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ABSTRACT

We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely
applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit
large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics
based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver.
The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the
Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative
effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the
hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A
series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic,
with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by
comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from
established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a
series of papers describing the development of the MUSIC code and provides confidence in future applications.

Key words. methods: numerical – hydrodynamics – instabilities – stars: evolution

1. Introduction

Despite the inherent three-dimensional nature of stellar interiors
the timescales involved in stellar evolution necessitate the use
of one-dimensional models. Stellar flows are multidimensional
and non-linear in character. Therefore the one-dimensional ap-
proach requires parametrisation of three-dimensional effects.
Examples of three-dimensional phenomena parametrised into
one-dimensional effects are convection, through mixing length
theory (Vitense 1953; Böhm-Vitense 1958; Brandenburg 2016),
accretion (Siess & Forestini 1996; Siess et al. 1997) and shear
driven mixing (Zahn 1992; Maeder & Meynet 1996). With ad-
vances in current computing capability the use of multidimen-
sional calculations to calibrate and improve such parametrisa-
tions is becoming increasingly feasible. Attempts to improve
models of stellar convection have received considerable inter-
est, through the so-called 321D link, Arnett et al. (2015). Re-
cent multidimensional tests of one-dimensional accretion mod-
els were carried out by Geroux et al. (2016).

The hydrodynamical processes that influence stellar evolu-
tion are non-linear in nature, and not well represented by the
idealised test problems available. Many standard test problems
for compressible hydrodynamics are supersonic and dominated
by shocks, and therefore not representative of the subsonic flows
prevalent within stellar interiors. A set of standard tests to com-
pare stellar hydrodynamics codes and evaluate their accuracy
has not been clearly defined and organised. Although it is pos-
sible to directly characterise and compare such flows through
diagnostics such as the convective turnover time, as discussed

in Pratt et al. (2016) such flows can vary greatly in space and
time, and must be observed over long times to gain meaningful
statistics.

In this work we seek to find a middle ground: a set of test
problems that are fundamental to stellar interiors but are also
simple enough that they may be calculated quickly for the pur-
poses of benchmarking and testing, as well as having well-
defined diagnostics, to enable code comparison. We carry out
this work primarily to test the accuracy of the numerical meth-
ods implemented in the MUltidimensional Stellar Implicit Code,
MUSIC.

MUSIC is distinguished from other stellar hydrodynamics
codes in that it is both time-implicit and fully compressible. The
tests collected in this work have been chosen so that they are use-
ful for comparing a wide variety of physical and numerical mod-
els, including codes that are time-explicit and/or those that im-
plement either the anelastic or Boussinesq approximations. The
Rayleigh-Taylor, Kelvin-Helmholtz and Taylor-Green tests are
relevant to a wide range of hydrodynamical applications. The
fourth test, the hydrostatic equilibrium test, is specifically ap-
plied to a stellar interior, however the concept could be extended
as a general test for the implementation of tabulated equations of
state. Additionally the hydrostatic equilibrium test demonstrates
for the first time the efficiency of the preconditioning technique
applied in MUSIC in a radiatively dominated regime.

Many astrophysical phenomena are known to exhibit depen-
dence on non-ideal effects, such as viscosity. In an effort to min-
imise non-ideal effects, codes that model such phenomena often
do not contain explicit viscous terms. In such a calculation only
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numerical viscosity acts as a non-ideal term, entering into the
solution through the truncation errors of the scheme. A particu-
larly interesting and timely aspect of this work is the examination
of the application of such codes to astrophysical phenomena.
Within the context of large eddy simulation (LES) calculations
this approach is described as the implicit large eddy simulation
(ILES) paradigm.

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are
sensitive to non-ideal effects, which only enter into an ILES so-
lution through truncation errors, and vary with resolution. One
might ask therefore, to what extent should an ILES code be
expected to produce solutions which converge with increasing
spatial resolution for these physical problems. For the Rayleigh-
Taylor instability we show differences in observed mixing pro-
files, due to the application of two different ILES methods to
a problem sensitive to non-ideal effects. However, a systematic
difference between a mixing estimate derived under the assump-
tion of incompressibility, and a more general estimate was ob-
served. For the Kelvin-Helmholtz test we show the velocity field
produced in MUSIC calculations exhibits the convergent prop-
erties expected from the numerical methods used. The Taylor-
Green vortex has been used as a validation test for ILES codes,
by monitoring the evolution of the kinetic energy. As this evo-
lution is strongly influenced by truncation errors, we investigate
the observed decay of the kinetic energy for different grid-sizes.
Additionally we show how the choice of time-step can effect the
decay of the kinetic energy.

This paper is structured as follows. In Sect. 2 we give an
overview of MUSIC. In Sect. 3 we compare the mixing of a
two-dimensional Rayleigh-Taylor instability produced in MU-
SIC simulations to that produced by ATHENA. In Sect. 4 the
ability of MUSIC to reproduce the results for the McNally et al.
(2012) Kelvin-Helmholtz instability test problem is investigated.
In Sect. 5 the decay of the Taylor-Green vortex is analysed by
comparing MUSIC results to previous results from ILES, LES,
and DNS calculations. In Sect. 6 we assess the ability of MUSIC
to recover hydrostatic equilibrium in a radiatively dominated re-
gion of a star. We conclude in Sect. 7, summarising our findings
and discussing their implications for future calculations of stellar
interiors.

2. The MUSIC code

The MUSIC code is a time-implicit, compressible hydrodynam-
ics code. Initial development is described in Viallet et al. (2011,
2013). Recently, MUSIC has been modified to use the Jacobian-
free Newton Krylov (JFNK) method (Viallet et al. 2016). MU-
SIC solves the Euler equations in the presence of external gravity
and thermal diffusion:
∂ρ

∂t
= −∇ · (ρu), (1)

∂ρe
∂t

= −∇ · (ρeu) − p∇ · u + ∇ · (χ∇T ), (2)

∂ρu
∂t

= −∇ · (ρu ⊗ u) − ∇p + ρg, (3)

where ρ is the density, e the specific internal energy, u the ve-
locity, p the gas pressure, T the temperature, g the gravitational
acceleration, and χ the thermal conductivity. The gravitational
acceleration does not change during a MUSIC calculation. It can
either be assigned a spatially constant value, or use values cal-
culated consistently with a one-dimensional model which vary
with the radial coordinate. In both cases it is implemented as a
body force in the momentum equation.

