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LGL-TPE, F-69007 Lyon, France
bInstitut Universitaire de France
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Floor fractured craters (FFCs) are a class of craters on the Moon
that presents deformed, uplifted and fractured floors. These en-
dogenous modifications were likely caused by the emplacement of
underlying magmatic intrusions. Here we provide two independent
quantitative observations that reflect how the overpressure leading
to a crater-centered intrusion varies as a function of crater radius
and crustal thickness: the amount of crater floor uplift and the total
length of fractures covering the crater floor. Those two observations
can be related to the magma overpressure inside the shallow intrusion
provided that a significant part of the elastic energy of deformation
associated to magma emplacement below the crater is dissipated by
the formation of fractures; a condition that seems to be met for a
significant number of craters in the Highlands or at the limit be-
tween the Highlands and the lunar maria. Here we show that for
those FFCs, variations of these two quantities with crater radius and
crustal thickness are well predicted by a process of magma ascent
caused by crater unloading. By further developing this model and
precising its initial conditions, we show that magma storage in the
lunar crust is likely to be in the form of vertical dykes emanating
from the crust mantle interface. Finally, this study highlights the
use of the total fracture length and fracture patterns on FFCs floors
as observations that provide insights into the mechanism of magma
ascent and emplacement below FFCs and the characteristics of the
encasing medium.
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Highlights

� The total length of floor fractures scales with intrusion overpressure.

� Crater floor uplift scales with intrusion overpressure.

� Transport of negatively buoyant magma is triggered by crater unloading.

� Deep crustal magma storage is in the form of vertical dykes.

1. Introduction

Shallow magmatic intrusions such as dykes, sills and laccoliths are impor-
tant part of volcanic complexes and constitute the building blocks that shape
their plumbing systems [6, 34, 44]. Several mechanisms are proposed to explain
the emplacement of shallow intrusions and the conditions for which one type
of intrusion would prevail over another. Authors have stressed out the role
of buoyancy: when the magma reaches its neutral buoyancy depth, it stops to
propagate towards the surface and extends laterally, forming a horizontal sill in-
trusion [63, 24]. The amplitude of non-lithostatic stress components within the
crust and associated orientations of principal stresses —influenced by tectonic
forces or loads such as volcanic edifices— are also considered as impacting dyke
propagation and shallow intrusion emplacement [38, 64, 46, 15]. Propagating
dykes tend to open in least compressive stress direction. Horizontal magmatic
intrusions can therefore be the result of dyke alignment towards the horizon-
tal maximum compressive stress. Such conditions can be met in compressive
tectonic settings or when the surface is unloaded [30, 26]. Other important
mechanisms influencing the propagation of magma intrusions involve the role of
heterogeneities or inelastic behavior pertaining to the mechanical properties of
the host rock such as the layering of sediments, material cohesion and preexist-
ing weaknesses in the crust [56, 55, 42].

Shallow magmatic intrusions are also present on planetary bodies other than
Earth [49, 66, 2]. The lunar crust, in particular, seems to be the host of diverse
types of magmatic intrusions such as dykes, sills and laccolith [18, 70, 19]. Struc-
tures reflecting the presence of shallow intrusions, including fractures, uplifted
floors, domical structures and volcanic deposits are often located within impact
craters [52, 16, 49, 58]. This is particularly true in the Highlands where traces
of magmatic activities are much more sparse than in the Lowlands, probably
because of the larger crustal thickness [17, 19].

A class of impact craters presenting fractured, uplifted floors, as well as signs
of extrusions has even been defined as floor-fractured craters (FFCs) by [49] and
studied by [22]. These endogeneous modifications reflect deformation attributed
to the emplacement of shallow horizontal sills or laccoliths [49, 22, 57].

The Moon is an interesting case to study the emplacement of shallow intru-
sions for several reasons. The lunar crust structure, thickness and density are
well constrained by to the high resolution gravity data from the GRAIL mission
[68]. The average lunar crust density is particularly low, such that mafic magmas
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are negatively buoyant, suggesting that a mechanism different from buoyancy
may drive the process of magma transport in the crust. In the Highlands, mag-
matic intrusions and volcanic eruptions seem preferentially located below or
within impact craters where the stress state is likely affected by the presence
of the crater topography itself. Craters can be seen as mass deficits unloading
the underlying medium and favoring magma ascent and horizontalization at
shallow depths [32, 28]. The lunar setting offers thus a unique opportunity to
study the role of crustal stress field modification on magma emplacement and to
compare to terrestrial volcanic settings where loads and unloads are argued to
play an important role in the evolution of their plumbing system [38, 46]. FFCs
in particular, provide unique extraterrestrial volcanic settings to test whether
the different mechanisms proposed to influence magma transport and shallow
emplacement on Earth apply elsewhere in the solar system. They also raise the
question of the origin of the magma and whether it is stored at intermediate
depths within the crust, at the Moho, or in the mantle.

Here we study magma ascent and emplacement in the lunar crust combining
two independent quantitative observations specific to FFCs: the amount of
floor uplift and the total length of floor fractures. We show first that those two
quantities can be related to the overpressure leading to magma emplacement
below FFCs provided that a significant part of the elastic energy of deformation
are relaxed by the formation of fractures. This condition appears to be valid
for a significant number of FFCs located in the Highlands or at the boundaries
between the Highlands and the lunar maria.

We then study how those two observations vary as a function of crater radius
and crust thickness. Since the magma overpressure in the shallow intrusion is
inherited from the overpressure responsible for magma transport, we confront
the two observations with a model of magma ascent within the crust. This model
accounts for the unloading caused by impact craters and allows to understand
how the magma can ascend in the lunar crust while being negatively buoyant
[32]. Additionnally, we specify the conditions of magma storage within the lunar
crust. Through those observations, the proposed model and the comparison
with terrestrial volcanic systems, we discuss how buoyancy and stress induced
by crater unloading play a role on magma transport and emplacement below
FFCs. Finally, we suggest that the total fracture length measured at FFCs
provide insights into the role of inelastic processes on magma emplacement at
shallow depths in the lunar crust.

2. Two quantitative observations linked to the magma overpressure
inside crater-centered intrusions

In this section, we present two independent observations pertaining to FFCs
that can be related to the magma overpressure characterizing shallow crater-
centered intrusions. Magma overpressure is defined as the difference between
the pressure inside the magma and the local pressure acting orthogonal to the
magma body wall; it induces host rock deformation, allowing magma emplace-
ment within the crust. The overpressure in shallow intrusions is inherited from
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the magma overpressure in its deep source that is responsible for magma ascent
and from the subsequent intrusion emplacement below impact craters.

2.1. The total fracture length on FFCs floors

According to Griffith’s theorem of brittle fracture, when failure occurs,
change in the total energy of deformation is balanced by the energy required for
the creation of new fractures [14, 11]. In the case of crater floor deformation
caused by the spreading of an underlying magmatic intrusion, applying the Grif-
fith’s theorem consists in balancing the energy required to form the fractures
observed at FFCs with variations of the elastic energy of deformation induced
by the intrusion.

