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Understanding Micropolar Theory in the Earth Sciences I: The Eigenfrequency xr

RAFAEL ABREU
1 and STEPHANIE DURAND

2

Abstract—Even though micropolar theories are widely applied

for engineering applications such as the design of metamaterials,

applications in the study of the Earth’s interior still remain limited

and in particular in seismology. This is due to the lack of under-

standing of the required elastic material parameters present in the

theory as well as the eigenfrequency xr which is not observed in

seismic data. By showing that the general dynamic equations of the

Timoshenko’s beam is a particular case of the micropolar theory

we are able to connect micropolar elastic parameters to physically

measurable quantities. We then present an alternative micropolar

model that, based on the same physical basis as the original model,

circumvents the problem of the original eigenfrequency xr laking

in seismological data. We finally validate our model with a seismic

experiment and show it is relevant to explain observed seismic

dispersion curves.

Keywords: Timoshenko beam theory, plate theory, Cosserat

theory, micropolar theory, seismology.

1. Introduction

The theory of micropolar media, also called

Cosserat’s theory (Cosserat & Cosserat, 1909), is a

theory of elastic continua that includes, compared to

the theory of linear elasticity, additional rotational

degrees of freedom at each spatial location (Eringen

& Kafadar, 1976; Nowacki, 1986). The theory

accounts for the existence of an independent rotation

of each particle of the elastic medium that can be

different from the continuum rotation.

Micropolar theory is today widely applied to the

design of seismic (elastic) metamaterials (Frenzel

et al., 2017; Fernandez-Corbaton et al., 2019; Ha

et al., 2016; Liu et al., 2012; Wu et al., 2019; Chen

et al., 2014a, 2014b; Frenzel et al., 2019). The theory

allows to describe materials with microstructure as

continuous materials. In this sense, the properties of

the micro-structure can be mapped onto simple

effective-medium parameters (Reinbold et al., 2019).

Working further with these effective-medium models

helps to design elastic metamaterials by easing the

way one deals with micro or nano-structures of the

whole system.

Applications of micropolar theory also exist in the

Earth’s sciences, in particular in the domain of

earthquake source and fault dynamics (Teisseyre,

1973; Teisseyre et al., 2006; Teisseyre, 2011; Teis-

seyre et al., 2006; Teisseyre, 2008; Teisseyre et al.,

2008; Teisseyre, 2011; Nagahama & Teisseyre,

2000b; Abreu et al., 2018; Abreu & Durand, 2021).

Specifically, Twiss et al. (1991, 1993) adapted the

kinematics of micropolar continuum theory (Eringen,

1966a, 1966b) to the analysis of fault-slip data (Twiss

et al., 1991), and earthquake focal mechanisms

(Twiss et al., 1993). With the use of micropolar

theory, Twiss et al. (1991, 1993) describe brittle

deformation in the Earth’s crust as a granular mate-

rial, where the grains are represented by rigid and

rotating fault blocks. These rigid fault blocks rotate

around their centroids in a manner dictated by the

local geometry of the blocks and their interactions

with neighboring blocks. Using this description,

permanent effects of rotational motions during seis-

mogenic deformation have been observed and it has

been shown that the deformation is better described

by the micropolar theory compared to the linear

elastic theory (Twiss, 2009; Twiss et al., 1993; Unruh

et al., 2003; Lewis et al., 2008; Twiss et al., 1991;

Schemmann et al., 2008; Wojtal 2001; Unruh et al.,

1996; Gade & Raghukanth, 2016; Teisseyre et al.,

2006; Twiss & Unruh, 1998, 2007).
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The next step would be to apply dynamic

micropolar equations to the study of the Earth,

however, applications remain limited. This is mainly

due to the lack of understanding of the required

elastic material parameters present in the theory,

namely the Cosserat couple modulus lc and eigen-

frequency xr. The question of the relevance of the

micropolar theory to the study of the interior of the

Earth is thus still open and deserves further investi-

gation. Abreu et al. (2017a) studied the predicted

seismic waveforms using the micropolar theory and

included an analysis of the material elastic parame-

ters. In their study, the authors analyzed the

complexity of wave propagation showing its unusual

frequency dependent behavior, unlike in conventional

linear elasticity. Despite their effort, the authors

could not conclude whether the dynamic micropolar

behavior could be observed in seismological data and

failed to give a detail procedure to find the required

elastic parameters, mainly the understanding of the

eigenfrequency xr. In another study, Abreu et al.

(2017b) the authors provide a catalogue of Cosserat

couple modulus lc values required by the micropolar

theory for mineralogical applications, however the

extrapolations to these values to macroscopic obser-

vations does not seem trivial.

In this paper, we propose to go further by giving a

clear understanding of the mathematics as well as of

the elastic parameters appearing in the equations of

motion in the context of macroscopic Earth’s sci-

ences applications, providing solutions for the current

encountered problems. To do so, we propose an

analogy of the micropolar theory with the beam

theory providing an understanding of the material

elastic parameters. In particular, we show that the

well known Timoshenko beam theory (Timoshenko

& Woinowsky-Krieger, 1959) is equivalent to

micropolar theory in the 1D case. We then propose a

modified micropolar theory suitable for Earth’s sci-

ences applications that overcomes the certain

limitations of the original theory, in particular the

existence of a division by zero at x ¼ xr, and we test

this theory making comparisons with real seismic

data. We finally discuss the results obtained in this

contribution.

