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1Universidade do Porto - Faculdade de Engenharia, Rua Dr. Roberto Frias, P-4200-465 Porto, Portugal
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ABSTRACT
Assessing the quality of aperture synthesis maps is relevant for benchmarking image re-
construction algorithms, for the scientific exploitation of data from optical long-baseline
interferometers, and for the design/upgrade of new/existing interferometric imaging facilities.
Although metrics have been proposed in these contexts, no systematic study has been con-
ducted on the selection of a robust metric for quality assessment. This article addresses the
question: what is the best metric to assess the quality of a reconstructed image? It starts by
considering several metrics and selecting a few based on general properties. Then, a variety of
image reconstruction cases are considered. The observational scenarios are phase closure and
phase referencing at the Very Large Telescope Interferometer (VLTI), for a combination of
two, three, four and six telescopes. End-to-end image reconstruction is accomplished with the
MIRA software, and several merit functions are put to test. It is found that convolution by an
effective point spread function is required for proper image quality assessment. The effective
angular resolution of the images is superior to naive expectation based on the maximum fre-
quency sampled by the array. This is due to the prior information used in the aperture synthesis
algorithm and to the nature of the objects considered. The �1-norm is the most robust of all
considered metrics, because being linear it is less sensitive to image smoothing by high regu-
larization levels. For the cases considered, this metric allows the implementation of automatic
quality assessment of reconstructed images, with a performance similar to human selection.

Key words: instrumentation: high angular resolution – instrumentation: interferometers –
methods: data analysis – techniques: high angular resolution – techniques: image processing –
techniques: interferometric.

1 IN T RO D U C T I O N

Existing optical long-baseline interferometers provide information
at angular scales a factor of 10 smaller than any existing or planed
single aperture telescope. This is achieved by measuring interfer-
ence fringes from pairs of telescopes. The fringes’ contrast and
position at the detector can be related to the spatial coherence of
the incoming electromagnetic field, which in turn contains infor-
mation on the object brightness distribution (cf. e.g. Buscher 2015;
Glindemann 2011). This makes an imaging interferometer very dif-
ferent from an imaging camera. The first difference is related to the
information content. A camera generates an image from a continu-
ous sampled pupil, while an interferometer only obtains information
at a much smaller number of specific locations of an effective ‘meta-
pupil’ – the so-called uv-coverage of the data. A second difference
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is that while in a camera all the information is obtained simul-
taneously, in an interferometer data are taken from diverse array
combinations separated in time. Finally, for an interferometer an
algorithm must be used to synthesize an image.

In optical long-baseline interferometry, phase information degra-
dation by atmospheric turbulence is normally overcome by phase
closure triangulation (e.g. Jennison 1958; Monnier 2007), at the
expense of further reducing the information content of the mea-
surement. It is therefore not surprising that the first optical long-
baseline images were of binaries (morphological simple objects)
and were first obtained with three telescopes (Baldwin et al. 1996;
Benson et al. 1997). Since the publication of the first relevant re-
sults, the technique of image reconstruction of long-baseline inter-
ferometric data in the optical/infrared (O/IR; 0.4–20 µm) regime
has evolved and it is nowadays well established. A major break-
through in optical long-baseline interferometry was the availability
of the CHARA and Very Large Telescope Interferometer (VLTI)
arrays (ten Brummelaar et al. 2005; Schöller 2007) coupled to the
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control of atmospheric effects with spatial filtering (Coudé du
Foresto, Ridgway & Mariotti 1997; Tatulli et al. 2010) and adap-
tive optics (e.g. Arsenault et al. 2004). By combining three or more
telescopes and reasonable uv-coverages, the information content al-
lowed us to overcome the binary barrier and enter into more complex
morphologies such as stellar surfaces and discs (e.g. Le Bouquin
et al. 2009; Benisty et al. 2011; Che et al. 2011; Millour et al. 2011;
Kloppenborg et al. 2015; Mourard et al. 2015; Hillen et al. 2016).

Because of the low information content of interferometric data,
the generation of images is an ill-posed problem with more un-
knowns than available data. Therefore, images are reconstructed
by minimizing a cost function that includes both the data and
some prior information on the object brightness distribution (e.g.
Thiébaut 2013). To overcome the effects of the turbulence, optical
long-baseline interferometry data traditionally rely on the closure
phase (and not on the baseline phase). The non-convex nature of
the problem makes image reconstruction a difficult task, and algo-
rithms are still a matter of active research (cf. Berger et al. 2012
for a recent review). The availability of dispersed fringes increased
the information content of interferometry data, enabling spectral
self-calibration (e.g. Millour et al. 2011; Schutz et al. 2014). Other
developments are algorithms joining imaging and parametric de-
scriptions of the astronomical objects (e.g. Kluska et al. 2014), or
different types of regularization (Renard, Thiébaut & Malbet 2011;
Baron et al. 2014).

With the advent of GRAVITY at European Southern Observatory,
the first common instrument allowing phase referencing observa-
tions (Eisenhauer et al. 2008), most of the aperture synthesis al-
gorithms may be simplified, because when a reference source is
available, the phase closure is no longer required to remove atmo-
spheric effects and the baseline phase becomes accessible. Standard
radio interferometry approaches have proved successful with sim-
ulated data in this context (e.g. Vincent et al. 2011).