The appearance of new fractures consists in the creation of new surfaces that
are associated with the energy

EG = ΓLh. (1)

The Griffith energy or fracture energy Γ is a material property generally as-
sumed constant which corresponds to an energy per unit of surface. The energy
necessary to fracture the rock is therefore proportional to the surface created,
Lh, where L is the total length of fractures and h their depth.

The value of Γ varies significantly upon the mode of failure, be it tensile or
shear failure. Laboratory measurements for rocks show that Γ ' 10–103 J.m−2

for tensile failure while Γ ' 104–107 J.m−2 for shear failure [20, 25, 61]. The
value of Γ depends also on rock type and whether the rock is already damaged
or not. The largest values of Γ are associated with rocks that already possess
damages such as microcracks, meaning that such rocks are more difficult to
break because part of the work used to deform them is dissipated by inelastic
processes pertaining to those damages [20, 71].

Let’s now express the energy of deformation associated with a shallow mag-
matic intrusion. We follow a common assumption and consider that the host
rock deforms elastically [40, 57]. The elastic deformation energy density (or
energy per unit of volume) scales as σε/2 where σ is the stress in the host rock
and ε the deformation of the host rock caused by a magmatic intrusion [e.g 59].

We first consider the case where the magma makes room for itself by com-
pressing the host rock. This is the case for sills and can be considered valid as
long as the characteristic horizontal length of the intrusion is smaller or similar
to its depth. The stress σ compressing the host rock scales with the sill over-
pressure ∆P and the deformation ε scales with ∆P/E where E is the Young
modulus [53, 51]. The associated energy density of deformation is therefore
proportional to ∆P 2/(2E).

The volume of the overburden deformed by the sill is proportional to λ2T
where λ is the characteristic horizontal size of the intrusion and T is the intrusion
depth. Multiplying the energy density by the deformed volume gives the total
elastic energy of deformation

ES =
1

2

∆P 2

E
λ2TγS (2)
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where γS is a dimensionless constant accounting for the sill shape and boundary
conditions. Values of γS are not given a priori because the exact intrusion shape
is not known, but its effects are later discussed.

Assuming that the entire energy of deformation of the overburden is dissi-
pated by the creation of new fractures of total length L, we get that

∆P 2

2E
λ2TγS = ΓLh⇔ ∆P =

√
2EΓhL

γSλ2T
(3)

which shows that the magma overpressure is proportional to the square root of
the total fracture length.

We consider now the case where the characteristic intrusion length is larger
than its depth (λ > T ); the intrusion bends the upper elastic layer and is
called a laccolith [e.g, 40, 31]. The resulting deformation ε is proportional to
the curvature radius and to the thickness of the plate ε ∼ Tw/λ2, where w
is the vertical displacement, and the stress σ is proportional to ETw/λ2 [60,
40]. Vertical displacement is proportional to the overpressure and scales with
∆Pλ4/(ET 3), so that the bending energy density as a function of overpressure
scales with ∆P 2λ4/(2T 4E). Multiplying the bending energy density by the
volume of the deformed overlying plate ∼ λ2T gives the total elastic energy of
deformation

EL =
∆P 2λ6

2ET 3
γL (4)

where EL is the deformation energy associated with a laccolith and γL is a
dimensionless constant that depends upon laccolith geometry and boundary
conditions [60]. Assuming that the deformation energy is dissipated by the
formation of fractures gives:

∆P =

√
2T 3ELhΓ

γLλ6
. (5)

Hence, regardless of the mode of deformation, the magma overpressure is
proportional to the square root of the fracture length

√
L. Note that, as ex-

pected, the two scaling laws 3 and 5 are the same when T ' λ, i.e., when the
intrusion depth is approximately equal to its characteristic horizontal size. We
expect therefore that, when the intrusion starts to interact with the free surface,
T ' λ and (3) should be considered; however, when T < λ, bending prevails
and (5) has to be considered.

The coefficients γS and γL depend on the exact intrusion geometry and
boundary conditions. We expect however that their effects on the expressions
of ∆P (3) and (5) are of order 1. If the sill is considered as a ’penny-shaped’
crack with uniform pressure distribution then γS = 8(1− ν2)/3 ' 2.5 [53]. For
a circular laccolith that bends a plate clamped at its edge γL ' 0.2 whereas
if one considers a plate with simply supported edge γL ' 1.3 (Supplementary
Material Section S4).
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The total fracture length L is taken to be the sum of the length of each frac-
ture segment observed on the floors of FFCs. Equations (3) and (5) show that
this quantitative observation provides information on the intrusion overpressure
at emplacement depth. To estimate the total fracture length on the floor of
a crater, the fracture segments on its floor were mapped manually on LROC
WAC images centered on the FFC using the imageJ software. Figure 1 shows
three examples of FFCs for which fractures can be observed. More information
on the estimation of L is given in Supplementary Section S1.

2.2. The uplift of FFCs’ floors

A common morphological characteristic of FFCs is that they are in general
shallower than their pristine counterparts [49, 22]. [37] found that the depth
dfresh and radius R of fresh craters are related through the following empirical
relationship:

dfresh = 1.044(2R)0.301, (6)

where dfresh is defined from the crater rim and dfresh and R are expressed in
kilometers. For FFCs, the observed depth dobs is in general shallower than the
depth dfresh obtained using (6) and the FFC radius [22, 58].

This observation suggests that the floor of FFCs are either uplifted or filled.
The uplift or filling of FFCs can therefore be estimated using the difference

∆d = dfresh − dobs, (7)

where dobs is the observed floor depth defined from the crater rim. When the
floor elevation is asymmetrical, dobs is taken as the distance between the rim
and the most elevated part of the crater floor so that dobs represents a minimum
observed depth and ∆d captures a maximum difference between dfresh and dobs.
Further details on the estimation of dobs are given in the Supplementary Section
S2. For instance, for the crater Metius, which is not a FFC, we indeed find ∆d '
−0.1± 0.2 km while for FFCs Arzachel, Atlas and Haldane, ∆d is respectively
1.1± 0.4 km, 1.9± 0.3 km and 2.5± 0.3 km (Figure 1). For FFC Haldane, the
continuity in the topography and aspect of the floor in between the North-West
part of the crater and the adjacent terrain suggests that ∆d may represent its
filling by adjacent maria (Figure 1). The location of Haldane is indicated by
the black star on the Moon’s map (Figure 2a). Arzachel and Atlas, however,
are not located inside a mare (the location of Atlas is indicated by the grey star
on the Moon’s crustal map of Figure 2a) and there is also a clear topographic
discontinuity between the elevation of their floors and their surroundings. For
those two craters, the value ∆d more likely represents an uplift of the crater
floor.