2. From Linear Elasticity to Micropolar Theory

2.1. Linear Elasticity

Let first recall basics of linear elasticity. To find

equations of motion that govern the elastic deforma-

tion produced by earthquakes, different approaches

can be taken. A common one in seismology is to start

by the definition of stress and strain and later consider

the balance of linear and angular momentum (Slaw-

inski, 2010; Aki & Richards, 2002). However, this is

not the standard formulation for finding general

equations of motion in complex media for engineer-

ing applications. Instead, the Langrangian

formulation (also called the variational formalism of

minimum action) is preferred. The Lagrangian

formulation looks for minimizing the action integral

I of the form (Whitham, 1973)

I ¼
Z t

0

Z
X
Ld 3xdt ¼

Z t

0

Z
X
ðK � EÞd 3xdt; ð1Þ

where X denotes the volume of the continuum, L is

the Lagrangian defined as the difference between the

kinetic energy K and the potential energy (also called

internal elastic free energy) E.

The Lagrangian formulation solves the minimiza-

tion problem dI ¼ 0, which yields the governing

equations of motion. In linear elastic media the

potential energy E is defined as follows

EðeÞ ¼ 1

2
eij Cijkl ekl; with eij ¼

1

2
ðoiuj þ ojuiÞ;

ð2Þ

where Cijkl is the fourth-order elastic tensor, u the

displacement vector and eij is a second-order sym-

metric tensor known as the strain tensor or Cauchy’s

strain tensor. Because the strain tensor is symmetric

ðeij ¼ ejiÞ, and because the energy is quadratic in the

strain, the elements of the elastic tensor C exhibit the

following symmetries

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij: ð3Þ

The kinetic energy is defined as follows

K ¼ 1

2
q otu � otu; ð4Þ

where q is the material density.
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Using Eqs. (2) and (4) and assuming a homoge-

neous isotropic elastic tensor C, the minimization

problem ðdI ¼ 0Þ for the functional Eq. (1) gives the

well known linear elastic equations of motion

(Slawinski, 2010; Aki & Richards, 2002)

qo2
t uj ¼ oisij

sij ¼ k dijokuk þ lðoiuj þ ojuiÞ;
ð5Þ

where sij is called the second-order stress tensor,

which is simply a generalization of Hooke’s law. The

parameters k; l ½MPa� are the classical Lamé param-

eters. The free surface boundary conditions are given

by

n̂ � s ¼ 0 on oX; ð6Þ

where n̂ refers to the direction normal to the surface

oX.

In the case of a 1D medium one can find that the

equations of motion for shear displacements is given

by the following expression

qo2
t u ¼ lo2

xu; ð7Þ

and assuming plane wave motion u ¼ Aeiðkx�xtÞ,

where A is the amplitude, k is the wavenumber and x
the frequency, one can write the expression for the

frequency x and phase velocity c ¼ x=k, respec-

tively as follows

x2 ¼ l
q

k2; c2 ¼ x2

k2
¼ l

q
: ð8Þ

One can note that the phase velocity is frequency

independent in conventional linear elastic media,

which we will see is no longer true using micropolar

theory.

2.2. Micropolar Theory

In order to find the dynamic micropolar equations

of motion using the Lagrangian formulation we first

define the internal energy E contributions, related to

the displacement u and independent rotation h fields,

given by the following expression (Eringen, 1999)

Eðe;-Þ ¼ 1

2
eij Cijkl ekl|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

elasticfreeenergy

þ 1

2
-ij Hijkl -kl|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

rotationalelasticfreeenergy

; ð9Þ

where the strain measures are defined as follows

eij¼
1

2
ðoiujþojuiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
symmetricpart

þ�ijk
1

2
�kaboaub�hk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

antisymmetricpart

;

Cosserat strain tensor

-ij¼
1

2
ðoihjþojhiÞþ

1

2
ðoihj�ojhiÞ; curvature tensor;

ð10Þ

where u is the vector displacement and h is the micro

rotational vector of motion.

Note that the micropolar strain tensor e assumed

in Eq. (10) is given by the sum of the conventional

linear strain (Eq. (2)) and an antisymmetric part given

by the difference between the curl 1
2
�kaboaub and the

independent rotation h. This means that the difference

between the macroscopic rotation and independent

local rotation produce deformation within the con-

tinuum. Note also that the strain measure related to

the independent rotation is called the curvature

tensor. This can be easily understood in the 1D case

because the spatial derivative of the independent

rotation h scales the second derivative (curvature) of

the displacement, i.e., oxh ¼ ao2
xu, where a is a

constant.

Having defined the total potential energy in

Eq. (9) and the strain measures in Eq. (10), the total

micropolar kinetic energy is defined as follows

K ¼ 1

2
qotu � otu þ 1

2
I � oth � oth; ð11Þ

where the q is the mass density and I the rotational

inertia density.

Using Eqs. (9, 10, 11) and solving the minimiza-

tion problem ðdI ¼ 0Þ for the functional Eq. (1) one

can find the linear elastic micropolar equations of

motion given by the following expressions

qo2
t uj ¼ oirij; balance of linear momentum

Io2
t hj ¼ oimij þ �jklrkl; balance of angular momentum

ð12Þ

where r is called the stress tensor and m is the
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couple-stress tensor or moment-stress tensor (Erin-

gen, 1999) and � is the Levi-Civita symbol. The

second-order tensor r is the asymmetric stress and m

the moment stress. The free surface boundary con-

ditions are given by

n̂ � r ¼ n̂ � m ¼ 0 on oX; ð13Þ

where n̂ refers to the direction normal to the surface

oX.

In a homogeneous isotropic media, we can write

the linear micropolar stress tensor r and the couple-

stress tensor m as follows (Eringen, 1999)

rij ¼ lðoiuj þ ojuiÞ þ k dij

X3

k¼1

okuk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
symmetricpart

þ 2lc�ijk
1

2
�kaboaub � hk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

antisymmetricpart

;

mij ¼ adij

X3

k¼1

okhk þ bðoihj þ ojhiÞ þ cðoihj � ojhiÞ;

ð14Þ

where the parameters k; l ½MPa� are the classical

Lamé parameters. A new elastic constant

lc � 0 ½MPa� is introduced. It is called the Cosserat

couple modulus (Neff & Jeong, 2009; Neff et al.,

2010) and it is poorly constrained for Earth sciences

applications. Other elastic parameters are defined,

a; b; c ½MPa � m2�. They are related to the couple (or

moment) stress m and very little is known about their

values.