Boundary conditions within MUSIC are implemented using
ghost cells. Options include standard techniques, for example
reflecting and stress-free, and less common options such as a
variety of models for hydrostatic equilibrium as described in
Pratt et al. (2016).

Equations (1)–(3) are closed by an equation of state, and an
expression for the thermal conductivity. The equation of state
within MUSIC can either be taken as an ideal gas equation of
state, or a tabulated equation of state, accounting for ionisation
and non-ideal effects. The thermal conductivity is given by

χ =
16σT 3

3κρ
, (4)

where κ is the Rosseland mean opacity, and σ the Stefan-
Boltzmann constant. Equation (4) is the form of the thermal
conductivity for photons. For stellar calculations the opacity
is interpolated from the OPAL (Iglesias & Rogers 1996) and
Ferguson et al. (2005) tables.

The scalar quantities (ρ, e) are defined at cell centres,
whereas velocities are located at cell interfaces. To calculate ad-
vective fluxes scalar quantities and vector components are ex-
trapolated linearly using an upstream method (Van Leer 1977)
and the reconstruction is ensured to be monotonic using the van
Leer limiter (Van Leer 1974), resulting in a second-order total
variation diminishing (TVD) scheme.

The temporal integration is carried out using the Crank-
Nicolson method (Crank & Nicolson 1947), and the result-
ing non-linear problem is solved using the Newton-Raphson
method. At each non-linear iteration a linear problem is solved
using the Generalised Minimum Residual (GMRES) method,
(Saad & Schultz 1986). A Jacobian-free Newton Krylov ap-
proach (for a review see Knoll & Keyes 2004) is used to approx-
imate the matrix-vector products required by GMRES.

The convergence of the GMRES method is improved by us-
ing a physics-based preconditioning method, based on the work
of Park et al. (2009). Such a preconditioner takes the form of a
semi-implicit approximate solution to the full physical system.
The preconditioner is semi-implicit in that it treats the stiff terms
in the full system implicitly, and the remaining terms explicitly.
By adjusting which terms are treated implicitly, the precondi-
tioner can be adapted to a specific problem. Sound waves, and
optionally thermal diffusion, are treated implicitly. In this work
we present the first application demonstrating the efficiency of
the latter case.

2.1. Choice of time-step

The time-step ∆t in MUSIC is adaptive and changes throughout
the calculation. The time-implicit method used in MUSIC allows
large stable time-steps to be taken for the problems considered
in this work. The practical choice of the time-step is driven by
a desire for an efficient calculation, which also provides an ac-
curate solution. MUSIC will adjust ∆t in an attempt to provide a
more efficient calculation. This adjustment is restricted by user-
provided limits placed on the time-step. The first measure of the
time-step used within MUSIC is relative to the hydrodynamical
CFL number:

CFLhydro = max
(
|u| + cs

∆x

)
∆t, (5)

where cs is sound speed, ∆t is the time-step, ∆x is the grid
spacing and u is the flow velocity. A value of CFLhydro = 1

A7, page 2 of 11



T. Goffrey et al.: Benchmarking MUSIC

corresponds to the stability limit of a time-explicit scheme. The
advective CFL number is defined as,

CFLadv = max
(
|u|
∆x

)
∆t. (6)

Due to the design of the physics-based preconditioner used in
MUSIC, convergence of the linear system becomes poor for val-
ues of CFLadv > 0.5 and as such the value of this time-step mea-
sure is limited to be at most 0.5 in all calculations in this work.

For calculations involving radiative effects the radiative CFL
number is defined:

CFLrad = max
(
χ

∆x2

)
∆t, (7)

with χ defined by Eq. (4). Preliminary, low-resolution calcula-
tions can be used to determine limiting values for both CFLrad
and CFLhydro which provide converged results in as efficient
a manner as possible. In cases where multiple constraints are
placed on the time-step the most restrictive one is applied.

2.2. Passive scalars

As part of this work, MUSIC has been extended to model a
scalar field that is advected with the flow but does not feed-
back on the dynamics of the fluid. This addition, commonly re-
ferred to as “passive scalars” is useful for estimating the mixing
and transport of physical quantities such as chemical composi-
tion and angular momentum. Example applications of passive
scalars may be found in the work of Madarassy & Brandenburg
(2010), Falkovich & Fouxon (2005), Schumacher et al. (2005),
Brethouwer (2005). The scalars are modelled as compositions,
with density equal to the bulk fluid. The conservation equation
for a scalar i, with concentration ci is

∂ciρ

∂t
= −∇ · (ciρu) , (8)

where ρ is the fluid density, and u the fluid velocity.
MUSIC solves the equation set defined by Eq. (8) using

an unpreconditioned Jacobian-free Newton Krylov method. The
same discretisation and solver settings as used for the core solver
are used for the passive scalar evolution with the exception of the
stopping criteria for the non-linear iterations. By default an addi-
tional stopping constraint based on the passive scalar evolution
is not applied to the non-linear iterations, so that the convergence
of the fluid density alone is relied on. This approach is taken to
enable the exact replication of results with and without passive
scalars supplementing the main equations. We assess the accu-
racy of the passive scalar implementation in Sect. 3.

This work shall only include cases where two scalars are
modelled. For stellar applications the number of species of inter-
est can take a larger value, therefore the implementation within
MUSIC was designed to have no restriction on the number of
passive scalars. As Eq. (8) evolves mass fractions, there is no
guarantee

∑
i ci = 1 is maintained. For this work we apply a

simple re-normalisation at the end of each time-step, but more
sophisticated approaches (e.g. Plewa & Müller 1999) might be
required for other problems.