When FFCs’ floors are uplifted, ∆d represents the maximum thickness of
the underlying magmatic intrusion [67, 58]. The final thickness of an intrusion
is the result of the emplacement dynamics [5, 57]. A sequence of events leading
to intrusion emplacement below impact craters and the subsequent formation
of FFCs is depicted in the Figures 3. If the overburden is deformed elastically,
elastic stresses contribute to the pressure balance responsible for the arrest of
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the emplacement process and limit intrusion thickening (Figure 3c). However,
the presence of significant fractures suggests that a non-negligible part of the
elastic energy is dissipated (Figure 3d). If this is indeed the case, after intrusion
emplacement, the overburden has lost most of its elastic strength. In this case,
the intrusion may further spread laterally in a gravity current regime until
the lithostatic stress due to the crater wall prevents its lateral extension and
favors vertical growth [57]. When the developpement of fractures dissociates
the roof of the intrusion from the surrounding crust (Figure 3d), the intrusion
further thickens vertically [40, 66]. In the final thickening stage, the intrusion
overpressure is counterbalanced by its own weight and

∆P ' ρmg∆d (8)

where ∆P is the overpressure, ρm the magma density, g the acceleration of
gravity and ∆d the intrusion thickness. In other words, the final weight of
the intrusion is responsible for the arrest of the emplacement process. Such a
consideration was first used by [12] and later, in the context of FFCs, by [66] and
[22]. We believe it is valid in the context of FFCs only if significant fracturing
is observed on the crater floor.

2.3. Testing the relationships between uplift, the total fracture length and magma
overpressure

Based on the assumption that a significant part of the elastic energy of
deformation caused by intrusions is dissipated by fracturing at FFCs we obtain
that: (i) the crater-centered intrusion overpressure is proportional to the crater
floor uplift (Equation 8); (ii) the intrusion overpressure is proportional to the
square root of the total fracture length observed at FFCs (Equations 3 and 5).
Combining (3) or (5) and (8) results in the power law

∆d ∝ L1/2. (9)

We first examine the validity of this power law relationship for FFCs. Among
the 155 FFCs of the database of [22], we consider 69 FFCs selected upon the
criterion that their fractures are recognizable and mappable (Figure 2a). The
absence of significant fractures indeed disagrees with our starting assumption
that an important part of the elastic energy of deformation has been dissipated.
Examples of FFCs for which the presence of fractures is not obvious are shown
on Supplementary Figure S2. We have also precluded small FFCs (R < 10 km)
because the image resolution is too low and prevents us from mapping the
fractures. We do not consider FFCs located in the South Pole-Aitken basin
(SPA) because of the density anomaly characterising this region compared to
the Highlands, which can induce differences in volcanic activity. No selection
has been made upon the different FFC classes defined by [49] and [22]. The list
of FFCs not considered in this study is provided in Supplementary Section S3.

We distinguish between FFCs located in the maria (black squares on Figure
2) and FFCs located in the Highlands (grey dots on Figure 2). For FFCs located
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at the limit between the Highlands and a lunar mare, we consider them as being
in the Highlands except if they are filled by the adjacent mare which is the case
for Haldane, Gassendi and Runge (Figure 1 and Supplementary material Figure
S3). Files containing the lists of these two categories of FFCs as well as related
information used in this study are provided as Supplementary material (Section
S3).

For those two categories of FFCs, the total fracture length L is plotted
against the uplift or filling ∆d (Figure 2b) and shows two main trends. The first
trend, formed by the majority of the black squares in Figure 1b, is associated
with FFCs that have the largest values of ∆d. The relatively high value of ∆d
for those FFCs reflects the fact that most of them are essentially filled by maria
(Figure 2b).

The second trend, highlighted by the black solid line, has a slope α = 1/2
in the logarithmic diagram 2b. The fact that a large number of FFCs follow
this trend suggests that the power law (9) and the assumptions leading to it
are appropriate. The large majority of craters on this trend are those located
in the Highlands or at the limit between the Highlands and a lunar mare. For
those FFCs, ∆d represents floor uplift or intrusion thickness. It seems that none
of the mentioned trend is associated with a specific FFC class (Supplementary
Figure S5). In the following, we only consider the subset of FFCs located in the
Highlands (grey dots on Figure 2).

For this subset, both the uplift ∆d and the total fracture length L increase
with the crater radius at first order (Figure 4). Data also shows dispersion
along this trend: differences in floor uplift and fracture length exist for craters
having similar sizes. For example, Azarchel and Atlas (1) have a comparable
radius (48 km for Azarchel and 43 km for Atlas), but they exhibit significant
differences in floor uplift and total fracture length. Both the floor uplift and
fracture length are smaller for Azarchel (∆d ' 1.1 km and L ' 99 km) than for
Atlas (∆d ' 1.9 km and L ' 238 km). The observed scattering can be related to
variations in crustal thickness: in general, craters with a larger uplift and longer
fracture length lie on a thinner crust. Conversely, craters with a smaller uplift
and shorter fracture length lie on a thicker crust: on Figure 4a,b the light grey
dots, representing craters on a crust thicker than the average, form the lower part
of the trend. The observed correlation between uplift and total fracture length
and the dependence of those two observations with respect to crust thickness
suggest that, for craters of similar size, a larger magma overpressure is associated
with a thinner crust.

3. Magma ascent and emplacement induced by impact craters

3.1. The magma overpressure driving transport and emplacement

We propose to confront the quantitative observations presented in Section
2 with a model considering magma transport induced by crater unloading that
builds upon the work of [32]. Such a model is attractive for several reasons: on
the one hand it accounts for magma ascent towards the surface despite its neg-
ative buoyancy while explaining the fact that magmatic activity on the Moon
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—be it intrusive or extrusive— is often related to impact craters. On the other
hand, it allows to draw a parallel with situations on Earth where loads and
unloads are argued to influence magma ascent and trajectory and on the con-
struction of the volcanic plumbing systems [27, 46].

Dyke propagation is driven by rock deformation that results from the inter-
play between magma buoyancy, elastic stresses in the crust, fracture processes at
the tip and viscous flow, [see 45, and references therein]. Here, we follow a com-
mon approach that consists in neglecting the rock strength. Hence, buoyancy
and elastic stresses are the most important contributors to the magma over-
pressure at the dyke tip [23]. Although pressure drop caused by viscous flow
plays an important role in the dynamics of dyke propagation, here we assume
situations where the magma is static; no flow is inducing viscous resistance. We
evaluate the pressure balance at the tip to test whether or not a dyke can prop-
agate any further or stop. When the conditions at the tip are met for a dyke
to propagate, we assume that viscous resistance in the tail does not prevent its
propagation and the dyke can always reach a new static equilibrium where we
can evaluate the pressure balance without considering viscous resistance.

To understand the effect of crater unloading on magma transport, we first
need to specify the state of equilibrium of a vertical dyke that overshoots the
Moon’s Moho in a medium with an arbitrary stress field (Figure 3a). This set
up is consistent with the dynamics of dyke propagation through a layer of lower
density [56] and is commonly considered as the state of magma storage within
the lunar crust [21].

The density of the magma ρm is larger than that of the surrounding crust
(ρc < ρm). The vertical axis is oriented positively upward and its origin is
located at the base of the crust of thickness D.

