce significant biases.
Vásquez et al. (2015) added a quadratic term in reduced equiva-
lent width to the relation to better describe the relation of K-type
giants in the Galactic bulge. Carrera et al. (2007) introduced sim-
ilar relations, but used other luminosity indicators such as abso-
lute I and V magnitudes in their relations. These relations work
well for stars at known distances, for which we can calculate the
absolute magnitudes, but cannot be applied to field stars at un-
known distances. The RAVE catalog does provide distances to
the observed stars, but they were derived by relying on the pa-
rameters from the DR5 pipeline and are therefore potentially bi-
ased. In addition, stellar evolutionary models used to determine
the distance only extend to [Fe/H] ∼ −2.0, which also makes
distance estimates unreliable for very metal-poor stars past this
limit.

An alternative approach was taken by Fulbright et al. (2010)
to obtain the abundances of the observed stars. They calculated
the equivalent widths and processed them with the MOOG pro-
gram (Sneden 1973) to generate abundance estimates using the
LTE one-dimensional Kurucz model atmospheres. While this ap-
proach does not require the knowledge of the distance to the star,
it still relies on the derived temperatures and gravities that are
used to select the appropriate model atmosphere. Any offsets in
these parameters can lead to offsets in abundance measurements.
In what follows, we describe a method that relies solely on the
information in form of equivalent widths and stellar colors.

5.1. Method

In the following approach, we try to circumvent the aforemen-
tioned difficulties by only using reliable pieces of data in the

2 We use the label metallicity for [Fe/H] through this text.
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form of equivalent widths and photometric measurements. Stars
in the RAVE catalog were also observed by the AAVSO Pho-
tometric All-Sky Survey (APASS, Munari et al. 2014) in four
visual and one near-infrared band. Spectral ranges deeper in the
infrared domain were covered by DENIS, 2MASS, and WISE.
Based on the completeness criterion, we only used measure-
ments from the 2MASS and WISE surveys (not all candidate
stars have APASS magnitudes) to maximize the number of stars
to which the calibration can be applied. In addition, the effect
of reddening on the colors is substantially decreased further into
the infrared spectral range. We only employed the EW measure-
ments of the stronger two Ca ii lines. The bluest line in some
spectra is mixed in with an emission ghost that is caused by the
zero-order reflection, which makes the EW measurements unre-
liable (Zwitter et al. 2008). Our set of M = 5 observables that
are used in the calibration relation is defined as follows:

o = [W8542,W8662, J − H,H − KS, w1 − w2] , (15)

and it consists of two EW measurements and three colors (with-
out the extinction). The first two are from the 2MASS survey,
while the last one comes from the WISE survey. The inclusion
of infra-red colors is important since the equivalent widths them-
selves do not carry enough information to decouple the effective
temperature and gravity degeneracy that can be clearly seen in
Fig. 1. Our approach for decoding it was motivated by the flex-
ible data-driven model The Cannon introduced by Ness et al.
(2015). They used it to derive stellar atmospheric parameters
from spectra. Its core is represented by a linear model Θ · ζ
through which the observed values (fluxes at a given wavelength)
are connected to the labels (Teff , log g, [Fe/H]). The variable Θ
describes the coefficients of the model and ζ gives the label vec-
tor, for which we have to choose the form. Our metallicity cali-
bration can be constructed in a similar fashion when we replace
the observed fluxes with the observables from Eq. (15). In that
case, the likelihood of the parameters of the star i and observable
m becomes

ln p(oim|ζi, σim,Θm, sm) =
1
2

(oim −Θm · ζi)2

s2
m + σ2

im

−
1
2

ln
(
s2

m + σ2
im

)
.

(16)

Uncertainties of the observables enter the upper likelihood
through σ2

im. We also allowed for the intrinsic scatter of the ob-
servables by introducing an additional noise term s2

m. The sim-
plest form of the label vector when the only label of interest is
[Fe/H] is

ζi =
[
1, [Fe/H]i

]
. (17)

If we wished for the model to be more ambitious and also pro-
vide temperatures, we could write the label vector as

ζi =
[
1,Teff,i, [Fe/H]i

]
. (18)

We chose the simplest linear form for the labels. Of course,
more complex forms are possible. For example, adding quadratic
terms to the label vector will enable the model to learn about the
correlations between the labels and therefore it will perform bet-
ter. It will also add complexity, however, which will extend the
computation time.