The large variety of aperture synthesis methods naturally leads
to the question on which is the best approach. In 2001, the Working
Group on Optical Interferometry of the International Astronomical
Union (IAU) decided to compare and promote the development of
different algorithms to restore O/IR interferometric images on a
regular basis. Starting in 2004, an ‘Imaging Beauty Contest’ has
been held by SPIE every two years (Lawson et al. 2004, 2006;
Cotton et al. 2008; Malbet et al. 2010; Baron et al. 2012; Monnier
et al. 2014a), where contestants present blindly restored images
from synthetic or observational data provided by the organization
of the contest. They are also asked to interpret the results, indicat-
ing what is believed to be real features and what are the potential
artefacts of the imaging process. Subsequently, the restored images
obtained from the different software are compared to their corre-
sponding reference images by means of a best-fitting method. This
method typically comprises a resampling of the restored image to
the grid of the reference one, the normalization of the restored im-
age to its peak brightness, and the comparison with the reference
image convolved with the effective point spread function (PSF) of
the interferometer, using a root-mean-square agreement. However,
this approach is limited, because a particular metric might favour
a special algorithm for a specific object morphology. This is a per-
tinent objection which, to our knowledge, is not addressed in the
literature.

The work presented here addresses this very question: how can
we equitably measure the quality of an image obtained in aperture
synthesis? This is a topic of relevance not only for algorithms,
but also to the scientific exploitation of aperture synthesis, and
for any future infrastructure relying on aperture synthesis imaging,

such as the Planet Formation Imager (Kraus et al. 2014; Monnier
et al. 2014b).

This article is structured as follows. In Section 2, we review merit
functions used for image quality assessment, and we select a few
for further analysis. It is underlined that image convolution with
an effective PSF is mandatory. In Section 3, we present the meth-
ods we used to recover the interferometric images, explaining how
we generate the observables and respective noise, how we restored
the images, and how we assess their quality. Important aspects of
this approach are (a) both phase closure and phase referencing
techniques are addressed, and (b) the array configurations are se-
lected from available stations at the VLTI, particularly the case for
four telescopes using phase closure, where the configurations are
the ones used with the PIONIER instrument. Section 4 concerns
about the reconstructed images and the analysis of the behaviour of
the selected merit functions. We discuss the results and provide a
summary of our findings. The most surprising outcome is that the
metric used in the ‘Imaging Beauty Contest’ is biased, but it can
be replaced by a simple metric. A side bonus of our approach is
that it paves the way for image quality assessment without human
intervention. In Section 5 we conclude and present directions for
future developments.

2 IMAG E QUA LITY

The quality of an image has to be assessed by an objective quanti-
tative criterion. What is the best criterion also largely depends on
the context. Here we will assume that the metric �(x, y) is used
to estimate the discrepancy between a reconstructed image x and a
reference image y. To simplify the discussion, we also assume that
the lower the �(x, y) the better the agreement between x and y. In
other words, �(x, y) can be thought as a measure of the distance
between x and y.

When assessing image quality, it is important that the result does
not depend on irrelevant changes. This, however, depends on the
type of images and on the context. For instance, for object detec-
tion or recognition, the image metric should be insensitive to the
background level, to a geometrical transform (translation, rotation,
magnification, etc.) or to a multiplication of the brightness by some
positive factor which does not affect the shape of the object. In cases
where image reconstruction has underdeterminations, these should
not have any incidence on the metric. For optical interferometry
and when only power-spectrum and closure phase data are avail-
able, the images to be compared may have to be shifted for best
matching. In general, the metric should be minimized with respect
to the undetermined parameters.

When comparing a true image z (with potentially an infinitely
high resolution) to a restored image x, the effective resolution
achievable by the instrument and the image restoration process must
be taken into account. Otherwise and because image metrics are in
general based on pixel-wise comparisons, the slightest displacement
of sharp features would lead to large loss of quality (according to
the metric) whereas the images may look very similar at a lower
and more realistic resolution. The easiest solution is then to define
the reference image y to be the true image z blurred by an effective
PSF href, whose shape corresponds to the effective resolution

y = href ∗ z, (1)

where the symbol asterisk (∗) denotes the convolution. The choice
of the effective resolution is then a parameter of the metric.
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To summarize and to be specific, using the distance �(x, y) be-
tween the restored image x and the reference image y, the discrep-
ancy between x and the true image z would be given by:

d(x, z) = min
α,β,σ,t

�
(
α hσ,t ∗ x + β, href ∗ z

)
, (2)

with α a brightness scale, β a background, and hσ , t a matching
PSF of width parameter1 σ > 0 and centred at position t. Note that
the merit function should be minimized with respect to the width
σ of the effective PSF in order to estimate the effective resolution
achieved by a given restored image. Our choice to assigning the
translation to the matching PSF is to avoid relying on some particular
method to perform sub-pixel interpolation (of x, y or z) for fine
tuning the position. Not doing so would add another ingredient to
the metric. When dealing with images with different pixel sizes,
the resampling of the images at a given common resolution can be
implemented by a linear operator which performs at the same time
the resampling, the fine shifting and the blurring by one of the PSFs.

In the following subsections, we first review the most common
metrics found in the literature and argue whether they are appropri-
ate or not in the context of optical interferometry. We then propose
a family of suitable metrics.