In the applications considered in this work the values of the
scalar concentrations do not influence the evolution of the hy-
drodynamical state defined by Eqs. (1)–(3). For this reason we
refer to the scalars as passive. Equation (8) may also be used to
describe the evolution of chemical compositions, which do influ-
ence the core hydrodynamical state. The solution method for this

situation is more complex; the scalar evolution can no longer be
decoupled, and instead Eqs. (1)–(3) and (8) must be solved as a
single system.

3. Rayleigh-Taylor instability

3.1. Problem description

The Rayleigh-Taylor instability occurs when a dense fluid is ac-
celerated, for example by gravity, into a less dense fluid. This
instability occurs in a wide range of astrophysical applications
(e.g. Inogamov 1999). The instability has also been the sub-
ject of multiple numerical studies (Jun et al. 1995; Dimonte et al.
2004), as well as for code validation, and comparison (e.g.
Liska & Wendroff 2003). In this test we assess the ability of
MUSIC to model the two-dimensional Rayleigh-Taylor insta-
bility. A single mode perturbation was studied, which is pro-
vided as a standard example problem1 for the ATHENA code
(Gardiner & Stone 2005) and the performance of MUSIC is as-
sessed by comparison to ATHENA2. The problem is similar to
that of Liska & Wendroff (2003) except in this work the domain
extends to the complete wavelength of the perturbation, so that
the entire mushroom is modelled. The problem is calculated on
a box defined by −0.25 < x < 0.25 and −0.75 < y < 0.75. The
aspect ratio of the box is chosen so that the primary instability
remains far from the boundaries for the times considered. A con-
stant gravitational acceleration of magnitude g = 0.1 acts in the
negative y-direction. The density is given by,

ρ =

{
2.0 if y > 0.0
1.0 if y ≤ 0.0.

(9)

The pressure is calculated by solving the equation of hydrostatic
equilibrium, and is given by

P = P0 − ρ g y. (10)

where P0 = 2.5. The equation of state is an ideal-gas law, with
γ = 1.4. The Rayleigh-Taylor instability is sensitive to choices of
the initial perturbation (Ramaprabhu et al. 2005). The instability
may be seeded by either perturbing the interface, or the velocity.
In this work the instability is seeded through the velocity. The
velocity perturbation is given by3

vy = 0.0025 [1 + cos (4πx)]
[
1 + cos

(
4
3
πy

)]
. (11)

We use dimensionless units, but we note the pressure scale height
varies between approximately 25.752 at the bottom of the do-
main and approximately 11.752 at the top. The linear growth rate
of the Rayleigh-Taylor instability depends on the gravitational
acceleration, and the dimensionless Atwood number which takes
a value of 1/3 in this case. To compare to more realistic val-
ues for stellar cases, the scaling implied by the pressure scale
height (x0) and the gravitational acceleration (g0) when com-
bined with a scaling for density (ρ0) provide a normalisation
for the Euler equations in the presence of external gravitational
acceleration, which is the system being described by this test
case. Boundary conditions in the vertical directions are calcu-
lated by linearly extrapolating the temperature. The density is

1 http://www.astro.princeton.edu/~jstone/Athena/tests
2 We use ATHENA version 4.2 available from https://trac.
princeton.edu/Athena/wiki/AthenaDocsDownLd
3 Equation (11) is taken from the ATHENA source code.
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then calculated according to the equation of hydrostatic equilib-
rium. Reflective and stress-free boundary conditions are applied
to the velocity components. Periodic boundary conditions are ap-
plied in the horizontal directions. The evolution of the Rayleigh-
Taylor instability, particularly in the non-linear phase is strongly
sensitive to non-ideal effects (e.g. viscosity, Cabot & Cook 2006;
Lim et al. 2010). MUSIC includes no explicit viscosity, and thus
non-ideal effects enter only through errors introduced by the nu-
merical scheme. To aid comparison we run ATHENA without
including explicit viscosity. Late time evolution is influenced by
secondary Kelvin-Helmholtz instabilities. The break up of the
interface between the two fluids through secondary instabilities
is strongly dependent on the numerical scheme as discussed by
Liska & Wendroff (2003). Comparisons between two codes run
without explicit viscosity must be performed with care, because
the growth rate of the primary instability, and the development
of secondary instabilities are both sensitive to the non-ideal ef-
fects caused by the truncation errors of the different numerical
schemes.

3.2. Mixing region width calculation

The mixing in a given simulation was quantified by calculating
a mixing region width. By measuring the integrated amount of
mixing in a given region such a diagnostic should provide in-
sight into the effect the Rayleigh-Taylor instability could have
on a more complex physical system. Mixing of different chem-
ical species through the Rayleigh-Taylor instability could influ-
ence stellar structure, convective stability, and nuclear burning
rates by altering composition. A mixing width measures the ex-
tent to which the two initially separate species have been mixed.
This width is calculated by integrating the horizontally aver-
aged mixing fraction, which was calculated using two methods.
The first was the method of Cabot & Cook (2006), developed
in the incompressible limit. The second method used passive
scalars, which capture compressible effects. As discussed in
Miczek et al. (2015), Guillard & Viozat (1999), low Mach num-
ber flows, which typically occur in stellar interiors, approach the
incompressible limit. The Rayleigh-Taylor instability is a sub-
sonic phenomenon. For a grid size of 100 × 300 a maximum
Mach number of 0.2607 was obtained with MUSIC, and conse-
quently compressible effects are expected to be small. A com-
parison between the two methods of estimating mixing should
provide insight into the role compressible effects play in mixing
in the Rayleigh-Taylor instability.

