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ABSTRACT
The detection of exoplanets in coronographic images is severely limited by residual starlight
speckles. Dedicated post-processing can drastically reduce this ‘stellar leakage’ and thereby
increase the faintness of detectable exoplanets. Based on a multispectral series expansion of
the diffraction pattern, we derive a multimode model of the residuals which can be exploited
to estimate and thus remove the residual speckles in multispectral coronographic images.
Compared to other multispectral processing methods, our model is physically grounded and is
suitable for use in an (optimal) inverse approach. We demonstrate the ability of our model to
correctly estimate the speckles in simulated data and demonstrate that very high contrasts can
be achieved. We further apply our method to removing speckle from a real data cube obtained
with the SPHERE integral field spectrograph instrument.

Key words: methods: data analysis – techniques: image processing – planets and satellites:
detection.

1 IN T RO D U C T I O N

Direct detection of extra-solar planet images or spectra is extremely
challenging because of the small angular separation and the enor-
mous contrast ratio between the parent star and the planet. For
ground-based detection of exoplanets, it is necessary to employ
a very high-order adaptive optics (AO) system to reduce atmo-
spheric wavefront errors to a very low level. In addition, a corono-
graph is employed to mask light from the parent star (Delacroix
et al. 2012). Specialized instruments have recently been commis-
sioned to search for exoplanets; SPHERE in the case of the 8 m
VLT (Beuzit et al. 2008; Vigan et al. 2015), GPI in the case of the
8 m Gemini telescope (Macintosh et al. 2014; Kalas et al. 2015),
SCExAO for the 8 m Subaru telescope (Guyon et al. 2011) and the
Project 1640 system at the Palomar observatory (Crepp et al. 2011).

Some exoplanets have already been detected by direct imaging
(Marois et al. 2008; Lagrange et al. 2009; Lafrenière, Jayaward-
hana & van Kerkwijk 2010; Ireland et al. 2011; Rameau et al. 2013;
Bonavita et al. 2014), although the separations of the planets from
the parent stars are relatively large. It has been found that the de-
tection of exoplanets in AO-corrected images is severely limited by
the presence of residual speckles (e.g. Janson et al. 2006). These
speckles arise from uncorrected atmospheric errors, and uncorrected
optical errors in the telescope and/or imaging instrument. The resid-
ual atmospheric errors are random and will average to a smooth halo
if the exposure time is long compared with the atmospheric coher-
ence time. However, the speckles due to uncorrected optical errors
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evolve slowly with time (Hinkley et al. 2007) and are difficult to
distinguish from real point sources in the image. In order to reduce
these static speckles, a number of differential imaging techniques
have been proposed.

In angular differential imaging (ADI), the field can rotate during
the observation (e.g. on an altitude–azimuth telescope), while the
instrument and AO system are fixed in position; it is supposed that
the system point spread function (PSF), including the quasi-static
speckles, will remain approximately constant during the observa-
tion, while any exoplanets will rotate about the central star. In
the LOCI approach which was first proposed by Lafrenière et al.
(2007), the image is divided into annular regions defined by an-
nuli and wedges, and the PSF is estimated and subtracted in each
region. A temporal weighting of the frames making up the local
PSF estimate can therefore vary over the image, reflecting the fact
that the temporal evolution of speckles depends on their distance
from the centre of the PSF. The direct application of LOCI to IFS
data can lead to errors in the exoplanet spectrophotometry due to
subtraction of residual starlight. Pueyo et al. (2012) proposed a
modified algorithm referred to as ‘Damped LOCI’ in which the
cost function is modified to attempt to conserve companion flux.
Marois et al. (2014) show that the performance can be improved by
including a prior model of the planet spectrum – this is referred to
as template-LOCI or simply TLOCI.

An alternative approach, sometimes referred to as KLIP
(Karhunen–Loève Image Projection), to analysing ADI data is
based on carrying out a principal component analysis (PCA) of
the sequence of images (Soummer, Pueyo & Larkin 2012; Amara
& Quanz 2012). The images are concatenated into a large ar-
ray, and a singular value decomposition (SVD) carried out. This
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identifies orthogonal modes of variation. Each image is subse-
quently decomposed on to a number of principal components and the
result is subtracted from the original images. The resulting residues
are de-rotated and summed, following which any planet candidates
are identified by thresholding. The number of modes to use is the
result of a compromise between complete subtraction of the stellar
signal and the removal of planet flux. The trade-off is usually car-
ried out by injecting synthetic planets into the data and determining
which number of modes will maximize the planet signal-to-noise
ratio (S/N). In addition, the optimal number of modes will depend
on the radial distance from the star at which it is required to search
for a planet (Meshkat et al. 2014).

Another type of differential imaging relies on obtaining images
at more than one wavelength. Spectral differential imaging (SDI,
Smith 1987; Racine et al. 1999) uses images obtained (preferably
simultaneously) at different wavelengths. If one of the images is
taken inside a methane absorption line at 1.6 μm then it can be
used as a good PSF estimate, since the signal from any exoplanet
would be much weaker, at least if the planet is a gas giant. Marois
et al. (2000) developed implementation details for the idea and this
approach has been implemented in instruments used to survey stars
for methane-rich companions (Marois et al. 2005; Biller et al. 2007).
While the technique may be extended to include more wavelengths
using double and higher order differencing, it is not straightforward
and, in practice, is limited by noise (Marois et al. 2005).

Most of the instruments to be used for exoplanet detection will
include an integral field spectrograph (IFS) in order to provide
spectral information on any detected planet. It has been realized
that the information present in IFS data may be used to reduce
the effect of the stellar PSF, including any static speckles. Thatte
et al. (2007) describe a technique in which the IFS data cube is
radially rescaled to remove the wavelength-dependent scaling of
the diffraction pattern. The PSF is then estimated by polynomial
fitting along the wavelength axis for each pixel in the rescaled data
cube. The polynomial order of the fit is chosen by the user – a higher
order will tend to remove any planet signal and, in practice, a low
order is used. Subtraction of the PSF estimate will allow detection
of faint companions. This approach, which was originally proposed
by Sparks & Ford (2002) is referred to as spectral deconvolution
(SD). Crepp et al. (2011) describe a modification of the LOCI
algorithm for use with IFS data cubes. A PSF reference is built up
for each wavelength channel by combining images which are nearby
in both wavelength and time (but separated enough in wavelength
to ensure the speckles have moved significantly with respect to the
diffraction limit). The frames at different wavelengths are scaled and
combined by means of least squares. Using data from the Palomar
observatory system, they find a small departure from linear scaling
with wavelength, and attribute this to out-of-pupil aberrations. The
PCA technique can also be applied to IFS data.

Here, we propose a new approach to the detection of exoplanets
in multispectral data. Perrin et al. (2003) proposed that the PSF can
be expanded in a power series of spatial modes which are func-
tions of the residual phase in the pupil. The modes of odd order
are antisymmetric, while the even order modes are symmetric. The
dominant modes depend on the Strehl ratio of the corrected wave-
front and the distance from the centre of the PSF. We extend this
work to consider the spectral dependence of these modes, which
turns out to be power laws. We examine the validity of this analysis
using a SVD of simulated multispectral coronographic images, and
show that using this approach can give excellent speckle suppres-
sion in simulated data. The approach has similarities with PCA, but
there are some important differences. In particular, our method is

based on imaging physics (the power series expansion of the PSF),
which leads to insights not available with ad hoc processing. We
will show that it is more flexible than approaches based on SVD,
including PCA. Finally, it lends itself to an inverse approach for
the joint estimation of the residual PSF plus detection of planets.
A preliminary version of this work has been presented (Thiébaut
et al. 2016). In this paper, we will provide more details about the
derivation and the testing of our model and show how to use this
model to perform planet detection in multispectral and multitempo-
ral data. We present an example of planet detection using data from
the SPHERE IFS, but the full exploitation of our technique in an
inverse approach will be presented in a subsequent paper.