2.1 Merit functions

2.1.1 Quadratic metrics

Quadratic merit functions are probably the most widely used ones,
for they are easy to manipulate and can be made insensitive to
various effects, such as an affine change in the image levels (see
Section 2.1.2). Even though it is not always obvious, they are, in
fact, related to various metrics proposed for comparing images.
Compared to the Kullback–Leibler divergence (see Section 2.1.7),
quadratic merit functions amount to assuming a simple distribution
of the differences between two images (that is to say, independent
and Gaussian). The most general expression of a quadratic metric
to measure the discrepancy between two images x and y takes the
form of a weighted (squared) �2-norm:

WL2N(x, y; W ) = ‖x − y‖2
W ,

where we denote by ‖q‖2
W = qT W q the weighted squared

Euclidean norm, with W a positive (semi-)definite weighting op-
erator. Using a diagonal weighting operator W = diag(w) yields:

WL2N(x, y; w) =
∑

i

wi (xi − yi)
2, (3)

where the sum is carried out for all pixels of the images and where
the wi ≥ 0 is the weight of pixel i.

By choosing specific weights, it is possible to mimic a number
of commonly used metrics. For instance, the metric of the Interfer-
ometric Imaging Beauty Contest (Lawson et al. 2004) is

IBC(x, y) =
√

WL2N(x, y; w = y/
∑

i yi)

=
[∑

i yi (xi − yi)2∑
i yi

]1/2

, (4)

which amounts to taking the weights as being proportional to the
reference image: w = y/

∑
iyi. The main drawbacks of this merit

function are that it overemphasizes the brighter regions of the image
and discards pixels where the reference image y is zero, which

1 In this paper we took σ to be the standard deviation of the PSF profile.

occurs for many pixels for a compact astronomical source on a dark
background. For these reasons, we anticipate that IBC may not be
the best metric.

The most simple quadratic metric is the squared �2-norm (also
known as the squared Euclidean norm) of the pixel-wise differences
between the images:

L2N(x, y) = ‖x − y‖2
2

=
∑

i

(xi − yi)
2, (5)

which is WL2N when w = 1. The Mean Squared Error (MSE) is
directly derived from the Euclidean norm by taking w = 1/Npix,
with Npix the number of pixels:

MSE(x, y) = 1

Npix
‖x − y‖2

2. (6)

The MSE was used by Renard et al. (2011) to benchmark the effects
of the regularization in the image reconstruction from interferomet-
ric data. For all the metrics presented so far, the smaller the merit
value, the more similar are the images.

Some other commonly used metrics are also based on the
Euclidean norm of the differences. For instance, the Peak Signal
to Noise Ratio (PSNR) is

PSNR(x, y) = 10 × log10

⎛
⎜⎝

[
max(y) − min(y)

]2

MSE(x, y)

⎞
⎟⎠. (7)

Here, min (y) and max (y) correspond respectively to the minimum
and maximum possible pixel value of the reference image y. The
PSNR is given in decibel (db) units and the higher the PSNR, the
more similar are the images.

Clearly, MSE and PSNR are the squared Euclidean norm of the
pixel-wise difference between the images (L2N) but expressed in
different units. They can be used interchangeably and we will only
consider IBC and L2N in what follows.

2.1.2 Minimizing the discrepancy with respect to the brightness
distortion

In order to make a formal link between different metrics, it is worth
investigating what happens when the minimization with respect
to the brightness distortion parameters α and β is carried on. As
we will show, this minimization has a closed form solution with a
quadratic metric:

‖α x + β 1 − y‖2
W ,

with x and y the images to compare, α ∈ R
+ a positive factor, β ∈ R

a constant background, and 1 an image where all pixels are equal
to 1.

Let us first consider the constant background correction. Intro-
ducing r = y − α x, we want to minimize ‖r − β 1‖2

W with respect
to β. Expanding the quadratic norm yields

‖r − β1‖2
W = ‖r‖2

W − 2 (1T W r) β + ‖1‖2
W β2.

This is a simple 2nd order polynomial in β and the minimum is
achieved for the optimal background

β� = 1T W r

1T W 1
, (8)

which can be seen as a weighted averaging of r. Thus,

min
β

‖r − β 1‖2
W = ‖r − β� 1‖2

W = ‖C r‖2
W , (9)
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where the linear operator C is given by

C = I − 1
1T W

1T W 1
, (10)

and I is the identity. The linear operator C has the effect of removing
the weighted average of its argument. Replacing r by y − α x yields:

min
β

‖α x + β 1 − y‖2
W = ‖α C x − C y‖2

W , (11)

which amounts to comparing the weighted average subtracted im-
ages.

The expansion

‖α x − y‖2
W = ‖y‖2

W − 2 (yT W x) α + ‖x‖2
W α2

readily shows that the optimal factor α is

arg min
α

‖α x − y‖2
W = yT W x

xT W x
,

and, after trivial simplifications, that

min
α

‖α x − y‖2
W = ‖y‖2

W − (yT W x)2

‖x‖2
W

.

Putting all together we have shown that

min
α,β

‖α x + β 1 − y‖2
W = ‖C y‖2

W − (yT CT W C x)2

‖C x‖2
W

, (12)

where the linear operator C is given in equation (10). If no back-
ground correction is wanted, it is sufficient to take C = I. The above
expression can be divided by ‖C y‖2

W to obtain a symmetric dis-
tance between x and y which is independent of an affine transform
of the brightness of any of the two images

d(x, y) = 1 − Corr(x, y)2 , (13)

with

Corr(x, y) = yT CT W C x

‖C x‖W ‖C y‖W

(14)

the (weighted) correlation between the two images x and y. If W ∝ I,
then the usual definition of the correlation, given in equation (16),
is retrieved.

