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ABSTRACT

Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary con-
ditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on
compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code
are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of
age.
Aims. We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of
the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of
temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The
inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection.
Methods. We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar
Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar
evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical
shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection
of well-converged statistics.
Results. To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the
convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to
one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We
find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of
convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of
convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact
of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger
convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the
convective turnover time. These results provide support for non-local aspects of convection.

Key words. methods: numerical – convection – stars: interiors – stars: low-mass – stars: evolution

1. Introduction

Because convection underlies the fundamental processes of heat
transport, mixing, shear, and the stellar dynamo, it also in-
fluences stellar evolution over long times. Studies of stellar
evolution typically use one-dimensional calculations that evolve
physical quantities dependent on the radial position interior to
a star. These studies model the impact of convection on other
physical quantities using one of the several variations of stellar
mixing length theory that depend on the local temperature gradi-
ent (e.g. Vitense 1953; Böhm-Vitense 1958; Abbett et al. 1997;
Trampedach 2010; Brandenburg 2015). Nevertheless, non-local
processes can significantly influence stellar convection (e.g.
Spruit 1997; Gough & Weiss 1976; Canuto & Dubovikov 1997).
Thus non-linear hydrodynamic convection simulations that in-
clude a whole star are a key step to improving our understanding
of stellar convection and eventually to improving models of stel-
lar evolution.

Whole-star simulations present considerable numerical chal-
lenges. For that reason, numerical studies of hydrodynamic and
magnetohydrodynamic convection are often performed in a sim-
ulation volume that is a spherical shell containing a portion of
a star (e.g. Gilman 1983; Cole et al. 2014; Yadav et al. 2013;
Käpylä et al. 2011a,b; Miesch et al. 2000; Grote & Busse 2001;
Quataert & Gruzinov 2000; Nelson et al. 2011; Simitev et al.
2011). A spherical shell refers simply to any portion of a spher-
ical domain that is limited both in angular and radial extent.
A spherical shell can be two-dimensional or three-dimensional,
and sometimes is called a spherical wedge. Several earlier works
(Cole et al. 2016; Mitra et al. 2009; Heimpel et al. 2005) have
studied the impact of the spherical-shell geometry and bound-
aries on the dynamo. The goal of this work is to produce a similar
study of the impact of the spherical-shell geometry on compress-
ible convection without the fundamental influence of magnetic
fields.

Although the impact of the spherical-shell geometry on com-
pressible convection has not been studied, much fundamental
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work has been done to study how far convective plumes over-
shoot the boundary into the stable region. Earlier work on
overshooting during compressible convection has concentrated
primarily on direct numerical simulation in a local domain
with Cartesian geometry in two (Roxburgh & Simmons 1993;
Hurlburt et al. 1994) and three dimensions (Ziegler & Rüdiger
2003; Brummell et al. 2002, 2010). Typically, a convectively
unstable layer is stacked on top of a stable layer. The struc-
ture of this model is formed using a piecewise continuous
two-layer polytropic stratification in the density, temperature,
and thermal diffusivity. Direct numerical simulations using
the anelastic approximation rather than compressible convec-
tion have also been performed in a two-dimensional cylindri-
cal geometry (Rogers & Glatzmaier 2005; Rogers et al. 2006);
these works used a realistic stellar stratification rather than a
polytropic stratification, but the thermal diffusivity was artifi-
cially increased. Several other early studies have produced large
eddy simulations, typically using a standard Smagorinsky sub-
grid scale model, in a local domain with Cartesian geometry
(Xie & Toomre 1993; Singh et al. 1995, 1998; Saikia et al. 2000;
Pal et al. 2007). Direct numerical simulation is a sensible choice
when the focus is dynamo action; when a magnetic field is
present, small-scale motions feed back on large-scale motions
in ways that are not completely understood (Miesch et al. 2015).
However when hydrodynamic convection is the focus, the largest
scales can potentially be the most important.

Because non-local effects of convection and coupling be-
tween physically different regions in a star may play a signif-
icant role in the basic character of convective processes (e.g.
Brun et al. 2011; Latour et al. 1981; Spruit 1997), the necessary
radial extent of the spherical shell is an open question. For practi-
cal reasons, simulations of stellar convection in a spherical shell
often include a minimal radial extent of a modeled convection
zone; neighboring, physically distinct zones of the star are ne-
glected, and closed boundary conditions are applied at the top
and bottom of this convectively unstable region of the star. In
this work we compare results obtained when the interaction be-
tween a central radiative zone and an interior convection zone,
and between an interior convection zone and near-surface lay-
ers is allowed. We allow or disallow this coupling either by in-
cluding these extra zones of the star in the spherical shell, or by
excluding them and applying a closed boundary condition. Our
motivation is to establish a physically reasonable position for the
spherical shell and treatment of the boundaries that can serve as a
basis for future studies of two- and three-dimensional convection
at the bottom of the stellar convection zone, and overshooting of
the boundary to the radiative zone.

In contrast to other solar and stellar simulations, the physical
model of a star that we study in this work only allows for convec-
tion; the possibility of studying additional physical effects such
as rotation, the effect of a tachocline, chemical mixing, or mag-
netic fields is intentionally omitted from the current study. This
simplifies the boundaries between the lower radiative zone, the
convection zone, and the near-surface layers. We study a proto-
typical model of a young, low-mass star: the young sun. The
stellar radius of our young sun model is approximately three
times larger than the current sun, it is one solar mass, and has
homogeneous chemical composition. The radial profiles of den-
sity and temperature for the young sun model are typical for a
pre-main sequence star that is no longer accreting and is grad-
ually contracting. The luminosity is increasing with the interior
radius of the star. Figure 1 sketches the radial structure of the
young sun model. A central radiative zone below a large con-
vection zone is expected based on the radial entropy profile and
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Fig. 1. Radial structure of our young sun model, showing the profiles
of the natural log of the pressure scale height hp, the temperature T ,
and density ρ. The pressure scale height and temperature are scaled by
arbitrary values in order to appear on the scale of this diagram. R is the
total radius of the young sun. Average radial widths shown for physical
zones are predicted by the young sun model calculated with the Lyon
stellar evolution code.

an evaluation of the Schwarzschild criterion. An overshooting
layer, where mixing of physically different flows from the radia-
tive and convection zones can take place, can only be defined
dynamically; this is discussed in detail in Sect. 4.3. More impor-
tantly for this work, the young sun model has a large convection
zone; it is convectively unstable over 1.2 × 1011 cm of the total
radius of 2.13 × 1011 cm. This large convective envelope al-
lows us to study deep stellar convection, far from the physically
complicated near-surface layers. We term the type of convection
analyzed in this work “stellar convection” because both the strat-
ification in the density and the temperature gradient that drives
the convection are non-uniform and are not linearly dependent
on the radius. We define the near-surface layers as the portion
of the star where the pressure scale height, hp = −p/(∂p/∂r),
drops dramatically. Further details of the young sun model are
discussed in Sect. 2.