Following Cabot & Cook (2006), the fraction of dense mate-
rial in a cell, XH, is

XH =
ρ − ρL

ρH − ρL
, (12)

where ρ is the (volume averaged) density of a computational cell,
ρH is the initial density of the heavy fluid (2.0 in this work), and
ρL is the density of the light fluid (1.0). The fraction of mixed
fluid is

XM =

{
2XH if XH ≤ 0.5
2 (1 − XH) if XH > 0.5

. (13)

The mixing region width is then defined as

h =

∫ +∞

−∞

XM (〈XH〉) dy, (14)

where 〈XH〉 is the average fraction of dense material in a horizon-
tal layer. The Rayleigh-Taylor instability is also analysed using

two passive scalar fields, each evolved according to Eq. (8). One
passive scalar marks the dense fluid, the other marks the lighter
fluid,

(c1, c2) =

{
(1.0, 0.0) if y ≤ 0.0
(0.0, 1.0) if y > 0.0.

(15)

Passive scalars allow the calculation of the mixing region width
defined by Eq. (14) without the assumption of incompressibility.
In this case the mixing fraction is,

XM = 2.0 min (c1, c2) . (16)

Having calculated the mixing fraction, the mixing width can
once again be calculated using Eq. (14).

As MUSIC is a time-implicit code, the time-step is not re-
stricted by the CFL condition. However, concerns over accuracy
and efficiency may provide practical limitations. Given the sensi-
tivity of the Rayleigh-Taylor instability, and to simplify compar-
ison to ATHENA we carry out MUSIC calculations with a fixed
value of CFLHydro = 0.8, which is the default value provided for
the ATHENA example. This choice does not take advantage of
the large time-step allowed by the time-implicit method imple-
mented within MUSIC, it is chosen to simplify comparison with
the ATHENA code.

3.3. Effect of grid size

The effect of grid size on the evolution of the Rayleigh-Taylor
instability was studied. At early times, the evolution is expected
to be dominated by the initial perturbation. Any differences in
observed mixing region widths should be attributed to failure to
resolve the initial perturbation or changes in non-ideal effects
caused by varying the grid size. At later times, secondary insta-
bilities can become more important. Liska & Wendroff (2003)
show that less dissipative codes experience a higher rate of
secondary instability, and a resulting break-up of the fluid
interface.

For this test we use the un-preconditioned JFNK time-
integration method in MUSIC to compare with results from the
ATHENA code. Identical calculations were carried out using two
different two-dimensional grids. Grid sizes of 100 × 300 and
300 × 900 ensured the aspect ratio of the computational cells
is equal to 1.0. As the effective viscosity of an ILES calculation
depends on the truncation errors of the scheme, differences be-
tween results from different codes at a specific grid size should
be expected. However, as both MUSIC and ATHENA are spa-
tially second order codes each should experience similar be-
haviour with increasing grid size. At higher resolution, because
non-ideal effects become less significant, secondary instabilities
should become more prevalent. The emergence and evolution of
secondary instabilities are not seeded by the initial conditions,
but through the truncation errors of a given scheme. Therefore
as the secondary instabilities grow differences between different
schemes may increase.

The evolution of the mixing region width, for MUSIC and
ATHENA using the method of Cabot & Cook (2006) is shown in
Fig. 1. At early times the Cabot & Cook (2006) mixing region
width takes an un-physical negative value in both MUSIC and
ATHENA calculations. This is due to the effects of compressibil-
ity not being taken into account in this definition of the mixing
region width. The high and low grid size calculations with MU-
SIC diverge around t = 12.0, whereas the two ATHENA calcu-
lations show more similar values. That MUSIC results show a
stronger dependence on grid size at later times may be indicative

A7, page 4 of 11



T. Goffrey et al.: Benchmarking MUSIC

0 2 4 6 8 10 12 14
Time

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ix

in
gR

eg
io

n
W

id
th

100×300 MUSIC
300×900 MUSIC
100×300 ATHENA
300×900 ATHENA

Fig. 1. Evolution of mixing region width using the method of Cabot and
Cook (2006).

of secondary instabilities playing a stronger role in the evolution
of the mixing. The influence of secondary instabilities may be
enhanced through the non-exact time integration within MUSIC.

Figure 2 shows that calculations from both ATHENA and
MUSIC perfectly maintained the symmetry present in the ini-
tial conditions. This result demonstrates a physically important
feature of the GMRES algorithm: if the matrix vector products
respect a given physical symmetry, GMRES is able to produce
an approximate solution to the linear problem which is also sym-
metric. The JFNK method approximates matrix-vector products
through the evaluation of the non-linear residual of the full sys-
tem. In order to obtain a fully symmetric solution, the matrix-
vector products must be exactly symmetric. Given the non-
associativity of floating point arithmetic, care must be taken in
the order of calculations. In this respect codes written in C (or
C++), such as ATHENA, have an advantage over codes written
in Fortran. The C and C++ standards dictate compilers must re-
spect the order of calculations, whereas Fortran codes are only
restricted by order implied by parentheses. Furthermore, not all
Fortran compilers (e.g. Intel) follow this restriction by default,
as discussed in Corden & Kreitzer (2009).

It is also evident in Fig. 2 that the mixing in the MUSIC cal-
culation becomes asymmetric in the vertical direction; the dense
fluid penetrates further into the lighter fluid than the lighter fluid
does into the dense fluid. The ATHENA calculation remains more
symmetric in this respect. Such enhanced mixing in the lower
domain may be caused by the enhanced secondary instabilities
discussed previously.

In contrast to the agreement between the codes in the calcu-
lation of the mixing region width Fig. 2 shows significant dif-
ferences in the development of secondary instabilities. These
differences may be caused by differences in the initial condi-
tions, or by differences in the numerical technique applied. The
perturbation specified by Eq. (11) is identical in a continuous
sense, but the exact discrete form will differ between MUSIC
and ATHENA. ATHENA uses co-located variables, whereas MU-
SIC applies a staggered grid approach. The secondary instabil-
ities which dominate the differences between the two codes are
not seeded explicitly by the initial perturbation, and enter into
the initial conditions only through discretisation errors. Further-
more truncation errors can seed and enhance secondary instabil-
ities during the course of a simulation. In particular differences
between the spatial reconstruction methods used by MUSIC and
ATHENA will compound differences between the two results.
Given MUSIC and ATHENA obtain similar mixing region widths

despite these differences it should be concluded that for the times
considered the primary instability dominates mixing.