The distance d(x, y) takes values in the range [0, 1], the smaller
it is the better is the agreement. Conversely, the better the agree-
ment the larger the absolute value of the (weighted) correlation.
It is therefore clear now that comparing images by means of their
(weighted) correlation coefficient is equivalent to using a quadratic
norm minimized with respect to an affine transform of the image
intensity.

2.1.3 Universal image quality index and image structural
similarity

The universal image quality index was proposed by Wang & Bovik
(2002) to overcome MSE and PSNR, which were found to be very
poor estimators of the image quality for common brightness dis-
tortions and image corruptions (like salt-and-pepper noise, lossy
compression artefacts, etc.). The universal image quality index is
defined as

Q(x, y) = 4 Avg(x) Avg(y) Cov(x, y)

(Avg(x)2 + Avg(y)2)(Var(x) + Var(y))
, (15)

where Avg(x), Var(x) and Cov(x, y) are respectively the empirical
average, variance and covariance of x and y, given by:

Avg(x) = 1

Npix

∑
i

xi ,

Var(x) = Cov(x, x),

Cov(x, y) = 1

Npix − 1

∑
i

(xi − Avg(x))(yi − Avg(y)).

The universal image quality index takes values in the range [−1,
1]. Q(x, y) is maximal for the best agreement, which occurs
when y = α x + β, and minimal when y = −α x + β, for any
α > 0 and any β. Although the universal image quality index was
designed to cope with brightness distortions such as mean shift or
dynamic shrinkage, this indicator is not exactly insensitive to any
affine transform of the intensity as is (see the demonstration in
Section 2.1.2) the correlation coefficient:

Corr(x, y) = Cov(x, y)√
Var(x) Var(y)

. (16)

In order to improve over the universal image quality index, Wang
et al. (2004) introduced the image Structural SIMilarity (SSIM):

SSIM(x, y) = 2 Avg(x) Avg(y) + ε1

Avg(x)2 + Avg(y)2 + ε1

× 2 Cov(x, y) + ε2

Var(x) + Var(y) + ε2
, (17)

where ε1 > 0 and ε2 > 0 are small values introduced to avoid
divisions by zero. Note that with ε1 = 0 and ε2 = 0, the SSIM is
just the image quality index defined in equation (15). The higher the
SSIM, the better the agreement. In principle SSIM and the quality
index should be used locally, that is on small regions of the images.

2.1.4 Accuracy function

Similarly to the IBC metric, the accuracy function (ACC,
Gomes 2016) is based on a normalized weighted quadratic dif-
ference between the reconstructed image x and the reference image
y:

ACC(x, y) =
∑

i wi (xi − yi)2∑
i(xi + yi)2

. (18)

Here w is a normalized weighting function, a mask that eliminates
all pixels where the reference and the restored images have intensi-
ties smaller than the image’s dynamic range. On all non-negligible
pixels, w is equal to 1.

ACC varies between 0 and 1 and the smaller it is, the greater the
resemblance between both images. Note that the accuracy function
is neither quadratic in x nor in y.

2.1.5 Sum of absolute differences

One of the drawbacks of quadratic metrics is that they strongly
emphasize the largest differences. To avoid this, an �p-norm can
be used with an exponent p < 2. For instance, the sum of absolute
differences or �1-norm is given by:

L1N(x, y) = ‖x − y‖1

=
∑

i

|xi − yi |. (19)
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2.1.6 Fidelity function

The fidelity function was introduced by Pety, Gueth & Guilloteau
(2001b) in the context of image reconstruction for ALMA. It is
defined as the ratio of the total flux of the reference y to the difference
between the restored image x and the reference one:

FID(x, y) =
∑

i yi∑
i max{η, |yi − xi |} , (20)

where η is some non-negative threshold. The higher the fidelity
value, the better the agreement.

Choosing η > 0 avoids divisions by zero, and Pety et al. (2001b)
took η = 0.7 RMS(x − y), where RMS(...) yields the root mean
squared value of its argument. We note that with η > 0, all dif-
ferences smaller than η have the same incidence on the total cost
and are therefore irrelevant. To avoid this, one has to take η = 0,
in which case the reciprocal of the fidelity function is then just the
�1-norm defined in equation (19) times some constant factor which
only depends on the reference y. As the fidelity function would then
yield the same results as the �1-norm, we only consider the latter in
our study.

2.1.7 Kullback–Leibler divergence

Being non-negative everywhere and normalized, the images can
be thought as distributions (over the pixels). The Kullback–Leibler
divergence measures the similarity between two distributions. When
applied to our (normalized) images it writes

KL(x, y) =
∑

i

yi log(xi/yi). (21)

A restriction for the Kullback–Leibler divergence is that x and y must
be strictly positive everywhere. It is however possible to account
for non-negative distributions by modifying the definition of the
Kullback–Leibler divergence as follows:

KL(x, y) =
∑

i

cKL(xi, yi),

where cKL(q, r) extends rlog (q/r) by continuity:

cKL(q, r) =
⎧⎨
⎩

0 if q = r , or q > 0 and r = 0,
−∞ if q = 0 and r > 0,
r log(q/r) otherwise.

Note that the Kullback–Leibler divergence is not symmetric, i.e.
KL(x, y) 
= KL(y, x). The Kullback–Leibler divergence is less or
equal to zero. The lower the Kullback–Leibler divergence the worse
is the agreement between x and y. The maximal value of the
Kullback–Leibler divergence is equal to zero and is achieved when
x = y.