The most thoroughly studied type of convection is
Rayleigh-Bénard convection, which is driven by a uniform
linear gradient of temperature, carefully controlled in a lab-
oratory environment. In Rayleigh-Bénard convection, patterns
can be identified (Bodenschatz et al. 2000; Weiß et al. 2012;
Emran & Schumacher 2015). In a star, the gradients of tempera-
ture and density are generally non-uniform and vary non-linearly
over the full stellar radius. The radial variation of temperature
and density for our young sun model is shown in Fig. 1. Al-
though coherent structures such as plumes and convection rolls
form during convection driven by non-uniform gradients, regular
patterns cannot be identified. Instead the diagnostics we use to
evaluate the impact of the spherical-shell geometry and bound-
aries are velocity statistics gathered over long periods of steady
convection.

This work is structured as follows. In Sect. 2 we discuss
the simulation framework by outlining the physical and numeri-
cal models used by the MUltidimensional Stellar Implicit Code
(MUSIC). In Sect. 3 we discuss the details of several spherical
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shells that we formulate. In Sect. 4 we compare simulations per-
formed in different spherical shells with different radial extents
on the basis of three different statistics related to the convective
velocities. In Sect. 5 we discuss the implications of these results
for our planned future work on deep stellar convection and con-
vective overshooting.

2. Simulations

Convection is typically modeled using one of three approaches:
the Boussinesq hydrodynamic equations, the anelastic hydrody-
namic equations, or the compressible hydrodynamic equations
(for a concise summary see Glatzmaier 2014). While the Boussi-
nesq and anelastic approximations are simpler and numerically
more efficient, there is reason to believe that these physical ap-
proximations could affect the realism of basic results in simu-
lations of a whole star (Lecoanet et al. 2014; Verhoeven et al.
2015). In this work we use the compressible hydrodynamic
equations.

The MUSIC code solves the inviscid compressible hydro-
dynamic equations for density ρ, momentum ρu, and internal
energy ρe:

∂

∂t
ρ = −∇ · (ρu), (1)

∂

∂t
ρu = −∇ · (ρuu) − ∇p + ρg, (2)

∂

∂t
ρe = −∇ · (ρeu) + p∇ · u + ∇ · (χ∇T ). (3)

Here the thermal conductivity χ = 16σT 3/3κρ is defined us-
ing the Stefan-Boltzmann constant σ and the Rosseland mean
opacity κ. The thermal conductivity is thus realistic to the
young sun model, and has not been enhanced (for exam-
ples of ways that the thermal conductivity may be enhanced,
see Browning et al. 2004; Rogers et al. 2006; Tian et al. 2009;
Strugarek et al. 2011). A major feature of our simulations is the
use of an equation of state and realistic opacities that are stan-
dard for one-dimensional stellar evolution calculations. Opaci-
ties are interpolated from the OPAL (Iglesias & Rogers 1996)
and Ferguson et al. (2005) tables, which cover a range of tem-
peratures suitable for the description of the entire structure of a
low-mass star. The compressible hydrodynamic Eqs. (1)−(3) are
closed by determining the gas pressure p(ρ, e) and temperature
T (ρ, e) from a tabulated equation of state for a solar composi-
tion mixture. This equation of state accounts for partial ioniza-
tion of atomic species by solving the Saha equation, and neglects
partial degeneracy of electrons; it is suitable for the description
of our solar model at a young age. The initial state for MU-
SIC simulations is produced using data extracted from a one-
dimensional model calculated from the Lyon stellar evolution
code (Baraffe & El Eid 1991; Baraffe et al. 1997, 1998), which
uses the same opacities and equation of state implemented in
MUSIC. In Eq. (2), g is the gravitational acceleration, a spheri-
cally symmetric vector identical to that used in the Lyon stellar
evolution code, and not evolved by our simulations. Thus MU-
SIC simulation results should contribute to the 321D link (Arnett
2014; Arnett & Meakin 2009), i.e. the effort to improve one-
dimensional stellar evolution models by studying critical short
phases using stellar hydrodynamics in two and three dimensions.

Early work to develop the MUSIC code was reported in de-
tail in Viallet et al. (2011, 2013). Time integration is implicit in
order to permit time steps larger than the Courant-Friedrichs-
Lewy (CFL) limit for time-explicit methods. Convergence of

an implicit scheme can be computationally demanding. In the
present study, the system of equations is discretized in time us-
ing a Crank-Nicolson scheme. To integrate the compressible hy-
drodynamic equations in time, a Jacobian free Newton-Krylov
(JFNK) solver (Knoll & Keyes 2004) is employed. Instead of
storing a Jacobian, a JFNK method uses matrix-vector products
that can be estimated efficiently with finite difference methods.
In MUSIC, a physics-based preconditioner (Park et al. 2009) tar-
gets the physical processes that cause the system to become stiff.
In practice, this preconditioning matrix is calculated as a semi-
implicit solution of the system (Viallet et al. 2016). In all simu-
lations in this work, we require a general CFL number to be less
than 10, while a CFL number based on simple advection is re-
stricted to 0.5. The time step calculated from these constraints
produces good convergence of relevant basic quantities, such
as average kinetic energy. The development of efficient implicit
solvers is the subject of on-going research (e.g. Chacón 2008;
Main & Farhat 2014; Alvarez Laguna et al. 2016).

