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ABSTRACT
We aim to understand under which conditions a low-mass planet can open a gap in viscous
dusty protoplanetary discs. For this purpose, we extend the theory of dust radial drift to include
the contribution from the tides of an embedded planet and from the gas viscous forces. From
this formalism, we derive (i) a grain-size–dependent criterion for dust gap opening in discs,
(ii) an estimate of the location of the outer edge of the dust gap and (iii) an estimate of the
minimum Stokes number above which low-mass planets are able to carve gaps that appear only
in the dust disc. These analytical estimates are particularly helpful to appraise the minimum
mass of a hypothetical planet carving gaps in discs observed at long wavelengths and high
resolution. We validate the theory against 3D smoothed particle hydrodynamics simulations
of planet–disc interaction in a broad range of dusty protoplanetary discs. We find a remarkable
agreement between the theoretical model and the numerical experiments.

Key words: planet–disc interactions – protoplanetary discs – dust, extinction.

1 IN T RO D U C T I O N

Dust rings and gaps-like structures have been recently revealed by
high-resolution observations in both young and evolved protoplan-
etary discs (ALMA Partnership et al. 2015; Andrews et al. 2016;
Canovas et al. 2016; de Boer et al. 2016; Ginski et al. 2016; Isella
et al. 2016; van Boekel et al. 2017; van der Plas et al. 2017; Fedele
et al. 2017). Various mechanisms have been proposed to explain
the origin of these structures. A first category of models invokes
discs that are dynamically young and in which planets have not yet
formed. In those, rings may originate from self-induced dust pile-
ups (Gonzalez et al. 2015; Gonzalez, Laibe & Maddison 2017),
zonal flows (Flock et al. 2015; Béthune, Lesur & Ferreira 2016),
rapid pebble growth around condensation fronts (Zhang, Blake &
Bergin 2015), aggregate sintering (Okuzumi et al. 2016), large-
scale instabilities due to dust settling (Lorén-Aguilar & Bate 2016)
or secular gravitational instabilities (Takahashi & Inutsuka 2016).

The alternative and more natural explanation is to interpret the
rings as an observational signature of embedded planets. The tides
generated by planets of sufficient masses overcome the gap-closing
contributions induced by the pressure gradient and the viscous
spreading of the gas. As a result, the planet carves a gap in its
vicinity by pushing material away from its orbit (e.g. Goldreich
& Tremaine 1979, 1980; Lin & Papaloizou 1986, 1993; Rafikov
2002a; Kley & Nelson 2012; Baruteau et al. 2014). In the prototy-
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pal case of the disc around HL Tau, this explanation is supported
by some observational features, such as the increase of the gap ec-
centricity at large orbital radii, as well as spectral index variations
between dark and bright rings, which suggest that dark rings are
regions of low dust density (ALMA Partnership et al. 2015). So
far, the structures observed in this disc (ALMA Partnership et al.
2015) and HD 163296 (Isella et al. 2016) have been better repro-
duced by assuming the presence of planets (e.g. Dipierro et al. 2015;
Dong et al. 2015; Isella et al. 2016; Jin et al. 2016). This scenario
would be consistent with the increasing number of extrasolar plan-
ets detected (Laughlin & Lissauer 2015), but requires Saturn-mass
planets within a few million years at most, challenging the scenario
of planet formation through core accretion.

A criterion on the minimum mass required for a planet to
open a gap in a gas disc was derived by Crida, Morbidelli &
Masset (2006). They considered the balance between the gap-
opening tidal torque and the gap-closing viscous torque, taking
into account the non-local deposition of angular momentum by the
density waves excited by planets (e.g. Goodman & Rafikov 2001;
Rafikov 2002a). Recent investigations have refined this analysis,
showing that less massive planets may open gaps as well (Dong et al.
2011; Duffell & MacFadyen 2012, 2013; Zhu, Stone & Rafikov
2013; Duffell & Dong 2015), but more massive planets may not
(Malik et al. 2015).

However, observations of protoplanetary discs probe mostly the
dust content of the disc, not the gas, and the two phases are not nec-
essarily coupled. Recently, numerical investigations have shown
that gap opening is more effective in the dust than in the gas
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(Paardekooper & Mellema 2004, 2006; Fouchet et al. 2007; Fouchet,
Gonzalez & Maddison 2010; Ayliffe et al. 2012; Gonzalez et al.
2012; Zhu et al. 2014; Dipierro et al. 2015, 2016; Picogna & Kley
2015; Rosotti et al. 2016).

Dust is usually modelled as an almost collisionless fluid in pro-
toplanetary discs. As such, the dust intrinsic pressure and viscosity
are not effective at closing the gap. Moreover, the tidal torque is
amplified by geometrical effects due to dust settling. In the vicinity
of the planet, the dust dynamics depends strongly on the size of the
grains. When the planet is massive enough to carve a gap in the gas,
micron-sized grains couple to the gas viscous flow and enter the gap
(Rice et al. 2006), whereas drag produces a pile-up of large grains
into the pressure maxima at the gap edges (e.g. Pinilla et al. 2015).
This radial size sorting produces well-defined features in the mm
and scattered light emission, consistent with recent observations
(e.g. Follette et al. 2013; Canovas et al. 2016).

Recently, the disc around TW Hydrae has been observed by Ata-
cama Large Millimeter/submillimeter Array (ALMA) and Spectro-
Polarimetric High-contrast Exoplanet Research (SPHERE), probing
the dust continuum emission at 850 μm and the scattered light in the
H band at 1.6 μm, respectively (Andrews et al. 2016; van Boekel
et al. 2017). A comparison of SPHERE and ALMA images reveals
that the gaps at ∼37 and ∼43 au observed with ALMA are absent
in the SPHERE image (see fig. 7 of van Boekel et al. 2017). This
mismatch between the distribution of large dust grains probed by
ALMA and of small dust grains (expected to be well mixed with
the gas) probed by SPHERE indicates that large dust grains may be
more susceptible to gap formation than gas.

Surprisingly, the minimum planet mass required to open a gap in a
dusty disc has not been clearly identified theoretically yet. Recently,
Rosotti et al. (2016) have found that a shallow gap can be carved
in the dust for planets able to slightly affect the local gas structure
without creating pressure maxima. Moreover, Dipierro et al. (2016)
have shown numerically that even lower mass planets could open
gaps in the dust only, without any perturbation in the radial pressure
gradient at the planet location. In this case, the creation of gap results
from the competition between the tidal torque and the drag torque
outside the planet orbit since the planet is not able to affect the gas
structure. The drag torque acting on dust is negative all through
the disc, whereas the tidal torque exerted by the planet is positive
outside its orbit and negative inside. The balance between these two
torques outside the planet orbit determines if the planet is able to
carve a gap in the dust or not. In this paper, we propose a theory
to model this mechanism, with the aim of deriving a grain-size–
dependent criterion for dust gap opening by non-migrating planets
in protoplanetary discs. To this purpose, we extend the formalism
of dust drift introduced in Nakagawa, Sekiya & Hayashi (1986)
to include viscous forces and the disc–planet tidal interactions. We
also infer the radial location of the outer edge of the dust gap and the
minimum Stokes number above which low-mass planet is able to
carve gap only in the dust. The results of our analysis are thoroughly
tested against 3D smoothed particle hydrodynamics (SPH) gas and
dust simulations of different disc models.

The paper is organized as follows. In Section 2, we describe
the dust dynamics in disc hosting a non-migrating planet under the
action of tidal and drag forces. In Section 3, we apply the formalism
developed in Section 2 to derive a simple gap-opening criterion for
the dust in the regime where the planet does not significantly alter
the gas disc. In Section 4, we perform a set of simulation to test
our model. In Section 5, we discuss how our criterion can be used
in practice to interpret observations and, finally, in Section 6 we
summarize our findings and conclusions.

2 DUST DYNAMI CS IN A VI SCOUS D I SC
W I T H A PL A N E T

2.1 Disc–planet tidal interaction

2.1.1 Gas disc

A planet transfers angular momentum to its surrounding disc
through the excitation of spiral density waves at specific locations
called Lindblad resonances. Goldreich & Tremaine (1979, 1980)
derived an analytic expression for the tidal torque per unit mass
� (the excitation torque density) exerted by a fixed planet on an
elementary ring of a pressureless disc:

�(r) = sgn(r − rp)f
(GMp)2

�2
p

1

�4
, (1)

where Mp is the mass of the planet, G is the gravitational constant,
rp is the planet location, �p = (GM�/r

3
p )1/2 is the Keplerian angular

velocity at rp where M� is the mass of the central star, � ≡ |r − rp|
and f is a constant of order unity (e.g. f ∼ 0.4 – Goldreich &
Tremaine 1979; f ∼ 0.15 – Lin & Papaloizou 1979; f ∼ 0.1 –
Rafikov & Petrovich 2012). While the key features of the tidal
torque equation, such as the �4 dependence, have been widely
accepted (Lin & Papaloizou 1986; Bryden et al. 1999; Bate et al.
2003; Varnière, Quillen & Frank 2004; D’Angelo & Lubow 2008),
the proportionality coefficient f is mostly inferred by analysing the
shape of the gap carved by the planet (e.g. Armitage & Natarajan
2002). The sgn factor in front of the right-hand side of equation (1)
shows that a planet tends to push material outside of its orbit. In
a disc with non-zero pressure, the exchange of torque between the
planet and the disc is a two-step mechanism.