Like the IBC metric, the Kullback–Leibler divergence disregards
xi where yi = 0. In addition, any image x with at least one pixel,
say i0, such that xi0 = 0 while yi0 > 0 yields KL(x, y) = −∞,
which corresponds to the maximum possible discrepancy. These
are serious drawbacks for using the Kullback–Leibler divergence
as an image metric, because it could not make a distinction between
restored images such that xi0 = 0, whatever the values of the other
pixels.

2.1.8 Designing the metric

We want to derive an image metric that is adapted to our particular
case: we consider images of compact objects (i.e. with finite size

support) over a constant background, and which may be shifted by
an arbitrary translation.

We assume that d(x, y, t) yields the discrepancy between the
image x and the image y shifted by a translation t. Quite naturally,
we require that the following properties hold:

(i) The metric does not change if the images are extended with
pixels set with the background level; likewise, the metric does not
change if the images are truncated, provided that the values of the
removed pixels equal the background level;

(ii) The metric is non-negative and equal to zero if the two images
are the same (for a given relative translation); in particular d(x, x,
0) = 0, whatever the image x;

(iii) The metric is stationary in the sense that whatever the images
x and y and the translations t, t′ and t′′,

d
(
s(x, t), s(y, t ′), t ′′

)
= d(x, y, t + t ′′ − t ′), (22)

where s(x, t) yields image x shifted by translation t:

s(x, t)i = xi−t .

A last requirement, although optional, could be:

(i) the metric is symmetric in the sense that

d(y, x,−t) = d(x, y, t), (23)

whatever the images x and y and the translation t.

To limit the number of possibilities, we consider that the metric
is the sum of a pixel-wise cost. Then, accounting for property (i),

d(x, y, t) =
∑
i∈Zn

c(x̃i , ỹi−t ), (24)

where n is the number of dimensions of the images x and y (in
our case, n = 2), Z is the set of integers, t ∈ Z

n is the considered
translation, c(q, r) is the pixel-wise cost, and x̃ (resp. ỹ) is the image
x (resp. y) infinitely extended with the background level β:

x̃i =
{

xi if i ∈ X;
β else,

(25)

with X ⊂ Z
n (resp. Y ⊂ Z

n) the support of the image x (resp. y). We
note that property (ii) implies that c(q, q) = 0 whatever q ∈ R, and
also that the background level must be the same for the two images.
We also note that property (iv) implies that the pixel-wise cost be
a symmetric function, i.e. c(q, r) = c(r, q) whatever (q, r) ∈ R

2.
Finally, property (iii) holds because the same pixel-wise cost is
used whatever the index i.

As c(β, β) = 0, the sum over the infinite set Z
n in equation (24)

simplifies to sums over three finite (and possibly empty) subsets:

d(x, y, t) =
∑

i∈X∩Yt

c(xi, yi−t ) +
∑

i∈X\Yt

c(xi, β) +
∑

i∈Y\Xt

c(yi, β),

(26)

where A\B denotes the set of elements of A which do not belong
to B, and

Xt = {i ∈ Z
n | i − t ∈ X}

is the set of indices i such that i − t belongs to the support of x. An
efficient implementation of the metric may be achieved with:

d(x, y, t) = γ +
∑

i∈X∩Yt

[
c(xi, yi−t ) − c(xi, β) − c(yi−t , β)

]
,

(27)
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3828 N. Gomes, P. J. V. Garcia and Thiébaut

Figure 1. True images (z) used for the image reconstruction study: stellar cluster (left), YSO (centre), and stellar photosphere (right). The images are
normalized by their total flux. The colour bars indicate surface flux. The stars of the cluster have relative intensities as indicated in the figure. The circles point
the position of the stars. The colour maps have been chosen in order to maximize the contrast of the features in each image.

where c(xi, β) (resp. c(yi, β)) can be pre-computed for all i ∈ X

(resp. for all i ∈ Y) and

γ =
∑
i∈X

c(xi, β) +
∑
i∈Y

c(yi, β).

Finally, it remains to choose the pixel-wise cost c(q, r). A whole
family of merit functions can be derived with the following pixel-
wise cost

c(q, r) =
∣∣∣�(q) − �(r)

∣∣∣p (28)

where p > 0 is a chosen exponent and � is a function used to
emphasize the discrepancy in the low/high range of the brightness
distribution. For example, taking

�(q) = sign(q) |q|γ , (29)

with γ ∈ [0, 1], it amounts to paying more attention to the least
bright part of the images. Taking p = 2 and γ = 1 yields the
�2-norm (L2N). while taking the quadratic merit p = 1 and γ = 1
yields the �1-norm (L1N). Incidently, this shows that the required
aforementioned properties (including the symmetry) do hold for
these norms.

2.1.9 Choice of the candidates

We already mentioned that not all merit functions reviewed in this
paper are appropriate for comparing synthetic aperture images. For
example, we disregarded the Kullback–Leibler divergence (see Sec-
tion 2.1.7) because of its inability to distinguish between very differ-
ent images which have pixels equal to zero while they are non-zero
in the reference image. In our context, the background level is
known (i.e. β = 0 which corresponds to the positivity constraint)
and should not have to be adjusted when comparing images. The
Universal Quality Index and Image Structural Similarity described
in Section 2.1.3 are therefore not appropriate for our needs. How-
ever, these metrics can be of value in image patches with non-zero
backgrounds.2 The brightness scale α may have to be tuned so as
to minimize the discrepancy between the images because, on the
one hand, they may have different normalization constraints and,
on the other hand, they may have been interpolated to cope with

2 Using these metrics would also imply the definition of a patch size, which
would open other questions outside the scope of this article.

different pixel sizes. As we have shown in Section 2.1.2, minimiz-
ing a quadratic cost function in α would be equivalent to use the
correlation of the images as a metric.

