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ABSTRACT
We assess the effectiveness of the Jeans Anisotropic Multi-Gaussian Expansion (JAM) tech-
nique with a state-of-the-art cosmological hydrodynamic simulation, the Illustris project. We
perform JAM modelling on 1413 simulated galaxies with stellar mass M∗ > 1010 M�, and
construct an axisymmetric dynamical model for each galaxy. Combined with a Markov chain
Monte Carlo simulation, we recover the projected root-mean-square velocity (Vrms) field of
the stellar component, and investigate constraints on the stellar mass-to-light ratio, M∗/L, and
the fraction of dark matter fDM within 2.5 effective radii (Re). We find that the enclosed total
mass within 2.5 Re is well constrained to within 10 per cent. However, there is a degeneracy
between the dark matter and stellar components with correspondingly larger individual errors.
The 1σ scatter in the recovered M∗/L is 30–40 per cent of the true value. The accuracy of
the recovery of M∗/L depends on the triaxial shape of a galaxy. There is no significant bias
for oblate galaxies, while for prolate galaxies the JAM-recovered stellar mass is on average
18 per cent higher than the input values. We also find that higher image resolutions alleviate the
dark matter and stellar mass degeneracy and yield systematically better parameter recovery.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –
galaxies: structure – dark matter.

1 IN T RO D U C T I O N

With the increasing availability of integral field units (IFUs), more
and more nearby galaxies with IFU data are becoming available,
e.g. ATLAS3D (Cappellari et al. 2011), Calar Alto Legacy Integral
Field Area Survey (CALIFA; Sánchez et al. 2012), Sydney-AAO
Multi-object Integral-field spectrograph (SAMI; Bryant et al. 2015),
Mapping Nearby Galaxies at APO (MaNGA; Bundy et al. 2015).
The kinematic information so offered can be used with dynami-
cal modelling techniques to investigate stellar kinematics, galaxy
structure, galaxy evolution, merger processes, mass distributions,
and so on. Existing methods for constructing dynamical models in-
clude distribution-function-based methods (e.g. Binney 2010; Bovy

� E-mail: hyli@nao.cas.cn (HL); ranl@bao.ac.cn (RL)

2014), orbit methods based on Schwarzschild (1979) (e.g. as imple-
mented in Zhao 1996; Häfner et al. 2000; van den Bosch et al. 2008;
Wang et al. 2013), particle method based on Syer & Tremaine (1996)
(e.g. as implemented in de Lorenzi et al. 2007; Long & Mao 2010;
Hunt & Kawata 2013; Zhu et al. 2014), and moment-based methods
(e.g. Cappellari 2008), which find solutions of the Jeans equations.
Clearly there will be existing methods which do not fit neatly in
to this categorization: for example, two particle-based methods not
based on Syer & Tremaine (1996) are Yurin & Springel (2014)
and Rodionov, Athanassoula & Sotnikova (2009). Each method has
its own strengths and can be applied under different conditions.
For action-angle-based distribution functions, it depends on hav-
ing the ability to find the actions (Sanders & Evans 2015). Orbit-
or particle-based methods are more accurate and flexible, but are
time consuming and challenging to apply to large samples (e.g. for
MaNGA, there will be ∼10000 galaxies available by the end of the
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survey). In order to take advantage of a large sample and obtain sta-
tistical results, a moment-based method like the Jeans Anisotropic
Multi-Gaussian Expansion (JAM) method (Cappellari 2008) may
be a good compromise, at least in terms of balancing computational
efficiency against potentially restrictive scientific assumptions.

The JAM method has already been applied in many studies.
In the Spectroscopic Areal Unit for Research on Optical Nebulae
(SAURON) project (de Zeeuw et al. 2002), it was used to study, for
example, galaxy inclination, mass-to-light ratio (Cappellari 2008),
and escape velocity in early-type galaxies (Scott et al. 2009). In
ATLAS3D (Cappellari et al. 2011), dark matter was also included to
study both the stellar mass-to-light ratio and the dark matter fraction
for galaxies (Cappellari et al. 2013). The stellar initial mass func-
tion (IMF) has also been constrained by the stellar mass-to-light
ratio predicted by the JAM method (Cappellari et al. 2012). Simi-
larly, in Barnabè et al. (2012) and Barnabè, Spiniello & Koopmans
(2015), JAM modelling was combined with gravitational lensing to
investigate the IMF.

While the JAM technique has been extensively used, its accu-
racy is not well understood. It may have potential biases and large
scatters in the parameters being estimated. A good way to assess
JAM is using simulated galaxies with known results. In Lablanche
et al. (2012), they studied the effect of applying axisymmetrical
models to non-symmetrical systems, and obtained accuracies for
some of their parameters. However, they did not include dark mat-
ter in their models, and the mock galaxies they used were not taken
from a cosmological simulation with extensive subgrid physics. In
reality, galactic structures are complex, and testing with more re-
alistic scenarios and wide ranges of galaxy properties is needed –
thus, the use of cosmologically simulated galaxies in this paper. A
similar test has been performed for the Schwarzschild modelling in
Thomas et al. (2007a), and the results have been applied to Coma
galaxies (Thomas et al. 2007b). In Thomas et al. (2007a), they use
merger remnants as mock galaxies to test the accuracy of the re-
covered stellar mass-to-light ratio, total mass, and their dependence
on the viewing angle and galaxy triaxial shape (see Section 5 for
comparisons with our results).

The structure of the paper is as follows. In Section 2, we give a
brief introduction to the simulations and the mock data. In Section 3,
we introduce the JAM method. In Section 4, we show our results
on the bias and degeneracy in M∗/L and fDM(2.5 Re) (the fraction
of dark matter enclosed within 2.5 Re). We summarize and discuss
our results in Sections 5 and 6.

2 SI M U L ATI O N S A N D M O C K G A L A X I E S

2.1 The Illustris simulation

The Illustris project (Genel et al. 2014; Vogelsberger et al. 2014a,b;
Nelson et al. 2015) comprises a suite of cosmological hydrodynamic
simulations carried out with the moving mesh code AREPO (Springel
2010). The hydrodynamical simulation evolves the baryon compo-
nent with using a number of sophisticated submodels including star
formation (Springel & Hernquist 2003), gas recycling, chemical en-
richment, primordial cooling (Katz, Weinberg & Hernquist 1996),
metal-line cooling, supernova feedback, and supermassive black
holes with their associated feedback (Di Matteo, Springel & Hern-
quist 2005; Springel, Di Matteo & Hernquist 2005; Sijacki et al.
2007). For complete details, the reader is referred to Vogelsberger
et al. (2013). The Illustris simulations reproduce various observa-
tional results, such as the galaxy luminosity function, star formation
rate to mass main sequence, and the Tully–Fisher relation (Torrey

et al. 2014). The galaxy morphology type fractions as a function of
stellar mass and environment also agree roughly with observations
(Vogelsberger et al. 2014b; Snyder et al. 2015).

