Article Dans Une Revue Geophysical Journal International Année : 2019

Mantle convection interacting with magma oceans

Résumé

The presence of a magma ocean may have characterized the beginning of terrestrial planets and, depending on how the solidification has proceeded, the solid mantle may have been in contact with a magma ocean at its upper boundary, its lower boundary, or both, for some period of time. At the interface where the solid is in contact with the liquid the matter can flow through by changing phase, and this affects convection in the solid during magma ocean crystallization. Linear and weakly non linear analysis have shown that Rayleigh-Bénard flow subjects to two liquid-solid phase change boundary conditions is characterized by a non-deforming translation or weakly deforming long wavelength mode at relatively low Rayleigh number. Both modes are expected to transfer heat very efficiently, at least in the range of applicability of weakly nonlinear results for the deforming mode. When only one boundary is a phase change, the critical Rayleigh number is also reduced, by a factor of about 4, and the heat transfer is also greatly increased. In this study we use direct numerical simulations in two-dimensional Cartesian geometry to explore how the solid convection may be affected by these boundary conditions for values of the Rayleigh number extending beyond the range of validity of the weakly non-linear results, up to 10 3 times the critical value. Our results suggest that solid state convection during magma ocean crystallization may have been characterized by a very efficient mass and heat transfer, with Nusselt number and velocity at the least twice the value previously thought.
Fichier principal
Vignette du fichier
Agrusta2.pdf (12.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

insu-03710133 , version 1 (22-12-2020)
insu-03710133 , version 2 (17-03-2023)

Identifiants

  • HAL Id : insu-03710133 , version 1

Citer

R Agrusta, A Morison, S Labrosse, R Deguen, T Alboussière, et al.. Mantle convection interacting with magma oceans. Geophysical Journal International, 2019. ⟨insu-03710133v1⟩
51 Consultations
185 Téléchargements

Partager

More