In a 1D homogeneous isotropic medium, the

micropolar equations of motion are given by the

following expression (Eringen, 1999; Abreu et al.,

2017a)

qo2
t u ¼ ðlþ lcÞo2

xu � 2lcoxh;

Io2
t h ¼ ðbþ cÞo2

xhþ 2lcoxu � 4lch;
ð15Þ

where u is the transverse displacement field in the y

direction and h is the micro-rotational field in the z

direction. The displacement u and the micro rotation

h can be decoupled from eq. (15) as follows (Gre-

kova, 2016; Abreu et al., 2017a)

o4
t �

lþ lc

q
þ bþ c

I

� �
o2

t o
2
x þ

lþ lc

q

� ��

bþ c
I

� �
o4

x �
4llc

qI
o2

x þ
4lc

I
o2

t

�
ðu; hÞ ¼ 0;

ð16Þ

where both fields u and h can be modeled as inde-

pendent variables.

Applying the micropolar theory thus requires to

get relevant values for the new elastic parameters as

well as the eigenfrequency xr. To do so, we need to

better understand the micropolar theory and this is

possible by making an analogy with the beam theory.

3. How Can we Understand Micropolar Theory

in Earth’s Sciences?

3.1. Beam Theory

In many geological situations we are concerned

with loads of a certain shape that act on the surface or

inside the crust due to different factors like the

presence of magmatic material, mountains, ice sheets

(see Fig. 1). In order to model such deformations the

conventional equations of linear elasticity presented

in Sect. 2.1 cannot be applied. This is because linear

elasticity cannot reproduce the correct curvature of

the bending. Instead, beam as well as plate theories,

have been developed and widely applied (Watts

,2015; Turcotte & Schubert, 2002; Watts, 2001;

Burov, 2011; Watts & Burov, 2003; Gunn, 1943;

Bott, 1993; Chase & Wallace, 1988; Steinberg et al.,

2014; Kearey et al., 2009; Jaeger, 2012; Mavko,

1981; Artemieva, 2011; Walcott, 1970).

Plates are defined as plane structural elements

with a small thickness compared to the plane

dimensions (Timoshenko and Woinowsky-Krieger,

1959). Plate theory thus has the advantage of

reducing the full 3D problem to a 2D one. Beams,

on the other hand, are 3D dimensional structural

elements capable to tolerate load primarily by

resisting to the bending, where the forces are

understood to act perpendicular to the longitudinal

axis (Watts, 2001). However, the deflection of beams

is modeled in 1D, in other words, beam theory

reduces the 3D problem to a 1D one. In realistic 3D

scenarios, the lithosphere responds to surface and

918 R. Abreu and S. Durand Pure Appl. Geophys.



subsurface loads by bending. In order to model the

resulting flexure, the solution of the plate equation is

appropriate only if the dimensions of the plate in the

horizontal direction are much larger in the vertical

direction (Burov, 2011; Ventsel et al., 2002; Arnaiz-

Rodrı́guez & Audemard, 2014; Van Wees & Cloet-

ingh, 1994; Garcia et al., 2015; Sanford, 1959;

Wessel, 1996; Braun et al., 2013; Stüwe, 2002; Judge

& McNutt, 1991; Zhang et al., 2018; Manrı́quez

et al., 2014; Contreras-Reyes & Osses, 2010). How-

ever, in many situations, the distortion of the plate

during the bending is limited by the extreme edges of

the plate. In this case, a beam of unit width as a part

of a larger plate provides a better model and thus

imply to use the beam theory (Watts, 2001).

Beam theory is founded on the classical Euler-

Bernoulli equation and it is given by the following

expression (Weaver et al., 1990)

o2
x EIzo

2
xu

� �
þ qAo2

t u ¼ 0; ð17Þ

where E is the Young modulus ½Pa�, Iz is the second

moment of area ½m4� and it must be calculated with

respect to the axis which passes through the centroid

of the cross-section and which is perpendicular to the

applied loading, u is the transverse displacement [m]

describing the deflection of the beam in the z

direction at some location x, q is the material density

½kg=m3� and A is the cross-sectional area of the beam

½m2� (see Fig 2). The product EIz ½Pa � m4� is known as

the flexural rigidity and it is often considered

constant.

Note that Eq. (17) shows a fourth-order derivative

in space, unlike conventional linear elasticity which

shows a second-order derivative (see Eq. (7)). If we

assume plane wave solution, one finds that the phase

velocity ðc ¼ x=kÞ is given by

x2

k2
¼

ffiffiffiffiffiffiffi
EIz

qA

s
x: ð18Þ

Note that the phase velocity in Eq. (18) is propor-

tional to the frequency unlike in conventional

elasticity (Eq. (8)). This means that, even in

(a)

(b)

(c)

Figure 1
Cartoons representing the bending of the lithosphere in different scenarios: a due to a volcanic load of the Canary Islands (after Watts (2001)),

b due to a mountain which exerts a force pointing down shown by the black arrow and c due to ice sheets, i.e., postglacial uplift scenarios

Figure 2
Cartoon representing a beam of length L, height h and cross-

sectional area A

Vol. 179, (2022) Understanding Micropolar Theory 919



homogeneous media, small wavelengths will move

faster than larger wavelengths. Therefore, unlike

linear conventional elasticity, an arbitrary waveform

will move with a variable speed and will then suffer a

change in shape or be dispersed.