In this work, we use the largest simulation (Illustris-1
L75n1820FP) in the Illustris project which contains 18203 dark
matter particles and approximately 18203 gas cells or stellar par-
ticles. The snapshot that we use is at redshift 0. The simulation
follows the evolution of the Universe in a box of 106.5 Mpc on a
side, from z = 46 to 0. The softening lengths for the dark matter
and baryon components are 1420 and 710 pc, respectively. The cos-
mological parameters adopted in the simulations are �m = 0.2726,
�L = 0.7274, σ 8 = 0.809, h = 0.704, and ns = 0.963 (Vogelsberger
et al. 2014a).

2.2 Mock galaxies

In this section we describe how we select our sample and extract
the properties of the simulated galaxies. As we aim to assess the
validity of the JAM method, we create ideal observational data to
enable us to concentrate on JAM and ignore non-JAM matters. This
means we do not incorporate any observational effects (e.g. stellar
population, seeing, dust extinction). We describe first the extraction
process, since a failed extraction means the galaxy cannot be part
of the sample, and then the sample selection itself.

First we construct a galaxy’s kinematic map as well as its ob-
served image by projecting the galaxy’s stellar particles on to two-
dimensional grid cells with grid cell size equal to 2 h−1 kpc. The
mean velocity and velocity dispersion are obtained by calculating
the stellar-mass-weighted mean and standard deviation of the line-
of-sight velocity for stellar particles in each grid cell. The stellar
surface mass density in each grid cell is calculated by dividing the
total mass in the cell by the cell area. We then convert this surface
density map into a brightness map by setting the M∗/L ≡ 1 for all
cells. It is worth noting that such a unity M∗/L is the reference
value of the stellar mass-to-light ratio parameter in the JAM mod-
els of our mock galaxies (see Section 3.2). The surface brightness
maps are used to provide the light distribution which is used to de-
rive the stellar mass density as well in solving the Jeans equations.
Therefore the resolution of these maps can have a crucial effect on
the accuracy of the JAM method. In order to test the effect of sur-
face brightness image resolution, we also use another grid with grid
cell size equal to 0.5 h−1 kpc for calculating the brightness map.
We refer to these maps as the high resolution. The grid cell size
for kinematic data is always 2 h−1 kpc regardless of the different
brightness image resolutions.

The observables (surface brightness map, kinematic map) derived
above are used as inputs to a galaxy’s JAM modelling in order to
put constraints on other galaxy properties. To assess the accuracy of
JAM recovered parameters, we need to calculate the true parameter
values of the properties of our mock galaxies. The radial distribution
of dark matter, stellar and total mass, and that of the dark matter
fraction are all derived by averaging particle distributions within
shells assuming spherical symmetry of the galaxy. Then we fit the
dark matter density profile using a generalized Navarro–Frenk–
White (NFW) model (see Section 3.1) to obtain the true dark matter
parameters.

The true shape and inclination angle for each mock galaxy are
derived with the reduced inertia tensor method as implemented by
Allgood et al. (2006). The tensor is defined as

Ii,j =
∑
k∈V

x
(k)
i x

(k)
j

r2
k

, (1)
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Figure 1. Lower: distribution of triaxiality parameter T = a2−b2

a2−c2 . Oblate
galaxies have T < 0.3, while prolate galaxies have T > 0.7. Upper: axis ratio
b/a versus c/a, the red dashed lines show the T = 0.3 and 0.7 dividing lines.

where rk is the distance measure from the centre of mass to the
kth particle, x

(k)
i is the ith coordinate of the kth particle, and V

is the set of particles of interest. Assuming that a galaxy can be
represented by ellipsoids of axis lengths a ≥ b ≥ c, the axis ratios
q = b/a and s = c/a are the ratios of the square-roots of the
eigenvalues of I, and the directions of the principal axes are given
by the corresponding eigenvectors. Initially the set V is given by all
particles located inside a sphere with radius equal to 2.5 Re which is
reshaped iteratively using the eigenvalues of I. The distance measure
is defined as r2

k = x2
k + y2

k /q
2 + z2

k/s
2, where q and s are updated

in each iteration. The inclination angle i of a galaxy is defined to be
the angle between the shortest axis and the line-of-sight direction
(i = 90◦ for edge-on).

Having determined a galaxy’s shape, we define x, y, z axes cor-
responding to the axis lengths a, b, c (a > b > c) and calculate the
true βz using mass weighted velocity moments (see Section 3.2).

For all galaxies, we use the bootstrap method to estimate the true
errors for every parameter. They are found to be small relative to the
JAM errors and thus do not have a significant effect on our results.

We use the triaxiality parameter T ≡ a2−b2

a2−c2 (Binney & Tremaine
2008) to describe the triaxial shape of a galaxy. About 52 per cent
of the galaxies in our sample are oblate (with T < 0.3), and about
15 per cent of the galaxies are prolate (T > 0.7). The values of 0.3 and
0.7 are used to separate the oblate galaxies from the prolate galaxies.
The precise values are not too important and do not significantly
alter our results. The distribution of triaxiality parameter values for
all the galaxies are shown in Fig. 1. The shape distribution depends
on the mass, and we will return to this point later in Section 4.2.3.

In observational work, the Sérsic index (Sérsic 1963) is often used
to separate early- and late-type galaxies. We calculate the Sérsic
index nSersic for our Illustris galaxies as follows. For each star particle
in the galaxy, we generate its spectrum using the stellar population
synthesis (SPS) method implemented by Bruzual & Charlot (2003)
with a Chabrier (2003) initial mass function. The spectrum can be
used to calculate the brightness of stars in a given observational
band and the brightness distribution of a galaxy. The Sérsic index
is obtained by fitting each galaxy’s circularly averaged projected
brightness profile. Note that the brightness distribution produced
with the SPS model is only used to estimate a galaxy’s Sérsic index.
In our JAM modelling tests, a galaxy’s brightness distribution is

Figure 2. Stellar mass (upper) and effective radius (lower) distribution of
our mock galaxy sample. The red dashed lines show the softening length for
star (710 pc) and dark matter (1420 pc) particles in the simulation. In total,
there are 1413 galaxies.