The spatial discretization of Eqs. (1)−(3) is accomplished
using a staggered grid and a finite volume approach. Physical
quantities are interpolated to the grid using an upwind limited
interpolation similar to the Monotone Upwind Schemes for Con-
servation Laws (MUSCL) method (Thornber et al. 2008). This
method employs the well-known van Leer flux limiter (Roe
1986). MUSIC is designed as a large eddy simulation (LES). In
the present work no additional viscosity is applied either through
fixed coefficients or subgrid-scale modeling. This is a com-
mon tactic for astrophysical hydrodynamics, in order to obtain
the minimum possible dissipation (for a similar discussion see
Miesch et al. 2015). The MUSIC code has been benchmarked
(Goffrey et al. 2016) against standard hydrodynamic problems
that isolate fundamental physical mechanisms relevant to stel-
lar hydrodynamics, including an ideal Rayleigh-Taylor instabil-
ity, an ideal Kelvin-Helmholtz instability, and the Taylor-Green
vortex. For these standard hydrodynamic problems MUSIC pro-
duces the expected results, and exhibits the expected numerical
convergence properties.

3. Spherical-shell simulation volumes

3.1. Resolution

The compressible hydrodynamic Eqs. (1)−(3) are solved in a
two-dimensional spherical shell using spherical coordinates: ra-
dius r and colatitude θ. In studying the impact of the spher-
ical shell on compressible convection we examine only two-
dimensional convection. Two-dimensional convection is known
to produce higher velocity structures than three-dimensional
convection (see for example Meakin & Arnett 2007). Boundary
effects are also larger in two dimensions than in three. Thus a
study on the impact of boundary conditions and spherical shells
on two-dimensional convection is the extreme case, and our
results will also be relevant for three-dimensional convection
simulations.

We consider the suite of two-dimensional simulations of
spherical shell convection summarized in Table 1. In this table,
the radial position and extent of the spherical shell are shown
in units of the total stellar radius R. Most of the simulations
use a uniform grid characterized by a fixed radial spacing ∆r.
The low-resolution simulations (Low1-8) use radial grid spacing
∆r/R ≈ 2.8 × 10−3. The high-resolution simulations (Hi1-4) use
radial grid spacing ∆r/R ≈ 1.4×10−3. The extra-high-resolution
simulation ExH2 uses radial grid spacing ∆r/R = 7×10−4. Each
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Table 1. Parameters for two-dimensional hydrodynamic simulations of the young sun.

Inner radius (R) Outer radius (R) ro,top (R) wo (% R) τconv(106 s) Time span (τconv) Grid type

Low1 0.41 (small) 0.91 0.50 9.4 3.21 ± 2.10 358 uniform
Low2 0.31 (small) 0.91 0.44 3.7 1.52 ± 0.47 465 uniform
Low3 0.21 (medium) 0.94 0.45 4.0 1.40 ± 0.34 686 uniform
Low4 0.10 (large) 0.97 0.45 2.9 2.66 ± 0.75 338 uniform
Low5 0.21 (medium) 0.97 0.45 3.4 2.07 ± 0.32 330 uniform
Low6 0.10 (large) 0.94 0.45 4.2 1.61 ± 0.66 473 uniform
Low7 0.47 (none) 1.00 − − 1.29 ± 0.40 432 uniform
Low8 0.21 (medium) 1.00 0.44 2.6 1.88 ± 0.16 68 uniform
Low9 0.21 (medium) 1.00 0.47 7.7 0.88 ± 0.20 69 spliced
Hi1 0.24 (medium) 0.94 0.52 13.5 1.17 ± 0.12 157 uniform
Hi2 0.10 (large) 0.97 0.53 16.6 1.20 ± 0.15 85 uniform
Hi3 0.21 (medium) 0.97 0.51 11.3 1.08 ± 0.22 163 uniform
Hi4 0.21 (medium) 1.00 0.58 14.7 0.91 ± 0.23 49 uniform
Hi5 0.21 (medium) 1.00 0.54 13.1 0.72 ± 0.07 59 spliced
ExH2 0.10 (large) 0.97 0.56 15.1 0.91 ± 0.07 18 uniform

Notes. The inner and outer radius of the spherical shell are given in units of the total radius of the young sun R. The amount of the radiative zone
included is categorized in terms of a small, medium, or large amount, or none. Diagnostic results are summarized, including the outer radius ro,top
of the overshooting layer, the width of the overshooting layer wo, and the convective turnover time τconv. The total time span and the type of grid
used for each simulation is also indicated. The type of grid is linked to the type of boundary condition at the surface.

of these simulations that uses a uniform grid also uses a constant
energy flux across the upper surface.

To explore the impact of certain boundary conditions on the
energy, described in detail in Sect. 3.2, a higher resolution of
the near-surface layers is required. To accomplish this, the re-
maining two simulations (Low9 and Hi5) use a spliced grid. Our
spliced grid is composed of a uniform grid with fixed grid spac-
ing ∆r for r/R ≤ 0.94. In the near-surface layers, for r/R > 0.94,
a non-uniform grid that is decreasing radially toward the surface
is spliced on top of the uniform grid. The non-uniform portion
of the grid is defined by a geometric sequence ∆ri = ∆ri+1/1.05
(Geroux et al. 2016). The grid spacing in the uniform portion
of the grid in simulations Low9, and Hi5 is identical to that in
simulations Low1-8 and Hi1-4, respectively. The spliced grid of
simulation Hi5 allows for a resolution of ∆r/hp(r) ≈ 0.36 at
the surface; for comparison, the uniform grid in simulation Hi4,
has ∆r/hp(r) ≈ 0.67 at the surface. For either the spliced grid
or the uniform grid, our grid spacing in the near-surface layers
is too low to resolve the complex physics in these layers with
any precision. Our motivation for modeling these layers is solely
to provide a simple physically motivated open boundary condi-
tion (e.g. Käpylä et al. 2010; Cameron et al. 2011) on the interior
convection zone. Such an open boundary condition allows the
exchange of momentum, density, and thermal fluctuations with
other zones of the star; open boundary conditions are highly de-
sirable when dealing with large-scale flows.

