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ABSTRACT

This work is a continuation of our efforts to develop an efficient implicit solver for multidimensional hydrodynamics for the purpose
of studying important physical processes in stellar interiors, such as turbulent convection and overshooting. We present an implicit
solver that results from the combination of a Jacobian-free Newton-Krylov method and a preconditioning technique tailored to the
inviscid, compressible equations of stellar hydrodynamics. We assess the accuracy and performance of the solver for both 2D and
3D problems for Mach numbers down to 10−6. Although our applications concern flows in stellar interiors, the method can be applied
to general advection and/or diffusion-dominated flows. The method presented in this paper opens up new avenues in 3D modeling of
realistic stellar interiors allowing the study of important problems in stellar structure and evolution.
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1. Introduction

The transport of heat, chemical species, and angular momen-
tum in stellar interiors is governed by three-dimensional, non-
linear (magneto-)hydrodynamical processes that develop over a
wide range of temporal and spatial scales. The study of these
processes with numerical simulations is a powerful way to im-
prove our understanding of stellar structure and stellar evolution.
Unfortunately, the integration of the compressible hydrodynami-
cal equations with time explicit methods comes with a constraint
on the time step resulting from the propagation of sound waves.
This is the well-known Courant-Friedrich-Lewy (CFL) stability
condition. We define CFLhydro as the ratio between the time step
and the largest explicit time step allowed by the CFL condition:

CFLhydro = max
(|u| + cs) ∆t

∆x
, (1)

where ∆t is the time step, ∆x the mesh spacing, cs the adia-
batic sound speed, and u the flow velocity. Time-explicit meth-
ods require CFLhydro . 1. This results in values of the time
step that are smaller than the typical time scale of the relevant
processes (e.g., the convective turnover time scale), making this
approach computationally demanding. Nevertheless, an explicit
time-integration method remains the method of choice for mul-
tidimensional hydrodynamics in the astrophysical community
(see, e.g., Bazán et al. 2003; Meakin & Arnett 2007; Mocák
et al. 2011; Herwig et al. 2014). A way to overcome this limita-
tion is to rely on sound-proof models, which filter sound waves.
Popular sound-proof models are the Boussinesq, the anelastic, or
the pseudo-incompressible models (see, e.g., Glatzmaier 2013,
for a review). The use of such models, however, comes at the

cost of a restricted range of applications due to the underly-
ing approximations. Ideally, one seeks a way to efficiently solve
the hydrodynamical equations regardless of the wide range of
physical conditions characterizing stellar interiors (e.g., density
stratification and a wide range of Mach numbers).

The MUlti-dimensional Stellar Implicit Code (MUSIC) fol-
lows a different approach by solving implicitly the fully com-
pressible hydrodynamical equations (Viallet et al. 2011, 2013).
The challenge for an implicit solver lies in the necessity of
solving a large nonlinear system at each time step. In Viallet
et al. (2013), the best performance was obtained with Newton-
Krylov methods, which combine the Newton-Raphson method
with an iterative linear solver. It was shown that the iterative
solver requires preconditioning in order to achieve fast con-
vergence for large CFLhydro. In fact, within the framework of
Newton-Krylov methods, the preconditioner is the crucial ingre-
dient of the implicit solver. One of the important performance
bottlenecks that was identified by the authors, particularly when
considering three-dimensional calculations, is the inefficiency
of “black-box” algebraic preconditioning techniques such as in-
complete LU (ILU) factorizations for large CFL number com-
putations. Furthermore, the memory requirement for the storage
of the Jacobian matrix and the ILU factorization increases sig-
nificantly in 3D, restricting the range of problems that can be
addressed with such a method.

In this paper, we present an implicit solver which aims at
overcoming these limitations. This is achieved by combining a
Jacobian-free Newton-Krylov (JFNK) method with a precondi-
tioner that is tailored for our physical equations, as described
in more detail in Sect. 2. In Sect. 3, we design semi-implicit
schemes that treat sound waves and thermal diffusion implicitly;
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in Sect. 4, we show how these semi-implicit schemes can be uti-
lized to form an efficient preconditioner for the Newton-Krylov
method. We present in Sect. 5 results that illustrate the perfor-
mance of the solver for idealized test problems and for stellar
interiors. We conclude in Sect. 6.

2. Numerical description

MUSIC solves the equations describing the evolution of den-
sity, momentum, and internal energy, taking external gravity and
thermal diffusion into account:

∂tρ = −∇ · (ρu), (2)
∂t(ρe) = −∇ · (ρeu) − p∇ · u + ∇ · (χ∇T ), (3)
∂t(ρu) = −∇ · (ρu ⊗ u) − ∇p + ρg, (4)

where ρ is the density, e the specific internal energy, u the veloc-
ity, p the gas pressure, T the temperature, g the gravitational ac-
celeration, and χ the thermal conductivity. The system of equa-
tions is closed with an equation of state (EOS). For stellar in-
teriors, these equations describe radiation-hydrodynamics in the
diffusion limit. This is appropriate when the plasma is optically
thick. In this case, the thermal conductivity due to photons is
given by

χ =
16σT 3

3κρ
, (5)

where κ is the Rosseland mean opacity, and σ the Stefan-
Boltzmann constant. Furthermore, the EOS includes the con-
tribution of radiation to the internal energy and pressure.
Optionally, MUSIC can solve the total energy equation in place
of the internal energy equation:

∂t(ρεt) = −∇ · (ρεtu + pu) + ρu · g + ∇ · (χ∇T ), (6)

where εt = e + u2/2 is the specific total energy.
We follow the method of lines and perform the spatial dis-

cretization independently of the time discretization (see, e.g.,
LeVeque 2007). The spatial discretization is performed using
a finite volume method with staggered velocity components lo-
cated at cell interfaces. The numerical fluxes are calculated using
an upwind, monotonicity preserving method of van Leer (1974).
The resulting scheme is second-order in space and total variation
diminishing.

The “conserved” variables, for which the conservation
Eqs. (2)−(4) and (6) are solved, are represented as the column
vector U = (ρ, ρe ρu) when solving the internal energy equa-
tion, or U = (ρ, ρεt, ρu) when solving the total energy equation.
In MUSIC, the unknowns are different from the conserved vari-
ables U, and are represented as the column vector X = (ρ, e,u)
when solving the internal energy equation or X = (ρ, εt,u) when
solving the total energy equation.

The spatial discretization yields a system of ordinary
differential equations:

dU
dt

= RU(X), (7)

where RU contains the flux differencing and source terms.
The time discretization is carried out using the second-order

Crank-Nicolson method:

U(Xn+1) = U(Xn) +
∆t
2

(
RU(Xn+1) + RU(Xn)

)
. (8)

We define the nonlinear residual function as

FU(X) =
U(X) − U(Xn)

∆t
−

1
2
(
RU(X) + RU(Xn)

)
, (9)

so that

FU(Xn+1) = 0 (10)

defines the solution at time step n + 1. Equation (10) is solved
with a Newton-Raphson method. At each Newton iteration, a
linear problem of the form

JδX = −FU(X) (11)

must be solved, where J = ∂FU/∂X is the Jacobian matrix.
The use of a Krylov iterative method like GMRES (Saad &

Schultz 1986) is a standard practice for solving Eq. (11) when
the matrix is large. However, Viallet et al. (2013) find that, for
CFLhydro & 10, the iterative method requires preconditioning to
remain effective. ILU factorizations can perform an adequate job
at modest CFL numbers (CFLhydro . 100), but becomes ineffi-
cient at larger values of the CFL number. Furthermore, we find
that such a preconditioning technique significantly increases the
memory requirements.

In this work, we adopt an approach in which the Jacobian
matrix is never explicitly formed. Jacobian-free Newton-Krylov
methods are a popular choice for the resolution of large nonlin-
ear system of equations, see Knoll & Keyes (2004) for a review.
Since we do not form the Jacobian matrix, algebraic precondi-
tioning techniques, such as ILU factorizations, have to be aban-
doned. Preconditioning the JFNK method, particularly when the
CFL number is large, remains important for performance. One of
the main goals of this paper is the design of an efficient precon-
ditioner adapted specifically to the physics of stellar interiors.