After the label vector is decided upon, the model can be
trained. For this purpose, we also need a set of reference stars
for which we have the observables and know their labels. The
source of the training set is discussed in the next subsection. To

train the model, we optimize for the coefficients Θ and the in-
trinsic scatter parameter s2

m by finding the maximum of the sum
of the likelihood for individual stars for each observable sepa-
rately. When evaluating the observables of a star with unknown
labels, we find the maximum of the same likelihood but using
the optimal values of the coefficients and summing them over all
observables. Here we optimize for the unknown labels.

There are two drawbacks in the described procedure. As al-
ready mentioned, the choice of the label vector must be made.
If the label complexity is too small, the model will not be able
to describe the encoded relations well; if it is too large, it will
be slow and prone to overfitting. Another detail we have not
included in the model so far are the uncertainties of the labels
themselves. If they are not small, they should not be neglected.
To address both issues, we introduced an upgraded model where
instead of settling for a predefined set of label functions, we al-
low their form to be optimized along with the rest of the param-
eters so they are learned from the data. A very convenient way
of defining a pool of smooth functions are Gaussian processes.
Here we are not using Gaussian processes to model the noise
as was the case when modeling the spectral lines, but rather as
a pool of functions that we use to describe the metallicity rela-
tion. The linear model in Eq. (16) is replaced by the Gaussian
process kernel (see Rasmussen & Williams 2005, for details of
how a linear model relates to Gaussian processes). We write the
generalized likelihood function for the mth observable as

ln p(om|Ξ,σm, sm, Bm,ωm) = −
1
2

oT
mC−1

m om −
1
2

ln |Cm| −
n
2

ln 2π.

(19)

We denoted the amplitude with Bm and all single observables
for all calibrating stars with om. The variable Ξ is a n × D ma-
trix where each of its rows ξi = [Teff,i, [Fe/H]i] contains labels
for each of the n calibration sample stars. Both the amplitude and
the matrix along with the observable uncertainties σm and intrin-
sic scatter s2

m enter the equation through the covariance matrix,
whose components are

ci j,m = B2
m exp

−1
2

3∑
d=1

(
ξid − ξ jd

)2

ω2
md

 +
(
s2

m + σ2
im

)
δi j (20)

= B2
m exp

(
−

(
ξi − ξ j

)T
W−1

m

(
ξi − ξ j

))
+

(
s2

m + σ2
im

)
δi j.

We used ωms to introduce the length scales for each label. These
parameters control how smooth the calibration relation is with
respect to each of the dimensions. In the last row we rewrote the
expression using the vector notation and introduced

Wm = diag(ω2
m/2). (21)

To account for the uncertainties of the labels, we follow
Dallaire et al. (2009). Instead of using only point estimates,
we assume that individual star labels are normally distributed
around the mean values ξ̄ and have their own covariance matri-
ces Σ,

ξ ∼ N
(
ξ̄,Σ

)
. (22)

In this case, the components of the Gaussian process covariance
matrix are expressed as

ci j,m = B2
m

exp
(
−

(
ξ̄i − ξ̄ j

)T [
Wm + Σi + Σ j

]−1 (
ξ̄i − ξ̄ j

))
∣∣∣∣I + W−1

m

(
Σi + Σ j

)∣∣∣∣1/2 (23)

+
(
s2

m + σ2
im

)
δi j.
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With the likelihood function in place, we need to train the
model using a calibration set. This is done by optimizing the
kernel parameters Bm and Wm, and the intrinsic scatter s2

m for
each of the observables. For the sake of simplicity, we only use
the best-fitting values of these parameters for further computa-
tions. To properly account for the fact that these parameters are
distributed themselves, we should have marginalized over them.
Since this means computing the inverse of the covariance matrix
many more times, the problem becomes too computationally in-
tensive. The tests we performed by marginalizing over a limited
number of possible kernels revealed that using only best-fitting
values differs negligibly from the marginalized case.