2 MO D E L O F T H E ST E L L A R L E A K AG E

In order to achieve the best detection sensitivity, it is necessary to
reduce residual speckles as much as possible by appropriate post-
processing of the images. We propose to tackle the removal of the
stellar leakage as an inverse problem based on a proper modelling
of the on-axis PSF. In order to constrain this model and thus achieve
a very good level of ‘soft coronography’, we exploit the chromatic
behaviour of the speckle pattern.

2.1 Speckle alignment

As described in the Introduction, most speckle removal methods
work on image differences where the observed images are obtained
at different times and/or wavelengths and are subtracted after an
interpolation and a multiplication by a scaling factor of one of the
images. The interpolation implements a geometrical transformation
of coordinates intended to align the speckles in the two images. Typ-
ically, this geometrical transform accounts for translation (to com-
pensate for pointing errors and jitter), rotation (to compensate for
pupil rotation during the night) and magnification (to compensate
for chromatic geometrical effects due to diffraction). In principle, it
is also possible to compensate for other geometrical effects such as
distortion. The scaling factor accounts for any variation of the flux
received from the star as it is seen in the two images (e.g. due to the
variation of transparency or to the star spectrum if the two images
are at different wavelengths). The resulting image differences are
called ADI or SDI depending on whether the two images come
from different exposures (and hence have different rotation angles)
or from different spectral channels. The idea is that the residual
speckles are cancelled or at least strongly reduced in the differential
images compared to the original data. In principle, it is possible to
combine images at different times and different wavelengths.

Since we want to first focus on speckle removal, we start by con-
sidering the case of observing an isolated star with no surrounding
sources. In this case, the light distribution in the focal plane of a
telescope is simply given by:

I (r, λ, t) = F (λ) P (r, λ, t) (1)

where r is the position in the focal plane, λ is the wavelength, t is the
time, F(λ) is the spectral energy distribution (SED) of the star and
P (r, λ, t) is the on-axis1 PSF. Introducing 2D spatial coordinates

1 What we call the on-axis direction is determined by the direction towards
the star not that of the optical axis even though they usually coincide.
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s in a reference coordinate system where the speckles are aligned,
we can rewrite the on-axis PSF as:

P (r, λ, t) = Pref (s, λ, t)

∣∣∣∣ ∂s
∂r

∣∣∣∣ , (2)

where Pref (s, λ, t) is the distribution of speckles in the reference
coordinate system and |∂s/∂r| is the absolute value of the deter-
minant of the Jacobian matrix of the coordinate transform r �→ s
and is needed to insure proper normalization. If there are no losses,
the distributions of speckles are both normalized in their respective
coordinate systems:“

P (r, λ, t) d2r =
“

Pref (s, λ, t) d2s = 1 . (3)

This normalization condition insures that:“
I (r, λ, t) d2r = F (λ) . (4)

In these equations, the term F(λ) is the SED of the star as seen
by the instrument, i.e. it takes into account the transmission by the
atmosphere and the instrument which may depend on wavelength.
The star SED could be written as F(λ, t), if the transmission also
depends on time t.

The distribution Pref (s, λ, t) can also be seen as the PSF in the
reference coordinate system for a source in the direction of the star.
We will refer to it as the ‘reference on-axis PSF’. The mapping r ↔
s is a general formalization of the geometrical coordinate transform
implemented by existing methods such as ADI or SDI. The key
idea of ADI- or SDI-based methods is that the reference on-axis
PSF is approximately independent of the wavelength and/or the
time and can thus be cancelled by means of image subtraction after
interpolation.

2.2 Spatiospectral distribution of the speckles

Following the work of Perrin et al. (2003) who expanded the PSF
as an infinite Taylor series with respect to the phase aberration, we
propose to derive a model for the distribution of speckles which
accounts for chromatic effects. Our intention is to use this model to
achieve a better suppression of the stellar speckles.

Since the source is effectively at an infinite distance, the illumi-
nation in the image plane results from Fraunhofer diffraction and
the on-axis PSF is given by:

P (r, λ, t) = 1

ρ(λ)

∣∣∣∣
“

a(u, λ, t) e
i 2 π
f λ 〈u,r〉 d2u

∣∣∣∣2

(5)

with ρ(λ) a normalization factor, a(u, λ, t) the complex amplitude
transmission at the position u of the pupil plane and f the focal
length. The expression 〈u, r〉 denotes the usual scalar product of
u by r . In the conditions considered here, the distribution of the
diffracted light depends on the phase aberrations in the pupil plane.
Propagation of aberrations arising away from the pupil plane can
give rise to a chromatic effect (Marois, Phillion & Macintosh 2006)
which is not included in this analysis.

Also neglecting the chromaticism of the refractive index of air,
the complex amplitude transmission is given by:

a(u, λ, t) = a0(u) exp

(
i 2 π

λ
d(u, t)

)
, (6)

where a0(u) is the aberration-free telescope complex amplitude
transmission (the so-called pupil function) and d(u, t) is an achro-
matic optical path difference due to the aberrations. The integral

in equation (5) is directly related to the spatial (inverse) Fourier
transform of the complex amplitude transmitted by the pupil:

â(ω, λ, t) =
“

a(u, λ, t) ei 2 π 〈u,ω〉d2u , (7)

which is proportional to the complex amplitude in the focal plane.
Introducing this quantity in equation (5) yields:

P (r, λ, t) = 1

ρ(λ)

∣∣∣∣â (
r

f λ
, λ, t

)∣∣∣∣2

. (8)

The factor ρ(λ) is such that the normalization in equation (3) holds
and therefore:

ρ(λ) =
“ ∣∣∣∣â (

r
f λ

, λ, t

)∣∣∣∣2

d2r

= (f λ)2

“
|â(ω, λ, t)|2 d2ω

= (f λ)2

“
|a0(u)|2 d2u , (9)

with ω = r/(f λ) and where the latter equation follows from Par-
seval’s theorem and from equation (6).

Following Perrin et al. (2003), the exponential term of the com-
plex amplitude transmitted by the pupil can be expanded in an
absolutely convergent series in the optical path difference d(u, t):

a(u, λ, t) = a0(u)
∑
k≥0

1

k!

(
i 2 π

λ
d(u, t)

)k

.

At this point, it is convenient to introduce the phase aberration in
the pupil at a given reference wavelength λref :

φ(u, t) = 2 π

λref
d(u, t), (10)

and to rewrite the expanded complex amplitude as:

a(u, λ, t) = a0(u)
∑
k≥0

ik γ (λ)k φ(u, t)k

k!
, (11)

with:

γ (λ) = λref

λ
. (12)

Then taking the inverse Fourier transform of equation (11) yields:

â(ω, λ, t) =
∑
k≥0

ik γ (λ)k ξk(ω, t)

k!
. (13)

where:

ξk(ω, t) =
“

a0(u) φ(u, t)k ei 2 π 〈u,ω〉d2u

= â0(ω) �k φ̂(ω, t) (14)

with â0(ω) and φ̂(ω, t), the inverse spatial Fourier transforms of
the aberration-free pupil transmission and phase aberration at the
reference wavelength. As in Perrin et al. (2003), we use �k to denote
multiple convolution products over the conjugate position ω:

â0 �k φ̂
def=

⎧⎪⎨⎪⎩
â0 if k = 0,

â0 �

k terms︷ ︸︸ ︷
φ̂ � . . . � φ̂ if k > 0,

(15)

with � the ordinary convolution product. Taking the squared mod-
ulus of the complex amplitude in the focal plane and grouping the
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terms of the same order with respect to the phase aberrations yields:

|â(ω, λ, t)|2 =
∑
k1≥0

∑
k2≥0

ik1−k2 γ (λ)k1+k2 ξk1 (ω, t) ξ ∗
k2

(ω, t)

k1! k2!