The planet first excites density waves in the gas. The amount
of initial torque density stored in these density waves is the one
given by equation (1). Then, a fraction of this torque (the deposi-
tion torque) is transferred from the waves to the disc by virtue of
damping processes such as viscosity or shocks (Takeuchi, Miyama
& Lin 1996; Goodman & Rafikov 2001; Rafikov 2002a). This
pressure-supported transport modifies also the effective location of
the Lindblad resonance. An important consequence is that the de-
position torque is essentially zero in the vicinity of the planet, since
high-order Lindblad resonances are shifted away from the planet
by a typical length of the order of the scale height of the disc H
(Goldreich & Tremaine 1980; Artymowicz 1993). The linear theory
(valid for low-mass planets; e.g. Dong et al. 2011) shows that there
is no Lindblad resonances in the region |r − rp| � 2H/3. This effect,
called torque cut-off, prevents the tidal torque to diverge close to
the planet orbit. Finally, no torque is deposited by Lindblad reso-
nances in the co-orbital region of the planet, where the gravity of the
planet dominates over the one of the stars and particles experience
horseshoe orbits (Bate et al. 2003; D’Angelo & Lubow 2008). This
region typically extends over a distance rH from the planet’s orbit,
where rH denotes the Hill radius of the planet:

rH ≡ rp

(
Mp

3M�

)1/3

. (2)

To include the torque cut-off due to the pressure and the corotation
region, the deposition toque is often calculated from the expression
given by equation (1), but with the following modified �g:

�g = max(
∣∣r − rp

∣∣ , H, rH). (3)

The prescription given by equation (3) has been extensively used in
a variety of contexts, such as to model the disc–planet interaction
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(e.g. Bryden et al. 1999) or the evolution of supermassive black hole
binaries embedded in a disc (e.g. Lodato et al. 2009).

In this work, we use equation (1) to treat the tidal torque den-
sity by a prescription that is analytically tractable. This expression
assumes a few simplifications that should be kept in mind. First,
equation (1) gives the tidal torque under the form of a smooth func-
tion. This regularity property originates from the fact that individual
modes of the tidal potential interact with large regions of the disc
rather than narrow rings centred over Lindblad resonances (Rafikov
& Petrovich 2012). Secondly, equation (1) neglects effects due to the
non-linear propagation of the density waves excited by the planet,
some details of the wave damping processes and the recently dis-
covered negative torque correction. About the latter, in a disc of
uniform surface density, the tidal torque density changes sign at a
radial separation �3H from the planet (Dong et al. 2011; Rafikov
& Petrovich 2012). However, we do not expect this correction to
play a major role since we study processes developing in regions of
size �H around the planet (see Section 5.2), where the tidal torque
exerted by the planet on the gas is always positive in the outer disc
and negative in the inner disc. Moreover, we focus here on low-
mass planets embedded in viscous discs, where density waves are
expected to be strongly damped close to the Lindblad resonances. In
this case, the exact role of the negative torque phenomenon remains
an open question (section 7 of Rafikov & Petrovich 2012). Hence,
we choose to restrain our theory to a minimum but sufficient level
of refinement.

2.1.2 Dust disc

From the discussion in Section 2.1.1, we expect the tidal torque to
be more effective in the dust than in the gas for three reasons.

(i) Dust is a pressureless fluid, where density waves cannot prop-
agate far from the planet. The deposition torque equals therefore
the excitation torque.

(ii) For the same reason, there is no torque cut-off in the dust,
and the effective �d is

�d = max(
∣∣r − rp

∣∣ , rH). (4)

Close to the planet, angular momentum can be deposited in the
dust, but not in the gas. In detail, if rH < H, the torque exerted at
the Lindblad resonances in the region between rH and H is effective
in the dust, while in the gas is suppressed due to pressure effects.
The ratio between the maximum torque density in the gas and in
the dust is of order ∼(rH/H)4 = (rp/H)4(Mp/3M�)4/3.

(iii) For large grains, the thickness of the dust layer Hd is smaller
than H, as a result from the competition between settling and tur-
bulent stirring (Dubrulle, Morfill & Sterzik 1995). For dust layers
with Hd ≥ rH, this results in an enhancement of the tidal torque due
to local geometrical effects.

In absence of gas, the use of the smooth functional form given
by equation (1) is not appropriate. Indeed, the tidal torque exerted
on the pressureless dust phase concentrates at Lindblad resonances,
where particles eccentricities are effectively excited (Ayliffe et al.
2012; Zhu et al. 2014). In this case, the planet–disc interaction is
better described by Hill equations (Hill 1878), additional effects
related to dust pressure induced by mutual collisions and velocity
fluctuations must be taken into account (Henon & Petit 1986; Petit
& Henon 1987a,b; Rafikov 2001). However, for a disc containing a
low-mass planet, two arguments support the use of equation (1) for
dust as well. First, grains experience gas drag (see Section 2.2), a
force that dominates the dynamics of the particles at the resonances

as long as they are not too large (fig. 18, top-centre panel of Zhu
et al. 2014). In this case, orbits of dust grains shrink around the
planet and the ability for opening a dust gap is enhanced (Ayliffe
et al. 2012; Zhu et al. 2014). Secondly, with a low-mass planet,
rH < H, we will show that the width of the dust gap �gap satisfies
rH � �gap � H (see Section 5.2). In this region, high-order Lindblad
resonances of order m are highly concentrated (rp/H � m � rp/rH)
and degenerate into a continuum. This region is also sufficiently far
away from low-order resonances (i.e. 1:2, 2:3, 3:2 and 2:1), where
eccentricity pumping is effective and cannot be neglected (Ayliffe
et al. 2012; Zhu et al. 2014). Thus, we use equation (1) to model
the tidal torque density in the dust as well, and test this assumption
with numerical simulations.

2.2 Equations of motion

The motion of dust particles in protoplanetary discs is affected
by the aerodynamical interaction with the gas and vice versa. The
differential motion between the two phases gives rise to a drag
force that damps this velocity difference. In discs hosting planets,
an additional velocity difference can be produced due to the different
tidal interaction of the planet with the gas and dust (Section 2.1).

We assume a thin, non-magnetic, non-self-gravitating, dusty vis-
cous and vertically isothermal protoplanetary disc hosting a non-
migrating planet. We treat the dust phase as a continuous pressure-
less and viscousless fluid. The equations of motion for the gas and
the dust are

∂vg

∂t
+ (vg · ∇) vg = K

ρg
(vd − vg) − ∇(� + �p)

− 1

ρg
(∇P − ∇ · σ ), (5)

∂vd

∂t
+ (vd · ∇) vd = − K

ρd
(vd − vg) − ∇(� + �p), (6)

where the indices g and d refer to the gas and the dust phases, v

and ρ denote the velocities and the densities and � and �p denote
the gravitational potentials of the star and the planet, respectively.
P and σ denote the pressure and the viscous tensor of the gas. K
denotes the drag coefficient, whose expression depends on the local
values of the parameters of the grain and of the disc (e.g. Laibe &
Price 2012). K is related to the stopping time of the mixture ts by

K ≡ ρd

ts(1 + ε)
, (7)

where ε = ρd/ρg is the dust-to-gas density ratio. Instead of K, one
uses generally the Stokes number St ≡ �kts, defined as the ratio
of the stopping time to the local dynamical time-scale. In typical
discs, the mean free path of the gas molecules is smaller than the
dust particle size sgrain. For this so-called Epstein regime, the Stokes
number is given by (e.g. Price & Laibe 2015)

St = ρgrainsgrain�k

(1 + ε)ρgcs

√
πγ

8
, (8)

where ρgrain is the intrinsic grain density, cs is the sound speed and
γ is the adiabatic index.

To reduce equations (5) and (6) to a system of equations that
describes a steady-state solution for the gas and the dust, we fol-
low the approach introduced in Nakagawa et al. (1986, hereafter
NSH86) and make two approximations. First, we assume that the
orbits have circularized after a transient regime occurring over a
time ts (Adachi, Hayashi & Nakazawa 1976). Secondly, the long-
term evolution of the gas surface density profiles due to viscous
effect is neglected. To include the tides from the planets, we only
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consider the azimuthally averaged contribution of the tidal torque
by replacing the source term ∇�p|θ by �/r, where � is given by
equation (1), adopting the prescription expressed in equations (3)
and (4) for each phases. For low-mass planets, i.e. rH < H, the
values of �g and �d are a priori different (the cut-off is at H for
the gas and at rH for the dust). We assume classical shear viscosity
and η = νρg to denote the dynamical viscosity of the gas. This
approach is commonly used to model angular momentum trans-
port driven by turbulence generated, e.g. by magnetorotational or
gravitational instabilities (Balbus & Hawley 1991; Lodato & Rice
2004; Rafikov 2015). However, Rafikov (2017) has recently shown
that accretion might not proceed viscously in protoplanetary discs,
but may be driven non-diffusively by magnetohydrodynamic winds
or spiral density waves (Rafikov 2002a; Bai 2016; Fung & Chiang
2017). In this paper, we assume that accretion is mediated by a
viscous-like mechanism (Lynden-Bell & Pringle 1974). The only
non-zero component of σ for the axisymmetric sheared flow of the
disc is

σrθ = ηr
∂

∂r

(
vg,θ

r

)
, (9)

where

v2
g,θ

r
= v2

k

r
+ 1

ρg

∂P

∂r
+ O (H/r)2 . (10)

For low-mass planets, the deviation of σ rθ induced by the sub-
Keplerian rotation of the unperturbed pressure profile is only of
order (H/R)2 � 1 and can be neglected.