To summarize, we will compare images using the �2-norm (L2N),
the �1-norm (L1N), the metric used in the past IBCand the accuracy
function (ACC).

3 M E T H O D S

3.1 Synthetic image library

The true images (z) used in the study are presented in Fig. 1. They
span representative science cases of interferometric imaging (cf.
e.g. Berger et al. 2012): compact clusters/multiple stellar systems,
young stellar objects (YSOs) and stellar surfaces. We fixed the
size of the images to ease the interpretation of the results. The
width of the pixel is 0.04 mas. The images cover a wide range of
visibilities, from the very sharp cluster to the over-resolved stellar
photosphere. The cluster consists of eight stars ‘randomly’ spread
in the FOV, with a Gaussian profile of standard deviation 0.1 mas,
whose intensities decrease in factors of 2. The typical separation
between neighbouring stars is 5 mas. The YSO consists of a central
star and a circumstellar disc, with a total flux ratio of 10 to 1. The
disc has two features: a dark spot on the first quadrant and a bright
spot in the third quadrant. The stellar surface has two bright spots
in the third quadrant, and a dark spot on the first quadrant.

3.2 UV-space generation

We used realistic uv-coverages for the VLTI station positions.3

Six observational configurations are considered, corresponding to
one, three and six nights of observation, and to phase referencing
(PhR) and phase closure (PhC) data. The station configurations
are inspired in previous imaging studies (Filho et al. 2008a,b),
and are representative of several instruments: PRIMA (2TPhR;
Delplancke 2008), AMBER (3TPhC; Petrov et al. 2007), GRAV-
ITY (3T-4TPhR; Eisenhauer et al. 2011), PIONIER (4TPhC; Eisen-
hauer et al. 2011; Le Bouquin et al. 2011), and VSI (6TPhC, Malbet,
Kern & Berger 2006). To compute the uv-tracks, which depend on

3 Available at https://www.eso.org/observing/etc/doc/viscalc/vltistations.
html.
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Assessing the quality of restored images 3829

Figure 2. UV-coverages of the observational configurations used in the study. PhR stands for phase referencing and PhC for phase closure. The observing
nights are fixed for each column and are as follows: six nights left column, three nights central column and one night right column. The stations used in each
configuration are indicated.

the object position, observatory location, station positions and hour-
angle of the observations (Thompson, Moran & Swenson 2001), the
following assumptions were made: (i) object declination of −60◦,
(ii) a full uv-track corresponding to 19 instantaneous and evenly
sampled data points, during a 9 h transit, and (iii) fixed station con-
figurations during each night. The corresponding uv-coverages are
presented in Fig. 2.

3.3 Noise model

The observables used in this study are the visibility amplitude V, the
baseline visibility phase φ, the squared visibility V2, the bi-spectrum
B, and the closure phase φc. A synthetic observable os is generated
by

os ∼ N (E{o}, Var{o}),
where the expected value of the observable (E{o}) is computed by
interpolating the reference image at the angular frequencies of the
observations,4 using the MIRA package.5 We adopted the Simple
Noise Model (Gomes 2016), which is Gaussian and described by

4 The observing wavelength is taken at the centre of the K band: 2.179 µm.
5 Available for download at http://cral.univ-lyon1.fr/labo/perso/eric.
thiebaut/?Software/MiRA.

one free parameter, the signal-to-noise ratio (SNR). It is assumed to
be SNR = 20, a value typical of good quality interferometric obser-
vations. The variance of the noise for the nth visibility amplitude is
defined as

Var{Vn} =
( 〈V 〉

SNR

)2

, (30)

where 〈V〉 is the average of all visibility amplitudes for a given
uv-coverage (cf. Table 1).

In order to derive the noise for the baseline phase, we assume
that the complex visibility has independent real and imaginary parts,
with the same Gaussian noise (Goodman approximation; Goodman
1985). The variance of the noise for the nth baseline phase becomes

Var{φn} = Var{Vn}
V 2

n

. (31)

The noise for the remaining observables can be determined by error
propagation.

The simple noise model is in contrast with the one used by
Renard, Thiébaut & Malbet (2011), since it initially sets the noise
in the visibility amplitude instead of the phase, making the noise
in the phase increase with decreasing visibility amplitude. It also
qualitatively agrees with Tatulli & Chelli (2005), where the visibility
SNR increases with the visibility amplitude.
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Table 1. Mean values of the distribution of the visibility amplitudes for the objects in each uv-configuration. The
errors correspond to the standard deviation.