=
∑
k≥0

γ (λ)k (−i)k
k∑

k′=0

(−1)k
′
ξk′ (ω, t) ξ ∗

k−k′ (ω, t)

k′! (k − k′)!
.

Taking the normalization in equation (9) into account, the on-axis
PSF can finally be written:

P (r, λ, t) = ∑
k≥0 γ (λ)k+2 pk(γ (λ) r, t), (16)

with γ (λ) = λref/λ and where the on-axis PSF modes pk(s, t), with
s = γ (λ) r , are given by:

pk(s, t) = (−i)k

ρ(λref )

k∑
k′=0

(−1)k
′
ξk′ (ω, t) ξ ∗

k−k′ (ω, t)

k′! (k − k′)!
, (17)

where:

ω = s
f λref

= γ (λ)

f λref
r .

In words, the expansion in equation (16) shows that the change of
the PSF with wavelength is a combination of chromatic magnifica-
tion, by the factor γ (λ), and amplifications, by powers of γ (λ). The
important point is that there are no other wavelength dependencies
in the on-axis PSF. In particular, the PSF modes pk(s, t) are achro-
matic; they only depend on the position s in the reference coordinate
system and on the time t. The first term p0 of the PSF expansion is
the PSF without aberrations at the reference wavelength, while the
other terms are due to the phase aberrations.

Our equations extend the work by Perrin et al. (2003), who con-
sidered the monochromatic case. In particular, they did not consider
the chromatic magnification and amplification of the PSF modes.
Some interesting properties of the on-axis PSF modes pk(s, t) de-
fined in equation (17) can be inferred from the paper of Perrin et al.
(2003). First, all the terms pk(s, t) of the PSF expansion are real-
valued, the zeroth-order term p0(s, t) of this series is the unaber-
rated PSF and all the odd terms are spatially antisymmetric, while
all the even terms are symmetric. Thus, for k > 0, the terms pk(s, t)
have the same parity as k with respect to s: p2k(−s, t) = p2k(s, t),
while p2k+1(−s, t) = −p2k+1(s, t). Second, the model derived from
the series expansion in the case of simple Fraunhofer diffraction re-
mains approximately valid for an apodized Lyot coronograph. We
therefore expect that the on-axis PSF model in equation (16) can
serve as a good basis to remove the stellar leakage in the proposed
inverse approach. Which terms of the expansion dominate depends
on the Strehl ratio, distance from the axis and on the attenuation by
the coronograph.

2.3 On-axis PSF in the reference coordinate system

If one simply defines the position in the reference coordinate system
as:

s = γ (λ) r , (18)

then noting that it yields:

|∂s/∂r| = γ (λ)2 , (19)

and combining equations (2) and (16), the reference on-axis PSF is
written:

Pref (s, λ, t) = ∑
k≥0 γ (λ)k pk(s, t), (20)

with γ (λ) = λref/λ. Since there is no chromatic spatial distortion
in this expression, it is clear that the speckles are aligned in such a
reference system.

The diffraction computations in the previous section were carried
out assuming that the optical axis and the pupil orientation are
the same at all wavelengths and times. This implies that a simple
chromatic magnification between s, the position in the reference
coordinate system and r , the position in the image coordinate system
is sufficient to align the speckles. In practice, there may be several
causes of misalignment that must be taken into account and a more
complex mapping s ↔ r may have to be considered. Nevertheless,
the series in equation (20) and relation (2) remain valid in the general
case and can be exploited to model the chromatic behaviour of the
distribution of speckles.

3 VA L I DAT I O N O F T H E M O D E L

To validate our model, we propose to check how well it is able to
fit realistic simulations of the stellar leakage. The model becomes
separable if one considers resampled images in the reference co-
ordinate system. Working with resampled images, truncated SVD
(TSVD) provides an approximation which is different from our
model as it makes no other assumptions besides separability. We
use TSVD to exhibit the actual chromatic behaviour of the stel-
lar leakage and compare it with the predictions of our model. The
ability of our model to fit the stellar leakage is compared to TSVD
which provides the best possible fit for a given number of modes.

3.1 Interpolated image in the reference coordinate system

The PSF expansion in equation (16) yields the following expression
for the brightness distribution due to the star:

I (r, λ, t) = F (λ)
∑
k≥0

γ (λ)2+k pk(s(r, λ, t), t) . (21)

Considering this expression, it is useful to define:

A(s, λ, t) ≡ I (r(s, λ, t), λ, t)

=
∑
k≥0

gk(λ) pk(s, t) , (22)

where gk(λ) are spectral weighting functions given by:

gk(λ) = F (λ) γ (λ)2+k . (23)

The quantity A(s, λ, t) is the observed light distribution interpolated
into the reference coordinate system. This distribution is clearly a
separable expansion whose terms are the product of a chromatic
weight, gk(λ), by a spatiotemporal mode, pk(s, t). We will see that
this description is very useful as it allows us to introduce priors on
the distribution of the speckles and to help suppress them.

The notations s(r, λ, t) in equation (21) and r(s, λ, t) in
equation (22) make explicit the spatiospectrotemporal dependency
between the image coordinates r and the position s in the reference
coordinate system as discussed in Section 2.3. In order to sim-
plify notation, this relationship will be implicitly assumed in what
follows.
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3738 N. Devaney and É. Thiébaut

In practice, the data consist of a number of exposures acquired
in different spectral channels. We denote the value measured by the
jth pixel in the �th spectral channel during the mth exposure by:

Ij,�,m ≈ I
(

r j,�,m, λ�, tm
)

	
j,�,m . (24)

Here r j,�,m is the position of the considered pixel, λ� is the effective
wavelength of the spectral channel and tm is the mean time of
the exposure. The term 	
j, �, m accounts for the effective pixel
area, spectral bandwidth and exposure duration. The ≈ sign in
equation (24) accounts for any approximations (such as sampling
the distribution instead of integrating it over 	
j, �, m) and for the
noise.

As described previously, in order to align the residual speckles,
it is necessary to resample the data into the reference coordinate
system. In practice, this amounts to applying a linear transform to
the data. Formally:

A(si, λ�, t
′
i ) ≈ Ai,� =

∑
j,m

(R�,m)i,j Ij,�,m , (25)

where R�,m is an interpolation operator which maps a distribu-
tion sampled in the image frame of the �th spectral channel during
mth exposure to the reference coordinate system. As explained in
Section 2.3, the mapping to the reference coordinate system de-
pends on the wavelength and on the time, hence the corresponding
linear operator is indexed by � and m. As implicitly assumed by
equation (25), the resampling operator R�,m also scales the data to
eliminate the 	
j, �, m factors. Combining equations (22) and (25),
the stellar light in the resampled data is approximated by:

Ai,� ≈
∑
k≥0

pk

(
si, t

′
i

)
gk(λ�) . (26)

In equations (25) and (26), si and t ′
i involve a sampling of the posi-

tion in the reference coordinate system and of the time. Specific time
sampling (i.e. not necessarily the same as the exposures) is required
to correctly account for the temporal variations of the speckles and
to ensure that the approximation assumed in equations (25) and (26)
holds.

3.2 Truncated approximation

In practice, the model in equation (26) cannot be used with an
unlimited number of modes. Perrin et al. (2003) have shown that
the higher order modes are insignificant (the series is absolutely
convergent) and that the first modes may also be negligible in case
of images obtained using a coronograph. Limiting the series to K
modes and assuming k0 is the index of the first significant term in the
series, our so-called PEX (Planet eXtractor) model of the brightness
distribution in a reference coordinate system can be written:

Ai,� ≈
K∑

k=1

pk,i gk,� with

{
pk,i = pk+k0−1(si, t

′
i )

gk,� = gk+k0−1(λ�)
(27)

According to the results of Perrin et al. (2003), we anticipate that
k0 = 0 without a coronograph and that k0 > 0 with a coronograph.
Using matrix notation, our approximation can be written in the more
compact form:

A ≈
K∑

k=1

pk · gt
k (28)

where pk = (pk,1 pk,2 . . .)t and gk = (gk,1 gk,2 . . .)t are the (sam-
pled) significant PSF modes and their spectral weights.