Under these assumptions, we perform a perturbative expansion
relative to the Keplerian velocity vk = (0, r�k, 0) in both phases,
and look for stationary solutions assuming an axisymmetric disc.
Note that from here the notation vθ will be used to refer to the
perturbed azimuthal velocities for the sake of simplicity. The equa-
tions of motion for the perturbed velocities can be expressed in
polar coordinates as

∂vg,R

∂t
= K

ρg
(vd,r − vg,r ) − 1

ρg

∂P

∂r
+ 2�kvg,θ , (11)

∂vg,φ

∂t
= K

ρg
(vd,θ − vg,θ ) − �k

2
vg,r + 1

ρg
∇ · σ |θ + �g

r
, (12)

∂vd,R

∂t
= − K

ρd
(vd,r − vg,r ) + 2�kvd,θ , (13)

∂vd,φ

∂t
= − K

ρd
(vd,θ − vg,θ ) − �k

2
vd,r + �d

r
. (14)

Equations (11)–(14) consist of a system of non-homogeneous dif-
ferential equations of the form X′(t) + AX(t) = B, where A and
B are two constant matrices. Its steady state is Xstat = A−1B. The
system relaxes towards this stationary regime in the typical time
min |	(σ A)|−1 = ts, where σ A are the eigenvalues of matrix A and
ts is the stopping time of the mixture defined in equation (8) in a
dimensionless form.

2.2.1 Steady-state solution

The stationary solution of the linear system equations (11)–(14) is

vg,r = − 1

1 + ε

{
ε �v

St + St−1 −
(

1 + ε
St2

1 + St2

)
vvisc

}

+ 2�d

vk

ε

(1 + ε)(1 + St2)
+ 2�g

vk

1 + St2(1 + ε)

(1 + ε)(1 + St2)
, (15)

vd,r = 1

1 + ε

{
�v

St + St−1 + vvisc

1 + St2

}

+ 2�d

vk

ε
(
1 + St2

) + St2

(1 + ε)
(
1 + St2

) + 2�g

vk(1 + ε)(1 + St2)
, (16)

vg,θ = 1

2(1 + ε)

{(
1 + ε

St2

1 + St2

)
�v + ε

St + St−1 vvisc

}

+ ε(�g − �d)

vk(1 + ε)(St + St−1)
, (17)

vd,θ = 1

2(1 + ε)

{
�v

1 + St2 − vvisc

St + St−1

}

− �g − �d

vk(1 + ε)(St + St−1)
, (18)

where

�v ≡ 1

ρg�k

∂P

∂r
(19)

is the typical optimal drift velocity derived in NSH86, and

vvisc ≡ 2

�kρg
∇ · σ |θ

= 1

rρg
∂
∂r

(rvk)

∂

∂r

(
ηr3 ∂�k

∂r

)
(20)

is the viscous velocity derived by Lynden-Bell & Pringle (1974),
since for low-mass planet, surface density gradients develop over
large scales (no gas gap). From equations (17) and (18), the differ-
ential azimuthal velocity between the gas and dust is

vd,θ − vg,θ = − �v

2(1 + St−2)
− vvisc

2(St + St−1)

− �g − �d

vk(St + St−1)
, (21)

which is independent on the dust-to-gas ratio. The specific drag
torque exerted by the gas phase on an elementary dust ring is there-
fore

�g→d = −r
K

ρd

(
vd,θ − vg,θ

)
= vk

2(1 + ε)

{
�v

St + St−1 + vvisc

1 + St2

}

− �g − �d

(1 + ε)(1 + St2)
, (22)

while the back-reaction drag torque from the dust to the gas is

�d→g = r
K

ρg

(
vd,θ − vg,θ

) = −ε�g→d. (23)

2.2.2 Physical interpretation

In the limit of the dust grains being perfectly decoupled from the
gas (St = +∞), particles orbit the star with Keplerian velocity
(vd, θ = 0) and are pushed outside of the planet orbit by the tidal
torque at the constant velocity vd, r = 2�d/ vk. The gas orbits the
star at the sub-Keplerian velocity �v/2 < 0, while the gas radial
velocity is vvisc + 2�g/vk. When drag couples the two phases, the
dust motion is dominated by the gas when ε � 1 and 1/(1 + ε) ∼ 1.
When ε � 1, the gas motion is dominated by the dust. Both the gas
and the dust strongly feel the other phase when the dust-to-gas ratio
is of order unity (Gonzalez et al. 2017).

As it is known in the absence of a planet (�g = �d = 0), differen-
tial dynamics due to gas pressure and viscosity are communicated
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from one phase to the other via drag. The term proportional to �v

in equation (16) implies that particles drift radially as a result of the
residual differential orbital velocity between the two phases (equa-
tion 2.11 of NSH86). In the absence of any small-scale pressure
perturbation in the gas, �v < 0 in a typical disc since the inner
regions are denser and warmer. This results in a radial inward drift
of particles. Drift is most efficient for St ∼ 1. For St � 1 (respec-
tively St � 1), particles maintain a fixed Keplerian (respectively
sub-Keplerian) orbit. In equation (15), the term proportional to �v

corresponds to the back-reaction term (equation 2.13 of NSH86):
in discs with �v < 0, the gas is pushed back in the regions of lower
pressure by the dust to conserve the global angular momentum (this
motion becomes significant when ε approaches unity). Furthermore,
the radial viscous gas flow is weighted by a factor that depends on
ε and St (the second term of the right-hand side of equation 15).
For small particles St � 1, the viscous flow is reduced by a factor
(1 + ε)−1. For large particles (St � 1), vg, r = vvisc, i.e. dust does
not affect the viscous gas motion regardless of the value of ε.

In equation (16), the term proportional to vvisc shows that ad-
ditionally, drag makes very small grains stick to the gas. They are
carried radially by the viscous flow. Hence, dust evolves ‘viscously’
under the indirect effect of the viscous evolution of the gas, with a
so-called drag-induced dust viscosity:

νd,eff ≡ 1

1 + ε

1

1 + St2 ν. (24)

This contribution dominates over the pressure drift only when grains
are tiny, i.e. St < α. Note that although equation (24) resembles to
the dust diffusivity derived in Youdin & Lithwick (2007), the drag-
induced dust viscosity does not describe the motion induced by
turbulence over dust grains, but models how the viscous evolution
of the gas affects the radial dynamics of grains. Importantly, when
St ∼ 1 and ε ≥ 1, the gas dynamics is dominated by the back-
reaction from the dust and not by the viscosity (Gonzalez et al.
2015; Taki, Fujimoto & Ida 2016).

In the general case, the differential motion between the gas and
the dust induced by the different tides only affects the motion of
smaller grains, i.e. St � 1. This concerns particularly the region
rH < |r − rp| < H, where �d = �g = 0. In this region, for a gas-
dominated dynamics with ε � 1, only large dust grains, i.e. St � 1,
are pushed away from the planet orbit, since they experience a
lower drag related to the different tidal torque between the two
phases (see the third term in the right-hand side of equation 22).
In other words, for smaller grains, the motion induced by the tidal
torque in this region is damped by the drag torque that tends to
reduce the velocity difference with the unperturbed gas flow. As a
result, small grains are forced to stick to the fixed gas. On the other
hand, it can be noticed that the gas is not affected by the tides in
this region if ε � 1 (see the third and fourth terms in the right-hand
side of equation 15). Sufficiently far away from the planet, where
|r − rp| > H and thus �g = �d, there is no differential tidal torque,
and the tidal barycentric velocity is spread over the two phases
proportionally to the respective density of each phase.

2.2.3 Orders of magnitude

We compare the orders of magnitude of the different velocity terms
in equation (16), related to the radial pressure gradient, the viscous
and the tidal contribution. Until specified, we shall not restrict our

analysis to the case of an unperturbed gas density profile. We obtain∣∣∣∣− 1

ρg�k

∂P

∂r

∣∣∣∣ ∼
( r

l

) (
H

r

)2

vk, (25)

∣∣∣∣ 1

ρg�k
∇ · σ |θ

∣∣∣∣ ∼
( r

l

)
α

(
H

r

)2

vk, (26)

where l denotes the typical length over which the gas surface density
varies and where we have used the seminal Prandtl-like turbulent
viscosity ν = αcsH (Shakura & Sunyaev 1973). The pre-factor in
equation (26) originates from the second derivative of the Keplerian
deviation (equation 10). For an unperturbed gas profile, l = r and
the pre-factors in equations (25) and (26) equal unity. The maximal
tidal contributions, obtained at the cut-off locations, are of order∣∣∣∣ �

vk

∣∣∣∣
max

∼ r6
H

r2�4
vk. (27)

For low-mass planets, i.e. rH < H, the maximum tidal torque density
for the gas and the dust is, respectively, given by∣∣∣∣�g

vk

∣∣∣∣
max

∼
( rH

H

)6
(

H

r

)2

vk, (28)

∣∣∣∣�d

vk

∣∣∣∣
max

∼
( rH

H

)2
(

H

r

)2

vk. (29)

For the sake of clarity, we now assume ε � 1 and limit our analysis
to large grains that are most affected by the tidal torque without
being decelerated by the drag torque arising due to the differential
tidal torque between the two phases. For larger grains, i.e. St � 1,
the terms in equation (16) proportional to 1/(1 + St2) are negligible.
The remaining terms in equation (16) are given by

vd,r |�v ∼ St

1 + St2

(
H

r

)2

vk, (30)

vd,r |�d ∼ St2

1 + St2

( rH

H

)2
(

H

r

)2

vk. (31)

The term St2/(1 + St2) in equation (31) expresses that only large
grains are entrained by the tides since small grains stick to the gas.
For these grains, the drag torque is dominated by the contributions
from the pressure gradient and the tides.