From a physical point of view, at large CFL numbers
(CFLhydro & 100) waves propagate over a large portion, if
not all of the computational domain during a single time step.
Effectively, it is as if information propagates at an infinite speed,
as in parabolic problems. This changes the mathematical nature
of the problem, i.e., from hyperbolic to parabolic, resulting in
numerical stiffness. To be efficient, the numerical method has
to take this property into consideration. Multigrid methods at-
tempt to exploit this property by exchanging information be-
tween the large and small scales, see for example Kifonidis &
Müller (2012). We adopt another approach which consists of us-
ing legacy methods, known as semi-implicit (SI) schemes, as
preconditioners for the Krylov solver. This strategy is known
as “physics-based preconditioning” (PBP), as the preconditioner
is tailored for the physical problem, see, e.g., Mousseau et al.
(2000), Knoll & Keyes (2004), Reisner et al. (2005), Park et al.
(2009). SI schemes treat implicitly only the terms that are re-
sponsible for numerical stiffness. The scheme derived this way
is numerically stable for CFLhydro greater than one, as the stiff
physics is treated implicitly. However, the accuracy of the so-
lution obtained by the SI scheme is usually quite poor due to
the approximations involved in the derivation of the scheme
(see Sect. 3). Good accuracy can be achieved by embedding
such a scheme within a Newton-Krylov method as a precondi-
tioner. This work closely follows Park et al. (2009), adapting
their method to our numerical scheme and physical equations.

3. Semi-implicit schemes for gas dynamics

In this section, we derive SI schemes for the hydrodynamic
Eqs. (2)–(4) and (6) which treat sound waves and thermal diffu-
sion implicitly. The remaining terms (e.g., advection) are treated
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explicitly. In this section, our only concern is to design schemes
that are stable and inexpensive, rather than accurate. Later, we
will use these schemes as preconditioners for a fully implicit and
accurate method.

3.1. Equations for p, e, and u

Our SI schemes are derived from the evolution equations for the
primitive variables V = (p, e,u). These are
∂t p + u · ∇p = −Γ1 p∇ · u + (Γ3 − 1)∇ ·

(
χ∇T

)
, (12)

∂te + u · ∇e = −
p
ρ
∇ · u +

1
ρ
∇ ·

(
χ∇T

)
, (13)

∂tu + u · ∇u = −
1
ρ
∇p + g, (14)

where Γ1 and Γ3 are the generalized adiabatic indices for a gen-
eral equation of state. For a perfect gas without any internal de-
grees of freedom, these adiabatic indices reduce to Γ1 = Γ3 = γ,
where γ is the usual adiabatic index. The detailed derivation of
the pressure equation, Eq. (12), is given in Appendix A.1.

To simplify the notation and without loss of generality, we
will consider the one-dimensional version of these equations:
∂t p + u∂x p = −Γ1 p∂xu + (Γ3 − 1)∂x

(
χ∂xT

)
, (15)

∂te + u∂xe = −
p
ρ
∂xu +

1
ρ
∂x

(
χ∂xT

)
, (16)

∂tu + u∂xu = −
1
ρ
∂x p − g, (17)

where we assumed that g = −gex, where ex is a unity vector
in the x-direction. Extension of the numerical scheme to higher
dimensions is straightforward.

3.2. Transformation matrices

Having introduced the conserved variables U, the independent
variables X, and the primitive variables V , we will need the trans-
formation matrices ∂V/∂U and ∂X/∂V , which are defined as:

δV =
∂V
∂U

δU, (18)

δX =
∂X
∂V

δV. (19)

These matrices are given below for both the case of the internal
and total energy equations, and the details of their derivation is
postponed to Appendix B.

3.2.1. Internal energy equation

When solving for the internal energy equation, U = (ρ, ρe, ρu)
and X = (ρ, e, u), the transformation matrices take the following
form:

∂V
∂U

=


∂p
∂ρ

∣∣∣
e −

e
ρ
∂p
∂e

∣∣∣∣
ρ

1
ρ
∂p
∂e

∣∣∣∣
ρ

0

−e/ρ 1/ρ 0
−u/ρ 0 1/ρ

 , (20)

and

∂X
∂V

=


( ∂p
∂ρ

∣∣∣
e

)−1
−
( ∂p
∂ρ

∣∣∣
e

)−1 ∂p
∂e

∣∣∣∣
ρ

0

0 1 0
0 0 1

 . (21)

The required derivatives are those typically provided by
EOS routines.

3.2.2. Total energy equation

When solving for the total energy equation, U = (ρ, ρεt, ρu) and
X = (ρ, εt, u), the matrices take the form:

∂V
∂U

=


∂p
∂ρ

∣∣∣
e −

εt−u2

ρ
∂p
∂e

∣∣∣∣
ρ

1
ρ
∂p
∂e

∣∣∣∣
ρ
− u
ρ
∂p
∂e

∣∣∣∣
ρ

−(εt − u2)/ρ 1/ρ −u/ρ
−u/ρ 0 1/ρ

 , (22)

and

∂X
∂V

=


( ∂p
∂ρ

∣∣∣
e

)−1
−
( ∂p
∂ρ

∣∣∣
e

)−1 ∂p
∂e

∣∣∣∣
ρ

0

0 1 u
0 0 1

 . (23)

3.3. SI scheme for sound waves

We first design a SI scheme that treats sound waves implicitly.
In Sect. 3.3.1 we start with deriving the propagation equation for
adiabatic acoustic fluctuations, which identifies the terms in the
equations that need to be treated implicitly.

3.3.1. Propagation equation for acoustic fluctuations

In this section we neglect thermal diffusion and gravity. We lin-
earize the 1D Eqs. (15) and (17) around a uniform background
state:

ρ = ρ0 + ρ′, (24)
p = p0 + p′, (25)
u = 0 + u. (26)

Keeping only linear terms in the perturbations, we obtain:

∂t p′ = −Γ1 p0∂xu, (27)

∂tu = −
1
ρ0
∂x p′. (28)

Next, we take the derivatives of Eq. (27) with respect to t and
Eq. (28) with respect to x. We substitute the result of the differen-
tiation of Eq. (28) into the result of the differentiation of Eq. (27)
to eliminate ∂txu and obtain the wave equation that describes the
adiabatic propagation of sound waves:

∂2
t p′ − a2∂2

x p′ = 0, (29)

where a =
√

Γ1 p0/ρ0 is the adiabatic sound speed.
The terms on the r.h.s of Eqs. (27) and (28) are responsi-

ble for the propagation of sound waves. To overcome the corre-
sponding CFL limit, we will treat them implicitly in the follow-
ing section.

3.3.2. Pressure equation

To treat sound waves implicitly, Sect. 3.3.1 suggests that we
treat the “−Γ1 p∂xu” term in the pressure equation (Eq. (15))
implicitly, with a simple backward Euler method:

δp
∆t

+ Γ1 pn∂xun+1 = − u∂x p
∣∣∣n

+ (Γ3 − 1)∂x
(
χ∂xT

)∣∣∣n. (30)
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Here δp = pn+1 − pn, n being the temporal index. We use Picard
linearization in order to keep the scheme linear1. All other terms
in the equation are treated explicitly using the forward Euler
method. Using Eq. (28), we approximate un+1 with

un+1 = un − ∆t
1
ρn ∂x pn+1, (31)

which we substitute in Eq. (30) to obtain

δp
∆t
− a2∆t∂2

x pn+1 = − u∂x p
∣∣∣n − Γ1 pn∂xun

+ (Γ3 − 1)∂x
(
χ∂xT

)∣∣∣n, (32)

where a =
√

Γ1 pn/ρn is the adiabatic sound speed evaluated at
time step n. The right hand side of Eq. (32) corresponds to the
explicit discretization of the original equation, but on the left
hand side a Laplacian operator illustrates the parabolic character
of this equation.

3.3.3. Internal energy equation

We approach the internal energy equation, Eq. (16), in the same
way as the pressure equation. Advection and thermal diffusion
terms are discretized using an explicit scheme, and the com-
pressional work is discretized using an implicit scheme. This
produces:

δe
∆t

+
pn

ρn ∂xun+1 = −u∂xe|n +
1
ρn ∂x

(
χ∂xT

)
|n, (33)

where δe = en+1 − en. Again, we used Picard linearization to
discretize the compressional work. We use again Eq. (31) to
eliminate un+1 in Eq. (33) to obtain

δe
∆t
− ∆t

pn

(ρn)2 ∂
2
x pn+1 = − u∂xe|n −

pn

ρn ∂xun

+
1
ρn ∂x

(
χ∂xT

)
|n. (34)

The resulting equation is similar in form to the implicit version
of the pressure equation, Eq. (32), as it contains the Laplacian of
the pressure field.

3.3.4. Velocity equation

We discretize the pressure gradient in the velocity equation,
Eq. (17), implicitly, using Picard linearization. All remaining
terms are discretized explicitly. We obtain

δu
∆t

+
1
ρn ∂x pn+1 = −u∂xu|n − g, (35)

where δu = un+1 − un.