Introducing F� = F(λ�) the SED of the star in the �th spectral
channel, and γ� = γ (λ�) = λref/λ�, the specific form of the spectral
weights assumed by our model is given by:

gk,� = F� γ
β+k−1
� , (29)

where β = k0 + 2 is the exponent for the first significant term of
the expansion. With this notation, our approximation of the stellar
leakage becomes:

Ai,� ≈ F�

K∑
k=1

γ
β+k−1
� pk,i . (30)

Clearly, if the star SED, F(λ) and the exponent β are both un-
known, it is not possible to disentangle them from the resampled
data alone without ambiguities. We therefore rewrite the model in
equation (30) as:

Ai,� ≈ q�

K∑
k=1

γ k−1
� pk,i , (31)

where:

q� = F� γ
β
� (32)

is the SED of the first significant term of the expansion.

3.3 Fitting the separable model

Assuming independent Gaussian noise for the images in a reference
coordinate system, maximum likelihood estimation of the stellar
speckles would be achieved by minimizing:

χ2 =
∑
i,�

wi,�

(
Ai,� − q�

K∑
k=1

γ k−1
� pk,i

)2

, (33)

where the statistical weights are given by:

wi,� =
{

0 if Ai,� is unmeasured;

1/ Var{Ai,�} otherwise.
(34)

Taking into account unmeasured data are an important feature as,
after alignment and magnification, the images may have different
supports in the considered reference coordinate system. To process
the noiseless simulated images considered here, we set the weights
to be equal to zero for unseen pixels and otherwise equal to one.
Because of the resampling of the images, the values of Ai,� are
certainly correlated and this could be taken into account using non-
diagonal statistical weights in the expression of the penalty χ2. For
the sake of simplicity, we consider independent statistics as assumed
by equation (33) in the following.

For a given number of terms K in the expansion, the unknowns
of the problem are the PSF modes, denoted by p, and the SED of
the first significant mode, denoted by q. Fitting our model therefore
amounts to solving the problem:

( p̂, q̂) = arg min
p,q

χ2 , (35)

where χ2 is defined in equation (33). Solving this problem turns
out to be a very difficult task because the model is bilinear in the
parameters even though the penalty χ2 is quadratic with respect to
the model. Finding one of the components ( p or q) of the model
given the other (q or p) is comparatively trivial, as it requires to
solve a weighted linear least-squares problem. In practice, it should
not be too difficult to derive an estimation q̂ of the first mode SED
q and solving the difficult problem (35) can be avoided.
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3.4 Approximation by a truncated singular value
decomposition

Clearly, the model in equation (28) is a separable approximation of
the interpolated distribution. The SVD invented by Eckart & Young
(1939) and Mirsky (1960) is the perfect tool to extract a separable
model from the resampled data. The SVD of A is written:

Ai,� =
rank(A)∑

k=1

Ui,k σk V�,k , (36)

or, using matrix notation:

A = U · � · V t =
rank(A)∑

k=1

σk uk · vt
k . (37)

where U and V are orthonormal matrices whose kth columns are uk

and vk, the so-called left and right singular vectors of A, and � is
a diagonal matrix whose diagonal elements are called the singular
values of A denoted by σ k. By convention, the singular values are
all non-negative and sorted in descending order:

σ1 ≥ σ2 ≥ . . . ≥ σrank(A) > 0 ,

and all singular values for k > rank(A) are equal to zero.
According to the Eckart–Young–Mirsky theorem (Eckart &

Young 1936; Mirsky 1960), the SVD truncated to the first K sin-
gular modes, provides the best approximation of this rank to the
original matrix A in a least-squares sense. Thus, no other bilinear
(separable) model with K modes can beat the one built from the
truncated SVD. Approximating the resampled data by the TSVD is
written:

A ≈
K∑

k=1

σk uk · vt
k , (38)

with K ≤ rank(A).
Using the SVD to determine a separable model is not new, it

is for instance the method of choice to perform the PCA of data.
The SVD has however some limitations in our context: (i) it yields
the optimal separable decomposition in an ordinary least-squares
sense but cannot cope with statistical weights or missing data;2 (ii)
it requires working with the interpolated data A; (iii) it does not
include any a priori behaviour that can be dictated by the physics
and which could be introduced to improve the estimation. The in-
terpolated data are necessarily correlated, while measurements in
the raw data may be statistically independent. Using ordinary least
squares is suboptimal compared to weighted least squares which
can also cope with missing data. Finally, the series expansion based
on physical considerations (diffraction) shows that the chromatic
weights are fairly well constrained, while such constraints cannot
be imposed in an SVD-based analysis.

SVD can however be used to investigate the chromatic behaviour
of the distribution of speckles and to provide guidelines to de-
sign a more restrictive separable model as well as initial param-
eters for this model. This model can then be used to fit the data
in an inverse approach in order to relieve all the drawbacks of
SVD. Besides, since TSVD directly yields the best approximation
of this rank, it can serve as a template to evaluate the precision
achieved by any other approximation such as that in equation (28).

2 Even though it is possible to discard some bad pixels, but this has to be
done for all spectral channels at the same interpolated locations that is by
removing some rows of the data matrix A.

Due to the coronographic mask in the image plane, the model de-
rived from the series expansion cannot apply everywhere and is
certainly wrong in the central region – this is mostly critical for
SVD. This is why, unless explicitly stated otherwise, we exclude
the central region of the field of view in our subsequent SVD-based
analysis.

3.5 Data simulation

In order to check the proposed separable approximation of the
coronographic images, we simulated multispectral images with pa-
rameters typical of SPHERE (Beuzit et al. 2008): 8.2 m telescope,
equipped with a Lyot coronograph with an apodized pupil as de-
scribed by Carbillet et al. (2011) and a pixel size of 7.4 mas. Pixel
integration was taken into account assuming a 100 % fill factor. We
considered 21 spectral channels evenly distributed over the H band
(1.46–1.84 μm). To account for imperfect wavefront correction, we
introduced rather pessimistic phase aberrations of 70 nm rms with
the same power spectrum as measured on SPHERE. Our simula-
tions did not include filtering of turbulence-induced phase errors by
the AO system.

Typical simulated images are shown in the left and centre panels
of Fig. 1. The level of the brightest speckles in these images shows
that a contrast of greater than 10−3 is needed to detect a planet
using one of these coronographic images. Given these simulated
images, we resampled the images in the different spectral channels
to compensate for the chromatic magnification (see right panel of
Fig. 1). Testing the model on the resampled data cube is described
in the following sections.

3.6 Behaviour of the most significant mode

Comparing the TSVD factorization in equation (38) with our model
in equation (28) yields the following correspondences:

pk ≈ αk uk , (39a)

gk ≈ (σk/αk) vk , (39b)

for some arbitrary factors αk �= 0 which must be introduced because
the SVD modes uk are not normalized in the same way as our PSF
modes pk. Our model imposes more constraints than SVD does, and
the above relations are therefore unlikely to be matched exactly. It
is however interesting to investigate whether TSVD and our model
yield similar results in the case of a single-mode approximation.3

In this case, we expect that:

(v1)�/F� ≈ (α1/σ1) (g1)�/F� ∝ γ
β
� ,

with F� = F(λ�), γ� = λref/λ� and where β = k0 + 2 is the chromatic
exponent associated with the first significant mode. Fig. 2 shows
the values of (v1)�/F� found by the SVD decomposition of the
speckles of our simulation interpolated in a reference frame and for
angular distance θ ≥ 0.25 arcsec. Clearly, a power law (the curve in
Fig. 2):

(v1)�/F� ≈ η γ
β
� , (40)

with β � 3.7 provides a perfect fit of the spectral weights estimated
by SVD. This agreement between the spectral weights found by

3 This would be a clear indication that the physical constraints correctly
capture the relevant information.

MNRAS 472, 3734–3748 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/472/3/3734/4098502 by guest on 01 July 2022



3740 N. Devaney and É. Thiébaut

Figure 1. Simulated coronographic images. The leftmost (respectively central) image is for the spectral channel at the shortest (respectively longest)
wavelength. The rightmost image is the image at the shortest wavelength magnified to match the diffraction pattern at the longest wavelength. The intensities
have been normalized by the peak intensity without a coronograph. The simulations were carried out using parameters typical of SPHERE in the H band, see
the text for details.