3 G AP OPENI NG IN DUSTY DI SCS

3.1 The low-mass planet regime

The formalism derived in Section 2 enables to study the gap-opening
process by a low massive planet embedded in dusty discs assuming
that the pressure profile around the planet remains unperturbed. We
now investigate under which condition this assumption is satisfied.

A gap is carved in the gas when the tidal torque overpowers the
viscous torque. Assuming that the typical length over which the gas
surface density varies by the tidal action of the planet is of order
of H, we compare equations (26) and (28) by replacing l by H to
estimate the condition for gap opening in the gas. We find

Mp

M�

� α1/2

(
H

rp

)5/2

. (32)

Although equation (32) provides an interesting scaling, more quan-
titative criteria are used in literature. The first one is based on the
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requirement that a strong shock forms within a scale height of the
planet’s orbit (Lin & Papaloizou 1993), giving(

Mp

M�

)
th

� 3

(
H

rp

)3

, (33)

according to which the planet Hill radius rH must be greater than
the vertical scale height of the disc H. However, recent 2D and 3D
simulations of gas discs hosting planets have shown that planets
with mass Mp � 0.2 Mp,th are able to create a pressure maximum
outside the planetary orbit (Lambrechts, Johansen & Morbidelli
2014; Rosotti et al. 2016). The second criterion is based on the
requirement that gap opening should be faster than the viscous
refilling of the gap, giving

(
Mp

M�

)
visc

�
(

3

2f

)1/2(
H

rp

)5/2

α1/2, (34)

where f is the constant in the tidal torque density formula (equa-
tion 1). Moreover, equation (34) is in agreement with the estimate
derived in equation (32). If the pressure (respectively the viscous)
force dominates the gap-closing mechanism, we expect Mp, th to be
larger (respectively smaller) than Mp, visc. In this work, we consider
that the minimum mass able to create pressure maxima in the outer
disc is given by the maximum of all the masses predicted by the
previously mentioned criteria,

Mp,gap = max(0.2 Mp,th, Mp,visc). (35)

However, Rosotti et al. (2016) have recently found that planet of
masses slightly lower than the one given by equation (35) could cre-
ate gap structures in the dust as well. In detail, if Mp � 0.1 Mp, th, the
planet weakens the pressure gradient profile in its neighbourhood,
which reduces the dust drift locally and leads to accumulation of
particles. This traffic jam mechanism affects essentially marginally
coupled particles (St ∼ 1) and leads to the formation of a dust gap.
We consider this effect by assuming that the minimum planet mass
able to affect the local gas profile is

Mp,lim = 0.1 Mp,th. (36)

In Section 4, we confirm the validity of this condition. Eventually,
it should be noted that all the criteria above assume that planets
remain on a fixed orbit. However, Malik et al. (2015) have shown
that the migration may affect the ability of the planet to carve gaps,
and the critical masses given by equations (33) and (34) might be
underestimated.

3.2 Dust gap width

We now focus our analysis on planets not able to affect the local
pressure structure, i.e. Mp � Mp, lim, embedded in standard discs
(∂P/∂r < 0). The tidal interaction between the planet and the disc
acts to carve the gap around the planetary orbit, whereas drag makes
the grains drift inwards towards the central protostar. In particular,
the flux of solids coming from the outside of the planet orbit tends to
refill the dust depletion locally induced by the tides. In this case, the
drag torque can be derived using the unperturbed pressure profile
of the gas (equation 22).

We denote

ζ ≡ ∂ log P

∂ log r

∣∣∣∣
rp

, (37)

the exponent that characterizes the steepness of the pressure pro-
file of the disc. If we assume power-law profiles for the sur-

Figure 1. Total radial dust velocity of millimetre grains outside the orbit
of the planet for different planet masses: 0.003, 0.01 and 0.03 MJ adopting
a disc model with H/r = 0.02 at 1 au (corresponding to H/rp ≈ 0.05 at rp),
Mp, th ∼ 0.4 MJ, α = 0.005, ε = 0.01, p = 1, q = 1/2, St ∼ 10 at rp and
assuming the proportionality constant in front of the torque density prescrip-
tion expressed in equation (1) equal to the nominal value of 0.4 introduced
in Goldreich & Tremaine (1979). The velocity peaks at r − rp = rH and
decreases with increasing distance from the planet. For planets with masses
�0.003 MJ, the tidal torque is not strong enough to halt the radial inflow
induced by the drag torque (vd, r(r) < 0).

face density (� ∝ r−p) and the temperature (T ∝ r−q), we have
ζ = −(p + q/2 + 3/2). For typical disc ( p = 1, q = 1/2; Andrews
& Williams 2007; Williams & Best 2014), the power-law exponent
of the pressure profile is ζ � −2.75 < 0. With this notation, the az-
imuthally averaged radial dust velocity (equation 16) can be written
as

vd,r = ζSt − (6 + 3ζ ) α

(1 + ε)(1 + St2)

c2
s

vk

+2�d

vk
+ 2(�g − �d)

vk(1 + St2)(1 + ε)
. (38)

As an example, Fig. 1 shows the radial velocity of millimetre-sized
grains outside the orbit of the planet with different mass (lower than
Mp, lim) embedded in a typical disc model, assuming f to be equal
to the nominal value of 0.4 introduced in Goldreich & Tremaine
(1979). In this case, the planet is located at 40 au from the star,
Mp, th ∼ 0.4 MJ, α = 0.005, p = 1, q = 1/2, H/r = 0.02 at 1 au
(corresponding to H/rp ≈ 0.05 at rp) and ε = 0.01. The dust grains
in the mid-plane have Stokes number St ∼ 10 at the planet location.

Fig. 1 shows that in the presence of a planet of very low mass,
the tidal torque is not strong enough to halt the inward radial flow
triggered by the drag torque (e.g. the case �0.003 MJ, for which
vd, r < 0). Larger planet masses empower stronger tidal torques in
the disc, and the balance between the tidal and the drag torques
leads to an outward drift (Fig. 1 shows regions where vd, r > 0 for
Mp = 0.01 MJ and 0.03 MJ).

The location of the outer edge of the gap rgap can be estimated
simply by evaluating the distance to the planet where vd, r(rgap) = 0,
i.e. where the drift induced by the tides balances steadily the drift
induced by the drag. We use �gap to denote the width of the dust
gap outside the planetary orbit rgap − rp. To simplify the analysis,
we assume that the temperature and surface density of the gas are
uniform over the domain �gap, i.e. the terms in equation (38) are
evaluated at rp with the exception of � in �d and �g (see equation 1).
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Corrections of order �gap/rp are negligible for our analysis (see
Section 4.3). The width of the dust gap is therefore given by

�gap

rp
� (2f )1/4 z−1/4 St1/4

(
H

rp

)−1/2 (
Mp

M�

)1/2

, (39)

where

z(St, ε, α) =

⎧⎪⎪⎨
⎪⎪⎩

−ζ + (6 + 3ζ ) α/St

(1 + ε) + ε/St2 , rH ≤ �gap < H,

−ζ + (6 + 3ζ ) α/St

(1 + ε) + (1 + ε) /St2 , �gap ≥ H.

(40)

Note that the difference between the two expressions in
equation (40) has no sensible effect on the value of z in practice
for larger grains. This suggests, as expected, that the different tidal
torque experienced by the two phases does not cover the key role
in the gap-opening process. For St �α, the second term of the
numerator vanishes and for St �1 + ε, equation (40) reduces to

z � −ζ

1 + ε
. (41)

Equation (39) is consistent with the fact that infinitely small grains
at low dust densities follow the gas, in which no gap forms (�gap = 0
for St = 0 and ε = 0). For large grains, �gap ∝ St1/4, an expression
only weakly sensitive to the exact value of St. The location of the
outer edge of the dust gap is a weak increasing function of the
Stokes number, since it corresponds to a weaker drag torque, as
found numerically by Dipierro et al. (2016) (see Section 4.3.3).
Moreover, this analysis shows that, since large grains experience a
lower drag related to the differential tidal torque between the two
phases, the criterion is mostly based on the balance between the
tidal torque �d and the drag torque related to pressure forces. The
differential tidal torque between the two phases mostly influences
the dynamics of small grains, forcing them to follow the unperturbed
gas flow. For large Stokes number, i.e. St > α, the increase of the
dust-to-gas ratio at the mid-plane due to settling affects the motion
of dust and gas, as described in Section 2.2. However, equation (39)
shows that, since St ∝ 1/(1 + ε), the gap width does not depend
on the dust-to-gas ratio when large grains are considered, i.e. when
equation (41) is valid. The eventual modification of the gas surface
density profile due to the dust back-reaction is not included in our
model (see discussion in Section 5.2).

Finally, equation (39) shows that the distance between the planet
and the outer edge of the gap is a decreasing function of the aspect
ratio of the disc. Indeed, the contribution of gas drag to gap closing
goes as (H/rp)2 (cf. equation 38). Assuming power-law profiles for
the surface density of the gas � ∝ r−p and temperature T ∝ r−q,
the location of outer gap edge scales as �gap/rp ∝ rp + (q − 1)/4. For a
typical disc with p = 1 and q = 1/2, the outer gap edge is expected
to increase with radius as r0.87.