The evaluation of the set of observables o∗ and their uncer-
tainties σ∗ for a test star with unknown labels is made in much
the same way as discussed in Sect. 4.1. With a label set provided
by the optimizing algorithm at each iteration and using the best-
fit values from the first step, we generate the expected value and
its uncertainty for each of the observables using the equivalents
of Eqs. (9) and (10),

µ̃m = kT
∗C−1

m om, (24)

σ̃m = B2
m − kT

∗C−1
m k∗. (25)

We use k∗ to denote the covariances between the training label
set and the current iteration test point labels. The likelihood we
wish to optimize in order to obtain the best values for the labels
is then

ln p =

M∑
m=1

(
1
2

(om,∗ − µ̃m)2

σ̃2
m + σ2

m,∗
−

1
2

ln
(
σ̃2

m + σ2
m,∗

))
. (26)

We left out the normalizing factor that plays no role during op-
timization. The best-fitting value can be computed using one of
the numerous optimization algorithms. If we require the poste-
rior distribution, we can multiply the likelihood with a prior dis-
tribution over the labels and use an MCMC sampler to generate
it.

5.2. Calibration sample

In order to train the model, we need a set of stars for which the
observables as well as the labels and all accompanying uncer-
tainties are known. Optimally, such a set should cover the whole
range of values of the observables as well as label values that
we expect to see in the set of stars whose observables we will
evaluate with the model. The majority of the stars in our calibra-
tion set (150 out of 153) were sourced from the catalog compiled
by Ruchti et al. (2013). The selection in this catalog was initially
based on RAVE observations so that all of the stars in the catalog
have accompanying RAVE spectra. The set includes a mixture
of metal-poor stars ([Fe/H] < −0.7) mostly from the red giant
branch, but also some stars from the horizontal branch. About a
quarter of the stars in the sample are main-sequence and main-
sequence turn-off dwarfs. Stars in the sample come from all parts
of the Galaxy although they are more often from the thick disk or
the halo. The subset we used for training was limited to all stars
below [Fe/H] = −1.5 (150 out of 319). Our goal is to compute
the metallicities of all the candidates below [Fe/H] = −2.0, but
we wish to ensure that the model has enough range at the up-
per edge of this domain as well. We also excluded five cases
where the RAVE spectra were problematic (as recognized by
Matijevič et al. 2012). On the very metal-poor side, the metal-
licities of the stars in this sample reach about [Fe/H] = −3.0. To

4000 4500 5000 5500 6000

Teff [K]

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

[F
e/

H
]

0.5

1.0

2.0

3.0

4.0

W8542 [Å] J −KS
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extend this limit even further, we added 9 stars from four other
catalogs (Carrera et al. 2013; Hansen et al. 2013; Roederer et al.
2014; Ishigaki et al. 2013) with the requirement that the label
values were derived from high-resolution spectroscopy and that
the stars were observed by RAVE. This brought the lower limit
to [Fe/H] = −4.2 by incorporating the star CD-38 245 discov-
ered by Bessell & Norris (1984). In all cases, we used values de-
rived under LTE assumptions. The calibration sample is shown
in Fig. 6.

5.3. Training the model

Training the model requires optimizing the likelihood function
in Eq. (19). Individual label covariance matrices in Eq. (25)
were not available in our calibration set source catalogs. We as-
sumed the off-diagonal values of the label covariance matrix to
be zero. This assumption is, of course, violated in reality, but it
does not influence the calibration significantly. To simplify the
calculation, we also assumed that all calibration set stars have
equal uncertainties. We adopted the values ΣTeff

= 100 K and
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Σ[Fe/H] = 0.1 dex. These values are close to the values reported
by the authors of the catalogs.