Figure 3. Inner density slope distribution for dark matter (red) and stars
(yellow). The dark halo slopes are the parameter γ obtained by fitting the
true halo density profile with a gNFW model. The stellar mass density slopes
are determined by fitting the true stellar density profile with ρ∗ ∝ rγ within
1 Re.

calculated from the stellar mass distribution by setting M∗/L = 1
(as described in the second paragraph of this section).

For our simulated galaxy sample, we select all galaxies with
M∗ > 1010 M� (to avoid the large data noise inherent in small
galaxies and to match the expected MaNGA population), and with
nSersic > 1.5 to include only early-type galaxies. We visually check
the surface brightness density distribution of every galaxy and re-
move galaxies with obvious signs of being in the process of merging,
or with large noise in their surface density map, which may cause
failures in the MGE fitting process. In total, our final sample con-
tains 1413 galaxies. In the Illustris simulation, every dark halo has
a unique halo ID. The galaxies in our sample are named with their
dark halo IDs (e.g. subhalo12). The galaxy stellar mass histogram is
shown in Fig. 2. It peaks around M∗ ≈ 1010.8 M� (∼Milky Way),
and tails off at M∗ ≈ 1012 M�.

In Fig. 3, we show the distribution of the inner density slope
for the dark matter and stars in our sample. It can be seen that the
stellar inner slopes peak at −1.6, which is steeper than the dark
matter slopes (peak at −0.7). Most stellar inner slopes are less
than −1.2 while most dark matter inner slopes are larger than −1.2.

MNRAS 455, 3680–3692 (2016)
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This observation is used later to set a prior in the Markov chain
Monte Carlo (MCMC) simulation with the objective of reducing
the degeneracy between dark matter and stellar mass.

3 J EANS-ANISOTROPIC-MGE

In this section, we describe the JAM+MCMC method that we use
to model the galaxy stellar mass, the dark matter mass, and the
total combined mass, as well as the galaxy kinematics. We use JAM
to solve the Jeans equations, and extract the best model galaxy
parameters using an MCMC technique. We compare the masses
and parameters so obtained with their true values to assess the
effectiveness or otherwise of JAM.

3.1 Mass model

The mass model of a galaxy consists of two components: the stellar
mass and the dark matter halo. Following Cappellari (2008), we
express both components as a set of elliptical Gaussian distributions
using the Multi-Gaussian Expansion (MGE) method described in
Emsellem, Monnet & Bacon (1994) and Cappellari (2002). The
method is detailed below.

3.1.1 Multi-Gaussian Expansion method

Following Emsellem et al. (1994), the MGE formalism is adopted
to parametrize the mass model. The MGE technique expresses the
surface brightness (density) as a summation of a series of elliptical
Gaussian functions. The galaxy surface brightness density �(x′, y′)
can be written as

�(x ′, y ′) =
N∑

k=1

Lk

2πσ 2
k q ′

k

exp

[
− 1

2σ 2
k

(
x ′2 + y ′2

q ′2
k

)]
, (2)

where Lk is the total luminosity of the kth Gaussian component with
dispersion σ k along the major axis, N is the number of the adopted
Gaussian components, and q ′

k is the projected axial ratio with 0 ≤
q ′

k ≤ 1. The MGE parametrization is the first and crucial step of JAM
modelling. We use the MGE_FIT_SECTORS1 software (Cappellari 2002)
to perform our MGEs, and follow closely the procedure described
in the paper.

For each galaxy, we define its effective radius Re to be the half-
light radius, calculated using the method described in Cappellari
et al. (2013), from the best-fitting MGE brightness model.

We fit MGE models to a mock galaxy’s surface brightness map.
Once we find the best MGE model for the surface brightness dis-
tribution, we deproject it using the MGE formalism to obtain the
three-dimensional intrinsic luminosity density ν. The solution of
the deprojection is usually non-unique, except for the edge-on axis-
symmetric case (Pohlen et al. 2007). For low inclination angle
galaxies, the degeneracy is severe (Rybicki 1987). In the MGE for-
malism, a unique solution is easily obtainable if the inclination is
known and by making an assumption as to whether the galaxy is
oblate, prolate, or triaxial. Following Monnet, Bacon & Emsellem
(1992), we deproject the surface brightness under an oblate ax-
isymmetric assumption, the consequences of which are discussed

1 Available from http://www-astro.physics.ox.ac.uk/∼mxc/software

in Section 4.2.3. The luminosity density ν can then be written in
cylindrical polar coordinates (R, z) as

ν(R, z) =
N∑

k=1

Lk

(
√

2π σk)3qk

exp

[
− 1

2σ 2
k

(
R2 + z2

q2
k

)]
, (3)

where Lk and σ k for every Gaussian component are the same as in
the projected case, and the three-dimensional intrinsic axial ratio qk

of each Gaussian component can be related to the projected q ′
k by

qk =
√

q ′2
k − cos2 i

sin i
, (4)

where i is the galaxy inclination angle (i = 90◦ for edge on).
The luminosity distribution can be converted to the stellar mass

distribution using the galaxy’s stellar mass-to-light ratio, M∗/L. In
this paper, we only consider constant ratios.

Although we can obtain a good surface brightness fitting through
the MGE method (mean error ∼5 per cent), the stellar mass density
profile we obtain is usually lower than the true value at the centre of
the galaxy because of finite resolution smoothing. We explore this
effect by comparing the results from two different image resolutions
(see Section 4).

Our mass models also include a spherical dark matter halo. From
analysing cold dark matter simulations, haloes can be approximated
by a universal mass density profile with an inner slope γ = 1 and
an outer slope α = 3 (Navarro, Frenk & White 1997).

The situation, however, becomes more complex when baryonic
processes are considered. It has been shown in hydrodynamical
simulations that baryonic processes modify the inner profile of the
dark halo (Abadi et al. 2010). Following Cappellari et al. (2013),
we use a generalized NFW (gNFW) dark halo:

ρDM(r) = ρs

(
r

Rs

)γ (
1

2
+ 1

2

r

Rs

)−γ−3

. (5)

The halo density ρs at Rs is parametrized by the dark matter frac-
tion within one effective radius, fDM(r = Re). For computational
efficiency, given γ , Rs, and fDM, we express the gNFW dark mat-
ter profile with Gaussian functions using the MGE method. Thus,
the total mass density profile is expressed as a series of elliptical
Gaussian functions.