In addition to verifying the core hydrodynamic method with
MUSIC the Rayleigh-Taylor instability was also used to test the
implementation of the passive scalars discussed within Sect. 2.2.
The impact of not enforcing the non-linear convergence of the
passive scalars was assessed by comparing two calculations:
firstly a calculation where the passive scalars are not accounted
for in the non-linear convergence, and secondly a calculation
where we require the corrections to the passive scalars to con-
verge to the same level of accuracy as the primary variables. The
measured mixing region width calculated using the volume frac-
tions of the passive scalars was used to compare the two calcu-
lations. No assumption of incompressibility is made; the passive
scalars act as a dye to measure the amount of mixing within each
grid cell. No significant changes in the mixing region width be-
tween the two calculations were observed, but enforcing non-
linear convergence of the passive scalars the run-time increases
by approximately 10%. In all further calculations the conver-
gence of the passive scalars was not explicitly enforced, but such
an approach should be assessed for a given application.

ATHENA can also, optionally, evolve passive scalars. Results
obtained using passive scalars in MUSIC were compared to those
obtained with ATHENA. The passive scalars evolved by MUSIC
and ATHENA also maintain the symmetry of the solution exactly.
Figure 3 compares the mixing region widths calculated using
passive scalars. In all cases the mixing region width calculated
using passive scalars is larger than that observed using the fluid
density, suggesting that the assumption of incompressibility sys-
tematically underestimates mixing in the case considered here.
The un-physical, early time negative mixing region width ob-
served with the Cabot & Cook (2006) method is not observed in
the scalar measurements. For both sets of calculations the mixing
region width calculated using passive scalars is larger than that
using the method of Cabot & Cook (2006) indicating that the
assumption of incompressibility systematically underestimates
mixing in this case. Furthermore we can conclude that compress-
ible effects are comparable in the calculations of MUSIC and
ATHENA.

Two methods of estimating Rayleigh-Taylor induced mixing
have been compared using the MUSIC and ATHENA codes. Dif-
ferences are expected because both codes were used as ILES
codes. The MUSIC code appears more sensitive to secondary in-
stabilities. Despite this stronger sensitivity, in both cases a sys-
tematic under estimate of mixing is seen when using the method
of Cabot & Cook (2006) under the assumption of incompress-
ibility.

4. Kelvin-Helmholtz instability

4.1. Problem description

The Kelvin-Helmholtz instability has been invoked to explain
mixing in novae explosions (Casanova et al. 2011) as well as
vertical mixing in stellar interiors due to differential rotation
(Brüggen & Hillebrandt 2001). Test problems for the instability
exist in many forms (Wang et al. 2010; Agertz et al. 2007), here
the test case presented by McNally et al. (2012) was used.

McNally et al. (2012) present a set of initial condi-
tions that does not contain sharp discontinuities. Addition-
ally a reference solution, calculated using the PENCIL code
(Brandenburg & Dobler 2002; Lyra et al. 2008)4 was provided,

4 Available from http://pencil-code.nordita.org/
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Fig. 2. Final density plots for identical Rayleigh-Taylor calculations performed with (left) MUSIC and (right) ATHENA each with a grid size of
(300, 900).

Fig. 3. Evolution of mixing region width using passive scalars.

in terms of a peak kinetic energy, and the mode amplitude, for a
resolution of 40962. The uncertainty in the solution provided was
calculated using Richardson extrapolation (Roache 1998, 1994).

The mode amplitude and peak kinetic energy were calculated
for a series of MUSIC simulations that used different grid sizes
(Fig. 4). The peak kinetic energy appears to match the solution
of McNally et al. (2012) for grid sizes greater than 5122 while
the value obtained for the mode amplitude shows good corre-
spondence with the reference solution for grid sizes greater than
2562. McNally et al. (2012) calculated both the peak kinetic en-
ergy and the mode amplitude using a selection of grid based and
meshless codes. For the grid based codes, McNally et al. (2012)

also showed a smaller error for the mode amplitude compared to
that of the peak kinetic energy, at a given grid size.

As in the case of the Rayleigh-Taylor instability, the Kelvin-
Helmholtz instability is sensitive to non-ideal effects. In a recent
work Lecoanet et al. (2016) considered the possibility of defin-
ing an effective Reynolds number for Kelvin-Helmholtz instabil-
ities calculated with differing grid size in the ILES framework.
The attribution of an effective Reynolds number was successful
for cases without a density contrast. Using the ATHENA code,
Lecoanet et al. (2016) were able to find a good match between
cases with and without explicit viscosity and attribute this to
an approximate increase in Reynolds number with an increase
in grid size. The comparison was inconclusive for cases with a
density contrast such as the case considered here. For all cases,
an increase in grid size corresponds to a decrease in non-ideal
effects, but defining an effective Reynolds number is problem
dependent, and is not always possible. Care should be taken in
interpreting the convergence of such simulations.

4.2. Effect of grid size

In order to assess the convergence of the velocity field for
the Kelvin-Helmholtz instability the behaviour of the vertical
velocity component with grid size was studied. The spatial dis-
cretisation in MUSIC varies between first and second order, due
to the application of a gradient limiter. Therefore, for a prob-
lem dominated by discontinuities, the convergence of the scheme
should be first order, whereas for a smooth solution one should
expect the solution to converge at second order.
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Fig. 4. Evolution of the mode amplitude and peak vertical kinetic energy for the Kelvin-Helmholtz instability. The McNally et al. (2012) solution
is shown as a black line. Units are dimensionless.

Fig. 5. Relative error, as defined by Eq. (17), in the vertical velocity
component for the Kelvin-Helmholtz test for different numbers of grid
points in the x-direction. In all calculations Ny = Nx. Dashed lines indi-
cate regions where second and first order convergence is observed.