For a vertical dyke at equilibrium overshooting the Moho, the overpressure
responsible for dyke opening is

∆P (z) = Pm(z)− σ⊥(z) (10)

where σ⊥ is the stress exerted by the surrounding medium and acting normal
to the dyke walls. The overpressure ∆P is the part of the magma pressure that
causes the deformation resulting in the opening of the fissure filled with magma.
Equation (10) results from the continuity of traction between the internal stress
(the magma pressure) and the external stress acting along the dyke wall [65, 38].

In static conditions, the magma pressure inside the dyke is hydrostatic. The
fluid pressure is expressed with respect to the lithostatic pressure at the Moho. It
is therefore taken as the sum of the fluid pressure at the mantle-crust boundary
Pm(0) minus the weight of the overlying magma column:

Pm(z) = Pm(0)− ρmgz. (11)

The fluid pressure at the mantle/crust boundary is the sum of the exter-
nal stress acting normal to the dyke wall and compressing the fluid and an
overpressure ∆Ps:

Pm(0) = σ⊥(0) + ∆Ps (12)
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The fluid pressure Pm(0) at the base of the crust results from the fluid pressure
provided by the mantle source in the mantle and its transport within the mantle.

Having specified the fluid pressure contributing to (10), we can provide an
expression for the overpressure:

∆P (z) = [∆Ps + σ⊥(0)− ρmgz]− σ⊥(z) (13)

We now need to specify the external stress acting normal to the dyke wall σ⊥(z)
which pertains to the crustal stress state.

3.2. The overpressure opening a dyke in a lithostatic stress field

We are interested in the effect of a crater unloading on the overpressure ∆P
associated with a vertical dyke and expressed in Equation (13). Let’s assume
that the state of stress in the crust is initially lithostatic, hence σ⊥(z) = ρcg(D−
z) and σ⊥(0) = ρcgD. In this case, the overpressure expresses:

∆P (z) = ∆Ps + ∆ρgz, (14)

where ∆ρ = ρc − ρm < 0 is the density contrast between the crust and magma.
Equation (14) shows that the terms contributing to the driving pressure are the
source overpressure and the buoyancy term ∆ρgz [65]. Because, in the lunar
crust, the magma is negatively buoyant, the driving pressure ∆P (z) becomes
null when (ρm − ρc)gz = ∆Ps, i.e., when the initial fluid overpressure ∆Ps is
balanced out by the negative buoyancy of the magma. When the overpressure
is null, the magma pressure cannot counteract the surrounding stresses acting
on the fissure filled with magma; it closes at z = Los and cannot propagate
any further [65, 38]. Hence, if a vertical dyke overshoots the lunar crust-mantle
boundary by a length Los, then Los is such that:

∆P (Los) = ∆Ps + ∆ρgLos = 0. (15)

The length Los corresponds to the maximum length that the vertical dyke can
reach in a negatively buoyant crust, in absence of a crater. In the case where
Los is significantly smaller than the crustal thickness, the magma cannot reach
a shallow depth and form a shallow intrusion. In the following, we treat Los as
a convenient parameter reflecting the overpressure that the dyke has acquired
from its source and its positive buoyancy in the mantle. External regional
stresses, such as tensile stresses produced by mare loads, might also contribute
to Los [33].

3.3. The overpressure opening a dyke in a stress field modified by crater unload-
ing

We now consider the effect of a crater which consists in a surface mass deficit
that modifies the crustal state of stress [32]. On Earth, in volcanic settings, a
similar situation occurs after partial destruction of a volcanic edifice [39, 26].

The stress perturbation caused by a crater is modeled as a thin cylindrical
unloading of radius R and depth dfresh over an elastic half-space, where R and
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dfresh are related through (6) [54, 32]. A half-space model is appropriate here
because most of the studied craters have a radius smaller than the lithosphere
elastic thickness that is between 70 km and 100 km [see Supplementary Figure
S4c, and 32]. The stress components of the perturbation of the lithostatic stress
field at the crater axis are given by:

∆σrr = ∆σθθ = −1

2
ρcgd

freshR

[
− (D − z)R

(R2 + (D − z)2)
3
2

+
1 + 2ν

R
− (1 + 2ν)(D − z)
R(R2 + (D − z)2)

1
2

]
∆σzz = −ρcgdfreshR

[
1

R
− (D − z)
R(R2 + (D − z)2)1/2

+
(D − z)R

(R2 + (D − z)2)3/2

]
;

(16)
[54, 38]. The components ∆σrr, ∆σθθ and ∆σzz are respectively the radial, tan-
gential and vertical stress perturbations induced by the unload. Those perturba-
tions —made dimensionless by dividing by the characteristic pressure ρcgd

fresh—
are plotted in Figure 5 as a function of dimensionless depth (D − z)/R.

Because the perturbated stress field is anisotropic, stresses acting on the
dyke walls depend on the orientation of the magma-filled fissure. For a verti-
cally oriented dyke, as assumed in Section 3.1, centered at the crater axis, the
component of the stress perturbation normal to the dyke wall is the horizontal
stress ∆σrr = ∆σθθ (Figure 3b).

Adding this perturbation to the new expression for σ⊥ in (13) gives

∆P (z) = ∆Ps + ∆ρgz −∆σrr(z). (17)

Note that we assume that the fluid pressure at the Moho remains unchanged
by the stress perturbations caused by unloading despite the fact that the sur-
rounding stress has changed. This would be valid in particular when the fluid
is pressurized by a deeper source that is not affected by the modification of the
stress field caused by the crater [32]. It implies that the elastic stress caused
by crater unloading and acting on the dyke at the Moho level is relaxed by the
source fluid pressure.

It is convenient to express ∆P (z) as a function of the maximum overshoot
length Los that the dyke would reach in the crust in a lithostatic stress state.
Using (15) in (17) we obtain:

∆P (z) = (ρc − ρm)g(z − Los)−∆σrr(z). (18)

Because the stress perturbation induced by the unload is mainly extensive
(∆σrr < 0; Figure 5), Equation (18) shows that the presence of the crater
acts to reduce the stress exerted by the host rock on the dyke walls. Contrary
to the case where the external stress is lithostatic, the overpressure ∆P (Los)
can become strictly positive and the dyke is able to open and further propagate
towards the surface.

Note that the framework described above can apply to two distinct scenarios.
In the first case, a vertical dyke first overshoots the Moho and propagates in
a crust in a lithostatic state until it reaches the equilibrium length Los defined
by (15). Impact cratering occurs in a second step, modifying the stress field
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and allowing further dyke propagation. In the second case, impact cratering
occurs first and the magma rises through a crustal stress field pre-modified
by the crater unloading. While in the latter scenario the dynamics of impact
cratering itself does not come into play, the former implies that the transient
effects associated with impact cratering (such as the transient cavity and shock
waves propagation) do not permanently modify the pre-existing dyke system
overshooting the Moho. This is valid for small enough craters such that R &
50 km since the ratio between the transient cavity depth and the crater radius
is ' 1 : 2 [29] and the amplitude of the shock wave attenuates rapidly with
depth [8]. For large craters (R . 50 km and more) this assumption does not
apply since the transient cavity depth is then similar or larger than the crust
thickness itself.