Training was made by sampling the posterior generated from
the likelihood in Eq. (19) multiplied by a non-restrictive prior.
After the sampler reached a stationary state, we used the param-
eters corresponding to the highest likelihood value as our best-fit
estimate. This was done for each of the five observables, result-
ing in 20 parameters (three kernel parameters and one intrinsic
scatter parameter per observable).

6. Calibrated sample properties

The best-fitting values of the kernel parameters and the intrinsic
scatter were employed in the next stage of evaluating the observ-
ables (equivalent widths and colors) of candidate stars with un-
known metallicities and temperatures. We used a sampler to gen-
erate a posterior distribution of the labels through likelihood in
Eq. (26) for each candidate star. At each iteration, the predictions
were generated using Eqs. (24) and (25). When computing the
posterior distribution, we limited the values of temperature and
metallicity by imposing a flat prior between 3000 K and 8000 K
for the temperature and −5.0 dex and −1.3 dex for the metallic-
ity. Posterior distributions of a typical extremely metal-poor star
in the RAVE database are shown in Fig. 7. In most cases, the
posterior distributions are smooth and normal-like.

To verify the reliability of our model, a number of tests were
performed. In the first, we performed a leave-one-out cross-
validation to investigate how well the model predicts the tem-
perature and metallicity values when the input from a star that is
within the training domain is used as input. Iterating through the
training set, we removed one star from the training set in each
iteration and trained the model as described in the previous sec-
tion. We then evaluated the values of the removed star on the
freshly trained model and compared them to the known high-
resolution determined values. This was repeated for every star in
the training set. The results of this test are shown in Fig. 8. Both
atmospheric parameters behave well across the whole range.
Metallicity is recovered in the most metal-poor regime where
only a few stars are used as a support in the training set. Even

when the most metal-poor star in the training set is removed and
the model is trained without it, its value still is evaluated within
one standard deviation of the posterior distribution. As shown in
the figure, input and output values of the temperature also corre-
late well. Since only a single star in the training set extends past
the 6000 K mark, it is not to be expected that the model will be
able to extrapolate beyond this point. This can be detected in the
recovery of the turn-off group stars. However, the uncertainties
also grow for temperatures that are close to or beyond this limit,
which indicates that the model correctly responds to the observ-
ables that lie beyond the training set. In very few cases, the differ-
ence between the input and the output values becomes large (see
the red points with largest uncertainties in the two diagrams in
Fig. 8), but even in these cases, the model responds correctly by
predicting a large uncertainty of the parameters. Generally, this
test indicates that our uncertainties are slightly overestimated. As
an additional test of the reliability of the determined parameters,
we computed a statistic that measures the possible multimodal-
ity of the parameters’ posteriors (Dip test, Hartigan & Hartigan
1985). Cases that failed the test and where individual posterior
distributions show a possible bimodal structure are marked with
red dots in Fig. 8.

The second test of the method was performed by comparing
the values of the derived parameters to the external catalogs for
a handful of stars that were already known to be very metal-poor
(these stars were not included in the training set). The results
of the test are shown in Fig. 9. Metallicities derived using our
pipeline correlate better with the reference values than the val-
ues derived using the RAVE DR5 pipeline, although the DR5
solution for many of these stars did not converge properly so the
values are known to be unreliable. It should be noted that for a
few stars whose metallicities were measured by multiple inves-
tigators, the values differ by as much as 0.3 dex. The uncertain-
ties derived by the DR5 pipeline also seem to be underestimated
when compared to the newly derived counterparts. The bottom
left panel in Fig. 9 shows the comparison between our metallic-
ity values and those derived by the DR5 pipeline. There is an
apparent correlation, but also a significant scatter around them.
The DR5 values are also shifted slightly upward with respect to
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the new values, but this is likely the consequence of choosing the
LTE-derived metallicities in our training set, which are usually
slightly lower than non-LTE-derived values.

Judging from the two tests, it seems that our model behaves
well across the defined range in both temperature and metallicity,
and it agrees well with the externally derived metallicity values.