3.3 Gap-opening criterion

3.3.1 Orders of magnitude

An order of magnitude for the minimum mass required for a
planet to open a dust gap can be straightforwardly estimated from
Section 2.2.3. By equating equations (30) and (31) with the defini-
tion given in equation (2), we obtain

Mp

M�

∼ St−3/2

(
H

rp

)3

. (42)

Equation (42) shows that the critical mass required to open a gap in
the dust is lower for large Stokes numbers and large aspect ratios.

More interestingly, the exponent −3/2 implies a sharp transition
between small and large grains at St � 1. Fixing H/rp and decreasing
St in equation (42) show that Mp increases efficiently, up to reach
the critical mass required to open a gap in the gas as well, i.e.
Mp/M� ∼ (H/rp)3 (equation 33; Lin & Papaloizou 1993). This
suggests, as expected, that the condition St � 1 should be fulfilled
for a gap to be carved in the dust only (see Section 3.4).

3.3.2 Necessary condition for dust gap opening

Equation (39) provides a simple way to estimate the minimum
planet mass Mp able to halt the inward radial drift induced by the
drag. Noting that the minimum radius of the outer edge of the dust
gap is the Hill radius, Mp is the planet mass for which the radial dust
velocity is zero at r = rp + rH. Assuming that the temperature and
surface density of the gas are uniform over the domain |r − rp| ∼ rH

– an approximation of order rH/rp � 1 – we obtain

Mp

M�

≥ ξ
( z

St

)3/2
(

H

rp

)3

, (43)

with z given by the first expression in equation (40) and with

ξ = 1

9
(2f )−3/2 . (44)

Equation (43) provides the minimum mass for a planet to pro-
duce a density depletion in the dust outside the planet orbit. For
the typical disc described above, the minimum planet mass has a
value of ∼0.003 MJ, as expected from the previous analysis about
the radial velocity (see dotted line in Fig. 1). As expected, equation
(43) is in agreement with the orders-of-magnitude estimate (see
equation 42).

3.3.3 Sufficient condition for dust gap opening

Equation (43) gives the minimum mass of a planet able to halt the
radial inward drift of dust particles. However, for a gap to form, dust
must not refill dust depletions as it explores different azimuths. Since
refilling is a non-axisymmetric process, its effects is not picked up
by the previous analysis based on averaged axisymmetric torques.
An alternative approach based on time-scales estimates is therefore
developed hereafter to take dust refilling into account.

The gap-opening time-scale is the time required to evacuate all
the dust contained between rp and rp + rH. As previously mentioned,
a gap of half width rH is roughly the smallest gap that can be opened
in the dust, since the Lindblad resonances are most effective at this
distance from the planet. Focusing our analysis on the dust outside
the planetary orbit, the angular momentum that must be removed to
open the gap between rp and rp + rH is

�J = 2πrprH�d
dl

dr

∣∣∣∣
rp

rH = πrpr
2
H�dvk, (45)

where l denotes the specific angular momentum. The typical time
to evacuate all the dust in this region is

topen = �J

|dJ/dt | , (46)

where |dJ/dt| is the one-sided total torque on the planet due to
its interaction with dust outside the orbit. This total torque is the
integral of the torque density given by equation (1) over the entire
outer disc, i.e.

dJ

dt
=

∫ ∞

rH

2πrp�d�d(r − rp) d(r − rp). (47)
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The gap-opening time-scale is therefore given by

topen = (3ξ )2/3

(
Mp

M�

)−1/3

�−1
k . (48)

Setting �g = �d = 0 in equation (38) and assuming vd, r constant
over the domain |r − rp| ∼ rH, the closing time tclose = rH/vd, r is

tclose = (1 + ε)(1 + St2)

−ζSt + (6 + 3ζ ) α

vk

c2
s

rH. (49)

The critical mass ratio Mp/M� above which a planet sustains its gap
in a dust disc is obtained by equating the opening and the closing
time-scale, which gives

Mp

M�

≥ 33/2ξ
( z

St

)3/2
(

H

rp

)3

, (50)

with z given by the second expression in equation (40). As already
mentioned, the two expressions in equation (40) have the same
value for our aims, i.e. for St �α and for St �ε. Thus, equation
(50) equals to 33/2 ≈ 5.2 times the critical mass derived in equation
(43). For the disc model described above, the criterion gives a
typical mass of ∼0.015 MJ to open a dust gap. For large grains,
equation (50) reduces to

Mp

M�

≥ ξ

( −3ζ

1 + ε

)3/2

St−3/2

(
H

rp

)3

. (51)

This criterion provides a good estimator for the minimum mass to
open a gap in dusty disc. As a remark, equation (43) originates from
a balance of torques performed at steady state (the gap is already
opened), whereas equation (50) originates from a balance of torques
performed in a transient regime (the gap is not opened yet). This
explains why the two conditions are not rigorously identical and
differ by a factor of order unity. Note that, since St ∝ 1/(1 + ε), the
gap-opening criterion does not depend on the dust-to-gas ratio, as-
suming that the dust back-reaction does not affect the local pressure
profile. Therefore, our analysis shows that it is not necessary to es-
timate the local dust-to-gas ratio to derive the value of the minimum
mass.

Fig. 2 displays the minimum mass required for a planet to open
a gap in the dust as a function of the Stokes number. This limit is
calculated from equation (50) in the disc model described above
assuming f = 0.4 (Goldreich & Tremaine 1979). The red shaded
area indicates the range of planet masses and Stokes numbers for
which a gap is carved in the dust only. There is no ubiquitous lower
mass for gap opening in the dust, since tides always overpower
drag in the limit of very large and decoupled grains. The green area
shows the domain for which the planet carves a gap in the gas as
well, i.e. for Mp ≥ Mp, gap. The small blue area indicates the range
of masses Mp, lim � Mp � Mp, gap for which the local pressure profile
is perturbed without creating a pressure maximum (Rosotti et al.
2016).

As expected, the range of masses for which the planet is able to
carve a gap in the dust only (red area) increases with increasing
Stokes numbers, due to the reduced replenishment from the outer
disc induced by the drag torque. For planets with masses inside the
green area, the drag assists the gap opening in the dust, leading
to an accumulation of dust particles at the pressure maximum and
producing a well-defined dusty gap with a shape closely related to
the Stokes number (e.g. Pinilla et al. 2015).

Eventually, the exact value of the minimum mass is related to
the constant f in front of the tidal torque density (equation 1).
Equation (51) shows that the critical mass to open a gap in the

Figure 2. Sufficient condition for dust gap opening in a typical disc model
with a local aspect ratio of 0.05 and ζ = −2.75 for different Stokes numbers,
adopting f = 0.4 (Goldreich & Tremaine 1979). The shaded areas indicate
the range of planet masses and Stokes number for which a gap is carved in
both phases (green) and only in the dust (red). The small blue area indicates
the range of masses for which the local pressure profile is perturbed without
creating a pressure maximum. The range of masses able to carve a gap in
the dust only increases with the Stokes number.

dust is sensible to the actual value of f as it varies as f−3/2 (see equa-
tion 44), as long as the hypothesis of the low-mass planet regime is
satisfied. Measuring the critical mass provides therefore an effective
way to measure f in numerical simulations (see Section 4.3.1).

3.4 Critical stokes number

An important feature mentioned in Section 2.2.3 appears clearly:
low-mass planets can carve dust gaps only if the Stokes number
is above a critical value of order unity. The value of the critical
Stokes number is obtained by comparing the minimum mass given
by equation (51) to Mp, lim, the minimum mass able to perturb the
gas pressure profile. Since the value of the critical Stokes number is
expected to be higher than unity, we assume St �α and St �ε and
obtain

Stcrit � 3

(
ξ

0.3

)2/3 ( −ζ

1 + ε

)
. (52)

For a typical disc with ζ = −2.75 and ε = 0.01, Stcrit ∼ 5.2 (see
Fig. 2). Importantly, the value of the critical Stokes number does
not depend on H/rp since the gap-opening criterion for the gas and
the dust scales equally with the aspect ratio. Moreover, equation
(37) shows that Stcrit scales linearly with the power-law exponent
of the pressure profile and is proportional to (1 + ε)−1. Since St ∝
(1 + ε)−1 as well, the value of the critical grain size does not depend
on ε.

4 N U M E R I C A L S I M U L AT I O N S

4.1 Dust/gas simulations

We use the SPH code PHANTOM to perform 3D global simulations
of gas/dust discs containing an embedded protoplanet (Price et al.
2017). Importantly, every process involved in the physical problem
(viscosity, gravity and drag) is computed self-consistently. A cali-
brated non-zero viscosity is applied on each gas particle (Lodato &
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Price 2010) to mimic the viscous transport of gas in disc described
with a Prandtl-like model of turbulence (Shakura & Sunyaev 1973).
The star and the planet are treated as mobile point sources of mass.
Their gravitational interactions with the gas/dust particles are com-
puted using the sink particles approach (Bate, Bonnell & Price
1995), which allows the bodies to migrate from their interactions
with the disc. Dust and gas particles are accreted on to the sinks
when two conditions are fulfilled: (i) the SPH particle is found to
gravitationally bound the sink, and (ii) the divergence of the veloc-
ity field at the location of the particle is negative. The gravitational
acceleration between the nsinks sink particles and the ith gas/dust
SPH particle is computed according to

dvi

dt
= −

nsinks∑
j=1

GMj(∣∣r ij

∣∣2 + s2
j

)3/2 r ij , (53)

where r ij = r i − rj denotes the differential location between the
particles, Mj is the mass of the jth sink particle and sj is the usual
softening parameter that prevents singularities at the sink locations.
sj is also chosen to be the accretion radius of the sink particle.