The resolutions we employ are comparable to earlier LES
studies (e.g. Brun & Palacios 2009); we note that simulation
Hi2 has a total grid size of 608 × 512. By not pursuing ex-
tremely high-resolution simulations for this benchmarking study
of large-scale convection in a spherical-shell geometry, we are
able to simulate over long times. Because the one-dimensional
stellar evolution model of the young sun stops at the pho-
tosphere, defined by an optical depth τ = 2/3, our simula-
tions do not include the usual increase in entropy in the sta-
ble atmospheric layers (e.g. Magic, Z. 2016; Trampedach et al.
2014; Abbett et al. 1997). The preceding drop in entropy in
the near-surface layers is under-resolved. However, the entropy
jump at the bottom of the convection zone is resolved in our

simulations. The entropy profile for simulations Hi4 and Hi5
is shown in Fig. 2. Because the characteristic length scales, ve-
locities, and thermal diffusivity vary throughout the radius of a
star, the Rayleigh number and Reynolds number are not speci-
fied in a general sense for these simulations. We note that such
non-dimensional parameters can potentially affect convective
heat transport (Ahlers & Xu 2001; Kerr & Herring 2000) and
dynamo action (Simitev & Busse 2005). In MUSIC, numerical
truncation errors contribute to both the viscosity and thermal
diffusivity. In addition MUSIC simulations include an explicit
thermal diffusivity related to the thermal conductivity in Eq. (3)
so that the Prandtl number is everywhere less than one. The sim-
ulations possible with a code like MUSIC are still many orders
of magnitude away in parameter space from the highly turbulent
conditions likely to be found in realistic stellar convection zones.
The LES results should therefore be viewed merely as indicators
of the properties of realistic stellar flows.

3.2. Boundary conditions

Because the placement of boundaries and the choice of boundary
conditions affect the physical outcome of a hydrodynamic simu-
lation, we use boundary conditions that are targeted to maintain-
ing the original radial profiles of density and temperature. Each
simulation volume begins at 20◦ from the north pole, and ends
20◦ before the south pole. We impose periodicity on all physical
quantities at the boundaries in θ. Radial boundaries require more
sophisticated treatment. In velocity, we impose non-penetrative
and stress-free boundary conditions on the radial boundaries.

When the near-surface layers are included in the spherical
shell and resolved using a spliced grid, in simulations Low9
and Hi5, a blackbody radiation law is used on the outer radial
boundary. To radiate as a blackbody, the energy flux is allowed
to vary as σT 4

s , where σ is the Stefan-Boltzmann constant and
Ts(θ, t) is the temperature along the surface. This physically re-
alistic boundary condition can only be effectively used when
the steep temperature gradient near the surface is sufficiently
resolved; otherwise, it results in artificially high cooling rates.
In this work when a uniform grid is used, the energy flux and
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Fig. 2. Time-averaged radial profile, produced from a volume-weighted
average in the angular direction, of specific entropy in simulations Hi4
and Hi5. A heavy vertical black line marks the boundary between the
radiative and convection zones, determined from the radial profile of en-
tropy and the Schwarzschild criterion produced by the one-dimensional
stellar model. A gray vertical line marks the inner radial boundary of
the spherical shell at 0.21 of the stellar radius.

surface luminosity are held constant at the outer radial bound-
ary at the correct value of the energy flux at that radius in the
one-dimensional stellar evolution calculation; the surface lumi-
nosity of our model for the young sun is 2.32 times the luminos-
ity of our current sun. On the inner radial boundary the energy
flux is always held constant at the value indicated by the one-
dimensional stellar evolution data.

To treat the density, we use the hydrostatic equilibrium
boundary condition described by Grimm-Strele et al. (2015). In-
tegration of the equation for hydrostatic equilibrium produces
two possibilities for the density stratification:

ρ j(θ) = ρ0(θ) exp
(
−(r j − r0) g0/(dp/dρ)

)
, (4)

ρ j(θ) = ρ0(θ) exp
(
−(r j − r0)/hp

)
. (5)

Here j is a grid index in the boundary cells, with j = 0 indi-
cating the last radial cell inside the spherical shell. Equation (4)
assumes constant internal energy and constant radial accelera-
tion due to gravity in the boundary cells. Equation (5) assumes
a constant pressure scale height in the boundary cells. This type
of boundary condition assumes an ideal gas at the boundaries.

When the boundary condition does not closely match the
density stratification of the stellar model, an artificial boundary
layer develops near the simulation boundary. When the inner ra-
dial boundary of the spherical shell is in the radiative zone, we
impose a constant radial derivative on the density at this bound-
ary. A constant derivative is a comparatively simple boundary
condition, but for the young sun we find that it more accurately
and smoothly maintains the density stratification than using the
hydrostatic equilibrium boundary condition on the inner radial
boundary. When the inner radial boundary of the spherical shell
is in the convection zone, we impose the hydrostatic equilibrium
boundary condition on the density using Eq. (5). We find that in
the lower convection zone, this hydrostatic equilibrium boundary
condition minimizes the size of the boundary layer that would
otherwise develop.

At the outer radial boundary we find that the hydrostatic
equilibrium boundary conditions produce results indistinguish-
able from simply assuming a constant radial derivative for the
density. We apply a boundary condition on the density that main-
tains hydrostatic equilibrium using Eq. (4). The accuracy of a
particular boundary condition depends on the placement of the
boundary and the physics of the fluid flow near the boundary,
which are dictated by the spherical-shell geometry and the type
of star.