As the third test, we compared the change in the derived
values between the repeated observations of same stars. Ideally,
the values should remain within the estimated error bars. From
the bottom right panel of Fig. 9 it is evident that the pairwise

differences remain well within the uncertainties for the newly
derived values. The DR5 pipeline metallicites, however, some-
times differ very significantly between the observations of the
same star.

7. Results

Out of 3174 candidates, we present 877 stars with a probability
of at least 50% to be very metal-poor (the median of the metal-
licity posterior distribution is lower than −2 dex) and 43 with
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G. Matijevič et al.: Very metal-poor stars observed by the RAVE survey

−4.
0
−3.

5
−3.

0
−2.

5
−2.

0
−1.

5

[Fe/H]

1

10

100

1000

N

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

σ[Fe/H]

3000
3500

4000
4500

5000
5500

6000

Teff [K]

1

10

100

1000

N

0
100

200
300

400
500

600

σTeff
[K]

Fig. 10. Metallicity distribution function and the distribution of the
metallicity uncertainties (top), and the same for effective temperature
(bottom). The means of the individual posteriors were used to con-
struct the histogram on the left side. The right side histograms show
the standard deviations of the posteriors. The light gray histograms in-
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a probability of at least 50% to have [Fe/H] < −3 dex. Five
hundred and four stars have a probability of at least 95% to be
very metal-poor. There are no new discoveries with metallicities
below [Fe/H] = −4 dex, which means CD -38 245 remains the
most metal-poor star observed by RAVE. The metallicity (MDF)
and temperature distribution along with the uncertainty distribu-
tions are shown in Fig. 10. The MDF has a strong peak around
[Fe/H] = −1.5 dex, which is erroneous since many of the candi-
dates are more metal-rich than our upper limit of the training set,
which consequently pushes all these candidates toward this limit.
To avoid these, we only accepted cases with a median metallic-
ity below −2 dex (represented by the darker shaded histograms
in Fig. 10). The typical uncertainty in the metallicity is around
σ[Fe/H] = 0.2 dex. From the temperature distribution it is evident
that the large majority of the very metal-poor candidates come
from the giant branch and only a handful are turn-off stars. The
reason for this is that giants are farther away than equally bright
turn-off stars, which places them in the more metal-poor Galac-
tic environment, therefore this is a product of the selection bias
(Wojno et al. 2017). As expected, the ratio of rejected candidates
(with [Fe/H] > −2 dex) is much higher among the turn-off stars
(Teff & 5500 K). The typical uncertainty of the temperature is
around 140 K, and the majority of the stars (94%) have temper-
ature uncertainties below 200 K.

8. Conclusions

A complete search to identify the most metal-poor stars observed
by the RAVE survey was carried out. This study is a continuation
of the work done by Fulbright et al. (2010), now using the full
DR5 sample. We employed a three-stage method to identify the

metal-poor candidates, to evaluate their Ca ii triplet line equiva-
lent widths, and to convert them into [Fe/H] measurements by
also incorporating the color information provided by the 2MASS
and WISE surveys.

The main difference in the creation of the candidate sample
compared to the previous RAVE metal-poor study is that only
spectral information was used, and we did not rely on any ex-
ternally derived parameter, such as effective temperature. The
selection was performed by projecting the spectra on a low-
dimensional manifold using the t-SNE algorithm and then mak-
ing a selection in a particular part of the manifold that is mostly
populated by very metal-poor stars. In this way, we created a list
of 3174 metal-poor candidates. We estimate that this selection
is very close to complete (i.e., almost no very metal-poor stars
are left out). This prediction is based on the manual examination
of the whole t-SNE projection and the assessment that no other
regions of it are populated by metal-poor star spectra.

In the second stage we computed the equivalent widths of the
Ca ii triplet lines using a flexible model incorporating Gaussian
processes to account for the correlations in the residuals. While
fast and mature codes for computing equivalent widths of lines
in stellar spectra such as ARES (Sousa et al. 2015) work well
on spectra where correlated noise can be neglected, its presence
can severely skew the equivalent width measurements if not ac-
counted for. The comparison between the equivalent width val-
ues computed using a standard χ2 approach and noise-modeled
values shows significant differences between them. The subset of
stars for which we have multiple spectra per star from repeated
observations revealed that the χ2 approach yields skewed face
values and underestimated uncertainties. On the other hand, the
Gaussian processes model gave us more reliable estimates and
realistic uncertainties.