3.2 Jeans equations

A detailed description of JAM modelling is provided in Cappellari
(2008). Below, we give a brief introduction. A steady-state axisym-
metric stellar system satisfies two Jeans equations in cylindrical
coordinates (R, z, φ) (Cappellari 2008):

νv2
R − νv2

φ

R
+ ∂(νv2

R)

∂R
+ ∂(νvRvz)

∂z
= −ν

∂�tot

∂R
, (6)

νvRvz

R
+ ∂(νv2

z )

∂z
+ ∂(νvRvz)

∂R
= −ν

∂�tot

∂z
, (7)

where

νvkvj ≡
∫

vkvjf d3v, (8)

and f is the distribution function of the stars, �tot is the gravitational
potential, ν is the luminosity density (see equation 3).

Our mass model consists of two components, the stellar distri-
bution and the dark matter halo, both of which we represent by a
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sum of Gaussian functions. The potential generated by these density
distributions is given by (Emsellem et al. 1994)

�tot(R, z) = −
√

2/π G

∫ 1

0

K∑
j=1

Mj Hj (u)

σj

du, (9)

where G is the gravitational constant, Mj is the total mass of Gaus-
sian component j, the summation is over all the K Gaussian functions
of the stellar and the dark matter components, and

Hj (u) =
exp

{
− u2

2σ 2
j

[
R2 + z2

1−(1−q2
j )u2

]}
√

1 − (1 − q2
j )u2

. (10)

Given �tot and ν, equations (6) and (7) depend on four unknown
quantities v2

R , v2
z , v2

φ , and vRvz, and therefore additional assumptions
are required to determine a unique solution. One common choice is
to align the orientation of the velocity dispersion ellipsoid with the
meridional plane (R, z) and then set the shape within that plane.

In this paper, we follow the assumptions made in Cappellari
(2008): (i) the velocity dispersion ellipsoid is aligned with the cylin-
drical coordinate system (vRvz = 0) and (ii) the anisotropy in the
meridional plane is constant, i.e. v2

R = bv2
z . Similarly to the stan-

dard definition of the anisotropy parameter (Binney & Tremaine
2008), the anisotropy parameter in the z direction βz can be written
as

βz ≡ 1 − v2
z

v2
R

≡ 1 − 1

b
. (11)

The Jeans equations thus reduce to

b νv2
z − νv2

φ

R
+ ∂(b νv2

z )

∂R
= −ν

∂�tot

∂R
, (12)

∂(νv2
z )

∂z
= −ν

∂�tot

∂z
. (13)

If we set the boundary condition νv2
z = 0 as z → ∞, we can

write the solution as

νv2
z (R, z) =

∫ ∞

z

ν
∂�tot

∂z
dz, (14)

νv2
φ(R, z) = b

[
R

∂(νv2
z )

∂R
+ νv2

z

]
+ Rν

∂�tot

∂R
. (15)

These intrinsic quantities must then be integrated along the line-
of-sight to obtain the projected second velocity moment v2

los, which
can be directly compared with the stellar kinematic observables, i.e.
the root-mean-square velocity vrms ≡ √

v2 + σ 2, where v and σ are
the line-of-sight stellar mass weighted mean velocity and velocity
dispersion, respectively.

Recall that the assumptions we choose to perform JAM modelling
with are

(i) an oblate shape for the luminosity density distribution;
(ii) a constant stellar mass to light ratio in all radii;
(iii) a constant anisotropy in the meridional plane; and
(iv) a double power-law dark matter profile (the gNFW halo

profile).

By assessing the extent to which the model predicted vrms matches
the mock galaxy’s vrms, we are able to estimate the following six
parameters:

(i) the inclination i (the angle between the line-of-sight and the
axis of symmetry);

(ii) the anisotropy parameter βz in equation (11);
(iii) the stellar mass-to-light ratio, M∗/L; and
(iv) the three parameters in the dark matter halo: fDM(r = Re), γ ,

and rs.

For the actual modelling, we use the JAM_AXI_RMS2 software.

3.3 Bayesian inference and the MCMC method

We adopt the MCMC technique for model inferences.
If we denote the parameter set as p and the data set as d,

from Bayes’ theorem, the posterior probability distribution func-
tion (PDF) for the set of parameters p can be written as

P( p | d) = P(d | p) P( p)

P(d)
, (16)

where P(d | p) is the likelihood, P( p) is the prior, and P(d) is the
factor required to normalize the posterior over p, which is valuable
for model selection.

The set of parameters pMAX for which the posterior probability is
maximized is interpreted as our ‘best’ model since it is the parameter
set that is able to reproduce the data most closely.

A good way to find out the pMAX is through the MCMC method.
With this method, we can sample p in parameter space according
to the joint posterior probability P( p | d). Once we characterize the
posterior probability by these samples, the marginalized posterior
PDFs for individual parameter pi are approximated by the his-
tograms of these samples. There are several ways to draw pMAX from
these one-dimension histograms, e.g. using mean, maximum, or me-
dian. In this paper, we choose the medians of the one-dimension
posterior distributions as the best-fitting parameters while the pa-
rameter uncertainties are calculated with their 68 per cent confi-
dence intervals by taking the 16th and 84th percentiles. The six
parameters sampled by MCMC are (i, βz, fDM, γ, Rs, M

∗/L).
Assuming the observational errors are Gaussian, we have

P(d | p) ∝ exp

(
−χ2

2

)
, (17)

with

χ2 =
∑

j

(
〈v2

los〉1/2
j − vrms,j

�vrms,j

)2

, (18)

where �vrms, j is set to be the Poisson error (1/
√

Nj , where Nj is
the number of the particles in grid cell j) scaled to be between 5 and
40 km s−1, which is the typical error range of a high signal-to-noise
ratio CALIFA galaxy. Since the spectral resolution of the MaNGA
survey is higher than that of CALIFA, the error for MaNGA galaxies
should be somewhat smaller. The sum is taken over all the cells j
within a 2.5 Re radius on the 2D kinematic grid.

In this paper, we fit vrms for the simulated galaxies out to 2.5 Re.
In order to be consistent with Cappellari et al. (2013), we set flat

priors within given bounds:

(i) according to Fig. 3, we set a lower boundary of −1.2 for the
dark matter inner slope γ ;

(ii) fDM is between 0 and 1;
(iii) M∗/L is between 0 and 10;

2 Available from http://www-astro.physics.ox.ac.uk/∼mxc/software
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(iv) Rs is between 15 and 40 kpc (corresponds to the scaling
radius of the gNFW-fitted dark matter haloes in our sample);

(v) following Cappellari et al. (2013), we limit βz to the range
[0, 0.4];

(vi) cos i is between 0 and cos ilow, where ilow is the minimum
inclination derived from equation (4), in order to obtain a physical
intrinsic axis-ratio qk.