3.3.5. “δ-form” of the equations

By replacing qn+1 = δq + qn for all implicit terms in
Eqs. (32), (34), (35), rather than only those terms involving time

1 Picard linearization refers to the fact that we write pn∂xun+1 instead
of pn+1∂xun+1 when applying the implicit discretization. This is an ap-
proximation, but it has the advantage of keeping the scheme linear in
the new variables.

derivatives, one obtains the following system of equations:

δp
∆t
− a2∆t∂2

xδp = −F̃p(pn), (36)

δe
∆t
− ∆t

pn

(ρn)2 ∂
2
xδp = −F̃e(en, pn), (37)

δu
∆t

+
1
ρn ∂xδp = −F̃u(un, pn), (38)

where we introduced the following residual functions:

F̃p(p) =
p − pn

∆t
− a2∆t∂2

x p + u∂x p|n + Γ1 pn∂xun

−
(
Γ3 − 1

)
∂x

(
χ∂xT

)
|n, (39)

F̃e(e, p) =
e − en

∆t
− ∆t

pn

(ρn)2 ∂
2
x p + u∂xe|n

+
pn

ρn ∂xun −
1
ρn ∂x

(
χ∂xT

)
|n, (40)

F̃u(u, p) =
u − un

∆t
+

1
ρn ∂x p + u∂xu|n + g. (41)

The solution at time n+1 satisfies F̃p(pn+1) = 0, F̃e(en+1, pn+1) =

0, and F̃u(un+1, pn+1) = 0.
We write the system in a matrix form:

J̃VδV = −F̃V (Vn), (42)

with V = (p, e, u) and F̃V = (F̃p, F̃e, F̃u). This formulation of
the equations is known as the “δ−form”. The block structure
of J̃V is:

J̃V =

J̃p,p 0 0
J̃e,p J̃e,e 0
J̃u,p 0 J̃u,u

 . (43)

In this form, the system can be solved by operator splitting: the
pressure Eq. (36) is first solved for δp, δe is deduced from the
internal energy Eq. (37), and δu is deduced from the velocity
Eq. (38). Note that in the energy equation, one can use the equal-
ity

∆t∂2
xδp =

1
a2

(δp
∆t

+ F̃p

)
, (44)

which is obtained from the pressure equation, rather than writing
the Laplacian of δp explicitly. In Sect. 3.5, we discuss how we
solve numerically the parabolic equation for δp.

3.4. SI scheme for sound waves and thermal diffusion

When thermal diffusion is important, it can cause numerical stiff-
ness. In this case, it also needs to be treated implicitly. This can
be easily implemented in the framework of the previous section:
all that is required is to treat thermal diffusion implicitly in the
pressure and internal energy equations. Equation (32) now be-
comes:

δp
∆t
− a2∆t∂2

x pn+1 − (Γ3 − 1)∂x
(
χn∂xT n+1) =

−u∂x p
∣∣∣n − Γ1 pn∂xun, (45)
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and Eq. (34) becomes:

δe
∆t
− ∆t

pn

(ρn)2 ∂
2
x pn+1 −

1
ρn ∂x

(
χn∂xT n+1) =

−u∂xe|n −
pn

ρn ∂xun. (46)

In both Eqs. (45) and (46), we use Picard linearization to treat
the diffusion term.

The new system for variables V in δ-form is

δp
∆t
− a2∆t∂2

xδp − (Γ3 − 1)∂x
(
χn∂xδT

)
= −F̃p, (47)

δe
∆t
− ∆t

pn

(ρn)2 ∂
2
xδp −

1
ρn ∂x

(
χn∂xδT

)
= −F̃e, (48)

δu
∆t

+
1
ρn ∂xδp = −F̃u, (49)

where the residuals F̃ are unchanged, and given in
Eqs. (39)–(41).

We use the linearized equation-of-state to express δT as

δT =
1
cv
δe +

∂T
∂ρ

∣∣∣∣
e
δρ, (50)

where cv = ∂e/∂T |ρ is the specific heat capacity at constant vol-
ume2. In general, the contribution due to density fluctuations is
much smaller3 and we neglect them:

δT ≈
1
cv
δe. (51)

This approximation is used to replace δT with δe in the previous
system to obtain

δp
∆t
− a2∆t∂2

xδp − (Γ3 − 1)∂x

(χn

cv
∂xδe

)
= −F̃p, (52)

δe
∆t
− ∆t

pn

(ρn)2 ∂
2
xδp −

1
ρn ∂x

(χn

cv
∂xδe

)
= −F̃e, (53)

δu
∆t

+
1
ρn ∂xδp = −F̃u. (54)

We now have a system of two coupled parabolic equations, as
seen from the block structure of the matrix J̃V :

J̃V =

J̃p,p J̃p,e 0
J̃e,p J̃e,e 0
J̃u,p 0 J̃u,u

 . (55)

The solution strategy of a system of equations in which ther-
mal diffusion terms are treated implicitly is therefore more com-
plicated than in the previous section: the two coupled parabolic
Eqs. (52) and (53) have to be solved jointly for δe and δp, and
finally δu is obtained from Eq. (54).

3.5. Numerical solution of the parabolic system

For both SI schemes presented previously, the numerical so-
lution of a system of linear parabolic equations is required.
This is accomplished in MUSIC using the Trilinos library (see

2 Here it is understood that partial derivatives are evaluated at time
step n.
3 It is zero for a perfect gas, for which e = e(T ).

Heroux et al. 2005). Specifically, MUSIC uses the iterative lin-
ear solver GMRES implemented in the package AztecOO to
solve the parabolic system. The convergence of the linear solver
is checked based on the criterion:

||Px − b||2 < η′||b||2, (56)

where P is the system matrix, x the solution vector, b the r.h.s.
of the linear system, and η′ controls the accuracy of the solu-
tion. When setting η′ ≤ 10−6, we find that the preconditioner has
the same performances as when we use a direct solver to solve
the parabolic system. However, in practice it is not necessary to
solve the parabolic problem with such accuracy, as the precon-
ditioner is only meant to provide an approximate solution of the
problem. The results presented in this work were obtained by
adopting a value η′ = 10−4. This value ensures an accuracy that
is sufficient for the purpose of preconditioning. It is possible that
the performance could be improved by adopting even larger val-
ues of η′, as the decrease in the quality of the preconditioner
could be mitigated by the decrease in its computational cost.
This is left for future investigation. A multi-level preconditioner
is applied to speed up convergence of the linear solver. We use
the ML package of the Trilinos library to setup a multi-level pre-
conditioner (Gee et al. 2006). Our preconditioner is based on the
default parameters provided for the smoothed-aggregation setup
in the ML package (parameters set “SA”) with the following two
modifications. First, instead of using the default method to es-
timate the eigenvalues of the matrix we use the 1-norm of the
matrix. The default method of estimating the eigenvalues used
a method based on a conjugate-gradient solution of the system,
seeded by a random vector. This random vector caused simula-
tions continued after restarting to differ from simulations without
the restart, removing the ability to reproduce results. Second, we
reduce the damping factor for the precondition from the default
of 1.33 to 1.2, which in our case, results in fewer iterations for
the parabolic solver to converge.

3.6. Time-stepping with SI schemes

The SI schemes designed in this section can be used as
time-stepping methods to solve Eqs. (2)−(4) and (6). The
time-marching algorithm is:

1. Given the solution at time step n, Xn, compute FU(Xn) =
−RU(Xn) (see Eq. (9));

2. Transform FU into a residual for the primitive variables V:

F̃V =
∂V
∂U

FU ; (57)

3. Compute J̃V (Vn) corresponding to the desired SI scheme and
solve

J̃VδV = −F̃V (58)

for δV;
4. Transform δV into δX:

δX =
∂X
∂V

δV; (59)

5. Set Xn+1 = Xn + δX.

The scheme is linear (we used Picard linearization to deal with
nonlinear terms) and only first-order in time (we used the for-
ward/backward Euler methods). However the CFL limit is less
restrictive as the terms associated with acoustic fluctuations were
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discretized implicitly. Similarly, thermal diffusion does not im-
ply any stability restriction on the time step if the second SI
scheme is used. However, since the advective terms were dis-
cretized explicitly, a time step restriction based on the flow speed
remains.

3.7. 2D isentropic vortex test

In this section, we test the SI scheme for sound waves. We use
the isentropic vortex advection test originally proposed in Yee
et al. (2000), and we adopt a setup similar to the one used by
Kifonidis & Müller (2012) and Viallet et al. (2013) to test the
accuracy of the SI scheme.

The initial state consists of an isentropic vortex (i.e., zero
entropy perturbation) embedded in an uniform flow of norm
u∞ = 1. We use a Cartesian system of coordinates where the
x-axis is taken in the direction of the flow. The vortex corre-
sponds to the following perturbations in the state variables:

(δu, δv) =
β

2π
e

1−r2
2 (−y, x), (60)

δT = −
(γ − 1)β2

8γπ2 e1−r2
, (61)

where r =
√

x2 + y2, T = p/ρ (we set the gas constant R = 1 and
work with dimensionless quantities), γ is the adiabatic index,
and β the vortex strength. We use γ = 1.4 and β = 0.75, with
initial conditions

ρ = (T∞ + δT )
1
γ−1 , (62)

u = u∞ + δu, (63)
v = δv, (64)

e =
ργ−1

γ − 1
, (65)

where the subscript ∞ indicates the background value. The
sound speed of the background is c∞ =

√
γT∞. The maximum

velocity of the vortex is vmax = max ||δu|| = β/2π. We define the
vortex Mach number as Ms = vmax/c∞ = β/(2π

√
γT∞). By vary-

ing T∞, we change the Mach number of the flow. We consider
T∞ = 1, 102, 106, 1010, which corresponds to Ms = 10−1, 10−2,
10−4, 10−6 respectively.