In many geological scenarios, the static form of

the Euler-Bernoulli equations, Eq. (17), is solved

considering a constant product EIz, yielding the

following relationship between the beam’s deflection

and the applied load (Watts, 2001; Steinberg et al.,

2014)

Do4
xu ¼ qðxÞ; ð19Þ

where D is the flexural rigidity ½Pa � m4� and q(x) is

the sum of the external loading force and the isostatic

restoring force: it is the net force per unit area ½Pa�
acting on the plate, the so-called hydrostatic restoring

force or vertical load. Its value depends on the

physical configuration of the problem as illustrated in

Fig. 3. When modeling the lithosphere, the flexural

rigidity is commonly expressed in terms of the

effective elastic thickness Te of the plate [m] as

follows

Dplate ¼ ET3
e

12ð1 � m2Þ ;
ð20Þ

where E is the Young modulus ½Pa� and m the Poisson

ratio. Note that the units of Dplate in eq. (20) are

Pa � m3and it refers to the moment per unit length per

unit of curvature.

However, Eq. (19) does not include the presence

of shear forces. In order to overcome this limitation

Eq. (19) must include a force balance that relates the

bending moments and the vertical load q to any

applied horizontal shear forces F such that (Stüwe,

2002; Turcotte & Schubert, 2002)

Do4
xu þ Fo2

xu ¼ qðxÞ: ð21Þ

If the distribution of loads q is known, Eq. (21) can be

solved for either the deflection of the plate u or the

flexural rigidity D. Usually, the deflection is known

from bathymetric or topographic observations and

Eq. (21) is used to obtain the stiffness of the plate

(Stüwe, 2002).

Equation (21) is a static equation, i.e., it does not

include the time variable. In order to include the time

(a) (c)

(b) (d)

Figure 3
Cartoons representing four types of different loads that can be incorporated into the flexure of plates (after Steinberg et al. (2014)). The

hydrostatic restoring force or vertical load is denoted by q(x), qm the density of the mantle, qw the density of sea water, qs the density of the

sediments, g the gravitational acceleration, hs the sediment thickness, hw water level and u is the deflection of the lithosphere

920 R. Abreu and S. Durand Pure Appl. Geophys.



dependence of the initial Euler-Bernoulli eq. (17)

Rayleigh (1896) included the rotatory inertia of the

beam cross-section as follows

EIzo
4
xu þ qAo2

t u � qIz 1 þ E

Ml

� �
o2

xo
2
t u ¼ 0: ð22Þ

Timoshenko (Timoshenko, 1921) extended Ray-

leigh’s equation by incorporating the effect of shear

deformation as follows (Timoshenko, 1921; Weaver

et al., 1990)

EIzo
4
xu þ qAo2

t u � qIz 1 þ E

Ml

� �
o2

xo
2
t u þ q2Iz

Ml
o4

t u ¼ 0;

ð23Þ

where M is called the shear correction factor

(Hutchinson, 2001; Gruttmann & Wagner, 2001), l is

the shear modulus ½Pa�.
If we include applied horizontal forces FT and the

shear forces to Timoshenko’s Eq. (23), as it was done

in Eq. (21), we find

EIzo
4
xu þ qAo2

t u þ FTo
2
xu � qIz 1 þ E

Ml

� �
o2

xo
2
t u

þ q2Iz

Ml
o4

t u ¼ 0;

ð24Þ

where FT denotes an additional temperature depen-

dent axial force FT ¼ aEAT , where a is the thermal

expansion coefficient (Hsu et al. 2008; Avsec &

Oblak, 2007).

On geological time scales, the lithosphere is often

modeled statically, i.e., using the Euler-Bernoulli

time independent Eq. (21). Additionally, Timoshenko

Eq. (24) is a well known equation used for engineer-

ing applications and it includes the effects of the

static version of Euler-Bernoulli Eq. (21).

3.2. Equivalence Between Micropolar and Beam

Theories

At this point it becomes visible that Timoshenko’s

beam theory Eq. (24) and micropolar theory Eq. (15)

represent the same equation with the following

equivalences in material parameters

EMl
q2

¼ lþ lc

q
bþ c

I
;

Mlþ E

q
¼ lþ lc

q
þ bþ c

I
;

4lc

I
¼ MlA

qIz
;

4llc

qI
¼ �FTMl

q2Iz
:

ð25Þ

From the first two expressions in Eqs. (25) we can write

the following quadratic equation for the term ðlþ lcÞ

ðlþ lcÞ2 � ðjlþ EÞðlþ lcÞ þ Ejl ¼ 0; ð26Þ

from which we can obtain two roots for the Cosserat

Couple modulus

lc ¼ lðM � 1Þ; and lc ¼ E � l: ð27Þ

Taking into account that Hutchinson (2001), Grutt-

mann and Wagner (2001), Vlachoutsis (1992) have

reported that in general M\1 and that the Cosserat

couple modulus must be positive ðlc [ 0; Eringen

(1999), we therefore discard the first solution in

Eq. (27) for having non-physical significance.

We thus show the Cosserat couple modulus lc

becomes a measurable quantity that depends on the

Young modulus E and shear modulus l. In terms of

the bulk modulus j we can write the Cosserat couple

modulus lc as follows

lc ¼ l
9j

3jþ l
� 1

� �
: ð28Þ

Since seismology often refer to the compressional

ðvpÞ and shear wave ðvsÞ velocities in the interior of

the Earth, the Cosserat couple modulus lc can also be

written as follows

lc ¼ l
2v2

p � 3v2
s

v2
p � v2

s

" #
;

the condition lc [ 0 implies vp [
ffiffiffiffiffiffiffiffi
3=2

p
vs:

ð29Þ

Using the second solution of eq. (27) an expression

for the inertia density I is given by

I ¼ 4ðE � lÞqIz

MlA
: ð30Þ

An illustration of the interpretation of the two theo-

ries is shown in Fig. 4, where we can observe that the

difference between Euler-Bernoulli and Timoshenko

beam or micropolar theories is the curvature induced
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in the model (Fig. 4a). This can be explained by the

mathematical introduction of the difference between

the macro-rotation ð0:5 ou=oxÞ and the local angle of

rotation ðhÞ (Fig. 4b). The existence of a difference

between the macro-rotation and the local angle of

rotation is the basic assumption of the micropolar

theory (Fig. 4c).

