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Abstract In the atmosphere nighttime removal of volatile organic compounds is initiated to a large
extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and
particulate phase. Here we show based on particle phase measurements performed at a suburban site in
the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass.
Comparisons with a chemistry transport model indicate that most of the measured particulate organic
nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation
periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable
fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44%
of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial
potential of PM reduction by NOx emission control.

1. Introduction

Atmospheric self-cleansing, i.e., removal of species through oxidation, is initiated by the radical species OH,
O3, and NO3. While OH plays a key role during the day and is overall the dominant oxidant in the troposphere,
NO3 is one of the main oxidants during the night in addition to O3. Due to its formation from the reaction
of NO2 with O3 the main source of NO3 is anthropogenic. Already in 1984 it was suggested that the reaction
with NO3 radicals is a dominant loss process for monoterpenes [Winer et al., 1984]. Especially emissions that
remain in the atmosphere at sunset or enter in the night undergo oxidation by NO3 radicals [Pye et al., 2010].
Model estimates conclude that 6–20% of the total isoprene emissions are oxidized by NO3 [Brown et al.,
2009]. Oxidation of VOCs leads to either functionalization or fragmentation of precursor molecules, where
fragmentation likely leads to products with higher vapor pressure than the precursors’ vapor pressure. By
contrast, functionalization results in a decrease of the vapor pressure [Pankow and Asher, 2008], which in
the case of NO3 radical reactions is dominated by addition reactions forming multifunctional nitrates
(RONO2). Products with low enough vapor pressures will partition to the particulate phase, forming second-
ary organic aerosol (SOA) and thereby contribute to air quality and climate impacts of particles.
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While the formation of SOA through VOC oxidation by OH and O3 has been studied in numerous simulation
chamber and laboratory experiments [Hallquist et al., 2009], only few experiments report the SOA yields from
the oxidation with NO3 [e.g., Boyd et al., 2015; Brown and Stutz, 2012; Fry et al., 2014]. For the biogenic VOCs
investigated, SOA yields vary between 1 and 89% and RONO2 yields between 19 and 66%. These reactions
have also been shown to result in a substantial fraction (12 to 16%) of the oxidized nitrogen consumed by
biogenic VOC oxidation in some continental regions [Brown et al., 2009].

Observations of ambient atmospheric particles have shown that organic species are ubiquitous and repre-
sent a large fraction of observed mass loadings regardless of location of the measurement [Zhang et al.,
2007]. Recent attempts to model the organic aerosol (OA) mass have substantially improved the ability of
models to reproduce measured organic mass loadings, yet large uncertainties remain with respect to OA
sources [Hallquist et al., 2009]. For instance, it has been shown using radiocarbon measurements that a major
part of the OA mass is of modern origin in many areas, meaning that sources such as biogenic VOC and
biomass burning are often dominant sources of OA [e.g., Szidat et al., 2006]. Nevertheless, SOA is often
observed to correlate well with gas-phase tracers for anthropogenic activity such as carbon monoxide (CO)
[Weber et al., 2007], and recent model results suggest that interactions of anthropogenic pollution and
biogenic VOCs (BVOCs) may be important on a global scale [Spracklen et al., 2011]. A prominent candidate
for production of aerosol frommodern carbon that would correlate with anthropogenic tracers is the reaction
of NO3 with BVOCs, which has been shown to serve as source of particulate organic nitrates in recent studies
in the U.S. [Fry et al., 2013; Rollins et al., 2012; Setyan et al., 2012; Xu et al., 2015a, 2015b].

Here we present evidence from aerosol mass spectrometric (AMS) measurements with high time resolution
that, in urban and rural sites in Europe, the reaction of VOCs with nitrate radicals represents an important
source of OA.

2. Materials and Methods

Intensive AMS measurements were taken across Europe through three campaigns within the European
Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI)/European Monitoring
and Evaluation Programme (EMEP) intensives in May 2008, October 2008, and March 2009 [Crippa et al.,
2013; Kulmala et al., 2011]. Observations were compared with results from the EURopean Air pollution and
Dispersion-Inverse Model (EURAD-IM) chemistry transport model [Elbern et al., 2007] in order to evaluate
the regional extent of our findings. Here we discuss the data analysis principles applied to derive organic
nitrate mass concentration from AMS data and the setup of the EURAD-IM used for comparing to the
measurement episodes.