4. Results

4.1. Convective turnover time

The convective turnover time is a fundamental parameter pro-
duced in one-dimensional stellar evolution studies and used in
further modeling (e.g. Kim & Demarque 1996; Matt et al. 2015).
It can be defined in a variety of nearly equivalent ways (e.g.
Landin et al. 2010; Meakin & Arnett 2007). In this work we de-
fine a local convective turnover time at any position in our con-
vection zone as

τloc(r, θ, t) = hp(r, θ, t)/|v(r, θ, t)|. (6)

In this expression hp is the pressure scale height as a function
of position and time; |v| is simply the velocity magnitude. Our
stellar hydrodynamics model does not include rotation or mean
flows, and no mean flows result in our simulations; the velocity
magnitude in the convection zone is a purely convective velocity.
A global time scale τglobal can thus be defined from the local
convective turnover time by averaging over the entire convection
zone:

τglobal(t) =

∫ rmax

rmin

∫ θ1

θ2

dV(r, θ) τloc(r, θ, t)/
∫ rmax

rmin

∫ θ1

θ2

dV(r, θ). (7)

Here the integration is volume-weighted and V(r, θ) is a volume
element. The integration covers the convection zone between
rmin/R = 0.47 and rmax/R = 0.85, and the full angular extent
of our spherical shells. This lower limit is chosen as the deep-
est point within the convection zone of the young sun model
that appears to be unaffected by the changing dynamics near the
boundary of the radiative zone. The upper limit is chosen as a
point in the upper convection zone that is contained in all of our
spherical shells; in the upper convection zone the contribution to
the convective turnover time becomes small. In practice the vari-
ation of the pressure scale height in the angular direction and in
time is small; an expression based on an average of the pressure
scale height divided by the root-mean-square (rms) of the radial
velocity yields similar results to our definition in Eq. (7). How-
ever, capturing small variations is an objective of our simulations
and this motivates the form of Eq. (7). Ultimately, the convective
turnover time is time-averaged over the full time span of the sim-
ulation (see Table 1) to produce a single number representative
of convection in the star, i.e. τconv = 〈τglobal〉t, where the brackets
〈...〉t indicate a time average.

The radial profiles of 〈τloc〉t from simulations Low2 and Hi2
calculated using a volume-weighted average in θ are shown in
Fig. 3, and are compared with a result from the one-dimensional
Lyon stellar evolution code. The result from the one-dimensional
calculation uses a velocity produced by mixing length theory:
〈τloc〉t |1D ≡ hp/vMLT. Two-dimensional hydrodynamic calcu-
lations produce a radial profile with a shape similar to the
one-dimensional stellar evolution calculation. However, at the
bottom of the convection zone 〈τloc〉t initially decreases more
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Fig. 3. Radial profiles of the local convective turnover time 〈τloc〉t aver-
aged over the full simulation time in simulations Low2 and Hi2, com-
pared with the value obtained from the one-dimensional Lyon stellar
evolution code after dividing by a factor of 5. The shaded areas indicate
one standard deviation above and below each of these time-averaged
lines; the shaded areas are nearly identical for these two simulations.

sharply than 〈τloc〉t |1D. In the upper convection zone, the two-
dimensional hydrodynamic simulations display a radial profile
of 〈τloc〉t that is flatter and has a higher value. The magnitude
of 〈τloc〉t in the hydrodynamic calculations is smaller by approx-
imately a factor of 5 than 〈τloc〉t |1D. Because two-dimensional
simulations produce higher velocities than three-dimensional
simulations, we expect that the convective turnover time from
three-dimensional simulations will lie between the one- and two-
dimensional values.

Table 1 summarizes the average value τconv = 〈τglobal〉t, as
well as the standard deviation of τglobal(t). These statistics are
calculated from data sampled at a fixed time interval throughout
our statistically steady convection simulations. The standard de-
viation is used in this context as an error estimate on the mean.
In this table the total simulation time, i.e. the span of time in
steady-state convection for which each simulation has been fol-
lowed, is also indicated in units of the convective turnover time.
The values of τconv for simulations Low1-9 are slightly higher
than for simulations Hi1-5. This reflects that lower velocities re-
sult from lower resolution simulations where numerical dissipa-
tion is larger. For both sets of simulations Low1-9 and Hi1-5,
τconv is on the order of 106 s. The one-dimensional Lyon stellar
evolution code produces a longer convective turnover time on
the order of 5 × 106 s.

To understand this difference between the time-averaged val-
ues of τconv, it is useful to analyze the spread of τglobal sam-
pled at a fixed time interval on the order of τconv/103 during
our simulations. Figure 4 shows the full spread of this data as
a box plot. In the left panel of this figure, simulations Low1-9
are shown on the vertical axis, while the spread of τglobal data
is shown on the horizontal axis. The high value produced by the
one-dimensional Lyon stellar evolution code is only occasionally
reached. In the right panel of this figure, similar box plots are
shown for higher resolution simulations Hi1-5. By comparing
simulations with identical grid spacing, we eliminated the effect
of resolution. We are then able to observe that, although differ-
ent spherical shells of the star are covered, the data sets of τglobal
strongly overlap. We also observe that simulation Low1, which

includes the boundary at the bottom of the convection zone, but
does not include the radiative zone, experiences a larger variation
in time for τglobal than do simulations that include the radiative
zone.

4.2. Radial structure and amplitude of convective velocities
in the young sun

In our model of the young sun, steady convection is character-
ized by wide regions of upflow velocity, and thinner regions with
faster downflows. In contrast to three-dimensional convection, in
two dimensions the convection rolls are all aligned. Figure 5 il-
lustrates this structure in the radial velocity for simulations Hi1
and Hi2. Simulation Hi2 includes more of the near-surface lay-
ers and more of the radiative zone than simulation Hi1. From
this figure it is clear that Hi2 has developed small-scale convec-
tion in the near-surface layers that is absent in simulation Hi1.
The additional extent of the radiative zone permits the growth of
more waves in the radiative zone of simulation Hi2. However,
the structure of flows in the bulk of the convection zone are not
visibly distinguishable between simulations Hi1 and Hi2.

Radial positions of convection rolls are time dependent.
Therefore it is meaningful to examine radial profiles of the time
average of the rms velocity 〈vrms〉t which can be conveniently
linked with helioseismology data and predictions from mixing
length theory (e.g. Miesch et al. 2012). These radial profiles of
velocity can provide details about the dynamic radial structure
of the young sun.