In the absence of an analytic solution for the velocity field
errors with respect to the highest grid size solution we obtained,
40962, were calculated. This does favourably bias the solution
produced by MUSIC, in effect it will mask any systematic error
in the solution. The presence of a systematic error was ruled out,
based on the ability of MUSIC to reproduce the peak kinetic en-
ergy and the mode amplitude provided by McNally et al. (2012),
and reproduced by several codes in the same study. In the ab-
sence of a systematic error, such a study provides an insight and
measure of how the error reduces with increasing grid size. In or-
der to calculate the relative error at each grid size the largest grid
size solution was coarsened to the lower grid size using a volume
averaging approach, following the method of Tóth (2000). Such
an approach is consistent with the finite volume formulation of
MUSIC. Having coarsened the high grid size data the relative

absolute value is defined as,

ε =

∑ ∣∣∣∣∣vlow
y − v

high
y

∣∣∣∣∣∑ ∣∣∣∣∣vhigh
y

∣∣∣∣∣ , (17)

where vlow
y is the low grid size data, and v

high
y is the coarsened

high grid size data. Summations are carried out over all grid
cells. We plot the variation of this error with grid size in Fig. 5.
At low grid sizes the error converges with approximately sec-
ond order with respect to the grid spacing as expected. As grid
size increases (beyond 2562) the convergence tends towards first
order. This indicates that the error is dominated by regions in
which the solution is discontinuous, causing the spatial scheme
to switch to first order. The density at t = 1.5 is shown in Fig. 6
for grid sizes of 642 and 20482. In the 642 case the interface
between the layers of different density is smeared across several
grid cells, whereas it remains sharper in the 20482 case. By com-
paring Figs. 6 and 7 it is clear the error is concentrated around
the region of the density jump. Such a localisation in error was
also shown in Figs. 5 and 6 of McNally et al. (2012).

We have demonstrated the ability of the MUSIC code to
reproduce key diagnostics of the Kelvin-Helmholtz instability
compared with those reported by McNally et al. (2012). Al-
though MUSIC does not include explicit viscous terms, we have
also demonstrated a reduction in error for the velocity field con-
sistent with the numerical methods applied.

5. Decay of the Taylor-Green vortex

5.1. Problem description

The decay of the Taylor-Green vortex (Taylor & Green 1937)
has been used as a benchmark for the modelling of turbulent
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Fig. 6. Visualisation of the density in the Kelvin-Helmholtz problem for (left) grid size 642 and (right) grid size 20482 at t = 1.5.
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Fig. 7. Visualisation of the relative errors for the Kelvin-Helmholtz test compared to the highest grid size 40962 for (left) grid size 642 and (right)
grid size 20482 at t = 1.5.

decay in multiple studies. We follow the study of Drikakis et al.
(2007; from here on referred to as DFGY2007) which as-
sesses the ability of the monotone implicit large eddy simulation
(MILES) method to reproduce features of vortex decay observed
when studying the problem with conventional large eddy simu-
lation (LES) and direct numerical simulations (DNS). We do not
explicitly attempt to assess the validity of the MILES paradigm,
as numerous works on this topic already exist, we simply com-
pare MUSIC to established MILES calculations. This provides
an opportunity to investigate the ability of the spatial discretisa-
tion in MUSIC to perform as a MILES code. We assess any pos-
sible side-effects the time-implicit method has on MILES calcu-
lations.

The initial conditions of the Taylor-Green vortex are given
by
ux(x, y, z) = u0 sin x cos y cos z, (18)
uy(x, y, z) = −u0 cos x sin y cos z, (19)
uz(x, y, z) = 0. (20)
The domain has an arbitrary uniform density of ρ0 = 1.0. The
initial pressure field is

p(x, y, z) = p0 +
1

16
ρ0u2

0(2 + cos 2z)(cos 2x + cos 2y). (21)

The domain is a cube with edge lengths of 2π, and boundary
conditions are periodic in all directions. As in DFGY2007 di-
mensionless units are used.

In a previous study with MUSIC (Viallet et al. 2016) u0 was
fixed to 1.0, and p0 was adjusted to simulate the decay of the
Taylor-Green vortex for a range of Mach numbers, 10−1 ≤ Ms ≤

10−6. However in this work, we adjust p0 so that the initial
peak Mach number is Ms = 0.28, as in DFGY2007. Therefore,
in addition to verifying MUSIC through comparison to a range
of ILES, conventional LES, and DNS simulations, we can also
investigate possible compressive effects through comparison to
Viallet et al. (2016).

5.2. Effect of time-step

Within ILES calculations the dissipation of kinetic energy occurs
through the truncation errors of the scheme. We first investigate
the ability of MUSIC to reproduce kinetic energy evolution for
different limits on the adaptive time-step. Three calculations, at a
grid size of 2563 were carried out. In the first calculation a fixed
value of CFLhydro = 0.05 was used (“TGV0.05”). In the remain-
ing two runs, limits were imposed on the hydrodynamical CFL
number, defined in Eq. (5), limiting CFLhydro ≤ 10 (“TGV10”),
and CFLhydro ≤ 50 (“TGV50”). We show the evolution of the ki-
netic energy (normalised to its initial value) in Fig. 8. For early
times the kinetic energy for all three simulations is very similar.

A decay of t−1.2 of the kinetic energy is predicted by
Saffman’s law (Saffman 1967) for homogeneous high Reynolds
number turbulence. Skrbek & Stalp (2000) interpret decays
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Fig. 8. Evolution of the volume averaged, normalised kinetic energy
in Taylor-Green vortex simulations. The three simulations shown are
identical except for the limitation on the time-step based on the hydro-
dynamic CFL number. The black dashed line shows a t−2 decay.

faster than t−1.2 as being caused by viscous corrections to the
high Reynolds number result. At later times the finite-size of the
domain results in a quadratic decay of kinetic energy, as dis-
cussed by Lesieur & Ossia (2000). Such a decay has also been
observed experimentally by Stalp et al. (1999).