We sample the posterior distribution of parameters with the ‘EM-
CEE’ code from Foreman-Mackey et al. (2013), which provides a fast
and stable implementation of an affine-invariant ensemble sampler
for MCMC which can be parallelized without extra effort.

4 R ESULTS

Before we study the mock galaxies, we first checked the function-
ality of the JAM method using SAURON galaxies, and verified that
we obtained nearly the same results with Cappellari (2008).

As mentioned before, in order to investigate the effects of image
resolution, we generate luminosity distributions with two different
image resolutions: the low-resolution image (Lcell = 2 kpc h−1) and
the high-resolution image (Lcell = 0.5 kpc h−1). The redshift range
of MaNGA survey is 0.01–0.15 (Bundy et al. 2015), and at a redshift
of 0.1 these sizes correspond to 1.52 and 0.38 arcsec, respectively,
roughly the Sloan Digital Sky Survey (SDSS) seeing and the best
seeing from the ground.

In Section 4.1, we show the JAM modelling results of two in-
dividual mock galaxies. Statistical results for our simulated galaxy
sample are given in Section 4.2.

4.1 Results of two individual galaxies

In Fig. 4, we show the JAM modelling results for two mock galax-
ies, denoted as galaxy A (subhalo224435) and galaxy B (sub-
halo362540), selected for their well fitted vrms maps. The results
are for high-resolution images. Both galaxies are oblate, with axis
ratio b/a > 0.9. We show the input and the best-fitting vrms in the
subplots and, as can be seen, JAM does indeed successfully recover
the vrms map of each galaxy.

In the upper panels, we show the results for galaxy A. The cor-
ner plots on the left-hand side show the posterior distribution of
model parameters. On the right side, we compare the JAM fitted
galaxy density profile (spherically averaged) with the data input.
It can be seen that the JAM method not only fits the total den-
sity profile well, but also reproduces the density profile of dark
matter and stellar mass with mean density profile error less than
10 per cent. The best-fitting model parameters and their true values
(see Section 2.2 for the calculation of the true parameters) are listed
in the panels. The input galaxy parameters (M∗/L, fDM, γ , Rs) are
(1.0, 0.49, −1.26, 31.85), and the JAM best-fitting parameters are
(1.01+0.260

−0.289, 0.48+0.14
−0.12, −0.94+0.27

−0.16, 18.33+6.1
−2.5). While the anisotropic

parameter βz is 0.03, different from the true value 0.12, the accuracy
of M∗/L and fDM recovery is within 2 per cent. The 2D posterior
plots show a strong degeneracy between fDM and M∗/L. A degen-
eracy is also present between γ and fDM.

For galaxy B, the total density profile is also well recovered.
However, the best-fitting fDM and M∗/L deviate significantly from
the true values. The input galaxy parameters (M∗/L, fDM, γ , Rs)
are (1.0, 0.48, −0.54, 16.56), and the JAM best-fitting parameters
are (2.40+0.145

−0.203, 0.10+0.04
−0.02, −0.24+0.17

−0.27, 34.12+4.3
−6.3). It can be seen

that the model prediction of fDM is 0.1, while the true value is 0.48.
The best-fitting M∗/L is 2.4, more than two times larger than the

input value. It can be seen that both the dark matter profile and the
stellar mass profile deviate from the true ones. On the other hand,
JAM still reproduces well the total density profile and the total
mass with an accuracy of 10 per cent. The bias in fDM and M∗/L
is caused by the limited image resolution used in MGE fitting (see
Section 3.1). From the second subplot on the right-hand panel, it
can be seen that the inner slope of the stellar mass profile is not well
reproduced. In the JAM method, the shape of the stellar mass profile
is determined by MGE fitting to the surface brightness distribution
of the galaxy. In the MCMC process, only the amplitude of the
stellar mass profile is allowed to change by varying the M∗/L. As
a result, the underestimation of the inner slope of the stellar mass
translates to an overestimation of the M∗/L and an underestimation
of the dark matter fraction, fDM.

4.2 Statistical results

4.2.1 Accuracy of the mass model

In this subsection, we discuss the accuracy and the bias of the mass
model predicted by the JAM method.

To quantify the accuracy of mass recovery, we define the mass
estimation error within radius R as

�M(R)

M(R)
= M(R)JAM − M(R)True

M(R)True
, (19)

where M(R)JAM is the mass enclosed in a sphere within radius R
predicted by the JAM method, and M(R)True is the true mass of the
simulated galaxy.

We also define the mean error of the density profile as

�ρ = 1

R

∫ R

0

| ρ(r)JAM − ρ(r)True |
ρ(r)True

dr, (20)

where ρ(r)JAM = ρ(r)gNFW + M∗
L

ν(r) is the spherically averaged
total mass density profile, calculated by using the JAM best-fitting
parameters, and ρ(r)True is the true density profile of the input galaxy.
We calculate both �ρ and �M(R) within R = 2.5 Re.

We first show the results for all mock galaxies in the high-
resolution case. Fig. 5 shows the histograms of the fractional errors
of the enclosed total mass, stellar mass, dark matter mass, and total
density profile for all 1413 simulated galaxies. The accuracy of the
JAM recovered total mass reaches 11–16 per cent. The mean error
of the total density profile is 26 per cent, which means that we can
obtain a good estimate of the total mass distribution. The bias in
the recovered total mass is only 1 per cent. For the high-resolution
mock galaxies, the total mass obtained through the JAM method is
not biased.

Although we can obtain good recovery of the total mass, the
errors in the individual stellar and dark matter masses are larger.
As shown in the lower panel of Fig. 5, the errors in the enclosed
stellar and dark matter masses are 32–51 per cent, much larger than
that of the total mass. However the biases in the stellar and dark
matter masses are quite small (5 and −3 per cent). There are several
outliers with �M∗/M∗ very close to −1, as shown in Fig. 5. These
galaxies are massive galaxies with satellites within the kinematic
data area which affect the results. The number of outliers (∼10) is
much smaller than the whole sample (1413), so they will not have
significant impact on our statistical results since we take the median
and scatter around the median.

Good recovery of the total mass implies that error in the stellar
mass may be correlated with that in the dark matter mass. We plot
the fractional error of the enclosed stellar mass versus the fractional
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3686 H. Li et al.