2.1. AMS Data Analysis for Organic Nitrate

Theworking principles andmodes of operation of the aerosolmass spectrometer (AMS) are described in detail
elsewhere [Canagaratna et al., 2007]. Here we report on themethod used to quantify the organic nitrate in the
measured total nitrate. In AMS measurements nitrate is primarily quantified by the determination of the total
signal of NO2

+ andNO+ (high-resolution time-of-flight version, HR-TOF-AMS [DeCarlo et al., 2006]) or the signal
atm/z30 andm/z46 that is attributed tonitrate via the so-called fragmentation table (quadrupole aerosolmass
spectrometer, Q-AMS [Jayne et al., 2000]). Ambiguity remains for the Q-AMS data sets due to the correction of
the interference of the CH2O

+ ion atm/z 30, whereasm/z 46 is traditionally interpreted as being dominated by
NO2

+ [Allan et al., 2004]. By contrast, the HR-TOF-AMS can unambiguously distinguish between the NO+ and
CH2O

+ ions (see Table S1 in the supporting information for an overview of stations and AMS type applied).

Themeasured ratio of NO2
+/NO+ was taken from all AMS data sets to determine the fractional contribution of

ammonium nitrate (NH4NO3, hereafter pInNO3) and organic nitrate (pOrgNO3) to the total observed signal at
these two ions. This requires knowledge of the expected ratio of NO2

+/NO+ for pure ammonium nitrate and
pure organic nitrate. As calibrations of the ionization efficiency of the AMS are typically performed with
NH4NO3 particles, the measured ratio of NO2

+/NO+ for pure NH4NO3 particles is known for all instruments.
Table S1 in the supporting information summarizes the measured calibration ratio Rcalib of NO2

+/NO+ for
the instruments deployed during the EUCAARI/EMEP intensive observation periods [Crippa et al., 2013;
Kulmala et al., 2011]. Note that although there is some variability between instruments, the majority of the
instruments report calibration ratios between 0.29 and 0.49 (22 out of 25 instruments). For the remaining
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three data sets Rcalib between 0.7 and 0.85 were reported. For organic nitrates literature data suggest a range
of possible ratios (0.2 to 0.08) from experiments forming organic nitrates by oxidation of volatile organic
compounds (VOCs) with NO3 [Boyd et al., 2015; Bruns et al., 2010; Fry et al., 2009, 2011; Rollins et al., 2009].
Here we use a fixed value of NO2

+/NO+ (i.e., 0.1) for organic nitrates (see also Figures S1 and S2 in the
supporting information). This number was chosen as it represents the minimum ratio of NO2

+/NO+ observed
in the field data sets. Note that such low ratios of NO2

+/NO+ were also detected in some data sets where Rcalib
was reported high. Therefore, contrary to other studies, no systematic change in ROrgNO3 depending on Rcalib
was assumed [Fry et al., 2013]. Our overall approach here is designed such that lower limits of pOrgNO3 [Xu
et al., 2015a] are derived, with an estimated uncertainty of ± 20%.

Similar to previous attempts to determine the organic nitrate in AMS data sets [Farmer et al., 2010], we apply
the following formula to determine the fraction of particulate organic nitrate (pOrgNO3frac) in the measured
total nitrate from measured NO2

+/NO+ ratio:

pOrgNO3frac ¼
1þ ROrgNO3
� �� Rmeasured � Rcalibð Þ
1þ Rmeasuredð Þ� ROrgNO3 � Rcalib

� � (1)

pOrgNO3mass ¼ pOrgNO3frac�NO3total (2)

where Rmeasured is the measured intensity ratio of NO2
+ and NO+ ions as function of time in the individual

data sets, Rcalib is the ratio observed in NH4NO3 calibrations, and ROrgNO3 is set to 0.1 for all data sets. Themass
concentration of pOrgNO3 (pOrgNO3mass) is then calculated by multiplying the measured total nitrate
(NO3total) with the fraction of pOrgNO3 (2). Note that since NO2

+ is always the ion with less signal intensity,
through the use of measured NO2

+/NO+ ratio rather than NO+/NO2
+ ratio, we are using a formulation that

approaches zero in the case of very low or nonexistant signal, whereas the use of NO+/NO2
+ ratio gives infi-

nite numbers as the limit of detection is approached.

Note that the pOrgNO3 calculated this way accounts for the nitrate functional group of organic nitrates only.
This method was previously considered to reliably derive the pOrgNO3 fraction when pOrgNO3frac is >0.15
[Bruns et al., 2010]. Therefore, organic nitrate concentration data reported here were filtered for values>0.15.
Also, in a conservative approach [Bruns et al., 2010] we consider 0.1μgm�3 pOrgNO3 as detection limit and
report data accordingly.