We fit power-law decays for the kinetic energy in MUSIC
calculations for two time periods. The first spans to 8.4 ≤ t ≤ 10.
This covers the time from the peak dissipation rate shown in
Fig. 9, and the point at which the decay takes on a steady, steeper
decay. Power-law decays are also fit for the period t > 10. Both
sets of values are recorded in Table 1. For the fits to the early
(8.4 ≤ t ≤ 10) time we find a values between the high and low
Reynolds number predictions from Saffman’s law, indicating the
calculations are in neither extreme regime.

All calculations show similar evolution, up until t = 20, at
which point the calculation with the least restrictive time-step
constraints (TGV50) shows a slightly increased rate of dissipa-
tion. The TGV10 case matches the fixed time-step calculation
until approximately t = 25 at which point it too shows a slight
increase in dissipation rate when compared to the fixed CFL
number calculation. At later times the TGV50 and TGV10 cal-
culations show similar kinetic energy, both slightly less than the
fixed CFL number calculation. All three data sets show decays
slightly slower than t−2. These results can be compared to Fig.
5 of DFGY2007. This shows four ILES and three LES schemes
producing an approximate decay of kinetic energy as t−2. All
schemes shown in DFGY2007 show fluctuations around the t−2

decay, indeed the differences seen in the three sets of calcula-
tions using MUSIC appear smaller than those observed between
different ILES schemes in DFGY2007.

5.3. Effect of grid size

The effect of grid size on the decay of the Taylor-Green vortex
until t = 20 was investigated using a series of calculations at grid
sizes of 643, 1283, 2563 and 5123. These calculations were lim-
ited so that CFLhydro ≤ 10. This choice of time-step restriction
is chosen so that the kinetic energy is converged with respect
to the time-step, and results in a shorter run-time than the other
choices considered. We explicitly calculate the rate of change
of kinetic energy density (K = 1

2ρu
2)for each grid size at each

Table 1. Power law decay constants fitted to the observed kinetic energy
from 2563 Taylor-Green vortex calculations.

Run name Decay constant Decay constant
(8.4 ≤ t ≤ 10.0) (t > 10.0)

TGV0.05 1.26 ± 0.01 1.828 ± 0.002
TGV10 1.27 ± 0.02 1.865 ± 0.004
TGV50 1.28 ± 0.05 1.92 ± 0.01

Notes. Errors correspond to ±σ.
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Fig. 9. Decay rate of the Taylor-Green vortex, for different grid sizes.

time-step. We first compare the 643 calculation shown in Fig. 9
with those shown in Fig. 4 of Viallet et al. (2016). Viallet et al.
(2016) show that MUSIC is able to produce consistent results for
a range of Mach numbers, 10−1 ≤ Ms ≤ 10−6. However results
presented here show fluctuations around the profile presented in
Viallet et al. (2016). As these fluctuations only manifest in MU-
SIC simulations with Ms > 10−1 they are likely a result of acous-
tic fluctuations. Similar fluctuations are also present in Fig. 2e of
DFGY2007. They are not present in the incompressible conven-
tional LES calculations presented in DFGY2007.

In ILES calculations non-ideal effects should become less
influential with increased grid size. Therefore as the grid size is
increased in ILES calculations the solution should tend towards
higher Reynolds number results from conventional DNS calcula-
tions. We initially compare the evolution of kinetic energy from
MUSIC with Fig. 2a of DFGY2007, which shows results from
the DNS calculations of Brachet et al. (1983). The peak dissipa-
tion is observed around t = 9 for all MUSIC calculations. This is
also seen in all DNS calculations shown in DFGY2007, except
the lowest Reynolds number, Re = 400, which shows a broad
peak, from around t = 6 to t = 9. Such a period of high dissipa-
tion is also observed in the lowest grid size MUSIC simulation
643, albeit with an additional peak at approximately t = 9.

Two general patterns of behaviour can be observed with in-
creasing grid size in Fig. 9. Firstly, the initial high rate of dissi-
pation around t = 5 quickly reduces with increasing grid size.
This is observed both in the DNS calculations of Brachet et al.
(1983), as well as in the MILES calculations shown in Fig. 2e
of DFGY2007. Additionally, the maximum dissipation observed
at t = 9 increases with increasing grid size. A similar pattern
is seen with increasing Reynolds number for DNS calculations.
The peak value of dissipation in the 5123 MUSIC calculations
appears comparable to that observed in DNS calculations with
Reynolds numbers of 3000 and 5000.
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Finally we note the double peak feature in the dissipation
rate, seen for both 1283 and 2563 grid sizes in MUSIC calcula-
tions. Such a double peak is also apparent in the 1283 MILES
calculations of Fig. 3 in DFGY2007 (calculated using the TUR-
MOIL3D code, Youngs 1991), but not other MILES calcula-
tions. DFGY2007 suggest that such a double peak feature could
be produced by more dispersive numerical schemes. However,
DFGY2007 do not show whether this peak is present in other
calculations using TURMOIL3D, so further comparison is not
possible.

We have demonstrated not only the capability of MUSIC to
reproduce features of the decay of the Taylor-Green vortex seen
in other ILES calculations, but also that an increase in grid size
reproduces the same qualitative changes in dissipation seen in
DNS calculations of increasing grid size. We stress that this work
is not in itself a verification of the ILES paradigm. We do show
that whilst an increase in the computational time-step does re-
sult in fluctuations of the observed kinetic energy, the range of
these fluctuations is within the range observed for differing ILES
schemes.