4. Results: overpressure at emplacement depth

In order to confront the proposed model to the quantitative observations
presented in Section 2, we need to evaluate the magma overpressure in the
shallow intrusion that led to floor uplift and fracture formation. At intrusion
depth T , the distance from the Moho is z = D − T and the flow transitions to
horizontal (Figure 3c). The vertical stress component applying on the wall of
the sill is dissipated by the formation of fractures in the roof while the horizontal
stress component at the tip of vertical dyke maintains the dyke open, allowing
the feeding of the horizontal intrusion (Figure 3d). The overpressure that allows
the feeding of the intrusion thus expresses :

∆P (D − T ) = (ρc − ρm)g(D − T − Los)−∆σrr(D − T ). (19)

The overpressure mainly depends on ∆σrr that varies with the crater radius
R, the density contrast between the crust and magma ∆ρ, the thickness of the
crust D, the intrusion depth T and the height above the mantle-crust boundary,
Los, reached by the dyke in absence of crater. Note that the only value that
depends on crater size is the radial stress perturbation at emplacement depth.

For simplicity and as the intrusion is shallow and both D � T and R � T
[58], we estimate ∆σrr at emplacement depth from its surface value ∆σrr(D) =
−0.5(1 + 2ν) (Equation 16), which gives ∆σrr(D) = −0.75 for ν = 0.25 (Figure
6.

We compare the modeled overpressure with the intrusion overpressure esti-
mated from the uplift (Figure 6). We use g = 1.62 m.s−2. The crust density
is assumed constant and is taken equal to ρm = 2550 kg.m−3 i.e., the average
density of the lunar crust in the Highlands as inferred from gravity data [68].
For the set of studied craters (grey dots in Figure 2), the crustal thickness D
ranges from ' 20 km to ' 45 km and the median is ' 33 km (Figures 2a and
4).

The two other parameters [∆ρ, Los] are varied and we look for the set of pa-
rameters for which the modeled overpressure values of overpressure best com-
pare with estimated ones. When the density contrast is low, the term asso-
ciated with the stress perturbation caused by crater unloading dominates in

12



(19). In this case, the buoyancy term does not have a significant influence and
the overpressure varies mostly with crater radius and not significantly with the
crustal thickness D or the overshoot in absence of a crater Los (see results for
∆ρ/ρc = −0.02 in Figure 6a,b).

As the density contrast between the crust and magma becomes more influen-
tial, the crustal thickness as well as Los have more impact on the overpressure
value (Figure 6c,d,e,f for ∆ρ/ρc = [−0.06,−0.10]). As ∆ρ/ρc increases, the
difference in overpressure values between two solid lines (corresponding to two
crustal thicknesses) increases. For example, for ∆ρ/ρm = −0.06, the calculated
overpressure value decreases by ' 5 MPa if the crustal thickness increases by
15 km while it only decreases by ' 1 MPa for ∆ρ/ρc = −0.02.

One set of parameters —[∆ρ/ρc, Los] = [−0.1, 15 km]— appears to well
explain the estimated overpressure at emplacement depth below FFCs and its
variability with R and D (Figure 6c). The associated value of ∆ρ/ρc (−0.1)
corresponds respectively to ρm ' 2800 kg.m−3 for ρc ' 2550 kg.m−3 which is
consistent with values used for lunar magma density although in the lower range
[69, 32]. A tradeoff exists between the value of the buoyancy and the value of
the overshoot in absence of a crater Los. For example, a lower density contrast
together with a smaller overshoot such as [∆ρ/ρc, Los] = [−0.06, 10 km] can
produce results that also fit the data.

In any case, it seems that the overshoot length, Los, needs to be large enough
in order for our modeled overpressure to fit the estimated one (Figure 6). In-
terestingly, our model constrains the value of Los and shows that dykes in the
lunar crust may reach spontaneously ' 15 km above the Moho if no external
stress due to a crater is applied to the dyke wall. As explained in Section 3.2,
this overshoot reflects the overpressure a dyke can acquire in the mantle but
also possibly because of existing external regional stress that can also act on
the dyke walls. The value of Los required to fit our data is also consistent with
the fact that, in the Lowlands, where the crustal thickness is lower, magmatic
activity is much frequent than in the Highlands simply because the magma can
reach the surface without necessitating the contribution of external tensile stress
[17]. In section 5.1 we also discuss how Los influences the magma trajectory.

5. Discussion

5.1. Overshoot of the dyke and magma trajectory

We have shown that an unloading associated with an impact crater can
modify the overpressure of a vertical dyke emanating from the mantle-crust
boundary favoring its ascent towards the surface. Loads and unloads also in-
duce specific orientations of the principal stresses which can act upon the dyke
trajectory that tends to align in the direction of maximum compressive stress
[64, 30].

In the context of FFCs, [33] have shown that a vertical dyke emanating
from the mantle-crust boundary and affected by crater unloading will tend to
become horizontal because the maximum compressive stress induced by the
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crater is horizontal at its axis and sub-horizontal between the crater axis and
the crater wall. Indeed, the straight vertical trajectory of the dyke is unstable
and any small deviation of the dyke from the vertical axis necessarily grows
[7]. Such a deviation from the vertical trajectory can prevent magma ascent
and emplacement at shallow depths below impact craters. [33] suggest that the
additional overpressure provided by tensile stress caused by mare loads prevents
the deep horizontalization of the dyke below the impact crater and, in some case,
is necessary to explain magma emplacement at shallow depths. Following this
line of thought, we show below that, regardless its source, a magma overpressure
that allows the dyke to reach a large enough overshoot Los in absence of a crater
is necessary to prevent deep horizontalization of the magma below the impact
crater.

In a situation where unloading occurs, the ability of the dyke to ascend first
and then spread at shallow depths depends on the rate at which a vertical dyke
deviates from its initial direction to align with σ1. If the rate of deviation is
high, the dyke turns rapidly at large depths. Conversely if the deviation rate is
low, the dyke propagates vertically before deviating and can therefore reach a
shallow depth. The deviation rate from the straight vertical trajectory depends
on the difference between the maximum compressive stress and the stress acting
on the dyke walls (∆σ1 −∆σ⊥) as well as on the stress intensity factor at the
crack tip K [7, 30]. The stress intensity factor K varies with ∆P

√
L∗ where

L∗ is a length characterizing the dyke and ∆P is the overpressure at the dyke
tip. The theoretical results of [7] demonstrate that the characteristic distance
λv over which the dyke turns to align with σ1 is proportional to K2/(σ1−σ⊥)2:
the larger the stress difference σ1 − σ⊥ and the smaller K, the lower λv is.
Conversely, the larger the stress intensity factor K, the larger the value of λv
is. This is confirmed by experimental setups meant to constitute analogues of
volcanic systems [30, 28].