The computations are performed on a 2D Cartesian domain
[−4, 4] × [−4, 4]. Initially, the vortex is centered on the origin.
The vortex is advected until t = 0.4. The exact solution cor-
responds to the initial vortex profile being shifted by a distance
equal to 0.4 in the x direction. To test the accuracy of the scheme,
we compare the velocity in the direction of advection, u, with the
expected analytic solution u0. Kifonidis & Müller (2012) and
Viallet et al. (2013) used the density field to monitor the error,
but here the background density is changed when T∞ is changed,
which is not the case for the velocity field. We monitor three
different norms of the error:

L1−error : ||u − u0||1 =
1

NxNy

∑
i, j

|ui, j − u0
i, j|, (66)

L2−error : ||u − u0||2 =

√
1

NxNy

∑
i, j

(ui, j − u0
i, j)

2, (67)

L∞−error : ||u − u0||∞ = max
i, j
|ui, j − u0

i, j|, (68)

where Nx, Ny are the grid dimensions, and the indices i, j range
over the simulation grid.

We introduce the advective CFL number:

CFLadv =
u∞∆t
∆x

, (69)

where ∆t is the time step and ∆x the mesh spacing. For a vortex
advected at u∞, the advective CFL number provides a measure
of the number of grid cells crossed per time step ∆t.

To characterise the accuracy of the SI scheme, we perform
a temporal convergence study. The resolution of the domain is
set to 642 and we choose different time steps in order to cover a
broad range of CFLadv, between ∼10−2 and 3. This corresponds
to CFLhydro as large as 4× 105. Later, we will compare the result
with a more accurate time integration method. We do not study
convergence with spatial resolution here, as our spatial method
remains the same in all schemes presented in this work, and
is unchanged as compared to previous publications. A spatial
resolution study is presented in Viallet et al. (2011).

We evolve the isentropic vortex varying both the Mach num-
ber and CFLadv, and monitor the numerical errors. We expect two
behavioral regimes. At low values of CFLadv, the error should be
approximately independent of the time step, as the spatial error
dominates. At higher values of CFLadv, the temporal error should
dominate, and be proportional to ∆t as the SI scheme is first-
order in time. The results are presented in Fig. 1. The expected
behavior is recovered, although the flat regime at low values of
the time step is not clearly seen. Temporal truncation errors re-
main significant for small time steps, as a result of the approx-
imations introduced when designing the SI scheme. The first-
order character of the temporal discretization appears clearly for
larger values of the time step. However, the most important con-
clusion is that the numerical error is independent of the Mach
number. Effectively, we achieved our goal of designing a scheme
that is independent of the stiffness of the background pressure
field. We stress that this behavior is observed over a range of
Mach numbers spanning five orders of magnitude.

Finally, although we successfully removed the stability con-
straint on the time step caused by sound waves, there is still a
CFL-like condition based on the advective velocity. Such a sta-
bility limit is not evident from Fig. 1, as only a few models are
computed for the largest time steps. Empirically, we determined
that the SI scheme becomes unstable for CFLadv & 0.2.

4. Jacobian-free Newton-Krylov method
and physics-based preconditioning

4.1. Newton-Krylov method

To solve the nonlinear system of equations, FU(Xn+1) = 0,
resulting from our fully implicit method we perform Newton-
Raphson iterations. The Newton-Raphson procedure is initiated
by taking an initial guess for the solution, typically X(0) = Xn. At
the kth Newton-Raphson iteration, the solution of a linear system
is required:

J(k)δX(k) = −FU(X(k)), (70)

where δX(k) = X(k+1) − X(k). The variable X(k) is the solution at
iteration k, and

J(k) =
∂FU

∂X
(X(k)) (71)

is the Jacobian matrix at iteration k.
The components of δX and FU can have considerably differ-

ent numerical values as they represent different physical quan-
tities in different units. For instance, densities can have typical
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Fig. 1. Convergence tests of the SI scheme treating sound waves implicitly – advection of an isentropic vortex at different Mach numbers. The
continuous lines show the norm of the errors measured in the velocity component parallel to the direction of advection.

values around 10−4 g/cc, whereas specific internal energies have
values around 1014 erg/g. Also, due to the stratification of stellar
interiors, some variables, such as the density, can vary by several
orders of magnitude throughout the domain. Such a wide range
of values can cause numerical difficulties due to round-off errors.
Therefore, before the system (70) can be solved, it is necessary
to scale it. We introduce two diagonal matrices L and R to scale
Eq. (70):(

L−1J(k)R
) (

R−1δX(k)
)

= −L−1FU(X(k)). (72)

As L and R are diagonal matrices, we use the same symbol to
represent their diagonal entries as a vector. The size of these vec-
tors is equal to the number of variables multiplied by the number
of cells. Each cell is treated in the same way, and the definitions
of R and L only differ for different variables:

Lρ = ρ(k),

Le = ρ(k)e(k),

Lu = ρ(k) max(|u(k)|, α1c(k)
s ),

Rρ = ρ(k),

Re = e(k),

Ru = max(|u(k)|, α2c(k)
s ),

where c(k)
s is the adiabatic sound speed computed from the solu-

tion at iteration k. R represents the typical value of the unknown
vector X(k), and attempts to remove both the effects of units and
stratification. We follow a similar idea for L and use the typical
value of the conserved variables to scale the residual vector FU .
However, as velocities can be arbitrarily small, it is necessary
to introduce a minimum velocity, here measured relative to the

sound speed using the parameters α1, α2 in the definitions of L
and R. The work described in Viallet et al. (2011) and Viallet
et al. (2013) used α1 = α2 = 1. After testing, we found that
α1 = 10−5 and α2 = 1 gives good performance for a wide range
of Mach numbers, typically 10−6 . Ms . 10−1, see discussion
in Sect. 5.

The Newton-Raphson procedure is terminated when the rel-
ative corrections fall below a certain value ε:

||R−1δX(k)||∞ < ε. (73)

In Viallet et al. (2013), it was shown that the nonlinear tolerance
ε has to be chosen small enough so that the truncation errors of
the scheme dominate the numerical error. We follow their recom-
mendation and set ε = 10−6. Finally, if Eq. (73) is already ful-
filled at the first iteration, we enforce a second Newton-Raphson
iteration. For the sake of clarity, we drop from now on the super-
script k of the outer nonlinear iteration of the Newton-Raphson
procedure, and we do not carry the scaling matrices L and R in
the notation in the rest of the paper.

We use the GMRES method to solve iteratively Eq. (72). We
start from an initial guess δX0, and we define the initial residual
as r0 = −FU(X) − JδX0. In practice, we choose δX0 = 0 so that
r0 = −FU(X). At the pth iteration, the GMRES method seeks
an approximation δXp of the solution by solving a minimization
problem in the pth Krylov space Kp of J:

δXp ∈ Kp(J) = span
(
r0, Jr0, . . . , Jp−1r0

)
. (74)
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The dimension of the search space increases at each iteration un-
til convergence is achieved. The convergence of the linear solver
is tested with the criterion

||JδXp + FU(X)||2 < η||FU(X)||2, (75)

where η is a parameter that determines the accuracy of the solu-
tion. Typical values of η that are used in this paper are η = 10−2

and η = 10−4, see discussion in Sect. 5.

4.2. Jacobian-free approach

To build successive Krylov spaces, the GMRES algorithm com-
putes the action of the Jacobian matrix on a vector. This is
the only use of the Jacobian operator, and we take advantage
of the fact that this operation can be approximated by finite-
differencing:

J(u)u ≈
F(u + δu) − F(u)

δ
, (76)

where δ is a small number. We rely on the implementation of
matrix-free operators available from the Trilinos package NOX.
This package contains two preset options for calculating δ:

δ = λ

(
λ +
||u||
||u||

)
, (77)

and,

δ = λ

(
10−12

λ
+
|u · u|
u · u

)
sign (u · u) . (78)

In both cases, λ is a small parameter with a default value of 10−6.
The standard choice in MUSIC is to use Eq. (77), as it gives the
best results (see discussion in Sect. 5).

In this Jacobian-free approach, the Jacobian matrix is not
needed explicitly, lowering the memory cost of the scheme.
Instead, computing the action of the Jacobian on a given vec-
tor requires one evaluation of the nonlinear residual in Eq. (76),
assuming that F(u) has been already computed and stored.