Object 2TPhR 3TPhC 3TPhR 4TPhC 4TPhR 6TPhC

Stellar cluster 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2
YSO 0.4 ± 0.2 0.3 ± 0.2 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.2 0.3 ± 0.2
Stellar photosphere 0.3 ± 0.2 0.2 ± 0.2 0.4 ± 0.3 0.4 ± 0.3 0.3 ± 0.2 0.2 ± 0.2

3.4 Image reconstruction with MIRA

The noisy data generated are saved in an OIFITS file (Pauls et al. 2005)
and used as input for the MIRA image reconstruction software,
assuming monochromatic data. As the goal of the study is to find
the best metric for image reconstruction, the actual algorithm is
not relevant, as long as it remains the same for all metrics. The
MIRA software and its principles are described in detail by Thiébaut
(2008, 2013). To summarize, MIRA searches for the image x+ which
minimizes the two-term penalty criterion:

x+ = arg min
x

{
f (x) = fdata(x|d) + μfprior(x)

}
. (32)

The term fdata(x|d), usually known as the likelihood term, measures
the discrepancy between the actual data d (e.g. squared visibilities
V2, visibility amplitudes V, baseline phases φ, and closure phases
φc) and their model, given the image, x. The term fprior(x), commonly
designated as the regularization term, is a penalty which enforces
additional priors, and it is required to avoid artefacts. It is needed
because the data alone cannot unambiguously yield a unique image.
The so-called level of regularization or hyper-parameter μ > 0
is adjusted to set the relative weight of the priors. In addition to
minimizing the cost f(x), the sought image x+ is strictly constrained
to be non-negative and normalized (the sum of the pixels being
equal to 1).

For the regularization term, we chose a relaxed version of the
total variation criterion (Rudin, Osher & Fatemi 1992; Strong &
Chan 2003), which enforces edge-preserving smoothness (Char-
bonnier et al. 1997), and that was found by Renard et al. (2011) to
be the most effective for a large variety of astronomical objects:

fprior(x) =
∑
i,j

√
(xi+1,j − xi,j )2 + (xi,j+1 − xi,j )2 + ε2, (33)

with x the image and i, j the pixel indexes (ε > 0 is a small value to
have a differentiable prior term).

3.4.1 Practical implementation

Once the regularization is defined, MIRA takes as input (i) the data,
(ii) an optional initial estimate for the image – assumed a square
of N × N pixels – (iii) the pixel size δθ , (iv) the hyper-parameter
μ, and (v) the maximum number of iterations. MIRA stops once
the convergence criterion is fulfilled or the maximum number of
iterations is reached. It then outputs a reconstructed image.

The image lateral size is � = N δθ . It provides a strict constraint
which limits the support of the restored object and strongly im-
pacts on the reconstruction process. As we want to have as few
constraints as possible for the reconstruction, we chose an image
size significantly larger than that of the object. In the present work,
� was set to be 40 mas, roughly 2.5 times the object size. The
pixel size should sample the maximum angular resolution in the
Nyquist–Shannon sense, i.e. δθ < λ/(2 Bmax), with Bmax the maxi-
mum projected baseline length. However, it was found that to make

image comparison of point-like structures reliable, a much smaller
value had to be used: δθ � λ/(12 Bmax). By combining the above
constrains and taking into account that the maximum baseline of
the configurations in Fig. 2 is Bmax = 144 m, we adopted N = 160
and δθ = 0.25 mas.

The only remaining parameters in the reconstruction are the (op-
tional) initial image estimate, the number of iterations, and the value
of the hyper-parameter. Their joint management is described in the
following subsection.

3.4.2 Tuning the hyper-parameter μ

For the phase referencing reconstructions, MIRA is called without
an initial image estimate, which amounts to starting with a random
guessing image whose pixels are drawn following an independent
uniform law. For the phase closure restorations, the initial image was
a quick reconstruction from the corresponding phase referencing
observation6 with a large value of μ. Because of the strong level
of regularization, this image is a highly blurred version of the true
image z. Other procedures could be devised to obtain the starting
image for phase closure, such as a short image recover without any
phase information, but this aspect is not important for the goal of
this study, to wit, devise a method to assess the quality of final
reconstructed images. The first restoration step (with or without
initial guess) is performed for 300 iterations.

The image reconstruction process then follows a cascade of calls7

to MIRA, where μ is reduced by a constant factor in each call. The
intermediary restored image output in each step is used as the image
estimate for the next call. The total number of calls in the cascade
is five and seven, respectively, for PhR and PhC.8 MIRA normally
achieves convergence before the maximum number of iterations is
reached. In the PhC case, the initial image for the next MIRA call
was obtained by soft-thresholding the output of the previous call at
5 per cent of its maximum.9

A limitation of the previous method is that convergence can be
achieved for different values of μ. Furthermore, no objective cri-
terion for setting μ is available. In this work two approaches were
followed to identify the best μ. Initially, reconstructions were con-
ducted for different values of μ, spanning logarithmically from
104 to 10−3. In the first approach, a human panel was asked
to select the reconstructed image that most resembled the true
image z, therefore determining the value of μ. In the second ap-
proach, the metrics selected in Section 2.1.9 were used. In our
approach, the number of free parameters is kept to a minimum. In
particular, we assume α = 1, β = 0, a matching PSF h = δ (a

6 2TPhR for 3TPhC, 3TPhR for 4TPhC, and 4TPhR for 6TPhC.
7 Each using 1000 iterations.
8 The two extra steps in the PhC case are necessary for better convergence
and to properly centre the image in the FOV.
9 xk + 1 = max (0, xk − 0.05 · max (xk)), with xk the recovered image in step
k. This approach was required because of the non-convex nature of PhC
image reconstruction. The algorithm frequently converges to local minima.
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Dirac function), and an effective PSF href = Gσ , t. The only free
parameters are then the Gaussian G standard deviation σ and the
translation t. The translation is only relevant for the closure phase
case, where the object position cannot be determined from the data.
Furthermore, the translation can be implemented in either h or href.
For simplicity it was implemented in href. The translation is not
relevant for this work and will not be discussed further. The σ is
the only parameter of the metric expressing the effective resolution.
Other functions (e.g. Moffat functions) could be used, but as long
as they reflect the shape of a PSF (characterized by a given width)
the effect is not significant, because the metrics are summing over
the convolved pixels of the images. By reducing the number of free
parameters, this practical implementation has the further advantage
of not defining a priori a given resolution for the reference image
y, which could bias the results. Instead, it is a free parameter of the
metric, that can be analysed later. The restored image x is resam-
pled to the grid of the reference image y. Then, each metric was
evaluated in the 2D parameter space (μ, σ ), with σ spanning from 0
to 0.5 mas.10 The minimum of the metric would then determine μ.