If a dyke overshoots the Moho and maintains its verticality before interact-
ing with the stress field induced by crater unloading, its overshoot is mainly
controlled by the overpressure that it has aquired during its ascent in the man-
tle and eventually by additional regional stress field so that its length is at least
equal to Los. When reaching the overshoot length Los, the overpressure at the
crack tip is simply ∆P (Los) = −∆σrr(Los) (18). The stress intensity factor K
is therefore proportional to −∆σrr(Los)

√
Los which shows that the initial dyke

overshoot plays a role in the capacity of the dyke to propagate vertically towards
the surface. The overshoot Los should be large enough to counterbalance the
forces deviating the dyke from its vertical trajectory towards the surface. This
is also demonstrated experimentally by [30].

At the axis, the stress difference competing with the stress intensity factor
is ∆σrr − ∆σzz. The absolute value of the stress difference increases when
the dimensionless depth decreases and reaches a maximum value just below
the depth (D − z)/R ' 0.5 (Figure 7); then, above, it decreases quasi linearly
towards the surface. The absolute value of the horizontal stress σrr progressively
increases as the dimensionless depth decreases.

At depths larger than (D − z)/R ' 0.5, it is clear that the stresses acting
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to deviate the dyke from the vertical trajectory —∆σzz − ∆σrr— dominates
over the stresses that would favor propagation towards the surface ∆σrr (Fig-
ure 7). As a consequence, the ratio σ2

rr/(σzz − σrr)2, that is proportional to
the characteristic length over which the dyke turns to align with σ1 [7], is sig-
nificantly different from 0 for dimensionless depths (D − z)/R ≤ 0.5. It means
that if the tip of the dyke is initially located at a shallower depth than ' 0.5R,
it is more likely to propagate vertically and emplace at shallow depths below
impact craters. This is even more true because, above the dimensionless depth
(D − z)/R ' 0.5, the stress difference ∆σzz −∆σrr, that acts to the dyke tip
decreases as it approaches the surface.

Let’s consider a crater of radius R ' 40 km located on a crust of thickness
D ' 30 km. In this case, the dyke horizontalises at shallow depths only if its
tip is initially above the depth (D − z) ' 0.5R ' 20 km which means that the
dyke overshoot needs to be at least ' 10 km.

Both the facts that the stress intensity factor, and that the ratio σ2
rr/(σzz −

σrr)
2 is significantly different from 0 at depths smaller than ' 0.5R, imply that

the length of the overshoot Los should be significant in order to ensure dyke
propagation towards the surface and spreading at a shallow depth. Results
shown on Figure 6f for ∆ρ/ρc = −0.1 also favours a value of Los ' 15 km.
Taken altogether, this would suggest that dykes emanating from the mantle-
crust boundary overshoot significantly the Moho if no external stress induced
by craters load is present.

5.2. Deformation mode of FFCs from the total fracture length

The total fracture length offers the opportunity to mine for further infor-
mation on magma emplacement and on the process of fracturing in general.
For instance it enables to clarify how the scaling of the fracture length with re-
spect to other parameters might depend on the mode of deformation of the host
rock. While, on Earth, the dimensions of exposed dykes and sills are exploited
to extract information on their mechanisms of emplacement [3], the length of
fractures at FFCs is an observation that has not been exploited so far. It is an
attractive perspective since floor-fractured craters are present on other plane-
tary bodies [50, 66]. Mars, in particular, seems to host a significant amount of
FFCs, the formation of which is still under debate [48, 2].

In order to understand the information contained in the total fracture length,
we exploit the correlation between the uplift ∆d and the square root of the total
fracture length

√
L obtained for craters in the Highlands (Figure 8). The linear

regression line that fits the set of data points on Figure 8 has a slope a ' 4 m1/2.
This slope can be expressed from the coefficient that relates floor uplift to

the square root of the fracture length estimated. Combining Equations (3) or
(5) with (8) gives that for a sill

∆d =

[
1

ρmg

√
2EΓh

λ2TγS

]
√
L (20)
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while for a laccolith

∆d =

[
1

ρmg

√
2T 3EΓh

λ6γL

]
√
L. (21)

The relations (20) and (21) provide two theoretical expressions for the coef-
ficient relating the uplift of the crater floor to the square root of the total length
of fractures: 

asill =

[
1

ρmg

√
2EΓh

λ2TγS

]

alacc =

[
1

ρmg

√
2T 3EΓh

λ6γL

] (22)

The comparison of the value of a derived from observations with those of asill
and alacc obtained using relevant values for the different parameters can provide
a simple framework to understand the process of fracture formation on lunar
FFCs. The exact theoretical values of asill and alacc depend on the value of
γS and γL that themselves depend on the unknown geometry of the intrusion.
However both γS and γL should have an effect of order 1 on the values of asill
and alacc (Section 2.1) and we will assume in the following that γS = γL ' 1.

Since magma seems to reach the surface through some of the observed frac-
tures [9], we assume that the fracture depth h is approximately equal to the
intrusion depth T (h ' T ), which gives

asill =

[
1

ρmg

√
2EΓ

λ2γS

]

alacc =

[
1

ρmg

√
2T 4EΓ

λ6γL

] (23)

The characteristic size of the intrusion λ can vary from a few hundreds of
meters to tens of kilometers. For example, [66] assumed that the radius of the
intrusion below the crater Taruntius is approximately 15 km. Here, we use
λ ' 10 km in particular because fractures generally cover a surface of the crater
floor of one to several 102 km2 (Figure 1).

An order of magnitude for the minimum value of the intrusion depth T is
' 1 km whereas its maximum value is λ. For values of T larger than λ, the
intrusion would not interact with the free surface and no fractures would be
visible. As mentioned in Section 2, the mode of deformation that we associate
to a sill prevails when T ' λ and in this case asill ' alacc. Bending would
dominate when T < λ and in this case we use T ' 1 km. Finally we assume
that E ' 1010 Pa.

Because the fracture energy values span a large range of orders of magnitude
depending on rock properties and rupture modes, we choose the approach of
deducing Γ from a and its theoretical expressions (23). Posing a = asill or
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a = alacc, we obtain respectively
Γsill =

(aρmg)2λ2γS
2E

Γlacc =
(aρmg)2λ6γL

2T 4E

(24)

Using parameter values listed above, we find that Γsill ' 106 J.m−2 and Γlacc '
1010 J.m−2.

Rock experiments show that when fractures occur through tensile failure of
the rock samples, values for the fracture energy lies between 10 and 103 J.m−2

and are therefore several orders of magnitude lower than the ones deduced from
(24) [e.g, 20, 1]. The fracture energies for shear failure, derived from experimen-
tal data and the study of natural faults systems, are larger, spanning the range
between 104 − 107 J.m−2 [25, 43, 61]. The value obtained for Γsill ' 106 J.m−2

lies well within this range of values which suggests that part of the fractures are
produced by shear rupture of the host rock.