3.3. Understanding the Eigenfrequency xr

Assuming plane wave propagation in the microp-

olar equations of motion, Eq. (15),

u ¼ Aeið�kxþxtÞ; h ¼ Beið�kxþxtÞ; ð31Þ

where A, B are wave amplitudes, we can write an

expression for the frequency x in terms of the

wavenumber k as follows

x4 � ðc2
2 þ c2

4Þx2k2 þ c2
2c2

4k4 þ k2c2
Tx

2
r � x2

rx
2 ¼ 0;

ð32Þ

where for simplification purposes, we have written

the different velocities cT ; c2; c4 and eigen frequency

xr as follows

c2
T ¼ l

q
; c2

2 ¼ lþ lc

q
;

c2
4 ¼ bþ c

I
; x2

r ¼ 4lc

I
:

ð33Þ

The expressions for the phase velocity ðx=kÞ derived

from Eqs. (15) and (16) and are equivalent and given

by the following expression for the phase velocity cf

(Abreu et al., 2017a)

c2
f ¼ c2

T=2

1 � x2
r

x2

X þ 2c2
4

c2
T

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4

x2
r

x2

c2
4ðc2

2 � c2
TÞ

c4
T

s !
;

with

X ¼ 1 � x2
r

x2
þ c2

2 � c2
T � c2

4

c2
T

:

ð34Þ

We can observe two branches of the phase velocity cf

in Eq. (34), which are both related to the displace-

ment u and the micro-rotation h (Fig. 5). We can also

observe the presence of an eigenfrequency xr at

which cf is not defined. It is here where we find one

of the most controversial aspects of the micropolar

theory for seismological applications: the presence of

two phase velocities and the eigenfrequency xr.

For simplicity, we show in Fig. 5 the non-

dimensional phase velocity plot of Eq. (34) (see

Eqs. (33)). The most evident aspect that we can

observe is that one of the roots c�f is the same as the

conventional shear phase velocity cT . However, the

other root cþf shows a very peculiar behavior: it

possesses positive real and imaginary parts and it is

non defined at x ¼ xr. This, from the physical point

of view, seems very similar to the behavior of a

forced harmonic oscillator. The interpretation of this

eigenfrequency is thus related to the rupture of the

material. A detailed examination of the values of c�f
for different parameter configuration can be found in

Abreu et al. (2017a). From the theoretical point of

view, many studies refer to this as a rotational

eigenmode related to the independent rotation h.

Figure 4
a Cartoon representing the bending of a beam: a the difference between the conventional Euler-Bernoulli and the Timoshenko (and Cosserat)

theories and b the difference between the macro-rotation ð0:5 ou=oxÞ and the local rotation ðhÞ which is the basic assumption of the micropolar

model. c Continuum deformation showing the existence of micro-rotation without the presence of a rupture in the material
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However, we have shown that the equations for the

displacement u and independent rotation h can be

decoupled (see Eq. (16)). This means that one can

observe the behavior of u independent of h and both

are ruled by the same partial differential Eq. (16).

Therefore, we can conclude that both phase velocities

c�f are related to both u and h. However, depending

on the frequency domain, the translational or the

rotational motions will prevail. This can be illustrated

when examining the situation x ¼ xr, where the

system (15) gives the solution h ¼ h0eixr t; u ¼ 0,

meaning that translations are zero and do not

propagate, while rotations are equal everywhere.

Everything occurs like a quasi-rigid motion, the

phase is the same everywhere although no real signal

propagates, the group velocity is zero at this

frequency. This is usually true for any cutoff

frequency.

From the experimental point of view, seismolo-

gists do not expect frequency dependent seismic

wave velocities in a homogeneous medium and the

presence of the second root of the phase velocity is

unusual. From the seismological point of view, this

can be considered as the most important questions to

answer when one attempts to apply the dynamic

micropolar equations of motion. It is needed to

understand the meaning of xr and cþf and how it can

be determined from the use of seismic data. We

discuss the experimental evidence of this eigenfre-

quency ðwrÞ in the next Sect. 3.4.

3.4. How Can we Obtain the Eigenfrequency xr?

Understanding the physics and calculation of the

eigenfrequency xr in Eq. (33) is of primary impor-

tance when aiming at applying micropolar theory to

realistic geological scenarios. Combining Eqs. (33,

25 and 27) we can write

x2
r ¼ 4lc

I
¼ 4ðE � lÞ

I
¼ MlA

qIz
: ð35Þ

Equation (35) shows that, by having information of

the Young E modulus and shear l modulus and the

micro inertia density I, we should be able to obtain

the eigenfrequency xr in order to make predictions of

wave propagation in microstructured materials with

micropolar theory. We can also observe that the

eigenfrequency xr can be written in terms of the

shear correction factor M, among other physical

measurable quantities. Timoshenko defines the shear

correction factor M as a correction constant that

depends upon the shape of the cross-section of the

beam (Timoshenko, 1921). This factor increases with

a decrease in the wavelength. There are several ways

Figure 5
Non-dimensional phase velocity plot for the micropolar model (Eq. (34))
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to define this correction factor (Kaneko, 1975;

Timoshenko, 1922), but the general meaning is that

the factor allows the shear stress to be nonuniform

over the cross-section of the beam. It can be defined

as follows (Kaneko, 1975)

M ¼ slceff ; ð36Þ

where s is the average shear stress on the cross-sec-

tion and ceff is the effective transverse shear strain.