4.2.1. Coupling to a central radiative zone: impact on velocity

The left panel of Fig. 6 compares the time-averaged rms velocity
as a function of radius in the deep stellar interior for four sim-
ulations that include different extents of the radiative zone, but
all exclude the near-surface layers. In the portion of the radiative
zone we consider, which spans approximately 0.1 < r/R < 0.42,
discrete large amplitude waves are destabilized. These waves
propagate in the angular direction and can survive for long times;
similar waves are identified by Alvan et al. (2015) as possible
gravity waves. Simulations Low4 and Low6, which include a
large extent of the radiative zone, display waves of particularly
large amplitude in the radiative zone. However the amplitude of
these waves does not appear to consistently increase with the ex-
tent of the radiative zone that is included in the spherical shell
for simulations Low1-9. In addition, waves of similarly large
amplitude are not present in the radiative zone of simulations
Hi2 or ExH2, which are higher resolution but otherwise iden-
tical to simulation Low4. The length of time of the simulation
appears to be critical; the tens of convective turnover times of
simulations Hi2 or ExH2 may not be a sufficient amount of time
to observe the excitation of large amplitude waves. We speculate
that the large amplitude of these waves may be produced during
intermittent events. We also observe no clear correlation in our
simulations between the amplitudes of the waves in the radiative
zone and the amplitude of 〈vrms〉t in the lower convection zone.

Although the extent of the radiative zone included in the sim-
ulations in the left panel of Fig. 6 is different, the radial pro-
files of 〈vrms〉t are remarkably similar in the convection zone.
The bottom of the convection zone, indicated by a heavy ver-
tical line, is calculated from the entropy profile produced by the
one-dimensional Lyon stellar evolution code. Above this bound-
ary, 〈vrms〉t smoothly rises to a maximum in each simulation. This
maximum in the time-averaged rms velocity lies approximately
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Fig. 4. Standard Tukey box plot of the global time scale τglobal sampled at a fixed time interval throughout the simulations (left) Low1-9 and (right)
Hi1-5. A box plot (e.g. Spitzer et al. 2014; McGill et al. 1978) is designed to show characteristics of the spread of the data. The line in the middle
of the box is the median. The box itself represents the middle 50% of the data, so that the edges are the 25th and 75th percentiles. The whiskers,
i.e. error bars, represent the extent of the data when outliers are discounted. Outliers are represented by circles. For a Tukey box plot, outliers are
defined as data that lie farther than 1.5 times the interquartile range from the box. The vertical black line at 5 × 106 s marks the value of τconv that
we obtain from mixing length theory.

in the range 200 m/s to 300 m/s for these four simulations.
Throughout the rest of the convection zone, the time-averaged
rms velocity remains relatively flat. The near-surface layers are
omitted from these simulations and are not shown on this plot.
An area containing one standard deviation above and below the
time-average for simulation Low2 is shaded. Because the aver-
age values lie within a standard deviation of each other, we con-
sider the dynamics of these four simulations to be indistinguish-
able. We conclude that, as long as the boundary at the bottom
of the convection zone is included, the convective dynamics are
largely unaffected by the extent of the radiative zone included in
the spherical shell.

The right panel of Fig. 6 shows the radial profile of 〈vrms〉t for
simulations Low7 and Low8. These two simulations include the
near-surface layers and are identical except that Low7 does not
include the boundary at the bottom of the convection zone. Elim-
inating this natural boundary clearly results in a significantly ele-
vated profile of the time-averaged rms velocity in the lower con-
vection zone. We observe that when some extent of the radiative
zone is included in the simulation, the radiative zone appears to
act as an energetic buffer. Energy from convective motions that
reach the radiative boundary may contribute to waves in the ra-
diative zone. In simulation Low7, where the radiative boundary
is not included, all ballistic motions are simply reflected back
into the convection zone. Higher velocity structures in the con-
vection zone result.

We conjecture that this result could vary for different stellar
models. A peculiarity of our young sun model is that the en-
ergy flux changes with the radius. Because Low7 and Low8 use

boundary conditions consistent with the radial profile of energy
flux in the young sun model, the energy flux through their lower
boundaries is not identical. Placing the boundaries in different
physical zones could lead to different energy build-up.

There is a difference of approximately a factor of 5 between
the time-averaged rms velocity produced in our two-dimensional
hydrodynamics simulations and the mixing length theory veloc-
ity used in the one-dimensional calculation. This observation is
not independent of the factor of 5 found in our comparison of
convective turnover times in Sect. 4.1. The pressure scale height
is used to produce the convective turnover time from the rms
velocity; however the pressure scale height is indistinguishable
between one- and two-dimensional simulations over the times
we examine.

4.2.2. Coupling to the near-surface layers: impact on velocity

The left panel of Fig. 7 compares the amplitude of time-averaged
rms velocities in the stellar interior for two simulations that in-
clude the near-surface layers, Low8 and Low9. These simula-
tions use identical simulation volumes, but differ in how well
the near-surface layers are resolved; simulation Low9 uses the
spliced grid where grid spacing decreases in the near-surface
layers, with the result that the grid spacing near the surface is
approximately half the size of that in simulation Low8. In ad-
dition, simulation Low9 is allowed to radiate heat dependent on
the local temperature on the boundary, i.e. in a non-spherically
symmetric way, as discussed in Sect. 3.2. The different treatment
of the near-surface layers has a significant impact on convective
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Fig. 5. Instantaneous radial velocity in simulations of the young sun. The left panel shows a typical snapshot from simulation Hi1, which excludes
the near-surface layers and the lower radiative zone. The right panel is typical of simulation Hi2, which includes a large extent of the radiative
zone. Small-scale convective motions are clearly visible in the near-surface layers of simulation Hi2. These simulations have identical temperature
and density profiles, grid spacing, and boundary conditions. They are both visualized during steady convection. The sole difference is the position
of the simulation boundaries in the radial direction. The color schemes are identical: blue indicates an inward flow, while red indicates an outward
flow.
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Fig. 6. Left: time-averaged radial profile of rms velocity in four low-resolution simulations that exclude the near-surface layers but include a
different extent of the radiative zone. Right: time-averaged radial profile of rms velocity in simulations Low7 and Low8, that include the near-
surface layers up to the surface at r/R = 1.0. The shaded areas indicate one standard deviation above and below the time-averaged lines; in the left
panel the shaded area for simulation Low2 is shown. A heavy vertical black line marks the boundary between the radiative and convection zones,
calculated from the radial profile of entropy produced by the one-dimensional stellar evolution calculation and the Schwarzschild criterion. Gray
vertical lines mark the inner radial boundary of the spherical-shell simulation volume for each simulation shown.
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Fig. 7. Time-averaged radial profile of rms velocity in simulations Low8 and Low9 (left) which include the near-surface layers up to the surface
at r/R = 1.0, and simulations Hi4 and Hi5 (right). The shaded areas indicate one standard deviation above and below each time-averaged line.
A heavy vertical black line marks the boundary between the radiative and convection zones, calculated from the radial profile of entropy and the
Schwarzschild criterion. Gray vertical lines mark the inner radial boundary of the spherical-shell simulation volume for each simulation shown.