Figure 2. Chromatic weights computed by SVD. The symbols show the
chromatic weights for the first mode of the SVD decomposition of the 21
spectral channels of the SPHERE-like simulation for an angular distance θ

≥ 0.25 arcsec. The curve is the result of a least-squares fit of a power law
η (λref/λ)β with β � 3.7.

SVD (which makes no specific assumptions about their chromatic
behaviour) and the power law induced from the diffraction is a first
validation of the proposed chromatic model.

In order to investigate whether the spectral behaviour depends on
the angular distance, we extracted narrow annular regions (centred
on the star position) from the interpolated cubes and computed the
SVD of these data subsets. The chromatic behaviour of the first
SVD right singular mode, v1, of these decompositions is then fitted
with the power law in equation (40). The exponents β obtained
for different angular distances θ from the centre are plotted in
Fig. 3 (two cases are considered: with and without a coronograph).
Without a coronograph, the exponent is β � 2 for θ ≤ 0.1 arcsec
which is exactly what is expected from diffraction in the aberration-
free regime. For larger distances, the exponent grows rapidly to a

Figure 3. Chromatic exponent β. The spectral weights computed by SVD
on annular regions (of thickness 0.05 arcsec) of the rescaled hyperspectral
cube have been fitted by a power law (λref/λ)β . The points show the average
values and their error bars computed from 50 SPHERE-like simulations in
the H band with a 70 nm rms residual aberration. The red symbols are for a
simulation with no coronograph and the green symbols are with an apodized
Lyot coronograph.

flat level β � 3.7 due to the aberrations.4 With a coronograph, the
exponent is very different near the centre where it can be as small
as β � −6 depending on the realization of the random aberrations;
around the distance θ � 0.15 arcsec, the exponent grows rapidly
to reach the same plateau at β � 3.7 ± 0.1 as in the case with no
coronograph.

The curves in Figs 2 and 3 indicate that the best exponent for
the θ ≥ 0.2 arcsec region is thus β� � 3.7 ± 0.1 and we observed
the same behaviour with various aberration levels (in the range 60–
100 nm). Remembering that for the first SVD mode, we should have

4 We checked that without a coronograph or aberrations, the exponent is
β � 2 everywhere.
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Multispectral planet extraction 3741

Figure 4. Residuals for a single-mode separable approximation of the multispectral data. The residuals are shown for the λ = 1650 nm channel and have been
normalized by the peak intensity without a coronograph. Left: residuals by SDI; centre: residuals with truncated SVD; right: residuals with spectral weighting
set to (λref/λ)3.7 and a linear least-squares fit of the spatial mode. The coordinates are in arcseconds (interpolated at the shortest wavelength). The values have
been clipped to the range [−4 × 10−5, +4 × 10−5] and colour scales are the same for all subfigures: blue for positive residuals, red for negative residuals and
levels in relative contrast units. The coronograph mask is indicated by a yellow circle. See the text for details of the simulation.

β� = k0 + 2 with k0 the index of the most significant term in the
chromatic expansion (22) and noting that β� � 3.7 is close to 4
but is not integer, we deduce that k0 = 2 is the most significant
mode in the model given in equation (22) but that other modes are
needed to correctly approximate the actual speckle pattern. The most
significant mode has an even order, and indeed the most prominent
speckles seem to be symmetrically distributed in Fig. 1. The index,
k0 = 2, of the first significant mode is an indication of the efficiency
of the coronograph.

To support this deduction, we compared the results of the single-
mode TSVD approximation which does not implement any specific
chromatic behaviour with our model given in equation (30) with
K = 1. With a single mode and assuming the star SED and the
chromatic exponents are known, the solution to minimizing χ2

defined in equation (33) with respect to p1 is given trivially by:

p̂1,i =
∑

� wi,� F� γ
β
� Ai,�∑

� wi,� F 2
� γ

2 β
�

. (41)

Figs 4 and 5 show the efficiency of the speckle suppression by
different single-mode approximations: SDI, TSVD (with a mask
to discard the central θ < 0.25 arcsec region whose chromatic be-
haviour is very different from the other parts of the field of view)
and our model computed according to equation (41). In Fig. 4 we
took β = 3.7, while different values of β are considered in Fig. 5.
In order to express the results in terms of the planet/star contrast
achieved, the residuals have been normalized by the peak inten-
sity in the image computed under the same conditions but with
no coronograph. The profiles plotted in Fig. 5 are the root mean
squared (rms) value of the normalized residuals for a given angular
distance for all spectral channels (i.e. averaging is carried out for all
azimuthal angles and wavelengths). At this point, only the distribu-
tion of speckles is considered, there is no noise in the simulations.
The curves presented in Fig. 5, therefore really measure the ability
of the various approximations to remove the stellar leakage. Fig. 5
shows that the best speckle suppression is achieved when β → β�

� 3.7 as predicted from Fig. 3. Taking β = 4 is nearly as good as
with β = β� but any other integer values for β yield significantly
worse results. Finally, the level of contrast achieved assuming a

Figure 5. Residuals for a single-mode approximation of the multispec-
tral distribution by truncated SVD (TSVD) or by the proposed model:
(λref/λ)β p(s) and various values of the exponent β. The computations
were done for conditions typical of that of SPHERE in the H band, see the
text for details.

specific chromatic behaviour (with a suitable exponent β�) is as
good as what is obtained by TSVD which validates our approach.
Fig. 4 clearly shows that the single-mode TSVD and PEX methods
yield similar residuals in both distribution and magnitude for angu-
lar distances θ ≥ 0.25 arcsec where they are better than SDI. In our
model, interpolated pixels are fitted independently, thus, contrary
to TSVD, no masking of the central region is needed by PEX. Even
though the residuals remain important in the central region, PEX is
able to reduce the speckles for smaller angular distances than SVD.

As already noted, the speckles in the unprocessed images (Fig. 1)
look mostly symmetrical in agreement with the even order of the
most significant mode. On the contrary, the residual images in Fig. 4
appear to be nearly antisymmetrical. This is consistent with the
diffraction-based expansion: as an even mode (k0 = 2) has been
removed, the next most significant mode should be an odd order
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3742 N. Devaney and É. Thiébaut

Figure 6. Residuals for a two-mode approximation of the multispec-
tral distribution by truncated SVD (TSVD) or by the proposed model:∑2

k=1(λref/λ)βk pk(s). The conditions are identical to those of Fig. 5.

mode at k0 ± 1 and thus antisymmetrical. We believe that this
further supports the model in equation (31) and we examine the
performance when more modes are removed.