Numerous attempts have been made to evaluate

M theoretically and experimentally, and it seems that

the best theoretical results are given by Timoshenko’s

equation Eq. (36) when considering rectangular

cross-sections (Kaneko, 1975; Rosinger & Ritchie,

1977). It can be suspected that when considering

more general cross-sections, this value could be

obtained numerically (Hutchinson, 2001).

There have been successful attempts to experi-

mentally verify the presence of the eigenfrequency

xr in Timoshenko’s theory that is absent in the Euler-

Bernoulli and Rayleigh theories. It has also been

shown that Timoshenko’s theory gives only a rough

approximation to the aforementioned second spec-

trum and fails to predict all other spectral

characteristic of a 3D cylindrical waveguide (Abbas

and Thomas 1977; Moreles et al., 2005). Despite

some authors claim that the eigenfrequency xr

should be regarded as the inevitable,meaningless

and being a consequence of an otherwise remarkable

approximate engineering theory (Stephen 1997), the

study made by Bhaskar (2009) concludes that this

eigenfrequency must not be disregarded and exper-

iments made by Chan et al. (2002), Mindlin (1951),

Ellis and Smith (1967), Dı́az-de Anda et al. (2012)

have revealed that it is measurable.

4. An Alternative Micropolar Model Including

Gradient Micro-Inertia

4.1. Presentation of the New Model

Despite having a way to experimentally obtain the

eigenfrequency xr, the fact that the phase velocity in

Eq. (34) is not defined at x ¼ xr seems to be

unphysical for seismological applications. This, as an

analogy to the forced harmonic oscillator where the

same type of behavior appears, can in principle be

solved by considering dissipation. However, the ques-

tion of what represents xr in the Earth still remains.

Since micropolar theory has been related to the

earthquake rupture, we can argue that xr represents

the frequency of rupture of the material. Despite being

physically sound, this is, however, not observable from

seismological records. In addition, the fact of having

two phase velocities raises complications such as for

example, which one fits the seismological observa-

tions. For these reasons, we develop a new version of

the micropolar model based on seismological observ-

able assumptions.

Following Twiss et al. (1993), we first define a

physical observable variable: the effective rotational

motion or net vorticity vector W as the difference

between the curl ð1
2
�kaboaubÞ and the independent

rotation h as follows

Wk ¼
1

2
�kaboaub � hk

� �
: ð37Þ

It has been shown that the net vorticity vector W is an

objective variable (Twiss et al., 1993). This means

that it is an intrinsic characteristic of the deformation

and not simply the effect of rigid rotations of the

micro-material. The net vorticity vector W can be

used to identify the antisymmetric part of the global

micropolar seismic moment tensor and it can be

observed in fault-slip data (Twiss et al., 1993). This

allows us to write equivalent micropolar strain ten-

sors e and - as follows

eij ¼
1

2

oui

oxj
þ ouj

oxi

� �
þ �ijkWk;

-ij ¼ oi
1

2
�jlmolum �Wj

� �
:

ð38Þ

The potential energy is defined by keeping Eq. (9),

since we do not consider any cross-coupling. The

total kinetic energy is defined as follows

K ¼ 1

2
qotu � otu þ 1

2
I � otW � otW; ð39Þ

where the q is the mass density and I the rotational

inertia density. This kinetic energy is a particular case

of the kinetic energy of the relaxed micromorphic
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model with gradient micro-inertia introduced in

Owczarek et al. (2019) (see Sect. 3). For enriched

theories of wave propagation with additional gradient

micro-inertia terms we refer the reader to Askes and

Aifantis (2011); Madeo et al. (2017), Owczarek et al.

(2019).

Using Eqs. (38) and (39) and solving the

minimization problem ðdI ¼ 0Þ for the functional

Eq. (1) one can find the new linear elastic micropolar

equations of motion given by the following

expressions

qo2
t uj ¼ oirij; balance of linear momentum

Io2
t Wj ¼ oimij þ �jklrkl: balance of angular momentum

ð40Þ

The free surface boundary conditions are given by

n̂ � r ¼ n̂ � m ¼ 0 on oX; ð41Þ

where n̂ refers to the direction normal to the surface

oX.

The stress and curvature tensors are given by the

following expressions

rij ¼ Cijklekl;

mij ¼ Dijkl-kl;
ð42Þ

where C;D are fourth-order tensors of elastic con-

stants. In isotropic media we can write C;D as

follows

Cijkl ¼ kdijdkl þ ðlþ lcÞdikdjl þ ðl� lcÞdildjk;

Dijkl ¼ kcdijdkl þ ðlc þ lc
cÞdikdjl þ ðlc � lc

cÞdildjk:

ð43Þ

Therefore, the stress r and the couple-stress tensors m

can be written as follows

rij ¼ kdijokuk þ lðoiuj þ ojuiÞ þ 2lc�ijkWk;

mij ¼ lL2
c

1

2
oi�jlmolum � aoiWj

� �
;

ð44Þ

where we have assumed kc ¼ lc � lc
c ¼ 0 and

lc þ lc
c ¼ lL2

c , where Lc is a characteristic length

related to the material in study. Following the concept

of effective stress introduced by Nur and Byerlee

(1971) we have introduced a parameter a with

0� a� 1. In poroelastic theory, the parameter a is

called the Biot’s parameter and it is defined as fol-

lows (Zoback, 2010)

a ¼ 1 � Kd

Kg
; ð45Þ

where Kd is the drained bulk modulus of the rock or

aggregate and Kg is the bulk modulus of the rock’s

individual solid grains. Note that we can write the

couple-stress tensor m as follows

m ¼ lL2
coi

1

2
�jlmolum � aWj

� �
;

¼ lL2
coi

1

2
�jlmolum �Wj � ða� 1ÞWj

� �
;

¼ lL2
coihj þ ð1 � aÞlL2

coi
1

2
�kaboaub � hk

� �
:

ð46Þ

Thus the model assumed for the couple-stress tensor

m can be understood as a gradient theory for couple

stresses. This form of the constitutive equation for the

couple stresses makes clear that the requirement of

the frame indifference is satisfied in the linear sense.