The presence of fractures produced by shear failure at FFCs can be under-
stood by the fact that the observed uplift of the floor might be accommodated
by vertical faults so that observed offsets in FFCs topographic profiles delimited
by fractures may be the result of fractures produced by shear failure. Such an
offset can be observed, for example, on Arzachel floor where the East fracture
delimits an offset in floor elevation visible on the profile displayed on Figure
1. Alternatively, since on Earth the host rocks surrounding well exposed sills
can show signs of shear failure, observed open fractures on FFCs floors may be
connected to shear fractures at depth [47, 10, 55, 41]. Analog experiments of in-
trusion emplacement have also revealed the possibility for the presence of shear
failure in the host rocks [42]. The value we obtained for Γsill is thus consistent
provided that part of the fractures at FFCs are formed by shear rupture of the
host rock.

The relatively large value of Γ can also be related to the highly porous and
damaged state of the lunar crust [68, 13]. Experimental measurements on rocks
show indeed that pre-fractured samples display fracture energies that can be
an order of magnitude larger than those of intact samples [71]. In this case,
the larger fracture energies account also for inelastic processes pertaining to
the pre-existing damages [36, 35]. The size of the sytem may also play a role
because fracture energies derived from earthquakes studies (' 106J.m−2) tend
to be larger than those derived from rock experiments (' 104J.m−2) [71].

The value for Γlacc ' 1010 J.m−2 —obtained for an intrusion depth T signif-
icantly smaller than its characteristic horizontal size λ— is however larger than
common estimations of the shear fracture energy. In other words, if the fractures
were caused by bending associated with a laccolith that extends over a distance
much larger than its depth, we would expect larger values for L than what is
observed. This may suggest that the fractures start to form before or when the
sill starts to interact with the free surface i.e., when λ ≤ T . As the intrusion
extends, elastic energy is dissipated by further fracture formation, limiting elas-
tic bending of the overlying layer and allowing the intrusion to thicken and to
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uplift the crater floor. If the above reasoning is correct, fracture formation is
an efficient sink of elastic energy for the set of selected floor-fractured craters,
that might be important to account for when modeling magma emplacement
and the resulting shape of the overlying surface topography.

The reader should keep in mind that because of limited image resolution and
also the possibility that fractures may exist at depth without being visible at the
surface, the measured total fracture length corresponds to a lower bound of the
effective total fracture length. Also, to simplify the scaling laws, we made the
assumption that the fracture depth is constant and equals the intrusions depth.
While those limitations affect our estimations of the elastic energy dissipated
by failure, they should not affect much the order of magnitude of the estimated
fracture energies ΓS and ΓL: increasing or decreasing L by a factor 10 modifies
ΓS and ΓL only by a factor

√
10.

5.3. Deformation mode of FFCs from observed fracture patterns

The information extracted above from the study of the total fracture length
at FFCs can be related to the observed fracture patterns. Classical models of
elastic bending caused by shallow intrusions predict tangential stresses larger
than radial stresses and therefore the formation of radial fractures [40, 62].
However, in our selected set of craters, only two craters Humbolt and Petavius,
have fractures with clear radial orientations. Even for craters displaying clear
domical uplift such as Nernst, Mersenius and Gauss, no clear radial fractures are
observed. Most craters display instead either circumferential fractures and, even
more frequently, fractures with neither clear radial nor tangential directions.

The shape of the uplift caused by elastic bending and therefore the relative
amplitude of radial and tangential stresses can vary upon boundary conditions
and characteristics of the encasing medium. For example, models of elastic
bending that account for the crater topography can produce comparable radial
and tangential stresses or even radial stresses larger than tangential stresses
because of the thickening of the overlying plate towards the crater wall (Figure
B1 in [57]). This explains the more frequent occurence of concentric fracture
patterns than radial ones.

The majority of the observed fracture pattern are hierarchical. A hierar-
chical fracture pattern refers to fractures perpendicular to each others [4, 11].
Examples of FFCs with such a pattern are shown in the Supplementary Figure
S6. This pattern reflects the time delay between the occurrence of the different
fracture segments. Once failure occurs, the stress is relaxed in the direction
perpendicular to the fracture segment in such a way that the following fracture
segment would appear perpendicular to the previous one. This implies a tempo-
ral hierarchy between the different fracture segments dividing the crater floors
[4].

Because a hierarchical fracture pattern suggests that fractures appear one
after the other following a temporal hierarchy, the fractures may occur as the
intrusion is growing and before the conditions for elastic bending are met. The
formation of fractures may eventually prevent bending to occur by significantly
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reducing the elastic strength of the host rock. Our estimated value of the frac-
ture energy in the laccolith case (Section 5.2) is indeed inconsistent with common
estimates of Γ hence failure may occur before conditions for bending are met.

6. Conclusions

Two independent quantitative observations pertaining to FFCs can provide
information about the magma overpressure inside shallow magmatic intrusions
below impact craters and thus about the stress field leading to their emplace-
ment. Those two observations are the uplift and the total fracture length on the
floor of FFCs; they can be related to the overpressure causing magma emplace-
ment below impact craters provided that a significant part of the elastic energy
of deformation is dissipated by the creation of fractures. This condition seems
to be met for a large set of FFCs located in the Highlands or at the borders
between the Highlands and lunar maria and showing significant fracturing of
their floors. FFCs filled by mare material constitute another category of FFCs
where the magmatic intrusion has probably been emplaced below an already
filled crater.

For FFCs in the Highlands, the observed correlation between the floor uplift
and the total fracture length suggests that those observations reflect the vari-
ability of the overpressure leading to magma emplacement below impact craters.
They also demonstrate that larger overpressures are generally related to craters
on a thinner crusts while lower overpressures are related to craters on a thicker
crust.

This feature is predicted by a model of magma ascent that builds upon the
work of [32] and which considers that an impact crater produces a modification
of the stress field within the crust that can promote the ascent of magma stored
within dykes overshooting the mantle/crust boundary. We show that if no
additional extensive stress is present within the crust, vertical dykes probably
have to overshoot the Moho by about 15 km to reach shallow depths below the
craters.