3.7 Fitting multiple modes

In order to improve the speckle suppression, we now consider fitting
more than one mode. As shown by the previous section, applying
TSVD (with a single mode) to the resampled images yields a good
estimate of the chromatic weights of the first PSF mode. Indeed
equation (40) yields:

q� = F� γ
β
� ≈ η (v1)� , (42)

where v1 is the first right singular vector of the SVD decomposition
of the resampled data and η is an irrelevant normalization factor.
Then, as noted before, the remaining unknowns of the problem,
namely the PSF modes p, are easily found as the result of a weighted
linear least-squares fit:

p̂ = arg min
p

∑
i,�

wi,�

(
Ai,� − q�

K∑
k=1

γ k−1
� pk,i

)2

. (43)

Compared to the problem in equation (33), the new problem is
trivial to solve. An additional simplification is that the problem is
separable with respect to the spatiotemporal index i. In other words,
for each spatiotemporal sample (si, t

′
i ), one has to solve:

{p̂k,i}k=1,...,K = arg min
x∈RK

∑
�

wi,�

(
Ai,� − q�

K∑
k=1

γ k−1
� xk

)2

, (44)

which amounts to solving a linear system of only K unknowns (for
each index i). This is similar to the SD method proposed by Sparks
& Ford (2002) except that the chromatic exponents are not the same
and that all terms are multiplied by a common SED q.

To compare the multimode PEX model with TSVD, we assume
again that the stellar SED is known and consider spectral exponents
βk = k0 + k − 1 for different values of the index k0 of the most
significant mode. The estimated PSF modes are then given by:

{p̂k,i}k=1,...,K = arg min
x∈RK

∑
�

wi,�

(
Ai,� − F�

K∑
k=1

γ
βk
� xk

)2

.

Figure 7. Residuals for a separable approximation of the multispectral
data with two modes. This figure is similar to Fig. 4, except that two modes
have been used with respective spectral weighting set to (λref/λ)βk with
β = {3, 4} for the linear least-squares fit in the bottom panel.

Fig. 6 shows the rms level of the residuals after subtracting the
two-mode models from the simulated images. Compared to TSVD,
the PEX model achieves the same efficiency providing the correct
spectral exponents are selected. In this case, β = {3, 4} or {4, 5}
are the best and correspond, respectively, to k0 = 3 or 4. Compared
to the unprocessed coronographic images, the gain is ∼10−7 in
contrast; compared to the single-mode models, there is a ∼10 fac-
tor improvement. Fig. 7 displays the residuals in the λ = 1650 nm
spectral channel. For an angular distance θ ≥ 0.25 arcsec, the resid-
uals by TSVD and by the proposed method have almost exactly
the same distribution. The central part has been masked for TSVD
which therefore performs poorly compared to PEX.

With three modes, Fig. 8 shows that the efficiency of PEX no
longer depends on the specific choice of the spectral exponents
(even though we only checked for a limited range: 2 ≤ k0 ≤ 6).
Except in the central part of the field of view, TSVD performs
slightly better than PEX (both with three modes). This can be seen
in the images of the residuals shown by Fig. 9. Compared to the
two-mode models, the supplementary mode gains a ∼3–5 factor in
the reduction of the level of the residuals depending on the distance
from the centre.

Fig. 10 summarizes the performances of SDI, TSVD and the
proposed spectral expansion, where the two latter methods are used
with different numbers of modes (from 1 to 6). With more than
three modes, we assumed that, as in the three-mode case, the ef-
ficiency does not so much depend on the list of exponents and
we take k0 = 3 as the index of the first significant mode which
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Figure 8. Residuals for a three-mode approximation of the multispec-
tral distribution by truncated SVD (TSVD) or by the proposed model:∑3

k=1(λref/λ)βk pk(s). The conditions are identical to those of Fig. 5.

Figure 9. Residuals for a separable approximation of the multispectral data
with three modes. This figure is similar to Fig. 4, except that three modes
have been used with respective spectral weighting set to (λref/λ)βk with
β = {3, 4, 5} for the linear least-squares fit in the bottom panel.

corresponds to chromatic exponents β = {3, 4, 5, . . .}. With a given
number of modes (one for SDI), the different methods have roughly
the same performance, increasing the number of modes improves
significantly the achieved contrast: using two modes instead of a
single mode improves the detection contrast by more than an order
of magnitude. Increasing the number of modes also seems to flatten

Figure 10. Residuals for different approximations of the multispectral dis-
tribution. SDI stands for simple resampled image subtraction; the curves
labelled with β = . . . are for our model with 1–6 modes (the values are the
chromatic exponents); TSVD is for truncated SVD. See Figs 5–8 and the
text for more details.

the level of the residuals as a function of the distance. With six
modes, a contrast of ∼2 × 10−8 is reached at distances larger than
1 arcsec from the centre. Performances are worse near the centre but
a contrast as low as 10−7 seems to be reachable near the edges of
the mask with our method. This is very important for the detection
of close companions.

4 A P P L I C AT I O N TO E X O P L A N E T D E T E C T I O N

Assuming that the planet brightness is negligible compared to that
of the stellar speckles and because the planet position does not vary
with wavelength, our method for speckle removal should be rather
insensitive to the presence of very faint planets. Even though a better
approach that we will consider in a following paper would be to
jointly perform speckle removal and planet detection, it is tempting
to perform planet detection in the residuals obtained by subtracting
the fitted model of the speckles from the observed images. This task
is considered in this section. We first derive a detection test that
can be applied to multivariate data (the considered images depend
on the wavelength and on the exposure); we then apply this test to
simulated data.

4.1 Criterion for detection in multivariate data

Planet detection amounts to deciding between two hypotheses: no
planet is present (H0) or a planet is present (H1). If there is a planet
at position r (hypothesis H1), the model of the image after removal
of speckles is:

yj,�,m = f� h
(

r j,�,m − r, λ�

) + εj,�,m , (45)

where yj, �, m is the value of the residual image at the jth pixel of
the �th spectral channel and the mth exposure, f� is the planet flux
at wavelength λ� of the considered spectral channel, h(r, λ) is the
off-axis PSF at sky position r and wavelength λ, and the term εj, �, m

accounts for the noise (and model errors). Of course, if there are no
planets, then f� = 0 (∀�) and the residuals are just due to the noise
and the model under hypothesis H0 is just:

yj,�,m = εj,�,m . (46)
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3744 N. Devaney and É. Thiébaut

Deciding between the two hypotheses can be based on the level of
the generalized likelihood ratio (GLR, see e.g. Kay 1998) which is:

GLR(r) = max f Pr( y | r, f , H1)

Pr( y | H0)
, (47)

where Pr( y | . . .) is the likelihood of the residuals y conditioned by
the knowledge of some information or parameters represented by
the ellipsis. The higher the GLR, the more likely is a detection and
vice versa. For some chosen threshold τ , this is summarized by the
notation:

GLR(r)
H1

≷
H0

τ ,

which means that H1 is decided if GLR(r) > τ , while H0 is decided
if GLR(r) < τ .

For Gaussian independent noise, the cologarithm of the GLR is:

�(r) = − log GLR(r) = 1

2

{∑
j,�,m

wj,�,m y2
j,�,m

− min
f

∑
j,�,m

wj,�,m (yj,�,m − f� hj,�,m(r))2

}
,

where:

hj,�,m(r) = h(r j,�,m − r, λ�) ,

and wj, �, m ≥ 0 are statistical weights. Following the reasoning
leading to equation (34), the weights are given by:

wj,�,m =
{

0 for unmeasured values,

1/ Var{yj,�,m} otherwise.
(48)

Expanding and simplifying �(r) yields:

�(r) =
∑

�

min
f�

{
b�(r) f� − 1

2
a�(r) f 2

�

}
, (49)

with:

a�(r) =
∑
j,m

wj,�,m h2
j,�,m(r) , (50a)

b�(r) =
∑
j,m

wj,�,m yj,�,m hj,�,m(r) . (50b)

The above expression for �(r) shows that obtaining the max-
imum likelihood estimator (MLE) of the planet SED (assuming
the planet position) is simply a matter of solving separable simple
quadratic problems for each spectral channel and yields:

f̂�(r) = arg min
f�

{
b�(r) f� − 1

2
a�(r) f 2

�

}
= b�(r)

a�(r)
. (51)

Substituting this result in equation (49) gives:

�(r) = 1

2

∑
�

b2
�(r)

a�(r)
. (52)

The term a�(r) does not depend on the data, while the term b�(r)
does depend on the data. The variance of this latter term can be
computed as follows:

Var{b�(r)} =
∑
j,m

w2
j,�,m Var{yj,�,m}h2

j,�,m(r)

=
∑
j,m

wj,�,m h2
j,�,m(r)

= a�(r) .