When J has a large condition number, the Krylov method
fails to converge in an acceptable number of iterations (a few
dozen) as the Krylov space is dominated by the direction of the
eigenvector associated with the largest eigenvalue. In such cases,
preconditioning is necessary. In this work, we use the SI schemes
presented in Sect. 3 as preconditioners for the Krylov method.
This is detailed in the next section.

4.3. Right-preconditioning of GMRES with SI schemes

Right-preconditioning of system (72) corresponds to solving the
equivalent system:(
JM−1)δX′ = −FU(X), (79)

MδX = δX′, (80)

where M is the preconditioning matrix. δX′ is an intermediate
solution vector, which once known, is used to find the solution
δX. If the preconditioning matrix is a good approximation of J,
i.e., JM−1 has a low condition number, the Krylov space of JM−1

is better suited to construct an approximation of the solution

δX′p ∈ Kp(JM−1) = span
(
r0, JM−1r0, . . . ,

(
JM−1)p−1r0

)
. (81)

Once a suitable solution δX′ has been found in the search space,
based on the same convergence criterion as (75), a final linear
system, Eq. (80), has to be solved to get the actual solution δX.

The key part of the right-preconditioning process is the ap-
plication of JM−1 on a Krylov vector v, provided by GMRES.
This operation is required at each iteration to build the succes-
sive Krylov spaces. In right-preconditioning, JM−1v is computed
in two steps:

1. Solve Mw = v for w;
2. Apply J to w.

The first step requires the inversion of a linear system; the sec-
ond step requires the action of the Jacobian on the vector w and
is approximated by a finite-difference formula (Jacobian-free ap-
proach).

The basic idea of physics-based preconditioning is to inter-
pret the system Mw = v in step 1 above as a system correspond-
ing to a linear time-stepping scheme written in δ-form:

Mw = v⇔ MδX = −G(X), (82)

where (M, G) describes a numerical scheme that approximates
the full nonlinear scheme (J, F). Another way to understand
physics-based preconditioning is that Eq. (82) defines a mapping
M from residuals to perturbations δX. Therefore, the Jacobian
matrix is always applied to a δX to yield a residual vector FU
which is used to build Krylov spaces.

The SI schemes designed in Sect. 3 are good candidates for
the scheme in Eq. (82). These schemes provide a good approx-
imation of the solution (i.e., M ∼ J), and most importantly
they remove the numerical stiffness by solving the stiff physics
(sounds waves and thermal diffusion) implicitly. Physics-based
preconditioner therefore “injects” physical insight at the heart
of the linear method, improving its convergence. However, the
Krylov vector is a residual for variables U, and it needs to be
transformed into a residual for variables V before a SI scheme
can be used. Furthermore, the SI scheme provides δV , which
needs to be transformed into δX before J can be applied. As in
the time-stepping algorithm described in 3.6, we use the matrices
derived in Sect. 3.2 to do these transformations. The complete
algorithm to use the SI as a preconditioner is:

– Input: the GMRES method provides a vector v ∈ Kp. v can
be interpreted as a residual vector for the conservative vari-
ables U, which we denote FU ;

1. Transform FU into a residual for the primitive variables V:

F̃V =
∂V
∂U

FU ; (83)

2. Apply the SI scheme to get δV:

J̃VδV = −F̃V ; (84)

3. Transform δV into δX:

δX =
∂X
∂V

δV; (85)

4. Compute JδX using the Jacobian-free method.
– Output: vector JδX, which is provided to GMRES to build

successive Krylov spaces.

We note that the scheme is not fully matrix free: the SI scheme
requires the resolution of a linear problem for which the matrix
is explicitly formed and stored. However, thanks to the simpli-
fications made in deriving the SI scheme, the matrix system is
significantly smaller and more sparse than the Jacobian matrix.
This keeps memory demand low.

In the remainder of the paper, the combination of the JFNK
method with physics-based preconditioning presented in this
section will be referred to as the JFNK+PBP method.
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Fig. 2. Same as Fig. 1, but using the JFNK+PBP scheme to advect the isentropic vortex.

5. Results

In this section, we assess the performance of our JFNK+PBP
method in both 2D and 3D. In Sect. 5.1, we test the accuracy and
efficiency of the method using idealized tests that use an ideal-
gas equation of state and a Cartesian geometry. In Sect. 5.2, we
test the method to model stellar interiors in a spherical geometry.
An important goal of this section is to demonstrate the good per-
formance, robustness and accuracy of the solver for a wide range
of Mach numbers, typically from Ms = 10−1 down to Ms = 10−6.

5.1. Ideal test cases

5.1.1. 2D isentropic vortex

We first investigate the accuracy of the solver by consider-
ing the 2D isentropic vortex problem that we used to test the
SI scheme in Sect. 3.7. We perform the same set of runs with
the JFNK+PBP method, and the computed errors are shown in
Fig. 2. Comparing with the error of the semi-implicit scheme
(see Fig. 1), the JFNK+PBP scheme achieves an overall reduc-
tion in the error. The range of time steps where spatial trunca-
tion errors dominate is larger, and we observe the second-order
character of the temporal error at large time steps. The use of
a SI scheme as a preconditioner does not impact the overall ac-
curacy of the JFNK+PBP method. Figure 2 also shows that the
results of the JFNK+PBP method are independent of the Mach
number, and this desirable property of the SI scheme has been
inherited by the nonlinear method.

Four free parameters enter the JFNK+PBP method: the
choice of perturbation strategy (Eqs. (77) and (78)); the two
scaling coefficients for the velocity components of the solution
and residual vectors (parameters α1 and α2 in Sect. 4.1); the tol-
erance required for the solution of the Jacobian equation (pa-
rameter η in Eq. (75)). These free parameters were determined
by testing.

We find that the accuracy of the solver for the higher end of
the Mach number range being considered (Ms > 10−4) is good
regardless of the choice of perturbation strategy. However, for
lower Mach numbers (Ms ≤ 10−4) we find that only Eq. (77),
with λ = 10−7, is able to yield accurate results. When using
Eq. (78), the Jacobian operator is poorly approximated, regard-
less of the value of λ, resulting in a failure of the nonlinear
method.

In the scaling of the linear system, we find that a value of
α1 = 10−5 gives the most consistent errors across Mach num-
bers for the range being considered, i.e., 10−6 ≤ Ms ≤ 10−1.
However, this range can be adjusted by tuning α1 to the problem
at hand, with a higher value producing more accurate solutions
for high Mach number flows. We find that α2 = 1 enables us
to obtain accurate results for the range of Mach numbers being
considered.

We find that a linear tolerance η = 10−4 produces solutions
with similar errors for the full range of Mach numbers consid-
ered in this work. A choice of η = 10−2 produces similar results
for the higher Mach numbers, but the quality of the solutions for
low Mach numbers degrades seriously.
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Fig. 3. Convergence of the GMRES solver without preconditioning (left panels) and with the physics-based preconditioner (right panels). The
upper panels correspond to the 2D isentropic vortex, and the lower panels to the 3D Taylor-Green vortex. In both cases, the Mach numbers
considered are Ms = 10−1, 10−2, 10−4, 10−6 (the right panels assume the same legend as the left ones). The maximum allowed number of
GMRES iterations was set to 300. The mean values of the number of iterations for convergence is plotted, with shaded areas showing maximum
and minimum values. For each Mach number, the location of CFLhydro corresponding to CFLadv = 1 is shown by a vertical dashed line.

Next, we assess the efficiency of the SI scheme as a
preconditioner. This is done by considering the number of
GMRES iterations necessary to reach convergence without pre-
conditioning and with physics-based preconditioning, for differ-
ent values of CFLhydro and different Mach numbers (the linear
tolerance is set to η = 10−4). When solving the unprecondi-
tioned linear system, we found that for α1 = 10−5 the majority of
linear problems, particularly for higher Mach numbers, fails to
converge. Instead, we present for the unpreconditioned case the
convergence behavior for α1 = 1, as a best case scenario. When
solving the linear system with physics-based preconditioning,
we use the optimal parameters described previously.

The results of convergence tests for the iterative method
are shown in Fig. 3. For these tests, the simulations are run
for 100 time steps. Without preconditioning, the different Mach
number cases behave similarly: the number of GMRES itera-
tions increases rapidly for CFLhydro & 1, and above CFLhydro &
10 no convergence is achieved despite the large number of iter-
ations allowed. Such behavior is due to the stiffness of acoustic
waves which increases with CFLhydro. Our physics-based pre-
conditioner is tailored to treat this effect, and the improvement
is demonstrated in the right panel of Fig. 3, as compared to the
left panel without preconditioning. In each case, the increase in
the number of GMRES iterations takes place at larger values of
the time step. With physics-based preconditioning, the failure

of the linear solver is now coming from the unstable behavior of
the SI scheme for too large a CFLadv.