The dust motion is computed using the two-fluid algorithm de-
scribed in Laibe & Price (2012). The drag force between a particle
of one type and its neighbours of the other type is calculated in a
pairwise manner to conserve the linear and the angular momentum
of both phases as well of the energy of the gas to machine preci-
sion. In particular, the drag from the dust on to the gas (sometimes
referred as ‘back-reaction’) is included self-consistently. A specific
double-hump drag kernel ensures the accuracy of the interpolation.
To ensure better resolution within the gap, the smoothing length of
the gas is used to compute drag terms. Outside of the gap, results
do not depend from this choice. The algorithm has been extensively
benchmarked on simple test problems including waves and shocks
in dust and gas mixtures (Laibe & Price 2011, 2012; Price & Laibe
2015). We model spherical, compact and uncharged grains of con-
stant sizes. The drag coefficient is computed consistently, based on
the local values of the Knudsen number, as well as the Reynolds
and the Mach number of the relative flow between the two phases
(Kwok 1975; Paardekooper & Mellema 2006; Laibe & Price 2012).

4.2 Initial conditions

The disc is set-up in PHANTOM by following the procedure outlined
in Lodato & Price (2010). The system consists in a central star of
mass 1.3 M� surrounded by a gaseous disc of 5 × 105 SPH gas and
3 × 105 SPH dust particles extending from rin = 1 au to rout = 120 au.
We model the initial surface density profiles of the discs using power
laws of the form �(r) = �in(r/rin)−p, where �in is set such as the
total gas mass contained between rin and rout is 0.0002 M� and a
dust-to-gas ratio of 0.01. We adopt a power-law exponent of the gas
surface density profile p = 0.1, and the aspect ratio of the disc is
assumed to be ∼0.07 at the planet location (corresponding to 0.04 at
rin). We assume a vertically isothermal equation of state P = c2

s ρg

with cs(r) = cs, in(r/rin)−0.35. The exponent of the power-law profile
of the pressure is therefore ζ = −1.95. We set an SPH viscosity
parameter αAV = 0.1 that ensures an effective Shakura & Sunyaev
(1973) viscosity αSS ≈ 0.004. We study the evolution of the dust
density resulting from the tides of one embedded planet located at
a distance of 40 au from the central star. We perform a series of
simulations varying the planet mass, the aspect ratio of the disc and
the size of grains in order to test our criterion over a wide range of
disc models.

4.3 Results

4.3.1 Planet mass

We simulate the evolution of 1-mm-sized dust grains over 40 plan-
etary orbits, which leaves enough time for the dust to settle and
for the gap to form. The dust grains in our model have an initial
Stokes number of St ∼ 7 at the disc mid-plane. Those large grains
settle efficiently to the mid-plane of the disc in a stable dust layer
with dust-to-gas scale height ratio of ∼√

αSS/St ∼ 0.02, consistent
with the Dubrulle et al. (1995) model and SPH simulations of dusty
discs (Laibe et al. 2008). A dust-to-gas ratio in density ε of ∼0.5
is achieved in the mid-plane of the disc. However, as long as dust
back-reaction remains weak enough to not affect the local pressure
profile, our analysis shows that the minimum mass for dust gap
opening and the location of the outer gap edge do not depend on
the local dust-to-gas ratio. Therefore, we do not need to know the
exact shape of the dust-to-gas ratio profile to determine the outer
gap edge.

Our analytic criterion (equation 50) predicts for the minimum
mass able to carve a gap in the dust disc to be Mp � 0.052 MJ

for grains with St > Stcrit = 3.7, assuming the nominal value of
f = 0.4 (Goldreich & Tremaine 1979). Above this mass, we expect
that planets of mass �Mp, lim � 0.13 MJ (equation 36) are expected
to perturb the local pressure profile, weakening the gap-closing
effect induced by drag in the outer orbit (Rosotti et al. 2016).
Moreover, we expect to see gaps only in the dust for planets up to
Mp, gap � 0.27 MJ, according to our estimation of minimum mass to
create pressure maxima (equation 35). We therefore vary the planet
mass in the range 0.01–0.25 MJ and look at the eventual structure
of dust gap.

Fig. 3 shows rendered images of the dust surface density of the
disc hosting a planet with different masses. A planet of mass Mp �
0.09MJ causes a local depletion of grains in its close neighbour-
hood. This local void is permanently replenished by an incoming
flux of drifting particles after the planet transit, leading to the for-
mation of a non-axisymmetric depletion of dust. Fig. 4 shows that
planets of mass 0.09MJ � Mp � 0.125 MJ are not able to disturb
the local pressure profile. For Mp �0.13 MJ, the pressure gradient
is still always negative (bottom right-hand panel of Fig. 4), but the
weakening of the local pressure profile produces a decrease in the
radial drift velocity and therefore a deeper and wider gap compared
to low-mass case. The surface density profiles of the dust shows that
the width and the depth of the gap change sensitively at the tran-
sition between the two regimes (the top left-hand panel of Fig. 4).
The minimum mass able to reshape the local pressure profile is
∼0.13 MJ, in excellent agreement with the value of Mp, lim found
by Rosotti et al. (2016). However, we obtain deeper dust gaps for
Mp � Mp, lim compared to Rosotti et al. (2016). This discrepancy
originates from a different choice for the smoothing length used to
soften the tidal torque in the dust. They use a length of order the
gas scale height, whereas we use a smaller length of order the dust
scale height Hd. Hence, we obtain a better estimate for the tidal
torque in the dust in the region max (rH, Hd) < |r − rp| < H. In this
region, tides dominate and shape the density distribution of large
grains around low-mass planets, for which rH < H.

As discussed in Section 3.3.3, we use the value of the critical
mass obtained by our simulations to determine the value of the
constant f in front of equation (51). We obtain

fsim � 0.28 ± 0.01, (54)
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Gap opening in dusty discs 1941

Figure 3. Rendered images of the steady-state dust surface density of millimetre-size grains for the disc model described in Section 4.2 hosting embedded
planets of mass 0.01 (top-left), 0.05 (top-centre), 0.075 (top-right), 0.085 (mid-left), 0.095 (mid-centre), 0.1 (mid-right), 0.15 (bottom-left), 0.2 (bottom-centre)
and 0.25 (bottom-right) MJ initially located at 40 au after 40 planetary orbits. A full-cleared gap is carved by a planet with a minimum mass of ∼0.09 MJ. From
equation (51), we infer f = 0.28.

in agreement with theoretical estimates (see Section 2.1). The low
uncertainty of 0.01 is due to the sensitivity of the critical mass with
respect to f (see equation 44). Hereafter, we adopt this sole value of f
to compare the results of all numerical simulation to our theoretical
model. Using equation (54), the critical Stokes number above which
we expect to observe a gap only in the dust is Stcrit = 5.3.

To estimate the location of the gap outer edge from the dust
surface density profile, we follow the approach of Dong & Fung
(2017), which appears to work better for shallow gaps where the
density does not drop below an empirical threshold. The gap outer
edge rgap is defined as the location outside the planet orbit where the

dust surface density �d(rgap) reaches the geometric mean between
its minimum value in the gap �d(rmin) and its unperturbed value at
the same location �d, 0(rmin), i.e.

�d(rgap) ≡ √
�d(rmin) �d,0(rmin). (55)

Fig. 5 shows that the position of the gap outer edge estimated
from all the simulations is consistent with the value predicted by
equation (39) for the entire range of masses where our analysis
is valid, i.e. 0.09 MJ � Mp � Mp, lim. For more massive planets,
shallower pressure profiles reduce the drag torque outside the planet
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1942 G. Dipierro and G. Laibe

Figure 4. Azimuthally averaged surface density radial profiles of (top-left) gas and dust (top-right) for the disc hosting a planet with different mass.
The bottom panels show the (left) pressure radial profile and (right) its gradient. The dotted vertical line indicates the planet orbit. For planet of masses
0.09 MJ � Mp � 0.1 MJ, the pressure profile is not perturbed by the presence of the planet, while more massive planet perturbs the local pressure profile,
leading to a larger and deeper dust gap.

location, which translates the outer edge of the gap further away
from the planet compared to our analytical predictions. In this case,
our model underestimates the value found in numerical simulations
by ∼20 per cent. We also evaluate the location of the gap outer
edge from the zero dust-velocity condition of equation (38), using
consistent radial profiles of surface density and temperature across
the gap obtained from numerical simulations (dashed line in Fig. 5).
We note that the analytical approximation given by equation (39)
works fairly well – the discrepancy being of order a few per cent
– due to the low values of �gap/rp. More massive planets create
denser dust gaps outer edges. Since resolution in SPH increases
with density, errors on the location of the gap decrease with the
mass of the planet.

It is worth remarking that the limiting case where the outer gap
edge is equal to the Hill radius (Fig. 5, dotted line) is obtained for
a planet of mass ∼0.017 MJ, where our simulations does not show
a gap-like structure. Finally, in the low-mass planet regime, no gap
forms in the gas. We test this condition by running a simulation
where the gravity is switched off in the dust to discriminate the
mechanism at the origin of the dust gap opening. We find that the
gap is indeed carved by the mechanism explained in this paper, as
expected (see the lower right-hand panel in fig. 1 of Dipierro et al.
2016).