Using this result, the MLE of the planet SED is given by:

Var{f̂�(r)} = Var{b�(r)}
a2

� (r)

= 1

a�(r)
. (53)

The cologarithm of the GLR can be finally put in the form:

�(r) = 1

2

∑
�

f̂ 2
� (r)

Var{f̂�(r)} , (54)

which is a sum of the squared S/N of the MLE of the planet flux
in each spectral channel. This is a generalization of a property
demonstrated by Mugnier et al. (2009) to the case of multiframe
data. We therefore introduce:

S/N(r) =
√

2 �(r) =
√√√√∑

�

b2
�(r)

a�(r)
. (55)

which can be thought of as a detection S/N accounting for all the
spectral channels.

Thiébaut & Mugnier (2006) have shown that accounting for addi-
tional constraints, notably the positivity and regularity of the SED,
can greatly enhance the detection of faint sources. In our case, it is
trivial to find the MLE of the planet SED subject to the constraint
that it must be non-negative:

f̂ +
� (r) = arg min

f�≥0
{b�(r) f� − 1

2
a�(r) f 2

� }

= max{b�(r), 0}
a�(r)

, (56)

which results from observing that a�(r) > 0 and is not more difficult
to compute than the unconstrained estimator f̂�(r) in equation (51).

Combining multispectral and multitemporal data to perform
planet detection has already been proposed by Thiébaut & Mug-
nier (2006) for the Darwin mission. However, as noted by Denis &
Thiébaut (2015) and in our specific case, it turns out that computing
�(r) or S/N(r) for any assumed planet position r on an evenly
spaced grid of positions {r i}i=1,... can be done in a very economic
way by means of fast Fourier transforms.

4.2 Application to simulated data

Fig. 11 shows a map of the detection S/N as defined in equation (55).
To produce this map, we added planets along spiral tracks to the
same simulated speckle patterns as used in the previous section. We
then applied the proposed PEX method to estimate and remove the
speckles (as if no planets were present) and compute the detection
S/N map for all the 21 spectral channels. This map shows that, except
under the coronographic mask and near its edges, our method is able
to detect all the planets which all have the same contrast of 10−6

with respect to the host star. Effectively achieving such a contrast
from a single exposure (i.e. without ADI) is very promising. We
note that a contrast which is constant with wavelength implies that
the planet’s SED is the same as that of the host star (something
which may occur for planets with a high albedo) and is the most
unfavourable situation for the detection. With such a contrast, the
planets cannot be seen without processing the original images which
look exactly like the ones shown in Fig. 1.
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Figure 11. Detection map for planets with a 10−6 contrast, removal of
speckles by PEX model with three modes and accounting for the positivity.
The yellow boxes indicate the positions of planets in the simulation and the
circle represents the coronograph mask.

Figure 12. Real IFS image of HD139999 at 1 μm with additional fake
planets (which cannot be seen in this image).

4.3 Application to real data

We also consider applying PEX to real SPHERE IFS data (Claudi
et al. 2008) of the star HD139999A to which we added 25 fake
planets with a contrast of 3 × 10−5. The IFS image at 1 μm is
shown by Fig. 12. As we wanted to demonstrate the ability of our
approach to exploit the chromatism of the speckles, we process
all available spectral channels5 but only a single exposure. Note
that the previously reported companion, HD139999Ab, which is at
about 840 mas of HD139999A, is not in the field of the IFS in the
considered exposure (Wagner et al. 2016).

5 39 spectral channels from λ = 957.5 to 1 635.8 nm.

Assuming a single planet at position r and using the same notation
as in equations (31) and (45), the model of the measured data value
in the jth pixel of the �th spectral image writes:

dj,� = q�

∑
i

Ri,j,�

K∑
k=1

γ k−1
� pk,i︸ ︷︷ ︸

uj,�

+f� hj,�(r) + εj,� , (57)

where we drop the exposure index m to simplify the notation and
introduce the linear operator R� to interpolate6 the diffraction-based
model of the speckles (expressed in the reference coordinate system)
at the positions of the pixels in the �th spectral image. Interpolating
the model rather than the data avoids introducing more correlations
in the data. The pixel size of SPHERE IFS images is 7.46 mas and
we choose to sample the on-axis PSF modes p with an equivalent
pixel size of 10 mas at the reference wavelength (λref = 1 μm). This
sampling size was found to be a good compromise between spatial
smoothness of the speckle model and ability to fit the finest details.

The unknowns are q, p, f and r . To follow the procedure de-
scribed in Section 4.1, we first fit the speckle parameters (q and p)
on the IFS data (assuming f = 0) and then run the detection tests
on the residual multispectral images. As we already mention, fitting
our model of the stellar speckles is difficult because the model is
bilinear. Assuming a Gaussian distribution of the noise, we solve
this problem by a hierarchical approach which consists in solving:

p̂ = arg min
p

{
min

q
‖d − u( p, q)‖2

W

}
, (58)

where ‖d − u( p, q)‖2
W is the χ2 of the data d given the model

u( p, q) of the speckles introduced in equation (57). Here, ‖ y‖2
W =

yt · W · y is a weighted quadratic norm and the weight W is the
inverse of the noise covariance. Since the χ2 is quadratic in q,
the innermost minimization in equation (58) is straightforward. To
carry out the outermost minimization, we used a non-linear quasi-
Newton method (Nocedal 1980) to optimize over the parameters p.
We found that, in practice, this hierarchical optimization strategy
was very effective.

Compared to the simulations in the previous section, the data
are corrupted by noise and a correct estimation of the statistical
weights W is very important. As a first simplification, we assumed
independent data and thus a diagonal weighting operator W whose
components can be computed from the noise variance as in equa-
tion (48). Since no estimation of the noise variance is provided
with SPHERE IFS data, we estimated this variance by assuming the
following simple model (Foi et al. 2008):

Var(εj,�) = α� E{dj,�} + β� , (59)

where α� ≥ 0 and β� > 0 are two unknown parameters which we
assume to be the same for all the pixels of a given spectral channel �.
The term α� E{dj,�} is the variance due to the photon noise, while β�

is the variance of the detector noise. The parameters α� depend on
the quantum efficiency and on the gain of the detector. We assumed
that E{d} ≈ u( p, q) and derive the noise model parameters from
their maximum likelihood values:

(α̂�, β̂�) = arg min
α,β

∑
j

{
(dj,� − uj,�)2

α uj,� + β
+ log(α uj,� + β)

}
, (60)

where the first term in the sum is the χ2 of the data in the jth pixel
of the �th spectral channel, while the logarithm term is due to the

6 We used Catmull–Rom bicubic interpolation.
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Figure 13. Residual images after removing the PEX model of the speckles.
Here, only three modes have been used to model the speckles. The top image
shows the residuals assuming uniform weights, while the weights computed
from the simple model of the noise variance have been used for the bottom
image.

normalization of the assumed Gaussian distribution. We use Pow-
ell’s BOBYQA algorithm (Powell 2009) to solve the above problem.
As the noise parameters depend on the model u( p, q) of the speck-
les which themselves depend on the weights and hence on the noise
model parameters, we apply the following alternating procedure: (i)
assume uniform weights; (ii) fit the model of the speckles; (iii) fit
the noise model parameters and (iv) update the weights and repeat
starting at step (ii) until convergence. In practice, this procedure is
stable and about 3–5 iterations are sufficient. The comparison of the
residuals shown in Fig. 13 demonstrates that non-uniform weights
fitted by the proposed alternating method yields smaller and less
structured residuals.