Figure 4. JAM modelling for two simulated galaxies: galaxy A (top) and galaxy B (bottom). The contours on the left-hand side show the 2D marginalized
distributions. The red, green, and blue contours are 1, 2, and 3σ confidence level, respectively. The red cross in each plot indicates the value we choose for
the best model parameter set. The blue histogram in every row shows the 1D marginalized posterior distribution, with red lines marking the median and the
green lines, the 1σ region. In the right-hand panels, the subplots on the upper right show the root-mean-squared velocity (vrms ≡ √

v2 + σ 2) map, where v is
the mean stellar velocity and σ is the stellar velocity dispersion. Ticks are separated by 10 kpc. On the right-hand side, we compare the input and fitted density
profiles. Top: dark matter density profile (black for true, red for JAM prediction, and the blue dashed line is the best-fitting gNFW profile for the input density
field). Middle: stellar mass density profile (black for true, yellow solid for the JAM prediction, and yellow dashed is the density profile when M∗/L = 1).
Bottom: the total mass density profile (black for true and green for JAM prediction). The red vertical dashed line shows the kinematic data range that we use
(2.5 Re). Bottom: the relative error for each profile (red for the dark matter, yellow for stellar mass, green for the total). The true parameter values for the mock
galaxies and their best-fitting JAM values are given in each subplot.
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Figure 5. Histogram of the fractional error in mass for the 1413 simulated galaxies with high-resolution images. Upper left: fractional error of the enclosed
total mass �MT(2.5 Re)/MT(2.5 Re). Upper right: mean fractional error of the total mass density profile �ρ. Lower left: fractional error of the enclosed stellar
mass �M∗(2.5 Re)/M∗(2.5 Re). Lower right: fractional error of the enclosed dark mass �MDM(2.5 Re)/MDM(2.5 Re). The red vertical solid and dashed lines
show the median and 1σ regions for enclosed mass error, and 1σ error only for the mean density error. Their values are listed on the top right of each subplot.

Figure 6. Fractional error of the stellar mass �M∗(2.5 Re)/M∗(2.5 Re) ver-
sus the fractional error of the dark matter mass �MDM(2.5 Re)/MDM(2.5 Re)
for the 1413 simulated galaxies with high-resolution images. The red solid
line is the median and the red dashed lines show the 1σ region in each bin.
The blue circle shows the zero error point.

error of the enclosed dark mass in Fig. 6. Most of the galaxies are
located in a long band from the upper left to the lower right, showing
a strong correlation between �M∗ and �MDM. Theoretically, vrms

of the stars depends on the gravitational potential �tot, which is
determined by both the dark matter and the stellar masses. In the

JAM method, the density of the stellar component is measured from
the observed image with a MGE. Only the amplitude of the stellar
density is allowed to vary in the MCMC fitting process. Therefore,
the effect of the limited image resolution on the MGE modelling
can lead to a bias in disentangling the dark matter and the stellar
mass. On the other hand, as long as we use a dark matter model,
appropriately parametrized for flexibility, the total density profile
and the total mass can be well constrained.

In Fig. 7, we show the results for the lower resolution mock galax-
ies. We find a significant bias with a larger scatter in the estimated
stellar mass. In the high-resolution case, the bias is 5 per cent, while
in the low-resolution case, the bias is 19 per cent. The bias in the
dark matter mass estimation also increases from −3 to −9 per cent.
For the low-resolution case, the MGE modelling is strongly af-
fected in the inner regions, which may cause a larger error in the
mass model. Our results show that higher image resolutions can be
effective in actually reducing the biases in the mass model.

4.2.2 Uncertainty in the inclination and the anisotropy
parameter βz

For prolate galaxies, the inclination, which is defined as the angle
between the shortest axis and the line-of-sight, is not meaningful
since a change in the inclination is just a rotation along the major
axis. The anisotropy parameter βz has a similar problem, and so
hereafter in this section we only discuss the results for oblate galax-
ies. In Fig. 8, we show the errors in the inclination and anisotropy
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3688 H. Li et al.

Figure 7. Histogram of the mass error for the 1413 simu-
lated galaxies with low-resolution images. Upper: enclosed stellar
mass error �M∗(2.5 Re)/M∗(2.5 Re). Middle: enclosed dark mass
error �MD(2.5 Re)/MD(2.5 Re) Lower: enclosed total mass error
�MT(2.5 Re)/MT(2.5 Re). The labels and legends are the same as in Fig. 5.

Figure 8. Histogram of the inclination errors (�i, left-hand panel) and
anisotropy errors (�βz, right-hand panel) for oblate galaxies with high-
resolution images. The labels and legends are the same as in Fig. 5.

parameters for oblate galaxies with true inclination itrue > 60◦ and
high-resolution images.

From Fig. 8 it can be seen that the uncertainty of the JAM deter-
mined inclination is about 5◦with a bias of 2◦. The uncertainty of βz

is 0.11 with a bias of −0.02. By comparison, Lablanche et al. (2012)
give an inclination error of less than 5◦. However, considering our
simulated galaxies are more complex, our larger error is acceptable.
The βz error in Lablanche et al. (2012) is larger than 0.1, consistent
with our results. However, in our study, when galaxies are near face

on, the uncertainty of inclination increases to more than 15◦ with a
bias as large as 20◦. This is the consequence of the prior imposed
on the inclination (see Section 3.3). This prior gives a lower limit to
the inclination that can be used in a galaxy’s models. Moreover, the
errors in βz also increase to 0.15 with a bias of −0.11. Thus, from
our study, we recover galaxy inclinations well for high-inclination
galaxies (itrue > 60◦), while recovery of the velocity anisotropy from
JAM models is less accurate. The recovered value of βz strongly
depends on our model assumptions about the velocity anisotropy
(constant anisotropy) and so JAM constrains this parameter less
well.

4.2.3 Dependence on the galaxy shape

The MGE formalism can deal with generalized geometries, includ-
ing triaxial shapes. In many earlier papers, as well as in this one, a
simplifying axisymmetric oblate shape is assumed. In reality, how-
ever, a large fraction of galaxies are not oblate. To investigate how
the mass model is affected when the oblate assumption is violated,
we plot in Fig. 9 the model mass error as a function of the triaxiality
parameter for our simulated galaxies. The red solid lines represent
the median of the mass error. It is clear that the bias in stellar mass
estimation is small when T < 0.4 and grows as T increases and the
galaxies become more prolate. When T approaches 1, the stellar
mass predicted by JAM is 18 per cent higher than the true value and
the estimated dark matter mass is 22 per cent lower.