5.1.2. 3D Taylor-Green vortex

We consider the Taylor-Green vortex problem to test our
physics-based preconditioner for an adiabatic (i.e., no thermal
diffusion) flow in 3D. We consider a Cartesian domain
(x, y, z) ∈ [0, 2πL]3, where L is a lengthscale that sets the phys-
ical size of the domain. The initial conditions for the velocity
field are

ux(x, y, z) = u0 sin
x
L

cos
y

L
cos

z
L
, (86)

uy(x, y, z) = −u0 cos
x
L

sin
y

L
cos

z
L
, (87)

uz(x, y, z) = 0. (88)

The domain has a uniform density of ρ0. The initial pressure
field is

p(x, y, z) = p0 +
1

16
ρ0u2

0

(
2 + cos 2

z
L

) (
cos 2

x
L

+ cos 2
y

L

)
, (89)

which ensures that

∂t
(
∇ · u

)
= 0 at t = 0, (90)

i.e., the initial conditions do not induce any acoustic modes. The
initial amplitude of the vortex is measured in terms of the Mach
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number Ms = u0/cs, where cs =
√
γp0/ρ0 is the adiabatic sound

speed. The adiabatic index γ is taken as 7/5 = 1.4. We take L
as our unit of length, u0 as our unit of velocity, and ρ0L3 as our
unit of mass. In this normalization, time is measured in units of
L/u0, and energy density in units of ρ0u2

0. We change p0 to vary
the Mach number in the range 10−6 ≤ Ms ≤ 10−1. We consider
a numerical domain with a resolution of 643. For this test case,
we define the advective CFL number as

CFLadv = max
|u|∆t
∆x

, (91)

where u is the velocity, ∆t the time step, ∆x the mesh spacing.
Similarly to the 2D isentropic vortex, we first investigate the

efficiency of the physics-based preconditioner in reducing the
number of iterations required by the linear solver to converge
to the desired accuracy. As condition (90) is never exactly ful-
filled in the discretized problem, some acoustic fluctuations are
produced at the first time step. To remove these transients, we
evolve each case for 100 time steps at a fixed CFLhydro = 1. We
then compute another 100 time steps with different values of ∆t,
corresponding to different values of CFLhydro. We monitor the
number of iterations required for convergence, with and without
physics-based preconditioning4. The results are shown in Fig. 3.
The conclusions are very similar to the ones drawn from the
2D vortex test presented in the previous section: physics-based
preconditioning allows for a fast convergence over a broad range
of hydrodynamical CFL numbers. Here again, the convergence
of the linear solver becomes difficult when CFLadv = 1 is ap-
proached.

Next we use the Taylor Green vortex to benchmark the
implicit JFNK+PBP method against the second-order accurate
Adams-Bashforth explicit scheme. Starting at t = 0, we evolve
the vortex using both the JFNK+PBP method and the Adams-
Bashforth method. We run the tests for a fixed wall-clock time
of six hours, and record the final time achieved by each method,
varying the Mach number of the test case. In the explicit case,
the time step is limited by stability to CFLhydro = 0.1; for the
implicit case, the time step is limited to CFLadv = 0.5 for ac-
curacy and for the stability of the underlying SI. The results are
recorded in Table 1. The final times obtained with the explicit
solver scale approximately with the Mach number, due to the
scaling of the CFL time step with the background sound speed.
The final times obtained with the JFNK+PBP method show less
of a clear pattern, with performance peaking at a Mach number
of Ms = 10−4. Nevertheless, the JFNK+PBP method is already
more than five times faster than the explicit solver for Ms = 10−2.
For lower Mach numbers, the speed-up is larger than two or-
ders of magnitude. We observe a dramatic drop in performance
at Ms = 10−6 when using the criterion CFLadv = 0.5 on the
time step. From analyzing the performance of the scheme for
this run (see Table 1), it appears that the physics-based precon-
ditioner becomes less effective, resulting in a very large number
of GMRES iterations and a substantial loss of performance. Such
a loss of effectiveness of the preconditioner at a very low-Mach
number close to CFLadv ∼ 1 can be already seen on Fig. 3, and
seems to highlight the limit of what is currently feasible with
the solver. We repeated the timing test for this Mach number
with CFLHydro = 5 × 104, which corresponds to CFLadv ∼ 0.05.
This improves the final time by approximately an order of mag-
nitude. It remains the least efficient case, but it is still roughly
three orders of magnitude faster than the corresponding explicit
calculation.
4 The parameters of the solver (η, α1, α2, . . . ) are adjusted as discussed
for the 2D test case.

Finally, we monitor the decay of the Taylor-Green vortex for
the range of Mach numbers explored here. We simulate for a
fixed time of t = 20, a time at which most of the dissipation
has occurred. We show in Fig. 4 the evolution of the decay rate
of kinetic energy. The left panel shows a global view where the
different curves are indistinguishable from each other. The right
panel shows a zoom on the peak of the decay rate. The difference
between the curves represents less than a percent. In Table 2 we
record the maximum decay rate and the time at which it occurs.
The purpose of Fig. 4 is twofold: firstly, it complements the per-
formance results presented previously as it shows that the results
are independent, at the percent level, of the Mach numbers; sec-
ondly, it provides confidence in using the code as an ILES tool
to model turbulent flows over a wide range of Mach numbers. In
the ILES framework, dissipation of kinetic energy is due to the
truncation errors of the scheme, and it is not obvious that these
behave similarly for different Mach numbers.

5.2. Stellar test cases

In this section, we examine how the JFNK+PBP method per-
forms in realistic stellar models. We use the same models as in
Viallet et al. (2013) of a 2D young Sun and a red giant in which
convection is fully developed and has reached a quasi-steady
state. Both models are first considered in a 2D spherically ax-
isymmetric geometry. The red giant model is then considered in
a full 3D spherical wedge geometry.

5.2.1. 2D stellar models

We compute 100 time steps of the red giant and young Sun
models using the JFNK+PBP method. We limit CFLadv (de-
fined as in Eq. (91)) to values of 0.5, 1, and 1.5. We com-
pare the performance of the JFNK+PBP method with the best
method identified in Viallet et al. (2013). The results are sum-
marized in Table 3 for the red giant, and Table 4 for the young
Sun. They show that the JFNK+PBP method is less efficient
than the Broyden+ILU method. It is seen that the JFNK+PBP
method is becoming less and less effective when CFLadv in-
creases, as the physics-based preconditioner fails as the under-
lying SI becomes unstable. In practice, the JFNK+PBP method
should not be used with CFLadv larger than one when computing
an unsteady flow. This limitation is not very penalizing, as nu-
merical accuracy is expected to decrease when CFLadv > 1,
meaning that larger time steps are not desirable anyway5. For
both the red giant and young Sun models, the performance
of the JFNK+PBP solver is the same for CFLadv = 0.5 and
CFLadv = 1, as the increase in the time step is compensated
by the increase in the number of GMRES iterations per Newton
iteration. One should keep in mind that the performance of the
JFNK+PBP solver presented here could probably be improved
by fine tuning the parameters discussed in Sect. 5.1.1. For in-
stance, the red giant and young Sun models differ in the av-
erage Mach number, with the red giant having a larger Mach
number (∼0.1) than the young Sun (∼0.01). Although the per-
formance of the JFNK+PBP method could be made closer to the
Broyden method, we could expect the latter to remain the most
efficient option for these cases.

5 Based on the 2D vortex advection test, Viallet et al. (2013) showed
that one could use CFLadv ∼ 2 without degrading the accuracy too
much. However, this conclusion might not be adequate for an unsteady,
turbulent flow, which could require smaller time step.
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Table 1. Summary of the results for the Taylor-Green vortex tests.

Mach No. Implicit Explicit
CFLhydro CFLadv Newton

∆t
GMRES
Newton

Parabolic
GMRES Final time Final time

10−1 7.1e+00 0.5 3.8 16.6 2.4 17.8 34.8
10−2 7.0e+01 0.5 3.1 15.4 2.5 20.9 3.62
10−3 8.2e+02 0.5 2.7 16.2 2.5 31.6 0.300
10−4 1.1e+04 0.5 2.0 16.1 2.8 55.1 3.65(−2)
10−5 8.1e+04 0.5 2.0 22.2 2.9 30.9 3.64(−3)
10−6 4.9e+05 0.49 4.5 291.5 3.0 0.6 3.64(−4)
10−6 5.0e+04 0.05 2.0 7.0 2.8 4.5 3.64(−4)

Notes. The columns for the implicit case represent: the average hydrodynamical and advective CFL numbers, the average number of Newton
iterations per time step, the average number of GMRES iterations per Newton iteration, the average number of parabolic iterations for the precon-
ditioner per GMRES iteration.
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Fig. 4. Decay rate of the Taylor Green vortex for different Mach numbers. The right panel shows a zoom on the peak of the decay rate. Time is
measured in units of L/u0, the decay rate in units of ρ0u3

0/L.