4.3.2 Aspect ratio of the disc

Equation (50) shows that dust gap opening depends on the ratio
H/rp since radial drift is triggered by the radial pressure gradient of
the gas. We test the criterion derived above by performing a simu-
lation with a disc satisfying H/rp = 0.035 at the planet location, a
value two times lower than the one previously adopted. From equa-
tion (50), the minimum mass of the planet able to carve a dust gap
in this disc model is expected to be 0.011 MJ. For planets more mas-
sive than Mp, lim = 0.017 MJ, the local pressure profile is perturbed
(equation 35). We perform simulations using the higher adequate
resolution to ensure that the viscosity is the same as for the other
models. We verify that in this simulation suit, the local pressure
profile remains monotonic. Fig. 6 shows that a planet of mass
�0.012 MJ (3 M⊕) is able to carve a gap in the dust, a result consis-
tent with our predictions (see Fig. 7). Fig. 8 shows that the location
of the outer edge of the gap predicted by our model reproduces well
the results of simulations. From equation (51), the minimum planet
mass scales as (H/rp)−3 and is therefore eight times less massive
than the one in our model of reference. Moreover, equation (39) indi-
cates that the outer edge of the gap carved by the planet with the min-
imum mass expressed in equation (51) scales with (H/rp)2. Thus, the
gap outer edge of the minimum mass planet is four times lower that
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Gap opening in dusty discs 1943

Figure 5. Positions of the outer gap edge �gap = rgap − rp for different
planet mass in our full sample. The bold dots indicate the estimates from
the surface density profile computed by simulations, whereas the solid line
indicates the predictions of the theory (equation 39). The dashed lines show
the numerical evaluation of the gap outer edge by calculating where the
radial dust velocity is null taking into account the radial profiles of the
surface density and temperature far from the planet by computing the null
values of equation (38). The vertical dashed line denotes the limit in planet
mass (Mp, lim, equation 36) below which the analysis is valid. The dotted
line indicates the Hill radius that can be considered the minimum width of
the gap that can be carved in the dust. Our analysis on the gap outer edge is
consistent with the results of simulations for low massive planets, while for
larger masses it gives an underestimate.

the one in the reference model. This can be verified by comparing
Figs 5 and 8.

4.3.3 Grain sizes

When the size of dust grains increases, the drag torque weakens
and gap closing caused by drag becomes less efficient (see the first
term in equation 22). Hence, planets of very low masses can open
dust gaps as long as locally, the grains are large enough. Moreover,
we expect the outer edge to be further away from the planet for
larger Stokes number (Section 3.3.3). To test these predictions, we

perform a series of simulations using the disc model studied in
Section 4.2, a planet of mass 0.1 MJ, and varying the initial size of
the grains. The simulations are evolved over 100 planetary orbits
for the grains to relax in a steady state outside of the planet orbit.
Fig. 9 and the left-hand panel of Fig. 10 show that dust gaps of large
grains present the asymmetric W-shape evidenced by Ayliffe et al.
(2012) and Dipierro et al. (2016) around the orbit of the planet. In
this region, the drag torque is too weak to prevent the formation
of a large and stable population of dust grains in the corotation
region. The left-hand panel of Fig. 10 compares the location of the
gap outer edge obtained in SPH simulations and the one derived
from our analytic model. The agreement between the theory and
numerical results is very good (5–10 per cent). The moderate errors
between our theoretical estimate and numerical simulations are due
to the peculiar shape of the dust gap.

4.4 Summary

We have considered a disc hosting a low-mass planet that does not
disturb the local pressure profile of the gas. We obtained two an-
alytic criteria for the minimum mass of the planet required to (i)
stop the inflow of dust particles (axisymmetric mechanism) and (ii)
ensure that drift cannot refill the inner regions of the disc in dust
(non-axisymmetric mechanism). These two criteria represent the
necessary and sufficient conditions for dust gap opening, respec-
tively. The exact value of the minimum masses predicted by these
conditions depends on the proportionality constant in front of equa-
tion (1) (planet migration is neglected). By combining our various
numerical tests, our final sufficient condition for gap opening in
dusty discs is given by

Mp

M�

� 1.38

( −ζ

1 + ε

)3/2

St−3/2

(
H

rp

)3

(56)

for grains with

St ≥ Stcrit � 2.76

( −ζ

1 + ε

)
= O(1). (57)

We predict the outer edge of the dust gap to be located at a distance
�gap from the planet, where

�gap

rp
� 0.87

( −ζ

1 + ε

)−1/4

St1/4

(
H

rp

)−1/2 (
Mp

M�

)1/2

. (58)

Figure 6. Rendered images of dust surface density for the disc model described in Section 4.2 but with an aspect ratio H/r = 0.02 at 1 au hosting a planet
with mass 0.01 (left), 0.015 (centre) and 0.02 (right) MJ initially located at 40 au after 40 planetary orbits. A planet with mass �0.01 MJ (3 M⊕) is able to
carve dust gaps, consistent with our analysis.
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1944 G. Dipierro and G. Laibe

Figure 7. Azimuthally averaged (left) dust surface density (centre) and pressure profiles for a gap created by planets of various masses embedded in a disc
with a disc aspect ratio equal to half of the one adopted in the reference case. The right-hand panel shows the radial pressure gradient. The dotted vertical line
indicates the planet orbit. For planet masses in our sample, the pressure profile is not perturbed by the presence of the planet in accordance with our analysis.

Figure 8. Same as Fig. 6 but using a disc model with a disc aspect ratio two
times lower than the value previously adopted. Our theoretical predictions
on the gap outer edge are consistent with the results of simulations.

Planets with masses larger than the limit given by equation (56)
but lower than ∼Mp, lim (equation 36) shall carve a deep gap in
the dust without affecting the gas structure. More massive planets
in the range Mp, lim � Mp � Mp, gap (equation 35) are expected to
slightly perturb the local pressure profile, leading to the formation
of a dust gap due to the combined action of tidal torque and the
weakening of the drag. More massive planets, Mp � Mp, gap, carve a
gap both in the gas and dust phases (Lambrechts et al. 2014; Rosotti
et al. 2016). Fig. 11 shows that numerical simulations corroborate
the different dust gap-opening regimes predicted in Section 3 for
low-mass planets.

5 U S I N G T H E C R I T E R I O N

5.1 Interpreting observations of gaps

5.1.1 Gap detectability

Relating the morphology of dust gaps to the properties of the planet
and the disc gives insights about the planet formation process. Ide-
ally, multiple wavelengths observations should be combined to infer
density distributions of grains experiencing different aerodynami-
cal regimes. Scattered light emission at optical and near-infrared
(NIR) frequencies traces small dust grains (�0.1–10 μm) at the
surface of the disc, where stellar photons are absorbed or scattered

(Watson et al. 2007). The scattering emission intensity probes the
gas structure at the surface of the disc, since these grains are effi-
ciently coupled with the gas (St � α). Emission at (sub)-millimetre
wavelengths probes surface density of large grains in the mid-plane
of the disc (� 0.1–10 mm), since discs are usually optically thin at
these wavelengths in the vertical direction (Dullemond et al. 2007;
Williams & Cieza 2011). A narrow beam is required to resolve the
gap, together with a large signal-to-noise ratio to discriminate its
weak emission. The gap depth can then be extrapolated, assuming
that the weak emission in the gap is solely due to a low dust surface
density.

5.1.2 Estimating the Stokes number

Equation (56) involves the Stokes number of the grains. St can
be estimated directly if the gas surface density is known. Unfortu-
nately, hydrogen density is a quantity that is not directly measurable
in a disc. Gas masses are therefore usually estimated by process-
ing the (sub)-millimetre continuum or line measurements of CO
isotopologues. This requires to model fractions of isotopologues
abundances, dust grains opacities and local gas-to-dust mass ratios
(Williams & Cieza 2011; Miotello, Bruderer & van Dishoeck 2014;
Williams & Best 2014). An estimate of the value of the Stokes num-
ber St can also be inferred indirectly via the ratio St/α coming from
the thickness of the dust layer (e.g. Dubrulle et al. 1995), assuming
a fixed value for the turbulence parameter α. Similarly, assuming a
fixed value of the Stokes number, it is possible to infer the level of gas
turbulence by analysing the dust settling. As an example, Pinte et al.
(2016) measured a dust scale height of ∼1 au at r ∼ 100 au in the
disc around HL Tau. Assuming coupled grains (e.g. St � 0.01), this
thickness implies α � 10−4. However, (i) this value is 1–2 orders of
magnitude smaller than the value consistent with typical accretion
rates of protostars, (ii) such low St implies typical Minimum Mass
Solar Nebula gas density, which would make the planet migrate very
quickly on to the star and (iii) when planets interact with discs of
such low viscosity, vortices develop via the Rossby wave instabili-
ties, trap grains and produce non-axisymmetric structures detectable
by ALMA (Lyra & Lin 2013), not detected in HL Tau. Assuming
St � 1, the value of the measured thickness implies α � 10−2, more
consistent with the expected value of accretion rate of protostar.

5.1.3 Gap in the gas

The mass of the hypothetical planet and the local properties of the
disc can be estimated when observing a gap in optical or NIR-
scattered light emission, given a degeneracy over the ratio Mp/α
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Gap opening in dusty discs 1945

Figure 9. Rendered images of dust surface density for the disc model described in Section 4.2 hosting a planet with mass 0.1 MJ at 40 au after 100 planetary
orbits adopting different grain sizes: (left) 5 mm, (centre) 7.5 mm and (right) 1 cm.

Figure 10. Left: azimuthally averaged dust surface density profile for a gap created by a planet of mass 0.1 MJ using grains with different sizes. Right:
comparison between the outer gap edge estimated by simulation and theoretical predictions. Our theoretically predictions on the gap outer edge are consistent
with the results of simulations.