6. Hydrostatic equilibrium under realistic stellar
conditions

A final test based on hydrostatic equilibrium under realistic stel-
lar conditions was performed. The MUSIC code is primarily de-
voted to studying fluid processes in stellar interiors on timescales
where hydrostatic equilibrium prevails. It is thus crucial to verify
the ability of the code to converge towards a state of hydrostatic
equilibrium in a multidimensional configuration. As MUSIC
uses a staggered grid, a balance between the pressure gradient
and the gravitational forces should be obtainable without resort-
ing to more specialised methods, for example a well-balanced
technique (e.g. Käppeli & Mishra 2016) as used in codes with
co-located variables.

The stellar model selected for this test is a 20 M� Main
Sequence star with zero metallicity calculated with the Lyon
one-dimensional (1D) stellar evolution code (Baraffe & El Eid
1991; Baraffe et al. 1998). The 1D model used as an initial
setup for the present test is characterised by a surface luminos-
ity L ∼ 1.9 × 1038 erg s−1

(
∼5 × 104 L�

)
, radius R ∼ 1.9 R� and

effective temperature Teff ∼ 6.2 × 104 K. It is in thermal equi-
librium, meaning that the nuclear energy production in the cen-
tral regions counterbalances the energy loss at the surface. We
chose this model because of its simple interior structure, with a
convective core and a radiative envelope. Due to the absence of
metals in the envelope this model exhibits low radiative opaci-
ties in the outer layers. Consequently convection is not able to
develop close to the stellar surface, and we are able to choose a
fully radiative portion of the stellar envelope for our numerical
domain.

The test was performed in two-dimensional spherical geom-
etry (with azimuthal symmetry) that considers only a small por-
tion of the radiative envelope. In order to obtain rapid conver-
gence whilst using large CFL numbers, we avoid the region very
close to the surface characterised by steep temperature and den-
sity gradients (see Fig. 10). We use a grid size of 120 × 120.
The radial grid has a fixed radial spacing and is defined between
0.96 R and 0.99 R. In the angular direction, the grid covers the
region 50◦ ≤ θ ≤ 55◦.

Periodic boundary conditions in the angular direction are
used. The boundary conditions at the radial extent of the domain
are reflective for the radial velocity component, and stress-free

Fig. 10. Radial profiles from the 1D model of the temperature (in units
of 105 K), density (in units of 10−6 g cm−3) and sound speed (in units
of 107 cm s−1) in the outer radiative envelope of a 20 M� star with zero
metallicity. R is the total stellar radius.

Fig. 11. Evolution of the total kinetic energy Ekin (in erg) during the
relaxation process toward hydrostatic equilibrium in the stellar model.
Time t is in seconds.

for the tangential component. The inner and outer radial bound-
ary conditions on the energy flux assume the constant luminosity
given by the 1D initial model. The inner and outer radial bound-
ary conditions for the density are based on the assumption of hy-
drostatic equilibrium (see Eq. (5) of Pratt et al. 2016). Pratt et al.
(2016) tested various boundary conditions and this set provides
the best convergence toward hydrostatic equilibrium measured
by the maximum velocity magnitude obtained at the end of the
simulation.

The model requires some time to relax toward very low ve-
locity magnitudes that characterise the state of hydrostatic equi-
librium. This is illustrated in Fig. 11 by the evolution of the
total kinetic energy contained in the numerical domain. After
106 s, the highest velocity magnitude within the domain remains
around ∼7 × 10−5 cm s−1. This low velocity corresponds to a
Mach number of ∼10−11. The minimum value for the velocity
magnitude is around ∼8 × 10−10 cm s−1.

The most severe constraint on the timestep during the relax-
ation process is imposed by the radiative CFL number, defined
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by Eq. (7). This stems from the combination of high tempera-
ture, low density and low opacity in the stellar model, resulting
in very high radiative diffusivity Drad ≡ χ/(ρcP) ∝ T 3/(κρ2),
with cP the specific heat at constant pressure and the other quan-
tities defined in Eq. (4). We limit the radiative CFL number to
500 to reduce the number of non-linear iterations and to obtain
the best performance of our solver. The preconditioner within
MUSIC is designed to target the physics which is restricting con-
vergence. Due to the level of thermal diffusion in this problem
it is necessary to apply the form of the physics based precon-
ditioner which treats thermal diffusion implicitly. Without tar-
geting the thermal diffusion with the preconditioner, the conver-
gence of the linear system fails. The large time-step facilitated
by the application of this preconditioner allows the structure to
settle towards equilibrium efficiently, without the need of ex-
plicit damping. We have not tried to fine-tune the parameters of
our solver (see Viallet et al. 2016) to reach lower velocities. We
consider these results and the convergence toward a hydrostatic
equilibrium state as satisfactory given the extremely low Mach
numbers reached at the end of the relaxation process.

7. Conclusion

This work builds on previous descriptions of the MUSIC code
by providing a series of non-linear, multidimensional tests. In a
model of the Rayleigh-Taylor instability MUSIC produces com-
parable mixing layer widths to the well established ATHENA
code. The test was additionally used to assess the new implemen-
tation of passive scalars within MUSIC. The Kelvin-Helmholtz
test of McNally et al. (2012) provides reference solutions for
peak kinetic energy, and the mode amplitude, which are both
reproducible using the MUSIC code. Furthermore the variable
nature of the convergence of the velocity field for this test prob-
lem is examined. Like many other astrophysical codes MUSIC
does not include explicit viscous terms. Using the Taylor-Green
vortex the ability of MUSIC to reproduce features of established
ILES codes, and conventional LES codes is shown, as well as
observations suggesting an increasing effective Reynolds num-
ber with increasing grid size. Finally, MUSIC converges towards
the hydrostatic equilibrium within a radiatively dominated por-
tion of a star, in an efficient manner through the application of a
preconditioning technique adapted to such a problem.

Whilst this work aims to increase confidence in MUSIC cal-
culations, we intend it to be of general use as the basis of a code
comparison test suite for hydrodynamics. Such a benchmarking
exercise provides confidence and credibility to simulations. This
work concludes the development of the hydrodynamical core of
MUSIC. Future work will focus on applications to stellar interi-
ors, such as convective overshooting and shear-driven mixing.
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