In the lower panel of Fig. 9, we show the histogram of the errors
in the enclosed total mass for oblate and prolate galaxies. In addition
to the errors in the stellar and the dark matter mass estimates, the
error in the enclosed total mass is also larger for prolate galaxies.
The scatter of the prolate galaxy mass errors is about twice that
of oblate galaxies. The results show that violation of the oblate
assumption in the deprojection process is a key factor influencing
the accuracy of the mass model recovery. It is interesting to note that
the triaxiality parameter depends on the stellar mass (see Fig. 10)
with most massive galaxies being prolate, and it is this shape which
has a direct impact on mass estimation.

4.2.4 Dependence on the galaxy rotation

JAM was first designed to handle a set of fast-rotator galaxies in
the SAURON project (Cappellari 2008). The assumption that the
velocity ellipsoid is aligned with the cylindrical coordinate system
used in JAM is a good description of the anisotropy for these fast
rotators (Cappellari et al. 2007). In addition to the galaxy shape, we
also check for any bias differences between fast and slow rotators.
In order to quantify the amount of galaxy rotation, we use the
parameter λR defined in Emsellem et al. (2007):

λR =
∑N

i=1 MiRi |Vi |∑N
i=1 MiRi

√
V 2

i + σ 2
i

, (21)

where, for each grid cell i, Mi is the stellar mass, Ri is the projected
radius, and Vi and σ i are the velocity and velocity dispersion. The
sum is over the number of grid cells N. The calculation of λR is
within 2.5 Re.

In Fig. 11, we plot the fractional errors in the enclosed stellar, dark
matter, and total masses versus the parameter λR. In the upper panel
of Fig. 11, the scatter of the total mass error significantly decreases
as galaxy rotation increases. In the middle and lower panels, there
are biases in the recovered stellar and dark matter masses when λR
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Figure 9. Bias and accuracy dependence on the triaxiality parameter T. Upper left: triaxiality parameter T versus error in the enclosed stellar mass within
2.5 Re. Upper right: triaxiality parameter T versus error in enclosed dark mass within 2.5 Re. The red solid line shows the median in each bin, and the red
dashed lines show the 1σ errors. The blue solid line represents an error equal to zero. Lower left: distribution of enclosed total mass error for oblate galaxies
(T < 0.3). Lower right: distribution of enclosed total mass error for prolate galaxies (T > 0.7). The red vertical solid and dashed lines show the median and
1σ region, respectively, and their values are in the upper right of each panel. For prolate galaxies, the accuracy of the total mass is about 18 per cent, while it
is 10 per cent for oblate. In the prolate case, the predicted stellar masses and dark matter masses are also biased, the JAM method preferring more stellar mass
instead of dark matter.

Figure 10. Upper: the histogram of the stellar mass function for
oblate (black) and prolate (red) galaxies. Lower: the prolate fraction
(Nprolate/(Nprolate + Noblate) in each mass bin) versus the stellar mass.

is below 0.2. This may be due to the fact that the assumptions for
velocity anisotropy are not strong enough for slow rotators.

4.2.5 Recovery of the fDM–M∗ relationship

The dark matter fraction (fDM) within a given radius is already non-
negligible (∼15 per cent) at the effective radius (Koopmans et al.
2006; Auger et al. 2009). A statistical study of this relationship is
important for understanding galaxy evolution.

In Fig. 12, we compare the recovered fDM(2.5 Re) to M∗(2.5 Re)
relationship from our JAM models with that from the data used.
For the high-resolution mock galaxies, we can reproduce the mean
fDM(2.5 Re) to M∗(2.5 Re) relationship for galaxies less massive
than 1011 M�. For more massive galaxies, however, fDM(2.5 Re) is
underestimated. We currently believe that this bias is a consequence
of the oblate assumption made in our JAM modelling. In the lower
panels, we show the recovered relationship for oblate galaxies and
prolate galaxies separately. While the relationship is recovered for
oblate galaxies, prolate galaxies suffer from an underestimation of
the dark matter fraction. 22 per cent of galaxies with M∗ > 1011 M�
are prolate or triaxial, and it is these galaxies which cause the bias
in the fDM to M∗ relationship at the high-mass end.
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Figure 11. Fractional error of the enclosed total mass (upper), stellar mass
(middle), and dark matter (lower) versus parameter λR. The labels and
legends are the same as in Fig. 9.

In the same figure, we also show the recovered fDM to M∗ rela-
tionship from our low-resolution JAM models. Not surprisingly, the
bias is even more severe for low-resolution mock galaxies.

5 SU M M A RY O F JA M R E S U LT S

We have exercised the JAM method using 1413 mock galaxies
from the Illustris cosmological hydrodynamic simulation. Factors
within the method relating to accuracy, degeneracies, and biases
have been investigated for galaxies with different image resolutions.
Notwithstanding that JAM was designed for oblate galaxies, we
have included galaxies with different triaxial shapes. We have also
studied whether JAM can recover the fDM to M∗ relationship.

For high-resolution mock galaxies, we find that JAM reproduces
the total mass model within 2.5 Re. The accuracy of the enclosed to-
tal mass estimate within 2.5 Re is 10 per cent for oblate galaxies and
18 per cent for prolate galaxies. However, the JAM method cannot
disentangle effectively the dark matter and stellar mass fractions
for individual galaxies. From Fig. 6 it can be seen that errors in the
stellar mass estimation strongly correlate with errors in dark mat-
ter estimation. For the Schwarzschild modelling in Thomas et al.
(2007a), the recovery accuracy of the total mass is 3 per cent for
oblate galaxies and 20 per cent for prolate galaxies. They also found
that while the total mass of the mock galaxies was well recovered,
the recovered stellar mass had larger scatters and a significant bias.
In Thomas et al. (2007a), all recovered stellar masses are lower than
the true values. In our work, both underestimates and overestimates

exist. It is unclear why this difference has arisen. It may be because
their dark matter halo profile has only one free parameter, which
limits flexibility to adjust their model.

Though with large scatters in the stellar and dark matter mass
estimates, the recovered stellar masses and dark matter masses are
nearly unbiased for oblate galaxies. For prolate and triaxial galaxies,
stellar masses are on average 18 per cent higher than the true values,
while dark matter masses are 22 per cent lower. The bias is mainly
a consequence of applying an oblate model to prolate and triaxial
galaxies. In reality, it is not straightforward to determine whether a
galaxy is oblate or not (especially for slow rotators), and we need
to be mindful of this in constructing galaxy samples. Because of
the galactic mass to shape relationship, this problem may be more
severe for high-mass galaxies.