velocities throughout the convection zone, in line with the pre-
dictions of Spruit (1997). The maximum of 〈vrms〉t at the bottom
of the convection zone is almost twice as large in simulation
Low9 as in Low8. The shaded areas that indicate one standard
deviation above and below the time averages for Low8 and Low9
do not overlap. Aside from the difference in velocity magnitude
throughout the convection zone, the profiles of 〈vrms〉t exhibit
a similar shape in simulations Low8 and Low9, indicating that
the radial structure of stellar convection is preserved. Although
distinctly different stars are produced by simulations Low8 and
Low9, the approximate shape of the radial profile of 〈vrms〉t in
the upper convection zone is similar. This trend of increasing
rms velocity with radius can also be compared to results pro-
duced for the current sun by the ASH, MURaM, and STAGGER
codes (see Fig. 4 of Miesch et al. 2012).

The right panel of Fig. 7 compares the radial profile of time-
averaged rms velocity in simulations Hi4 and Hi5. Simulation
Hi5 has the same treatment of the surface layers as simulation
Low9, using a spliced grid to better resolve the temperature gra-
dient in the near-surface layers in order to allow energy to radiate
as blackbody radiation. Simulation Hi4 is identical to simulation
Low8, but uses double the grid-size. Although simulation Hi4
experiences a faster rise in rms velocity in the upper convection
zone than simulation Hi5, a larger magnitude of time-averaged
rms velocity is observed throughout the lower convection zone
for simulation Hi5 than for simulation Hi4. In comparison with
the left panel of Fig. 7, the simulations in the right panel show
that, in the lower convection zone, a higher velocity is gener-
ally produced when the grid spacing is reduced. This occurs
because we use only numerical dissipation of the velocity, which
is reduced with higher resolution. Aside from this difference in
amplitude, we find that properties of the flow in the lower con-
vection zone produce a comparable form for the radial structure
of the overshoot region, for the resolutions we are able to inves-
tigate. This is reassuring for future efforts to numerically study
overshooting at the lower boundary of the convection zone. The
differences observed in the upper convection zone are under-
standable because the treatment of the surface clearly affects the
character of surface convection.

4.3. Overshooting layer width

Large-scale convective motions behave ballistically, terminating
at a range of radial points near the boundary with the convec-
tively stable radiative zone. This situation can be classified as
either convective overshooting or convective penetration, a dis-
tinction based on the impact that the convective flow has on
the physics of the radiative zone (Brummell et al. 2002; Maeder
2009; Zahn 1991). In our simulations, we use a realistic thermal
diffusivity identical to that used in the one-dimensional stellar
evolution calculation and that has not been artificially enhanced.
Because of this, our simulations are in the large Péclet number
regime in the deep stellar interior, and penetrative convection can
be expected at the lower boundary of the convection zone. Simu-
lations at large Péclet numbers in deep stellar interiors have been
reported by Meakin & Arnett (2007) and Viallet et al. (2015).

An aspect of the dynamic structure of a star that results from
the dynamic coupling across the boundary between the radiative
zone and convection zones is the width of the overshooting
layer. The width of the overshooting layer is sometimes called
an overshooting length, and is related to an overshooting param-
eter in one-dimensional simulations (e.g. Schröder et al. 1997;
Zhang & Li 2012; Renzini 1987). Overshooting establishes a
layer between the stable radiative zone and the convection zone
where convective motions mix into a more quiescent fluid. The
physics of this layer has interesting implications for the stel-
lar chemistry, stellar evolution, and magnetic field generation
(Marik & Petrovay 2002; Marques et al. 2006; Tian et al. 2009).
We do not address the physics of the overshooting layer in this
work aside from evaluating its width. The overshooting layer
width that we calculate here is a convenient measure that can be
benchmarked for simulations in different spherical shells; it is
not the same as the overshooting length used in one-dimensional
stellar evolution calculations. The width of the overshooting
layer can only be defined from a long-time average of the dy-
namics, which quantifies the interaction between the convection
and radiative zones.

To evaluate the sensitivity of the overshooting layer to the
spherical-shell geometry and boundary conditions, we adopt one
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Fig. 8. Left: overshooting layer in simulation Hi1 represented by the shaded area between the radii of ro,top and ro,bot. The heavy vertical line
shows the position of the boundary between the radiative and convection zones, indicated by the entropy profile produced by the one-dimensional
stellar evolution calculation. The full line shows the enthalpy flux, scaled by the magnitude of the large negative peak. The dashed line shows the
Schwarzschild discriminant S (r), scaled to appear on this graph. Right: Schwarzschild discriminant in simulations Hi4 and Hi5, compared with
the value obtained from the one-dimensional model of the young sun.

possible method for calculating a width for the overshooting
layer described in Brun et al. (2011) and Browning et al. (2004).
We define the overshooting layer width as

wo = ro,top − ro,bot, (8)

where ro,top is the radius at the top of the overshooting layer, de-
fined as the point where the time average of the enthalpy flux first
changes sign. In Table 1, ro,top is listed for each simulation. The
bottom of the overshooting layer, ro,bot, is defined as the radius in
the radiative zone where the enthalpy flux becomes negligible. In
practice ro,bot is also the point where waves in the radiative zone
begin to impact the radial profile of time-averaged enthalpy flux.
We define the enthalpy flux following Freytag et al. (1996)