Figure 11. Same as Fig. 2 for p = 0.1 and q = 0.35, which correspond
to the disc parameters fixed in our numerical simulations, and f = 0.28.
Dots correspond to the different masses and Stokes numbers tested in the
simulation suit described in Sections 4.3.1 and 4.3.3.

(Fung, Shi & Chiang 2014; Kanagawa et al. 2016; Rosotti et al.
2016). If the signal-to-noise ratio is high enough, the depth of the
gap (Fung et al. 2014; Kanagawa et al. 2015) or its shape (Kanagawa
et al. 2015, 2016) can also be used to the same purpose. These meth-
ods suffer large systematic errors, mostly due to uncertainties on
the local disc geometries which heavily affect the surface brightness
around the gap (Jang-Condell & Turner 2012). Scattering emission
may additionally reveal spiral structures, whose morphologies may
be related to the mass of the planet and the aspect ratio of the disc
(Dong et al. 2015; Juhász et al. 2015; Zhu et al. 2015).

An additional method to probe gaps in the gas is the detection
of line emissions of CO isotopologues, such as 12CO, 13CO and
C18O. Those might be optically thin at the corresponding wave-
lengths and trace the gas down to the disc mid-plane (Miotello et al.
2014; Williams & Best 2014). Isella et al. (2016) claim evidence
of a decrement in the density of CO isotopologues within the mid-
dle and outer continuum gaps in the disc around HD 163296. Yet,
the decreased emission of the CO molecular lines might also be
produced by a reduced density of large grains. In detail, since pho-
todissociation by ultraviolet (UV) radiation is the primary process
that regulates the abundance of gas phase CO in the emitting layer
of discs, a reduced dust density around the planet location might
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1946 G. Dipierro and G. Laibe

induce a less efficient absorption of the UV photons. The decreased
shielding of the CO molecules by dust lead the UV photons to
penetrate into the disc and become optically thick at higher col-
umn densities, i.e. closer to the mid-plane. The higher efficiency of
UV photodissociation at the planet orbit with respect to the adja-
cent regions might therefore produce a decreased emission of CO
molecular lines that can be misinterpreted as a real gas gap. How-
ever, since small grains are much more efficient in absorbing UV
radiation, a gap in only large dust grain might not affect remarkably
the shielding of CO molecules since larger grains have less opac-
ity in the UV radiation and do not shield CO strongly (Visser, van
Dishoeck & Black 2009). Connecting the variation of CO isotopo-
logues emission lines with real gas density variations still remains an
open question.

5.1.4 Applying the criterion

A good use of the criterion starts with two preliminary remarks.
First, Fig. 2 shows that Mp � Mp,gap is the only condition required
for planets to open gaps in both the gas and the dust, and this
independently of the Stokes number. Thus, if a gap is detected in
NIR scattering and thermal-mm emission, no information can be
extracted on St with the criterion derived in this study. Indeed,
grains of all sizes tend to drift towards the pressure maximum at
the outer edge of the gas gap, as long as St > α. Further analysis
of the morphological details of the gap should be conducted to infer
the properties of the system. Secondly, the absence of any gap in
both gas and dust does not necessarily reflect the absence of any
gravitational body in the disc. Grains may replenish the orbit of the
planet as they drift inwards if St � Stcrit. However, if any additional
detection limit is given for the maximum planet mass a disc can
embed, equation (57) provides a condition on the minimum Stokes
number compatible with the eventual existence of the planet.

We now focus on the non-trivial case, i.e. a gap detected only
at millimetre wavelengths. This work shows that any low-mass
planet can create this structure as long as the Stokes number is
large enough. As an example, for St � 20, the necessary mass of
the planet required to open the dust gap is �100 lower than the
one required to open a gap in the gas due to the factor St3/2 in
equation (56). We therefore expect observations of dust only gaps
to be more frequent in the outer disc, where grains of given sizes
have Stokes numbers much larger than unity. At least, St �1, which
constrains the maximum local density of the gas. Equation (58)
gives the expression of the distance between the planet mass and the
outer edge of the dust gap. Even if the Stokes number is only roughly
approximated, the weak sensitivity brought by the factor St1/4 allows
to determine the planet mass relatively precisely (assuming that the
aspect ratio of the disc is known). The absence of any gap in the gas
additionally implies that Mp < Mp, lim. Combined with the roughly
known value of Mp, this condition provides a minimum value for α

in the disc. Comparing this value and the degree of dust settling may
give a way to infer if the seminal diffusive description of turbulence
in disc is relevant or not. Interestingly, if several dust only gaps are
detected in the same disc, the degeneracy over the constant in front
of the criterion can be broken, helping to determine the masses of
the planets more precisely.

5.2 Limitations

In this study, we have restricted our analysis to planets on fixed
orbits. Migration may strongly affect the ability of a planet to carve

Figure 12. Ratio between the type I migration time-scale and the gap-
opening time in dusty discs by a planet with mass 0.1 MJ. The gap is carved
in the dusty disc faster than the planet migration.

gaps in the gas phase (Malik et al. 2015) and can appreciably
change the density structure around the planet (Rafikov 2002b).
On the contrary, Fig. 12 shows that the dust gap-opening time-
scale obtained from equation (48) is much shorter than the mi-
gration time-scale, estimated from the differential Lindblad torque
derived in Tanaka, Takeuchi & Ward (2002) in our reference disc
model with an embedded planet of mass 0.1 MJ. Hence, planet mi-
gration is not expected to affect the ability of a planet to carve
gaps in our mechanism. Note that the ratio between both time-
scales depends indirectly on the Stokes number through the local
gas density.

We have also assumed dust grains of constant sizes. It is known
that dust coagulation or fragmentation may strongly affect the dust
dynamics (e.g. Laibe et al. 2008; Birnstiel, Dullemond & Brauer
2010). However, we can safely neglect the grains size evolution
over the small time required to open the dust gap. Finally, we have
assumed that back-reaction is weak enough and does not affect the
gas surface density significantly as grains are repelled outside of
the planet orbit. However, large grains with St > 1 are not able
to affect significantly the gas structure (see equation 15). Whether
back-reaction can trigger the formation of gaps in the gas would
be worth investigating, but remains beyond the scope of this study.
Hence, the criterion has not been proven to work at dust-to-gas ratio
larger than unity.

In Section 2.1, we rationalized the use of equation (1) to model
the tidal torque on dust by advocating that gaps open in a region
where high-order Lindblad resonances are highly concentrated and
degenerate into a continuum, i.e. rH � �gap � H. We test this
assumption by comparing the value of �gap predicted by our theory
with the scale height of the disc, for planet masses within the range
[Mp, crit, Mp, lim] and various Stokes number. We first note that

�gap

rp
=

⎧⎪⎪⎨
⎪⎪⎩

( −ζ

1 + ε

)1/2

St−1/2

(
H

rp

)
, Mp = Mp,crit,

0.5

( −ζ

1 + ε

)−1/4

St1/4

(
H

rp

)
, Mp = Mp,lim.

(59)

In both cases, the outer edge of the gap increases linearly with
the aspect ratio of the disc. Fig. 13 shows the range of theoretical
locations of the gap outer edge as a function of the Stokes numbers.
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Figure 13. Location of the outer edge of the dust gap for different Stokes
number as predicted by equation (58), in a typical disc of local aspect ratio
0.05 (dotted line) and ζ = −2.75. The dashed and solid lines delimit the
range of planet masses for which our analysis is valid. The two lines intersect
at St = Stcrit ∼ 7 (equation 57), where Mp, crit = Mp, lim (Section 3.4).

For Mp = Mp, lim, the gap outer edge is smaller than the local gas
scale height if

St � 20

( −ζ

1 + ε

)
. (60)

For a typical disc with H/rp = 0.05 and ζ = −2.75, the Stokes
number above which the gap is larger than the disc scale height is
∼55. Hence, the location of the outer gap edge is smaller, the local
gas scale height for a large range of disc model parameters, which
supports our initial assumption.

6 C O N C L U S I O N

We derived an analytic criterion that predicts the minimum mass
required for a planet to open a gap in the dust phase of a viscous
protoplanetary disc in the case where the planet does not perturb
the local pressure profile of the disc. In this regime, a gap opens in
the dust if the tidal torque overpowers the drag torque outside the
planet orbit. We generalized the approach of NSH86 to include the
disc–planet tidal interaction and the viscous forces in the equations
of motion. Gas and dust velocities in steady state were obtained
analytically (equations 15–18). From there, assuming that the planet
is not able to affect the local pressure structure, we derived a relation
between the minimum mass required to open a gap in the dust and
the key parameters of the dust motion: the Stokes number, the
aspect ratio of the disc and the dust-to-gas ratio (equation 51). We
benchmarked the value of the scaling constant in front of the tidal
torque density formula using 3D dust-and-gas SPH simulations of
various discs.

Our final opening criterion for dust gaps is given by equation (56).
We found that low-mass planets are able to carve dust gaps when
the Stokes number St ≥ Stcrit � 1 (equation 57). We also derived
an analytic formula for the radial extension of the outer dust gap
edge (equation 58). The criterion and the location of the gap outer
edge estimated by our analysis have been tested through 3D SPH
simulations of a variety of dusty disc models with an embedded
planet. The numerical results appear consistent with our analysis.

Observations in NIR scattering or millimetre thermal dust emis-
sion might reveal gaps in both phases or in the dust only. This

criterion can be used to constrain the mass of the planet embedded
in the disc, or the Stokes number of the grains.
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