Indeed, rh and W are frame indifferent in the linear

approximation. It is easy to show then that rW also

satisfies this requirement.

In a 1D isotropic medium we can write the

following wave equation

qo2
t u ¼ lo2

xu þ 2lcoxW;

Io2
t W ¼ lL2

c o3
xu � ao2

xW
� �

þ 4lcW:
ð47Þ

The displacement u and the net rotation W can be

decoupled from Eq. (47) as follows

o4
t � aL2

c

l
q
l
I
o4

x �
2lc

I
L2

c

l
q
o4

x

�

þaL2
c

l
I
o2

t o
2
x �

l
q
o2

t o
2
x �

4lc

I
o2

t þ
4lc

I

l
q
o2

x

�
ðu;WÞ ¼ 0;

ð48Þ

where both fields u and W can be modeled as inde-

pendent variables. Assuming plane wave solutions of

the form of Eq. (31) we can write expressions for the

frequency x and the phase velocity x=k as follows

In the limiting case when a ! 0 we can write the

equations of motion as follows
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qo2
t u ¼ lo2

xu þ 2lcoxW;

Io2
t W ¼ lL2

co
3
xu þ 4lcW:

ð50Þ

The displacement u and the net rotation W can be

decoupled from Eq. (50) as follows

o4
t �

l
q
o2

xo
2
t �

4lc

I

l
q

L2
c

2
o4

x

�

þ 4lc

I

l
q
o2

x �
4lc

I
o2

t

�
ðu;WÞ ¼ 0;

ð51Þ

where both fields u and W can be modeled as inde-

pendent variables. Assuming plane wave solutions of

the form of eqs. (31) we can write expressions for the

frequency x and the phase velocity x=k as follows

x2 ¼
l
qk2�x2

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r �
l
qk2


 �2

þ2l
qx

2
r k2 2þL2

ck2
� �r

2
;

c2
f ¼

x2

k2
¼1

2

l
q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
q

l
q
þ2L2

c

x2

1þx2

x2
r


 �
0
@

1
A

vuuut
2
64

3
75:

ð52Þ

Figure 6 shows the frequency and phase velocity

predicted by the gradient micro-inertia micropolar

model. We can observe that the frequency behavior

for the positive root xþ is similar to the conventional

linear behavior which has an imaginary part zero and

the real part grows linear with wavenumber (Fig. 6a).

For the negative root x� we can observe that the real

part is zero and the imaginary part exists only for

x[xr. We can also observe that the phase velocity

has no longer an indetermination at x ¼ xr (Fig. 6b).

It can be shown that depending on the choice of the

characteristic length Lc the positive solution cþf

shows dispersion effects and for Lc ! 0 it becomes

frequency independent as predicted by conventional

elasticity (eq. (7)). Figure 6b shows the existence of

two waves, one which is somewhat similar to the

classical wave, and another one localized

(Reðcf Þ ¼ 0, Imðcf Þ 6¼ 0, jImðcf Þj increases in x).

For the real wave, we see from eq. (52) that at low

frequencies the wave velocity square equals l=q, and

in the limit of high frequencies it is

l=q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ ð2L2

cx
2
r Þq=lÞ

p
, i.e., unlike the classical

linear elastic case, the phase velocity at high fre-

quencies is larger.

This means that the microstructure (higher fre-

quencies) possesses greater velocities compared to

the surrounding medium. For the case when a ! 0

the model (Eq. (52)) shows similar behavior.

It is important to note that we found two solutions

for the phase velocity in both micropolar cases that

we introduced and both have one of the solution

being imaginary only. This can be interpreted as an

standing wave that does not propagate in the medium.

This second wave can be generated by the source of

motion (rupture mechanism) and will oscillate while

the second wave will propagate through the medium.

4.2. Comparison with Seismic Experiments

We now test the theory on seismic experiments.

We use shear wave dispersion measurements done on

water-saturated silica sand with a grain diameter of

0.113 mm and grain density of 2659 ½kg=m3�
(Kimura, 2013). We fit the phase velocity of the

micropolar model of eq. (52). The parameters of the

model that match the observations are presented in

Table 1 (see Fig. 7c). Our calculated shear wave

x2 ¼
� a lL2

c

I k2 � k2 l
q þ x2

r


 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a lL2

c

I k2 � k2 l
q þ x2

r


 �2

þ4 k4 a lL2
c

I
l
q þ

x2
r

2
L2

c
l
q


 �
þ x2

r k2 l
q

h ir

2
;

c2
f ¼ x2

k2
¼

l
q 1 þ x2

r

x2


 �
� aL2

c
l
I �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
q 1 þ x2

r

x2


 �
� L2

c
l
I


 �2

þ4 1 þ x2
r

x2


 �
L2

c
l
q a l

I þ
x2

r

2


 �r

2 1 þ x2
r

x2


 � :

ð49Þ
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velocities at f ¼ 0 and f ¼ 1 are 200 m/s and 333 m/

s respectively. These results are consistent with those

found by Kimura (2013) of 195.1 m/s and 297.4 m/

s respectively.

Assuming that the micro-inertia of the sand grains

can be approximated by I � qr2, where r is the radius

of the grains, and assuming a value of the eigenfre-

quency xr from the experimental data, i.e., a chosen

frequency value where the curve bends (see Fig. 7),

we can obtain the value of the Cosserat couple

modulus lc (see Table 1). The value of lc compared

to the value of the shear modulus at zero frequency

lf¼0 ¼ 106:36 ½MPa� is small, which means that the

sand grains are able to freely rotate. This confirms

that micropolar models are the most relevant ones in

order to properly describe wave propagation phe-

nomena in granular material and wave localization

(Sulem et al., 2011; Veveakis et al., 2012; Stefanou

et al., 2017; Veveakis et al., 2013; Regenauer-Lieb

et al., 2013).