As the last stage, we constructed a method to convert the
equivalent width measurements and the color information pro-
vided by the 2MASS and WISE surveys into metallicity values.
In addition to the candidate sample, we have 153 stars for which
abundances derived from high-resolution observations are avail-
able. Instead of fitting the equivalent width–color–metallicity re-
lation on this set using a predefined function, we opted for an al-
ternative approach. We designed a model similar to The Cannon
to train the model on this subset, again employing Gaussian pro-
cesses to give the model the required flexibility. After the model
was trained, we exploited the predictive power of Gaussian pro-
cesses to evaluate the equivalent width and color information and
to produce metallicity estimates and their uncertainties for can-
didate stars. A leave-one-out cross-validation test and compari-
son to literature values confirmed that our estimates have very
little bias and the uncertainties are trustworthy. This way, we
discovered 877 new likely very metal-poor stars, extending the
previous RAVE metal-poor star study by Fulbright et al. (2010).
Forty-three candidates are likely to be extremely metal-poor.
We intend to further explore this sample by acquiring follow-
up observations using higher-resolution instruments. In addition
to this, because these stars are bright, the distances that will be
provided by the Gaia satellite for many of the identified very
metal-poor stars will enable the computation of their orbits. The
described approach is also easily adapted to be used on other
Ca ii data sets (e.g., future Gaia data releases), or trained on a
different spectral region (SDSS, LAMOST, etc.) and/or color in-
formation.
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Matijevič, G., Zwitter, T., Bienaymé, O., et al. 2012, ApJS, 200, 14
Munari, U., Henden, A., Frigo, A., et al. 2014, AJ, 148, 81
Ness, M., Hogg, D. W., Rix, H.-W., Ho, A. Y. Q., & Zasowski, G. 2015, ApJ,

808, 16
Norris, J. E., Bessell, M. S., Yong, D., et al. 2013, ApJ, 762, 25
Olszewski, E. W., Schommer, R. A., Suntzeff, N. B., & Harris, H. C. 1991, AJ,

101, 515
Placco, V. M., Frebel, A., Lee, Y. S., et al. 2015, ApJ, 809, 136
Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S., & Roberts, S. 2015,

MNRAS, 452, 2269
Ramírez, I., Allende Prieto, C., & Lambert, D. L. 2013, ApJ, 764, 78
Rasmussen, C. E., & Williams, C. K. I. 2005, Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning) (The MIT Press)
Recio-Blanco, A., Bijaoui, A., & de Laverny, P. 2006, MNRAS, 370, 141
Roederer, I. U., Preston, G. W., Thompson, I. B., et al. 2014, AJ, 147, 136
Ruchti, G. R., Bergemann, M., Serenelli, A., Casagrande, L., & Lind, K. 2013,

MNRAS, 429, 126
Rutledge, G. A., Hesser, J. E., Stetson, P. B., et al. 1997, PASP, 109, 883
Schlaufman, K. C., & Casey, A. R. 2014, ApJ, 797, 13
Siebert, A., Williams, M. E. K., Siviero, A., et al. 2011, AJ, 141, 187
Sneden, C. 1973, ApJ, 184, 839
Sousa, S. G., Santos, N. C., Adibekyan, V., Delgado-Mena, E., & Israelian, G.

2015, A&A, 577, A67
Spite, M., Caffau, E., Bonifacio, P., et al. 2013, A&A, 552, A107
Starkenburg, E., Hill, V., Tolstoy, E., et al. 2010, A&A, 513, A34
Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 1645
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371
Tolstoy, E., Irwin, M. J., Cole, A. A., et al. 2001, MNRAS, 327, 918
Žerjal, M., Zwitter, T., Matijevič, G., et al. 2013, ApJ, 776, 127
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