2.2. EURAD-IM Model Description

The EURAD-IM [Elbern et al., 2007], is a Eulerian model running from local to continental scale. EURAD-IM is
primarily used for chemical weather forecast and advanced data assimilation studies over Europe, using the
RACM chemistry mechanism [Stockwell et al., 1997]. Previous studies on a high-ozone episode [Monteiro
et al., 2012] and a dust storm [Chervenkov and Jakobs, 2011] indicated good performances of EURAD-IM.
Within EURAD-IM, the aerosol dynamics such as nucleation, condensation, coagulation, diffusion, sedimenta-
tion, and aerosol-cloud interaction are simulated by the Modal Aerosol Dynamics Model for Europe (MADE
[Ackermann et al., 1998]). However, the initial MADE aerosol chemistry module only treated inorganic ions
and water. To consider the formation of secondary organic aerosols, the Secondary ORGanic Aerosol Model
(SORGAM) was developed and implemented into MADE [Schell et al., 2001]. In SORGAM, both anthropogenic
and biogenic hydrocarbons are first oxidized by oxidants like OH, NO3, and O3. The mass transfer from gas to
particle phase is then driven by the gas/particle partitioning of the low-volatility oxidation products formed in
gas phase. Aerosol dry deposition velocities are calculated according to Zhang et al. [2003]. Recently, it was
shown that including SOA formation from NO3 oxidation significantly improved the ability to model OOA at
Cabauw, the Netherlands [Li et al., 2013]. EURAD-IM is part of the MACC II (Monitoring Atmospheric
Composition and Climate - Interim Implementation) consortium and, together with six other CTMs, operated
and evaluated on a daily basis (http://www.gmes-atmosphere.eu/documents/maccii/deliverables/eva, 2013,
2013). It was found that especially NO2 analyses performed very well.

In this study EURAD-IM was used with a spatial resolution of 15 km with improvements in the SOA scheme as
described in Li et al. [2013]. Recently, Model of Emissions of Gases and Aerosols from Nature (MEGAN) 2.1
[Guenther et al., 2012] has been implemented into EURAD-IM and was used for the calculation of biogenic
emissions in this study. Anthropogenic emissions have been derived from the MACC-II TNO (Netherlands
Organisation for Applied Scientific Research) emission inventory for the year 2009 [Pouliot et al., 2012]. The
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Weather Research and Forcasting Model V3.5, driven by the Integrated Forcasting System operational analy-
sis, has been used for the provision of meteorological fields needed by EURAD-IM. The comparison of model
output with measurements presented in the following focuses on SOA formed through NO3 oxidation.

3. Organic Nitrate Results From Cabauw Analysis

Figure 1 shows observed mass concentrations of the submicron nonrefractory aerosol species ammonium
(orange), organics (green), sulphate (red), and total nitrate (blue) as measured with a HR-ToF-AMS at
Cabauw, the Netherlands, in May 2008 [Mensah et al., 2012]. Using the observed intensity ratio of the ions
NO2

+ and NO+ (middle of Figure 1) to calculate the relative contribution of nitrate groups associated with
either pOrgNO3 or pInNO3 to the measured total aerosol nitrate (pNO3), we infer a pOrgNO3 mass concentra-
tion averaging 0.52μgm�3 and as high as 1.8μgm�3.

Figure 1. Measured mass concentrations of ammonium (orange), total nitrate (dark blue), sulphate (red), and organics
(green) together with observed concentration ratio of NO2

+/NO+ ions (dark grey) and organic nitrate (pOrgNO3, cyan)
mass concentration at Cabauw, the Netherlands. Also shown are correlations of the SV-OOA factor with total nitrate (top
right) and organic nitrate (bottom right).

Figure 2. Time series of the mass concentrations of measured organic nitrate and SV-OOA and modeled SOA from
NO3 oxidation at Cabauw during May 2008. Inserts show the average diurnal including also Radon concentration
(grey dashed line, right axis) as boundary layer dilution tracer and day and night pie charts of the relative contribution of
individual organic PMF factors.
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The time series of pOrgNO3 is characterized by a distinct diurnal pattern with maxima during the night
(see also Figure 2) and is correlated (R2 = 0.58) with the less oxidized fraction of the oxidized OA (SV-OOA),
as determined by positive matrix factorization (PMF [Ulbrich et al., 2009]) and a unified multilinear engine
(ME-2) analysis for all EUCAARI/EMEP data sets [Crippa et al., 2013; Paglione et al., 2014]. Note that this correla-
tion between pOrgNO3 and SV-OOA is more pronounced than the correlation of total pNO3 with SV-OOA.