For oblate galaxies with high inclination (itrue > 60◦), the in-
clination accuracy is about 5◦, with a bias of 2◦. The error in the
anisotropy parameter βz is 0.11, with a bias of −0.02. However,
when the galaxies are near face on, the errors in the inclination and
βz increase and both are significantly biased. The accuracy of mass
estimates depends on a galaxy’s rotation. According to Fig. 11, the
total mass errors are less when the galaxy is a fast rotator. The re-
covered stellar and dark matter masses are biased when the galaxy
is slow rotator.

The resolution of the image used in the MGE surface brightness
fitting also has important effects on the results. When we reduce
the resolution from 0.5 to 2 kpc h−1, the stellar mass bias for all
galaxies increases from 5 to 19 per cent. For low-resolution images,
key information is lost at the centre of galaxies. Accurate and precise
estimates of the stellar density profile in the central regions of a
galaxy are crucial for reducing the bias in estimating M∗/L and
fDM.

One important application of JAM could be to recover the fDM

to M∗ relationship. For our high-resolution mock galaxies, we re-
cover the mean relation below 1011 M� well. As can be seen from
Figs 9, 10, and 12, the relationship for more massive galaxies is not
well reproduced due to the fact that galaxies at the high-mass end
are generally more prolate. For low-resolution mock galaxies, the
relationship is not well reproduced for all masses, again showing
the importance of high-resolution images.

6 D I S C U S S I O N A N D C O N C L U S I O N S

For this investigation, we have used mock galaxies from the state-
of-the-art hydrodynamical Illustris simulation to study the effective-
ness and limitations of the JAM modelling technique. Even though
our findings are JAM based, we believe they are worthy of consid-
eration for all Jeans equation modelling. Whilst our study explored
diverse galaxies from a cosmological simulation, the study has a
number of areas that could be improved upon in a future investiga-
tion. We discuss these in more detail below.

Although the Illustris simulation can reproduce a variety of ob-
servational data, it cannot yet accurately match the stellar mass
function (for example), and so it has limitations in terms of re-
sembling real galaxies. The softening length in the simulation for
baryons is 710 pc, and this may affect the dynamics of stars in the
central regions (∼2 kpc) of galaxies. However, most of our galaxies
have effective radii larger than ∼2 kpc (see Fig. 2). In addition, we
find no correlation between accuracy of the recovered stellar mass
and effective radius, so we believe the effects of the softening length
are not significant. This issue can only be conclusively understood
when future higher resolution simulations become available. Fur-
thermore, better imaging data and more sophisticated modelling
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Figure 12. Comparison of the fDM(2.5 Re)–M∗(2.5 Re) relationship between for JAM recovered and true values, where
fDM(2.5 Re) = MDM(2.5 Re)/MT(2.5 Re). In each subplot, the green dots are the true values for the whole sample, and the black lines are the me-
dian and the 1σ region in each bin. The blue dots are the JAM recovered values and the red lines are the median and the 1σ region in each bin. There are at
least 80 points in each bin. Upper left: recovered relationship for the whole sample with high-resolution images. Upper right: recovered relationship for the
whole sample with low-resolution images. Lower left: recovered relationship for oblate (T < 0.3) galaxies with high-resolution images. Lower right: recovered
relationship for non-oblate galaxies (T > 0.3) with high-resolution images.

techniques such as Schwarzschild and made-to-measure (M2M)
may better remove this degeneracy. Nevertheless, it will be interest-
ing to examine further the internal dynamical structures of galaxies
from simulations, for example the velocity anisotropy parameters
as a function of radius, and their variation as a function of stellar
mass and galaxy shape.

In modelling our mock observations, for simplicity, we did not
use any data smoothing techniques such as cloud-in-cell. We have
experimented with cloud-in-cell and find that our results are nearly
unchanged for galaxies with median size or larger. Even for the
smallest galaxies, where it might be expected that smoothing would
have a more significant impact, only minor differences in stellar
mass recovery resulted.

In our work, when setting the γ prior boundary, we use addi-
tional information from the simulated galaxies (inner star and dark
matter slope distributions, see Fig. 3). Note that even if we set a
broader prior for γ (e.g. [−3, 0]), the degeneracy between dark
matter and stellar mass does not increase much (scatter increased
by ∼4 per cent) compared with the ∼30 per cent original scatter.
The reason we set a narrower prior ([−1.2, 0]) according to Fig. 3
is to be consistent with Cappellari et al. (2013), who used a similar
approach to set the prior for their dark matter slope distributions.

In this study, we assumed the whole galaxy has a constant stel-
lar mass-to-light ratio, and this is a commonly adopted approach
in dynamical modelling. In fact, hydrodynamical simulations now
contain information about star formation and chemical abundances
for the stellar populations, thus it will be interesting to incorporate

such information in future dynamical modelling, e.g. the M∗/L gra-
dient (Ge, Mao & Cheng 2015). Furthermore, it will be interesting
to explore and model chemodynamical correlations.

We have primarily studied what we can infer if the observational
data extend spatially to 2.5 Re. About one-third of galaxies from
MaNGA will have data to such extent, but the rest will have data
only to 1.5 Re. It may be more difficult to infer the M∗/L accurately
using such data. Observationally it may be useful to obtain ancillary
data at larger radii, for example, using long-slit data or globular
clusters (Zhu et al. 2014).

Our study showed that high-resolution imaging helps to alleviate
the stellar mass and dark matter degeneracy for nearby galaxies.
Images captured under good seeing conditions will be very use-
ful for reducing the degeneracy. In this respect, stellar population
modelling may also help to (partially) lift the degeneracy.

In the JAM method, we only used the second-order moments of
the velocity distribution. In principle, with data from IFU surveys
such as MaNGA, higher order moments (in the form of the Gauss–
Hermite coefficients h3 and h4) will be available as well. Orbit-based
or particle-based modelling techniques, such as the Schwarzschild
and M2M methods, can readily utilize such information to refine
mass models. It will be interesting to perform a study where different
methods (JAM, M2M, and Schwarzschild’s method, action-based
distribution functions) are compared with each other to identify their
strengths, weaknesses, and complementarity. The computational
requirements of methods other than JAM may however limit the
extent to which such a comparison is achievable.
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It is our intention to use JAM next on MaNGA galaxies. Whether
in so doing we will require a prolate version of JAM will become
evident at that time.
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