5. Discussion and Conclusions

We have shown that micropolar (Eringen, 1999)

and Timoshenko’s (Timoshenko & Woinowsky-

Krieger, 1959) theories possess the same mathemat-

ical structure in 1D problems. This means that for the

correct parameter selection, one can model the same

physical event with both theories. There is, however,

the fundamental difference that Timoshenko’s is a 1D

theory while micropolar is a 3D theory. This does not

affect the fundamental similarity of both theories for

the phase velocity, meaning that if one aims to model

Figure 6
a Normalized angular frequency x=xr as a function of the wavenumber k for the gradient micro-inertia micropolar model (Eq. (49)). b Non-

dimensional phase velocity plots for the same model (Eq. (49))

Figure 7
Fitting results from Kimura (2013) using the phase velocity

predicted in eq. (52)

Table 1

Gradient micro-inertia micropolar parameter values

vs ½m=s� q ½kg=m3� xr ½rad=s� Lc ½m� I ½kg=m� l ½GPa� lc ½GPa� a

200 2659 5 	 104 � 2p 2 	 10�3 8:49 � 10�6 0.106 0:209 � 10�3 0.001
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a 3D problem with micropolar theory, the phase

velocity of shear waves will show the same disper-

sion properties as it is in the 1D case. In the 1D case

also, we can compare the micropolar (or Timosh-

enko) theory and the original Euler-Bernoulli for

beams (Weaver et al., 1990). In the Euler-Bernoulli

theory, the cross-section of the beam is perpendicular

to the bending line. Timoshenko’s theory allows a

rotation between the cross-section and the bending

line. This rotation comes from a shear deformation,

which is not included in the Euler-Bernoulli theory.

This means that the Euler-Bernoulli beam is stiffer.

However, if the relation between length and thickness

is large enough the error between both models is

small, meaning that the Timoshenko (or micropolar)

theory works for shorter beam structures.

The application of beam theories for modeling a

lithospheric flexure has been mainly done in the static

case (Eq. (19)). Plate tectonics assumes that the

lithosphere behaves as a thin elastic (plastic) plate

overlying an inviscid fluid (asthenosphere) that flexes

in response to applied stresses at geological time (i.e.

[ 106yr) (Manrı́quez et al., 2014). When consider-

ing the dynamic equations of motion for micropolar

or beams the problem becomes richer in the sense

that more effects can be modeled such as the rotatory

inertia (Rayleigh 1896). The static case can also be

modeled using the dynamic equations. This process is

called the quasi-static behavior. It can be done by

considering slowly varying boundary conditions of

the problem. The numerical simulations of quasi-

static behavior will allow us to determine the differ-

ences when using the Timoshenko and micropolar

theories to model the lithosphere.

For the dynamic modeling of physical phenomena

using micropolar theory it is required to properly

understand and identify the elastic parameters

appearing in the equations. Of particular importance

is the Cosserat couple modulus lc since it allows the

coupling between linear elastic and micropolar

behaviors. Unlike other studies of shear localization,

where the value of the Cosserat couple modulus lc is

assumed to be half the shear modulus lc ¼ 0:5l
(Sulem et al., 2011; Addessi, 2014), here we connect

this value to physically measurable quantities. The

physical understanding of the Cosserat couple mod-

ulus lc allows us to find values of the eigenfrequency

xr. This eigenfrequency has been observed in

experiments for plates however it is laking in seis-

mological data. For this reason we have presented a

alternative micropolar model that, based on the same

physical concepts as the original model, circumvents

the problem of the eigenfrequency xr laking in

seismological data.

From the geodynamical point of view, the litho-

spheric deformation and delamination are

numerically simulated by solving the governing

equations of conservation of mass, momentum, and

energy (Gerya, 2019). However, from the point of

view of this study, modeling the lithospheric defor-

mation and delamination with the micropolar model

may help to answer the question of when the litho-

sphere breaks and delamination appears. When

modeling layered materials where the slip between

the layers is permitted, the independent bending of

layers introduces another degree of freedom associ-

ated with the field of rotations of central axes of the

layers independent of macroscopic displacement

field. Such materials can be modeled as micropolar

(Pasternak et al., 2002). In this case, the independent

Cosserat rotation corresponds to the gradient of

deflection, while the moment stress corresponds to

the bending moment per unit area in the layer cross-

section (Pasternak et al., 2002).

The oceanic lithosphere undergoes permanent

deformation during subduction once the stresses

exceed the elastic limit. As a consequence brittle

failure occurs in the shallow lithosphere generating

earthquakes (Willemann & Davies, 1982; Buffett &

Becker, 2012). The connection between generaliza-

tions of micropolar theory, namely micromorphic,

and the fracturing of the lithosphere and earthquake

generation has been previously proposed (Nagahama

& Teisseyre, 2000a, 2000b; Teisseyre, 2008; Teis-

seyre et al., 2008; Nagahama & Teisseyre, 2000b).

However, experimental evidence and physical justi-

fication of the micromorphic parameters is still

lacking in the literature.

From the mathematical point of view, following

the pioneering study by Ericksen and Truesdell

(1957), micropolar shell and plate theories are an

active area of research and they have found room in

several engineering applications (Altenbach & Ere-

meyev, 2012; Neff, 2004; Noor, 1990; Riahi &
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Curran, 2009; Perić et al., 1994; Selmi et al., 2014;

Chandraseker et al., 2009; Chiroiu et al., 2010;

Kumar et al., 2011; Fang et al., 2011). The present

work is intended to push further these applications for

the Earth sciences.
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