It has to be emphasized that pOrgNO3 measures the nitrate functionality of organic nitrates only. To account
for the total particulate organic nitrate mass (RONO2), an estimate needs to be made regarding the molar
mass of RONO2 relative to molar mass of NO3. As a lower limit we will assume a molar mass of 200 gmol�1

in calculations of the contribution of organic nitrates to total organics [Xu et al., 2015a; Lee et al., 2016].

Using the EURAD-IM model, the SOA formed from oxidation of VOCs by NO3 was modeled for the measure-
ment period of May 2008 at Cabauw [Li et al., 2013]. As shown in Figure 2, the temporal behavior of the
modeled SOA from NO3 oxidation closely matches the observed SV-OOA and pOrgNO3 time series.
Maximum concentrations are observed for all three at 5:00 LT with a daytime minimum extending from
10:00 to 20:00 LT. For comparison, radon concentration, which can be considered as a tracer for boundary
layer dilution, is observed to have a maximum between 7:00 and 8:00 LT, i.e., later than pOrgNO3. This is in
agreement with a modeled time lag of 2 h between the early morning decrease of SOA from NO3 oxidation
(due to NO3 photolysis and thus halted production) and the decrease of a dilution tracer (due to breakup
of the nocturnal boundary layer) in the EURAD-IM model. Together with a distinct daytime maximum of
the photochemically formed sulphate (see Figure S3), we take this comparison as further support that the
observed organic nitrate is primarily formed through nighttime NO3 chemistry.

4. Organic Nitrate Across Europe

Extending the data analysis to the full EUCAARI/EMEP AMS data set [Kulmala et al., 2011], we find that
pOrgNO3 is present throughout Europe (Figure 3) with observed concentrations likely a result of complex
interplay of various sources and sinks. Maximum concentrations of pOrgNO3 are observed for European sites
with large anthropogenic influence, i.e., urban (two sites) and rural (nine sites) environments, whereas
pOrgNO3 is very low or below detection limit at the three remote and two high-altitude sites. Averaging over
all stations, the fraction of aerosol nitrate that is observed to be pOrgNO3 showed little variability with values
of 34%, 38%, and 44% in March 2009, May 2008, and October 2008, respectively (see Table S1 and S2 in the
supporting information for details [Carbone et al., 2014; Dall’Osto et al., 2010; Freney et al., 2011; Hildebrandt
et al., 2011; Lanz et al., 2010; Mensah et al., 2012; Minguillón et al., 2011; Mohr et al., 2012; Paglione et al.,
2014; Pikridas et al., 2010; Poulain et al., 2011; Saarikoski et al., 2012]). Assuming a molar mass of 200 gmol�1

for organic nitrates, the mean fractional contribution of organic nitrates to organics was 42% for stations
fulfilling the threshold criterion of pOrgNO3> 0.1μgm�3 (18 out of 25 data sets). Note that this is equivalent
to a contribution of organic nitrates to non-refractory PM1 of between 6 and 44% (average 21%).

Measurements of RONO2 in ambient aerosol have so far mainly been performed from filter samples and
therefore with low time resolution. Detection of RONO2 is usually achieved via detection of the �ONO2

group either optically or by mass spectrometry, with recent developments made toward high time resolu-
tion detection of RONO2 [Ayres et al., 2015; Hao et al., 2014; Rollins et al., 2012; Schlag et al., 2015; Sun
et al., 2012; Xu et al., 2015a; Xu et al., 2015b]. Comparing with literature data obtained mainly from offline
and online aerosol analysis in individual case studies in the US and Europe [Brown and Stutz, 2012; Fry
et al., 2013; Rollins et al., 2012; Setyan et al., 2012; Xu et al., 2015a; Xu et al., 2015b], we find a high contri-
bution of organic nitrates to total organic PM1. For example, recent analysis of data from the southeast
U.S. find that organic nitrates contribute 5 to 12% to organic aerosol in summer [Xu et al., 2015a; Xu et al.,
2015b], whereas the results here imply a contribution of organic nitrates to European PM1 organics of on
average 42%. Exploiting the high time resolution of AMS measurements, for the first time it is shown in
an extended data set (spanning a continent and multiple seasons) that the concentration of organic nitrate
is maximum during the nighttime for 12 of the 19 data sets with pOrgNO3 above detection limit (see Figures
S4–S7). Recent modeling studies suggest that at the global scale, 13% of the biogenic SOA production
originates from NO3 oxidation [Pye et al., 2010]. For summer time in the USA up to 3.35μgm�3 of SOA is
formed from NO3 oxidation of biogenic VOC, equivalent to a doubling of the terpene SOA in some regions,
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when considering the formation by NO3 oxidation [Pye et al., 2010]. Similarly, our simulations for Europe
(details see supporting information) show an increase of SOA by 50 to 70% when considering SOA formation
by NO3 oxidation with maximum ground level concentrations of SOA from NO3 oxidation in the range of
2 to 4μgm�3 in May 2008 (Figure 4).