Table 2. Maximum decay rate measured during the decay of the Taylor-
Green vortex for different Mach numbers.

Mach No. Time of maximum Value
10−1 8.1656 1.2504(–2)
10−2 8.1695 1.2496(–2)
10−3 8.1695 1.2496(–2)
10−4 8.1696 1.2496(–2)
10−5 8.1695 1.2498(–2)
10−6 8.1681 1.2520(–2)

Notes. Time is measured in units of L/u0, the decay rate in units
of ρ0u3

0/L.

5.2.2. 3D red giant models

The efficient computation of 3D models is the main motivation
for moving beyond the framework of quasi-Newton methods.
We cannot, however, meaningfully compare the performance of
the later method to that of the JFNK+PBP method for 3D stellar
models, as done in the previous section. As shown previously,
quasi-Newton methods, such as the Broyden method, perform
well in 2D. However, their cost increases significantly in 3D.
The reasons are twofold. Firstly, in 3D, the Jacobian matrix has
a more complex structure than in 2D, due to the third dimen-
sion. This implies an increase in the cost for the construction
and storage of the Jacobian matrix and its ILU factorization.

As a result, for the same number of degrees of freedom (i.e.,
same matrix size), a 3D computation is inherently more expen-
sive than a 2D computation. Secondly, in 3D, the typical size
of a problem is much larger than in 2D, essentially due to the
larger number of cells, but also due to the extra variable (the
third velocity component). For instance, a 1282 computation has
4×1282 = 65 536 degrees of freedom, whereas a 1283 computa-
tion has 5× 1283 = 10 485 760 degrees of freedom. The compu-
tational costs (cpu time+memory) for some of the components
of the quasi-Newton methods do not scale linearly with the prob-
lem size. Thus, this increase in degrees of freedom corresponds
to a prohibitive increase in both cpu time and memory. For these
reasons, we can only perform a comparison with an extremely
low resolution, not necessarily relevant to the analysis of physi-
cal processes in stars. Since the JFNK+PBP is now the method
implemented in MUSIC for the purpose of running 3D simula-
tions, we want to illustrate the potential of this method.

We do so by performing computations of the red giant model
for a grid size of 72 × 652 (roughly 1.5 million degrees of free-
dom), using both the Broyden and JFNK+PBP methods. For the
reasons presented previously, this is the largest problem size that
we could consider using the serial version of MUSIC on a single
node of the supercomputer Zen at the University of Exeter. Each
node has 12 cores and 24 Gb of RAM, and a full node was re-
quested to benefit from the available memory. It is clear that the
memory requirement of the ILU factorization restricts the range
of accessible resolutions, even if domain decomposition is used
to distribute the problem among several computer nodes.
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Table 3. Comparison of the performance of the JFNK+PBP method presented in this paper with the Broyden methods presented in Viallet et al.
(2013), for the 2D red giant test case.

Method CFLhydro CFLadv CFLrad Newton
∆t

GMRES
Newton

Simulated time
Wall time

CFLadv,max = 0.5
Broyden(10−2)+ILU(1) 17.7 0.46 4.8 7.3 4.0 227
JFNK(10−1)+ PBP 18.9 0.49 4.9 6.2 7.2 202
JFNK(10−2)+ PBP 18.9 0.49 4.9 4.6 18.4 161
JFNK(10−4)+PBP 18.9 0.49 4.9 4.6 37.8 80
CFLadv,max = 1
Broyden(10−1)+ILU(1) 37.9 0.93 8.2 9.5 4.3 382
JFNK(10−1)+PBP 40.2 0.98 8.6 6.6 18.5 200
JFNK(10−2)+PBP 40.0 0.98 8.5 5.7 41.3 124
JFNK(10−4)+PBP 40.0 0.98 8.5 5.7 200.7 32
CFLadv,max = 1.5
Broyden(10−1)+ILU(1) 45.2 1.10 9.6 13.2 4.9 383
JFNK(10−1)+PBP 55.2 1.42 11.0 8.9 37.8 121
JFNK(10−2)+PBP 55.8 1.43 11.0 7.8 79.3 73
JFNK(10−4)+PBP 55.7 1.43 11.0 7.7 252.0 33

Notes. The value of the linear tolerance η is given in parenthesis after the name of the method; ILU(k) refers to an incomplete LU factorization of
order k; PBP refers to physics-based preconditioning for sound waves only.

Table 4. Similar to Table 3, for the 2D young Sun models.

Method CFLhydro CFLadv CFLrad
Newton

∆t
GMRES
Newton

Simulated time
Wall time

CFLadv,max = 0.5
Broyden(10−1)+ILU(2) 235.5 0.50 2.5(−7) 6.6 12.3 74
JFNK(10−1)+PBP 235.0 0.50 2.5(−7) 6.7 10.4 39
JFNK(10−2)+PBP 227.4 0.50 2.4(−7) 5.2 15.8 35
JFNK(10−4)+PBP 235.0 0.50 2.5(−7) 5.2 19.9 28
CFLadv,max = 1
Broyden(10−1)+ILU(2) 474.8 1.00 5.1(–7) 8.2 16.7 106
JFNK(10−1)+PBP 474.9 1.00 5.1(–7) 7.5 19.5 39
JFNK(10−2)+PBP 471.8 0.99 5.1(–7) 8.1 20.0 35
JFNK(10−4)+PBP 471.8 0.99 5.1(–7) 8.0 20.0 34
CFLadv,max = 1.5
Broyden(10−2)+ILU(2) 681.3 1.50 7.3(–7) 9.9 19.8 121
JFNK(10−1)+PBP 662.8 1.45 7.1(–7) 15.6 19.9 26
JFNK(10−2)+PBP 656.9 1.44 7.1(–7) 15.9 20.0 25
JFNK(10−4)+PBP 668.0 1.46 7.2(–7) 16.0 20.0 25

Table 5. Similar to Table 3, for the 3D red giant models.

Method CFLhydro CFLadv CFLrad
Newton

∆t
GMRES
Newton

Simulated time
Wall time

CFLadv,max = 0.5
JFNK(10−1)+PBP 107.6 0.50 0.74 10.8 7.8 188
JFNK(10−2)+PBP 107.6 0.50 0.74 7.3 13.3 183
JFNK(10−4)+PBP 107.6 0.50 0.74 5.1 25.6 147
Broyden(10−1) w/o preconditioner 107.6 0.50 0.74 7.6 219.7 122
Broyden(10−1)+ILU(2) 107.6 0.50 0.74 6.8 8.7 109
CFLadv,max = 1
Broyden(10−1)+ILU(2) 234.5 1.00 1.4 8.7 14.0 203
Broyden(10−1) w/o preconditioner 234.6 1.00 1.4 10.4 268.1 180
JFNK(10−1)+PBP 227.4 0.97 1.4 21.5 15.7 109
CFLadv,max = 1.5
Broyden(10−1)+ILU(2) 342.5 1.50 1.9 10.9 17.1 257
Broyden(10−1) w/o preconditioner 342.5 1.50 1.9 12.7 286.0 205
JFNK(10−1)+PBP 227.0 0.97 1.4 25.0 22.5 67
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Test runs are performed similarly to the previous section, and
the results are summarized in Table 5. The JFNK+PBP method
is more efficient for CFLadv = 0.5, but the Broyden method
remains more efficient for CFLadv = 1 and CFLadv = 1.5.
Surprisingly enough, for this particular case the unprecon-
ditioned Broyden method performs almost as well as the
preconditioned version, showing that the ILU preconditioner be-
comes inefficient due to its cost. However, we stress that an un-
preconditioned Broyden method is not a viable option for sci-
entific applications. The preconditioned version will not be vi-
able for larger problems, due to the increasing cost for com-
puting and storing the ILU factorization. We expect a more
substantial gain compared to the quasi-Newton methods when
larger problems will be considered, but the serial tests performed
here limit us to relatively small 3D problems. Such small prob-
lems appear already to be on the edge of the capabilities of
quasi-Newton methods. The implementation of the JFNK+PBP
method in MUSIC now allows us to perform 3D simulations
with resolutions of 5123 of a large fraction (∼80% in radius) of a
partly convective star, as an initial step toward the study of turbu-
lent convection and overshooting under realistic stellar interior
conditions and over relevant physical time scales (Pratt et al.,
in prep.)