Finally, we have shown that the information contained in the total length of
fractures covering FFCs’ floors —an observation that, to our knowledge, has not
been exploited yet— opens up interesting perspectives for the study of inelastic
processes associated with intrusion emplacement on the Moon as well as for the
study of FFCs on other planetary bodies where processes at play during FFCs
formation remain uncertain.
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Description Symbols Range of Values
Variables
Distance from the Moho z
Magma pressure Pm
External stresses acting on dyke walls σ⊥
Overpressure ∆P
Radial stress perturbation ∆σrr
Vertical stress perturbation ∆σzz
Crater properties
Crater radius R 13− 103 km
Observed crater depth dobs 0.27− 3.74 km
Depth of complex fresh craters dfresh 2.78− 4.32 km
Crater uplift/filling ∆d = dfresh − d 0.1− 3.5 km
Total fracture length L 14− 1028 km
Fracture depth h 0.1− 1 km
Dyke and intrusion properties
Magma density ρm 2800− 3000 kg.m−3

Density contrast ∆ρ 100− 500 kg.m−3

Intrusion depth T 0.1− 10 km
Intrusion characteristic size λ 0.1− 10 km
Source overpressure ∆Ps
Overshoot Los 0− 15 km
Crustal properties
Crustal thickness D 20− 50 km
Highlands crust density ρc 2550 kg.m−3

Young modulus E 1010 Pa
Poisson’s coefficient ν 0.25
Fracture energy Γ 10− 107 J.m−2

Table 1: List of variables and parameters described in the main text.
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Figure 1: LROC WAC images and topographic profiles centered on four craters : Metius,

Arzachel, Atlas and Haldane to illustrate the different observations used in this study. The

depth indicated at the center of each profile represents dfresh obtained using relation (6). The

depth indicated on the left-side of each profile corresponds to the observed depth dobs. The

difference ∆d = dfresh − dobs constitutes an estimation of the uplift of the crater floor or its

filling. For FFCs Arzachel, Atlas and Haldane, the fractures that cover their floors can be

observed on the LROC WAS images. Examples of mapped fracture segments are represented

by black lines on Arzachel LROC WAC image. For a given FFC, ∆d and the total fracture

length are the main observations exploited in this study.
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Figure 2: (a) Locations of floor-fractured craters on the crustal thickness map of the Moon.

The crustal thickness map is the model 1 of [68], based on gravity data from the GRAIL

NASA mission, which is the model with the lowest average thickness (34 km). The grey and

black symbols show the locations of studied FFCs. Black squares represent FFCs located in

the mare or at the limit between the maria and the Highlands but filled by the adjacent mare.

The black star locates the crater Haldane mentioned in the main text and the grey star locates

the crater Atlas. Grey dots represent FFCs located in the Highlands or at the limit between

the Highlands and maria that are not filled by the adjacent mare. (b) Diagram showing FFC

uplift or filling versus the total fracture length. We use the same symbols for dots as in (a).
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Figure 3: Schematic representation of the components of the model. a) A vertical dyke

emanating from the lunar Moho is subjected to lithostatic external stresses, magma pressure

is Pm and magma density ρm. b) After crater emplacement, the external stress exerted on

the dyke is decreased by |∆σrr| which is the component of the stress perturbation due to

the unloading acting perpendicular to the dyke wall. c) At the intrusion depth, the magma

laterally spreads. Lateral propagation is affected by the component of the stress perturbation

due to the unloading acting in the vertical direction: ∆σzz . d) Fractures relax the elastic

stress acting vertically and allows the intrusion to thicken.
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Figure 4: Two quantitative observations reflecting how the magma overpressure associated to

a crater-centered intrusion varies as a function of crater radius and crustal thickness. FFCs

represented here are those located in the Highlands and at the limit between the Highlands

and a lunar mare (grey dots on Figure 2). a) Crater floor uplift estimated from Equation (7)

versus crater radius. b) Square root of the total fracture length versus crater radius. Dark

dots indicate craters located on a crust with a thickness ranging from 20 km to 33 km while

dots in light gray correspond to craters located where the crust has a thickness ranging from

33 km to 51 km. The crustal thickness separating the two populations (D=33 km) corresponds

to the median value of the crustal thicknesses.
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Figure 5: Variations with depth of the axial horizontal and vertical component of the stress

perturbation caused by crater unloading —denoted respectively ∆σrr and ∆σzz— assuming

a cylindrical crater of radius R and depth dfresh at the surface of an elastic half-space. The

depth is made dimensionless by the crater radius R and the stress by ρcgdfresh. Results were

obtained using ν = 0.25 and g = 1.62 m.s−2.
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Figure 6: Comparison between the magma overpressure estimated using the uplift of crater

floor and Equation (8) (dots) and the modeled overpressure from (19) (solid lines). The com-

parison is made for FFCs located in the Highlands or at the limit between the Highlands and

lunar maria (grey dots of figure 2). Two parameters are varied: the relative buoyancy ∆ρ/ρc

and the initial dyke overshoot Los. The relative buoyancy takes values [−0.02,−0.06,−0.1]

and the maximum dyke overshoot in absence of a crater takes values [0, 15]km.
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Figure 7: The different stress components affecting the trajectory of a vertical dyke in a stress

field unloaded by an axi-symmetric slab. a) Variation with depth of ∆σrr and the difference

∆σrr −∆σzz . Larger values of |∆σrr| promote a vertical dyke trajectory while larger values

of |∆σrr −∆σzz | promote deviation from the vertical trajectory. b) Variation with depth of

the ratio ∆σ2
rr/(∆σrr −∆σzz)2 which is proportional to the characteristic distance λν over

which a vertical dyke turns to align with the direction of maximum compressive stress.

28



−2000

0

2000

4000

6000

∆d
 [

m
]

0 500 1000

√L [m1/2]

a= 4.2 m1/2

Figure 8: Crater uplift versus square root of total fracture length for craters located in the

Highlands or at the limit between the Highlands and lunar maria (grey dots on figure 2). The

solid line represents a linear regression fit.

29



References

[1] Atkinson, B. K. (1984). Subcritical crack growth in geological materials.
Journal of Geophysical Research: Solid Earth, 89(B6):4077–4114.

[2] Bamberg, M., Jaumann, R., Asche, H., Kneissl, T., and Michael, G. (2014).
Floor-Fractured Craters on Mars – Observations and Origin. Planetary and
Space Science, 98:146–162.

[3] Becerril, L., Galindo, I., Gudmundsson, A., and Morales, J. M. (2013).
Depth of origin of magma in eruptions. Scientific reports, 3:2762.

[4] Bohn, S., Pauchard, L., and Couder, Y. (2005). Hierarchical crack pattern
as formed by successive domain divisions. Physical Review E, 71(4).

[5] Bunger, A. P. and Cruden, A. R. (2011). Modeling the growth of laccoliths
and large mafic sills: Role of magma body forces. Journal of Geophysical
Research, 116(B2).

[6] Coleman, D. S., Gray, W., and Glazner, A. F. (2004). Rethinking the em-
placement and evolution of zoned plutons: Geochronologic evidence for in-
cremental assembly of the Tuolumne Intrusive Suite, California. Geology,
32(5):433.

[7] Cotterell, B. and Rice, J. (1980). Slightly curved or kinked cracks. Interna-
tional journal of fracture, 16(2):155–169.

[8] Ferrière, L., Koeberl, C., Ivanov, B. A., and Reimold, W. U. (2008). Shock
metamorphism of bosumtwi impact crater rocks, shock attenuation, and uplift
formation. Science, 322(5908):1678–1681.

[9] Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R., and Petro, N. E.
(2003). Compositional analyses of lunar pyroclastic deposits. page 19.

[10] Gerbault, M. (2012). Pressure conditions for shear and tensile failure
around a circular magma chamber; insight from elasto-plastic modelling. Ge-
ological Society, London, Special Publications, 367(1):111–130.

[11] Ghabache, E., Josserand, C., and Séon, T. (2016). Frozen Impacted Drop:
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