Finally, we apply the detection tests described in Section 4.1 to
the residuals d − u( p̂, q̂), Fig. 14 shows the GLR �(r) for the data
in the considered exposure. All the fake planets have a GLR which
is a local maximum but not all can be detected without false alarms
as there are several other positions where the criterion is higher
(for instance, in the upper part of the field of view). Looking at
equations (52), (50a) and (50b), it is evident that any errors in the
magnitude of the statistical weights (which do not appear with the
same power in the numerator and denominator of the GLR) could
lead to a grossly wrong GLR. The assumed model of the noise vari-
ance, in equation (59) is too simple, at least because correlations in

Figure 14. Map of the GLRT criterion. Five modes have been used to model
the speckles. The light blue boxes indicate the locations of the fake planets,
all have a contrast of 3 × 10−5.

Figure 15. Map of the most likely brightness of point-like sources. Five
modes have been used to model the speckles. The light blue boxes indicate
the locations of the fake planets, all have a contrast of 3 × 10−5.

the data are ignored. Indeed, due to the way IFS multispectral im-
ages are produced, nearby pixels and spectral channels are strongly
correlated. To mitigate this issue, we could have compared the GLR
to its mean or median value along circular tracks at the same dis-
tance from the host star. We however note that the statistical weights
appear with the same power in the numerator and denominator of
the planet SED given by equation (51) and we therefore expect that
errors in the magnitude of the weights somewhat compensate in
the estimated SED even though the estimator is no longer optimal.
We therefore assumed a constant SED for the sought planets (i.e.
f� = f, ∀�) and compute a map of the best planet brightness given
its assumed position r which is simply given by:

f̂ (r) = arg min
f ≥0

∑
�

{
b�(r) f − 1

2
a�(r) f 2

}
= max(0,

∑
� b�(r))∑

� a�(r)
. (61)

In this map, shown by Fig. 15, all the fake planets can be clearly seen
with perhaps 1 or 2 false alarms. As a consequence of estimating the
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stellar leakage and then the planetary signal (if any), the estimated
planet brightnesses in Fig. 15 are always significantly lower than
their true value: between f ≈ 2 × 10−5 for the most remote planets
and f ≈ 6 × 10−6 for the ones close to the host star, while the truth
is f = 3 × 10−5. A joint estimation of all these unknowns given the
data should yield the best results and give an unbiased estimate of
the planet SED.

These results on empirical data are very encouraging, notably
because they were obtained with a single IFS exposure. To improve
the detection limit, multiple exposures could be combined, but it is
perhaps more important that the correlations in the data be taken
into account. Performing a joint estimation of all the parameters
would also be an improvement.

5 D ISCUSSION

Our aim in this paper is to enhance the removal of residual speckle
in multiwavelength images in order to improve exoplanet detection
limits. In order to do this, we have extended the PSF expansion of
Perrin et al. (2003) to explicitly take into account wavelength de-
pendence. We show that the PSF may be written as a combination of
spatial modes which spatially scale with the wavelength and which
are multiplied by chromatic factors with a power law dependence
on wavelength and mode number. The exact power law depends on
which mode dominates the residuals, and has to be estimated from
the data.

If the multiwavelength data are rescaled to a reference wave-
length, then the model is separable and is given by an expansion
of spatial modes multiplied by a wavelength-dependent factor. We
refer to this as the PEX model of the data. The chromatic factor
is the product of the SED of the star and a power law with an
exponent β.

In order to verify our model, we simulated multiwavelength data
(over the H band) from a coronographic system with characteristics
similar to the SPHERE exoplanet IFS. The data cube is rescaled
to 1.65 μm, and SVD used to fit a separable model. In the first
instance, the SVD is truncated to fit a single mode and the fit is
carried out in annuli centred on the axis. It is found that outside
the coronographic mask a power law indeed provides an almost
perfect fit to the corresponding chromatic factor. In the absence of
aberrations, the fitted power-law exponent implies that the zeroth-
order mode dominates, as expected. When aberrations are added to
the simulation (70 nm rms), the fitted exponent depends on distance
from the axis; but the second-order mode dominates in the wings.
This is exactly what is expected from the Perrin et al. analysis. We
investigated reducing the speckle residuals by subtracting single
modes from the data, using either the SVD modes or fitting a mode
obtained using the PEX model. When the PEX model uses the correct
chromatic exponent, the performance is very similar to SVD, and in
fact can reduce the speckles close to the edge of the coronographic
mask.

The SVD fitting is subsequently carried out using multiple modes.
It is found that the speckle suppression becomes insensitive to the
exact choice of spectral exponents when more than three or four
modes are fitted. In the simulated data, the level of suppression
reaches 10−7 near the edge of the mask using just five modes.

Assuming Gaussian independent noise, which should be suitable
for well-cleaned residuals, we derive the MLE for the planet flux at
each wavelength, and its variance. The optimal detection criterion
then amounts to finding the planet position which has the maximal
detection S/N (cf. equation 55). By adding fake planets to the sim-
ulated data, we demonstrate detection down to a contrast ratio of

10−6 from a single exposure, although some speckle at this level
can be seen near the edge of the coronographic mask. With real IFS
data, we were able to achieve detection of fake planets from a single
exposure with a contrast of 3 × 10−5 at 200 mas from the centre.
This limit compares favorably to other methods, but is not as good
as with simulated data. This is due to the noise in the real data (in
our simulations there is no added noise) and to the assumption that
pixels are independent (which is not the case with IFS multispectral
images). By combining independent exposures and exploiting the
apparent motion of the sources in the field of view, we however
expect to improve the contrast limit by a factor roughly equal to the
square root of the number of exposures.

Compared to other techniques for exoplanet detection in multi-
spectral data, we believe that our approach offers some important
advantages. It is based on a physical model of the residual PSF,
which provides some insight compared to ad hoc approaches. It is
well suited to simultaneous speckle suppression and planet detec-
tion, which we are developing for a future publication. In the current
application, we fit modes to a data cube made up of the rescaled and
interpolated narrow-band images. The fitting could be carried out on
the original images by taking the rescaling into account explicitly,
thereby removing the need for interpolation which can introduce
artefacts. In fact, the inverse approach could be applied to the IFS
raw data.

Most current approaches to processing ADI data are empirical
and somewhat ad hoc. However, some efforts have been made to
develop algorithms which are statistically optimal. For example,
Smith, Ferrari & Carbillet (2009) describe a Maximum Likelihood
approach to jointly estimate the stellar PSF and the planet position
and intensity from the data, while Mugnier et al. (2009) describe a
Maximum Likelihood approach to detecting planets in ADI images
which have been pairwise subtracted. The analysis presented here
can be used to process multitemporal data, taking into account any
possible rotation or other transformation of the data as a function of
time, as well as temporal correlation of the PSF modes. This work is
under development and will be demonstrated in a subsequent paper.
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Avenir Lyon Saint-Étienne Projet Emergent PALSE/2013/26.

The simulations have been carried out using the YORICK language
(Munro 1995), while the empirical data have been processed using
the JULIA language (Bezanson et al. 2017).

R E F E R E N C E S

Amara A., Quanz S. P., 2012, MNRAS, 427, 948
Beuzit J.-L. et al., 2008, in McLean I. S., Casali M. M., eds, Proc. SPIE

Conf. Ser. Vol. 7014, Ground-based and Airborne Instrumentation for
Astronomy II. SPIE, Bellingham, p. 701418

Bezanson J., Edelman A., Karpinski S., Shah V. B., 2017, SIAM Rev., 59,
65

MNRAS 472, 3734–3748 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/472/3/3734/4098502 by guest on 01 July 2022



3748 N. Devaney and É. Thiébaut
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