As shown in Figure S8 and summarized in Table S3, EURAD-IM performed well in predicting organic PM1 con-
centrations with an overall normalizedmean error (NME) of 53% and a normalizedmean bias (NMB) of�45%.
It reproduces observed daily mean organic aerosol concentration within a factor of 10 for 98% of all data
points and within a factor of 2 for 57% of all data points. On the other hand, EURAD underestimates SOA from
NO3 when compared with observed pOrgNO3 with a normalized mean bias (NMB) of �50% and an overall

Figure 4. EURAD monthly mean concentration fields for SOA from NO3 oxidation together with observed concentrations
of pOrgNO3 (colored circles) for May 2008 (left), October 2008 (middle), and March 2009 (right), respectively.

Figure 3. Map overview of particulate inorganic nitrate (pInNO3, dark blue) and particulate organic nitrate (pOrgNO3, cyan)
mass concentrations (μgm�3) as observed during the EUCAARI/EMEP intensive measurement periods in May 2008
(left bar), October 2008 (middle), andMarch 2009 (right). Organic nitrate mass concentrations are high in all urban and rural
sites and reach maximum concentrations during the night (see supporting information for detailed time series plots,
diurnals, and station abbreviations).
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normalized mean error (NME) of 85%. This is worth mentioning specifically since pOrgNO3 as measured here
represents only a small fraction of SOA from NO3 for two reasons. First, the pOrgNO3 concentration reported
is measure of the mass concentration of the nitrate functionality only of RONO2. Second, the reaction of VOC
with NO3 also leads to the formation of products without NO3 functionality, therefore not covered in the
measurement assignment of pOrgNO3 to SOA from NO3 oxidation. This under estimation is likely due to over-
all uncertainties in the modeling of SOA. Themodel treats NO3 oxidation of anthropogenic VOCs (Cresole and
other hydroxy substituted aromatics, terminal, and internal alkenes) and biogenic VOCs (isoprene, α-pinene,
and other cyclic terpenes with one double bond, d-limonene, and other cyclic diene-terpenes) according to
the RACM [Stockwell et al., 1997] chemistry mechanism. First and foremost, emission strengths of these VOCs
are highly uncertain. Especially, the estimation of biogenic VOC emissions is critical due to a lack of detailed
information about the type of plant cover. Further uncertainties may be introduced by the lumping applied
to chemical species in the RACM chemistry mechanism and by the simplifying assumption that SOA for-
mation from NO3 oxidation for all biogenic VOC can be parameterized according to results obtained from
α-pinene, limonene, and isoprene [Li et al., 2013]. This assumption is a consequence of the limited number
of experimental studies available. It should also be mentioned that the comparison shows a larger NMB for
theMarch 2009 data set (�74%) potentially indicating the presence of additional sources of pOrgNO3 beyond
oxidation of VOCwith NO3. Due to the coarsemodel resolution (15 km) some of themeasurement sites are not
representative for the grid box used for comparison. Especially, a comparison ofmeasurement data andmodel
results is highly uncertain for the stations Jungfraujoch and Puy de Dome because of their exposed position.
Also, in particular, the pOrgNO3 measured at Vavihill, a continental background site with no local sources of
pollution, situated in the southernmost part of Sweden, greatly exceeds modeled SOA from NO3 (see also
Figure 4). This potentially hints at additional sources for pOrgNO3 at the Vavihill measurement site, potentially
through influx of polluted air from continental Europe to the Nordic countries along a south-north transect.
The inversion algorithm of EURAD-IM is currently designed as an inversion algorithm for gas phase [Elbern
et al., 2007]. Once the adjoint of SORGAM is available, it will be extended for SOA precursor emission estima-
tion. Based on Moderate Resolution Imaging Spectroradiometer land use information, and higher horizontal
resolution, the deficits can be addressed in a more systematic way. Furthermore, SORGAM improvements
are expected taking recent experimental results on SOA formation due to reaction of α-pinene and β-pinene
with NO3 into account [Boyd et al., 2015; Nah et al., 2016; Xu et al., 2015a, 2015b]. Disregarding the underes-
timation of daily mean pOrgNO3 concentrations at some measurement sites, the ability of the EURAD-IM
to demonstrate qualitatively the daily cycle of pOrgNO3 and the dilution tracer radon supports the assump-
tion that nighttime NO3 chemistry contributes significantly to the pOrgNO3 production.