Finally, as stellar models include radiative diffusion, we have
the possibility of using the second version of the physics-based
preconditioner, in which thermal diffusion is also treated implic-
itly. The stiffness of thermal diffusion is measured by the radia-
tive CFL number, defined as:

CFLrad = max
χ∆t
∆x2 , (92)

where ∆t is the time step, ∆x the mesh spacing, χ the ther-
mal diffusivity. As for sound waves, solving thermal diffusion
with a time explicit method requires CFLrad . 1 for stabil-
ity. Implicit methods allow for CFLrad � 1, but precondition-
ing is necessary to improve the convergence of the iterative
method. For the red giant model, however, our particular treat-
ment of the surface implies that the radiative diffusion is not
very stiff (CFLrad ∼ 1), and as such we do not see a substan-
tial difference between the two versions of the physics-based
preconditioner. Concrete examples of stellar cases where pre-
conditioning of thermal diffusion is necessary will be presented
elsewhere.

6. Conclusion

This work is a continuation of previous efforts devoted to devel-
oping an efficient, accurate fully implicit solver for multidimen-
sional hydrodynamics. In Sect. 4 we presented a Jacobian-free
Newton-Krylov method, which avoids the explicit construction
of the Jacobian matrix. The use of iterative methods to solve
the Jacobian equation requires preconditioning at large hydro-
dynamical CFL numbers. The main purpose of this paper was
to present an efficient preconditioner that specifically targets the
physical processes that are responsible for numerical stiffness,
hence the name of “physics-based” preconditioners.

This strategy is very different from the more usual algebraic
preconditioners (as, e.g., ILU factorization) which try to ad-
dress the stiffness of the system by only looking at the Jacobian
matrix structure and numerical values, without considering the
underlying equations. In the context of stellar hydrodynam-
ics, stiffness results from acoustic perturbations that propagate
on a time scale much shorter than the fluid bulk motion and
possibly from thermal diffusion. Therefore, the preconditioning

step relies on a semi-implicit solver, which is inexpensive and
rather inaccurate6, that treats sounds waves (and thermal dif-
fusion, if required) implicitly in order to overcome the asso-
ciated CFL limit on the time step (see Sect. 3). Although we
aim at using MUSIC to model stellar interiors, the JFNK+PBP
method can be applied to general advection and/or diffusion-
dominated problems. Although many approximations enter the
derivation of our SI scheme, they do not restrict its range of
applicability.

Section 5 presented the results of extensive tests assessing
the performance and accuracy of the new method. A strong
emphasis was put on exploring a wide range of Mach num-
bers, namely six orders of magnitude from Ms = 10−1 down
to Ms = 10−6. The tests assessed the ability of the physics-
based preconditioner to reduce the number of linear iterations
required by the linear solver. Using the 3D Taylor-Green vor-
tex test, we showed that this solver is computationally efficient,
beating the Adams-Bashforth explicit scheme for Ms . 10−2.
We emphasize that the method has several parameters that can
be tuned to improve its performance. To achieve the best per-
formance, these parameters should be tuned for the particular
problem being considered. Therefore, we do not claim to have
found the best set of parameters, but rather a set that gives
very satisfying performances for the various tests performed in
this paper. Furthermore, the performance does not come with
any loss of accuracy: our method exhibits accuracy that is con-
sistent with the second-order nature of its discretization, and
most importantly, the numerical errors are independent of the
Mach number, at least in the investigated range. However, it
appears that Ms ∼ 10−6 is on the edge of the abilities of the
solver, as fine-tuning of some parameters and a reduction of the
time step was necessary to pass the tests at such a low Mach
number.

The JFNK+PBP method is now the work-horse of the
MUSIC code, and is used to investigate long-standing prob-
lems in stellar hydrodynamics such as shear mixing and con-
vective overshooting. Further developments are now devoted to
the parallelization of the method, in order to take advantage
of multi-cores/multi-nodes high-performance computers that are
now routinely used in computational physics. Performance and
scalability tests will be presented elsewhere.
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Appendix A: Evolution equation for pressure
and acoustic fluctuations

A.1. Evolution equation for pressure

The linearized equation-of-state yields

δp =
∂p
∂ρ

∣∣∣∣
e
δρ +

∂p
∂e

∣∣∣∣
ρ
δe. (A.1)

We have the thermodynamic relationships

∂p
∂ρ

∣∣∣∣
e

=
p
ρ

(
Γ1 − Γ3 + 1

)
, (A.2)

∂p
∂e

∣∣∣∣
ρ

=ρ
(
Γ3 − 1

)
, (A.3)

where Γ1 and Γ3 are the first and third generalised adiabatic in-
dices. We now substitute δ’s with Lagrangian derivatives Dt =
∂t + u · ∇ in Eq. (A.1):

Dt p =
p
ρ

(
Γ1 − Γ3 + 1

)
Dtρ + ρ

(
Γ3 − 1

)
Dte, (A.4)

and we use the Lagrangian equations

Dtρ = − ρ∇ · u, (A.5)
ρDte = − p∇ · u + ∇ ·

(
χ∇T

)
, (A.6)

to obtain

∂t p + u · ∇p = −Γ1 p∇ · u + (Γ3 − 1)∇ ·
(
χ∇T

)
. (A.7)

Appendix B: Transformation matrices

B.1. Internal energy equation

In this case U = (ρ, ρe, ρu), X = (ρ, e, u), and V = (p, e, u). The
transformation matrix ∂U/∂X between variables U and X is such
that δU = (∂U/∂X)δX. We have

∂U
∂X

=


1 0 0

e ρ 0

u 0 ρ

 . (B.1)

The inverse transformation is:

∂X
∂U

=
(∂U
∂X

)−1
=


1 0 0

−e/ρ 1/ρ 0

−u/ρ 0 1/ρ

 . (B.2)

The transformation matrix ∂V/∂X is

∂V
∂X

=


∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ

0
0 1 0

0 0 1

 , (B.3)

and its inverse ∂X/∂V is

∂X
∂V

=


( ∂p
∂ρ

∣∣∣
e

)−1
−
( ∂p
∂ρ

∣∣∣
e

)−1 ∂p
∂e

∣∣∣∣
ρ

0

0 1 0
0 0 1

 . (B.4)

We have

∂V
∂U

=
∂V
∂X
×
∂X
∂U

=
∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ

0
0 1 0
0 0 1


 1 0 0
−e/ρ 1/ρ 0
−u/ρ 0 1/ρ


=


∂p
∂ρ

∣∣∣
e −

e
ρ
∂p
∂e

∣∣∣∣
ρ

1
ρ
∂p
∂e

∣∣∣∣
ρ

0

−e/ρ 1/ρ 0
−u/ρ 0 1/ρ

 . (B.5)

B.2. Total energy equation

In this case U = (ρ, ρεt, ρu), X = (ρ, εt, u), and V = (p, e, u). The
transformation matrix ∂U/∂X is:

∂U
∂X

=

1 0 0
εt ρ 0
u 0 ρ

 . (B.6)

Its inverse is

∂X
∂U

=

 1 0 0
−εt/ρ 1/ρ 0
−u/ρ 0 1/ρ

 . (B.7)

The transformation matrix from (ρ, e, u) and (ρ, εt, u) isδρδεt

δu

 =

1 0 0
0 1 u
0 0 1


δρδe
δu

 , (B.8)

so that the transformation matrix ∂V/∂X is

∂V
∂X

=


∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ

0
0 1 0
0 0 1


1 0 0
0 1 u
0 0 1


−1

=


∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ

0
0 1 0
0 0 1


1 0 0
0 1 −u
0 0 1


=


∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ
−u

( ∂p
∂e

∣∣∣
ρ

)
0 1 −u
0 0 1

 . (B.9)

The inverse transformation is

∂X
∂V

=

1 0 0
0 1 u
0 0 1



∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ

0
0 1 0
0 0 1


−1

=

1 0 0
0 1 u
0 0 1



( ∂p
∂ρ

∣∣∣
e

)−1
−
( ∂p
∂ρ

∣∣∣
e

)−1 ∂p
∂e

∣∣∣∣
ρ

0

0 1 0
0 0 1


=


( ∂p
∂ρ

∣∣∣
e

)−1
−
( ∂p
∂ρ

∣∣∣
e

)−1 ∂p
∂e

∣∣∣∣
ρ

0

0 1 u
0 0 1

 . (B.10)
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Finally, we have

∂V
∂U

=
∂V
∂X
×
∂X
∂U

=
∂p
∂ρ

∣∣∣
e
∂p
∂e

∣∣∣
ρ
−u

( ∂p
∂e

∣∣∣
ρ

)
0 1 −u
0 0 1


 1 0 0
−εt/ρ 1/ρ 0
−u/ρ 0 1/ρ


=


∂p
∂ρ

∣∣∣
e −

εt−u2

ρ
∂p
∂e

∣∣∣∣
ρ

1
ρ
∂p
∂e

∣∣∣∣
ρ
− u
ρ
∂p
∂e

∣∣∣∣
ρ

−(εt − u2)/ρ 1/ρ −u/ρ
−u/ρ 0 1/ρ

 . (B.11)
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