FH = 〈Hρvr〉 − 〈H〉〈ρvr〉, (9)

where the enthalpy H = e + P/ρ is calculated in the stan-
dard way in terms of the pressure P, density ρ, and inter-
nal energy e. The second term in Eq. (9) subtracts the ef-
fect of any bulk mass flow, which is typically small. The en-
thalpy flux in the region surrounding the overshooting layer is
illustrated in the left panel of Fig. 8 for simulation Hi1. Both
ro,top and ro,bot are labeled in this figure. The Schwarzschild
discriminant S (r) = ∇ad − ∇ is also shown in Fig. 8 for
simulation Hi1, as well as for simulations Hi4 and Hi5. In
the Schwarzschild discriminant, the so-called adiabatic gradi-
ent ∇ad =

∣∣∣∂ log T/∂ log P
∣∣∣
ad is calculated using the equation

of state. The local gradient ∇ =
∣∣∣∂ log T/∂ log P

∣∣∣ is calculated
from our hydrodynamic simulations and appropriately averaged.
The Schwarzschild criterion amounts to the statement that the
Schwarzschild discriminant, S (r), must be greater than zero
for stability against convection (Osterbrock & Schwarzschild
1958; Lebovitz 1965). We see small deviations from the one-
dimensional profile in the Schwarzschild discriminant in these
figures. We do not expect that these small deviations are due
to convective penetration because of the limited time that the
simulations are observed in comparison with the time scale for

thermal evolution at this depth. The small differences possibly
stem from two-dimensional fluid effects and the low resolution
of the fluid simulations compared to the one-dimensional stellar
evolution calculation.

The overshooting layer width, wo, for each simulation is
given in Table 1 as a percentage of the total stellar radius R. For
simulations Low1-9, the overshooting layer width is typically
about 4% of the young sun’s radius, or 0.21hp at the boundary to
the radiative zone; for the higher resolution simulations Hi1-5, it
is approximately 14% of the young sun’s radius, or 0.76hp. Intu-
itively, the width of the overshooting layer is linked to the veloc-
ity amplitude. The difference in the overshooting layer width that
we observe in simulations of different resolution clearly reflects
the different velocity of convection rolls in the convection zone,
and indicates a higher level of interaction between these zones
when higher velocities are present. This relationship is shown in
Fig. 9; the degree of certainty for the largest overshooting layer
widths recorded in this figure are low, because they correspond
to high-resolution simulations that were performed for compara-
tively short times. Beyond this link to local velocity amplitudes,
the overshooting layer width appears to be independent of the
spherical-shell geometry and boundary conditions.

When the overshooting layer width is larger, its growth is
not centered around the boundary where the Schwarzschild cri-
terion indicates stability. It begins substantially higher in the con-
vection zone and expands proportionately less into the radiative
zone. For Low1-9 we measure ro,bot/R ≈ 0.41, while for simu-
lations Hi1-5 this value is ro,bot/R ≈ 0.39. We observe that the
inner radial boundary of simulation Low1 is identical to ro,bot;
this likely affects the unusually large overshooting layer width
in this simulation.

5. Summary and discussion

We have examined how the extent of a two-dimensional spheri-
cal shell, and therefore the boundary conditions imposed on an
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Fig. 9. Overshooting layer width defined in Eq. (8) vs. the maximum
of the time-averaged rms velocity above the radiative zone boundary in
the overshooting layer. A local polynomial fit to the data is also shown.

interior convection zone, affect the characteristics of compress-
ible convection. A spherical shell that extends deeper into the
central radiative zone is used to analyze the impact of a phys-
ically motivated open boundary condition on the inner radius
of the convection zone. A spherical shell that extends into the
near-surface layers is used to analyze the impact of an open
boundary condition on the outer radius of the convection zone.
In the non-local theory of stellar convection, coupling between
different zones of a star is expected to strongly influence stellar
dynamics.

The results of our numerical experiments show that indeed
this kind of coupling can affect the amplitude of the convective
velocities that evolve throughout the convection zone. The inclu-
sion of the radiative zone as an inner radiative boundary on the
convection zone produces a lower velocity of convection rolls
throughout the convection zone. The presence of small-scale
convection in modeled near-surface layers also affects the am-
plitude of convection rolls throughout the convection zone. The
combined effect of spherical-shell geometry and boundary treat-
ment can result in a difference greater than a factor of two in our
velocity data. Thus, even though the flows in our modeled near-
surface layers are not well resolved, we do observe a non-local
effect in agreement with Spruit (1997). To resolve the flows in
the near-surface layers well and to allow more accurate coupling
with the convection zone, adaptive mesh refinement is a promis-
ing tactic; this is a development direction that we are pursuing.
Along with an increase in the amplitude of convective velocities,
a predictable increase in the width of the overshooting layer, and
a decrease in the convective turnover time is generally observed.

The salient aspect of these results for our ongoing studies
of three-dimensional convective overshoot is that, although cou-
pling between different zones changes the amplitude of convec-
tive velocities, the radial structure of the convective dynamics in
the young sun maintains a strikingly similar profile, in particular
in the overshoot region. Thus, a simulation that comprises accu-
rate modeling of the near-surface layers of the young sun will

be able to produce results for deep convective processes physi-
cally similar to simpler models. These results will be relevant to
a lower velocity regime, but can still contribute in critical ways
to the 321D link. In general the results from simulations may
be more realistic if the region of interest is far from the surface,
such as fluid and chemical mixing, shear-flows in a deep interior,
or overshooting at the lower boundary of the convection zone.

This work has focused on analyzing the spherical-shell ge-
ometry and boundary conditions. In summary, we obtain two
helpful observations: (1) that coupling between different zones
in the young sun model changes the amplitude of dynamic quan-
tities; but (2) the dynamic structure of the star is not affected.
The simulations we analyze in this work are two-dimensional
and focus exclusively on large-scale stellar flows. We therefore
refrain from physical conclusions broader than the impact of the
spherical-shell geometry and boundary conditions. A focused,
more complete study of convection and convective overshoot-
ing in the young sun, including three-dimensional simulations,
is planned based on these results. A broader physical discussion
of convection may await those calculations.
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