The spatial distribution and diurnal pattern of pOrgNO3 indicate a gradient of concentration with high
concentration found in source regions, i.e., regions with high-NOx emissions and during nighttime, and
low concentrations in remote regions and during the day. Part of the diurnal pattern will be due to boundary
layer dynamics, but the question remains to what extent the observed diurnal and regional variability is
indicative of deposition losses, chemical reactions leading to fragmentation, or evaporative loss.

5. Implications and Conclusions

Across Europe a large fraction of the AMS measured nitrate is found to be organic, emphasizing the need to
better understand sources and properties of particulate organic nitrates. The modeled continental distribu-
tion of SOA from NO3 by the EURAD-IM supports the importance of NO3 reactions during the night leading
to SOA in regions with high-NOx emissions. It also shows the need for more extensive investigations of the
chemistry and emissions leading to pOrgNO3.

Due to the lifetime of gas-phase RONO2 with respect to photolysis (12–20 days), OH reactions (3–40 days), or
thermal decomposition (up to months), some RONO2 molecules may represent a temporary NOx reservoir
[Aschmann et al., 2011; Brown and Stutz, 2012; Nah et al., 2016]; whereas, other organic molecules may be
lost rapidly due to gas-phase deposition [Farmer et al., 2006; Lee et al., 2016] or particle phase hydrolysis
[Boyd et al., 2015; Liu et al., 2012]. Particulate RONO2 could serve as source of NOx in regions without major
anthropogenic NOx sources due to repartitioning of organic nitrates [Fry et al., 2013] into the gas phase or
release of NOx following heterogeneous reactions [Liu et al., 2012]. On the other hand, recent laboratory-based
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observations indicate that RONO2 might irreversibly condense on SOA [Perraud et al., 2012]. This would imply
that particulate RONO2 can serve as an important NOx sink.

Little is known about the properties of particulate organic nitrate with respect to both health risks and climate
effects. Direct climate effects of organic nitrates may arise from their absorbing properties, which could be
significantly higher than for SOA formed from OH or O3 initiated oxidation [Moise et al., 2015]. Similar to other
organic semivolatile vapors, organic nitrates can be expected to cocondense with water when aerosol
particles activate to cloud droplets [Topping et al., 2013], impacting aerosol indirect effects on climate. At
the median level, for all sites studied here organic nitrates suggest a comparable contribution to increasing
kappa as nitric acid (see supporting information and Figure S9) [Barley et al., 2011; Topping and McFiggans,
2012]. Such effects of organic nitrate condensation onto activating aerosol particles should be considered
alongside those from nitric acid in increasing the number concentration of cloud droplets. Through its forma-
tion by NO3 oxidation, and thereby its strong relation to anthropogenic NOx emissions, particulate organic
nitrates will be directly affected by NOx emission controls [Rollins et al., 2012] with the potential to decrease
specifically nighttime PM1 burdens in urban and rural sites in Europe.
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Erratum

In the originally published version of this article, minor calculation and typographical errors related to nitrate
results were discovered in Figure 3 and Supporting Information Tables S1 and S2. The errors have been
corrected and changes in the main text summarized below. This version may be considered the authoritative
version of record.

In section 4, “the mean fractional contribution of organic nitrates to organics was 46%” was changed to “the
mean fractional contribution of organic nitrates to organics was 42%”; “a contribution of organic nitrates to
non-refractory PM1 of between 5.6 and 51% (average 22%).” was changed to “a contribution of organic
nitrates to non-refractory PM1 of between 6 and 44% (average 21%).”; and “contribution of organic nitrates
to European PM1 organics of on average 46%.”was changed to “contribution of organic nitrates to European
PM1 organics of on average 42%.”
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