4 R ESULTS AND DISCUSSION

4.1 Reconstructed images

We produced 18 mock observations of the three reference images of
Fig. 1 in all aforementioned array and phase scenarios. Images were
restored from the corresponding interferometric data, stopping at 15
different levels of regularization, logarithmically ranging between
104 and 10−3. The procedure was repeated twice, in order to create
three sets of simulations and image reconstructions. Some examples
of the 810 restored images are illustrated in Figs 3–5. The full sets
of recovered images are available at the JMMC website.11

Fig. 3 corresponds to restored images of the stellar cluster, Fig. 4
to the YSO, and Fig. 5 to the stellar photosphere. For the former, the
first column lists images obtained when μ = 104, the second column
to μ = 10, and the third column to μ = 10−3; for the YSO, the first
column corresponds to μ = 104, the second column to μ = 3, and
the last column to μ = 10−3; finally, for the stellar photosphere,
μ = 104 in the first column, μ = 300 in the middle column, and
μ = 10−3 in the last column. The rows are organized as follows:
the phase cases alternate between PhR and PhC, and the number
of telescopes increases from top to bottom – two, three, four, and
six telescopes (respectively 2T, 3T, 4T, and 6T) – so as to get the
scenarios 2TPhR, 3TPhC, 3TPhR, 4TPhC, 4TPhR, and 6TPhC.

4.2 Observational scenarios

The quality of the images changes according to the observational
scenarios considered (2T, 3T, 4T and 6T, and PhR or PhC) and
their respective uv-coverages. This is essentially related to the uv-
coverage of the data and the amount of phase information. It is
not the goal of the present study to compare phase referencing
with phase closure (and the data presented do not allow us to draw
conclusions), but to present a wide variety of situations in image
reconstruction to successfully test merit functions.

10 For σ = 0, the image is only shifted as expected from the analytic con-
volution. Because PhC does not keep the absolute position of the objects
(Monnier 2007), href included a positional displacement t = (t1, t2). This
displacement was found by an iterative process that minimized the metric
as a function of the displacement.
11 Available at http://oidb.jmmc.fr/collection.html?id=gomes2016.

4.3 Effect of the level of regularization on the image
reconstruction

Concerning the reconstructions and levels of regularization (Figs 3–
5), it is noticeable that all restored images become sharper as the
level of regularization is decreased, that is, as more weight is given
to the data. However, below a certain level of μ – which depends on
the object and telescopes+phase configuration – no visible effect on
the shape and surface flux of the stellar cluster is seen, because the
stars (point-like unresolved source objects) become confined to one
pixel. This is not the case for objects with extended/resolved struc-
tures, such as the YSO and the stellar photosphere, where reducing
the regularization below a certain level introduces reconstruction
artefacts and noticeably degrades the quality of the image. For in-
stance, in the YSO, for the highest tested level of regularization
(μ = 104) all images are blurred, with the central star attached to
the disc. When μ = 3, the disc is nicely restored in all configura-
tions, with the central star separated from it. For μ = 10−3, only
the 3TPhC configuration yields a well-restored image. The con-
figurations 2TPhR, 3TPhR, 4TPhC and 4TPhR exhibit disrupted
discs, full of artefacts coming out of the reconstruction process, and
the 6TPhC scenario produces an image where the disc, although
intact, is very irregular. In the stellar photosphere, when μ = 104,
only the phase closure cases produce well enough restored images,
with the most prominent spot visible. When μ = 300, the 3TPhC
and the 6TPhC cases yield images where the three spots are identi-
fiable, but all other configurations produce discs full of restoration
artefacts. For μ= 10−3, the 3TPhC and 6TPhC produce well enough
restored images, with two and three spots identifiable, respectively,
in the former and the latter configurations. In the remainder of the
scenarios, the image is not properly restored – the disc is not pro-
duced, and the algorithm gives rise solely to restoration artefacts
distributed in a circular configuration.

4.4 Human determination of the hyper-parameter

Table 2 presents the average and standard deviation of the regular-
ization hyper-parameter μ determined by the human panel, for each
object and configuration. The value of μ for the stellar photosphere
is much larger than for the stellar cluster, which in turn is larger than
that for the YSO. For a given object, μ varies across configurations,
without any specific pattern.

The values of μ determined by human selection correspond to
images that were fed to selected merit functions (see Section 2.1).
The href width is a remaining free parameter. We present in Table 3
the values of the Gaussian σ that minimize the metric for the hu-
man determined μ. These values were obtained by computing the
statistics for 12 realizations in each object and observational sce-
nario. The σ values are of the order of 0.2 mas, which corresponds
to a full width at half-maximum of about 0.5 mas. This should be
compared to the angular resolution of the interferometer, which is
around 3 mas, and to the reference images pixel size of 0.25 mas.
Clearly the image reconstruction achieves a significant level of
super-resolution, which is limited by the pixel size of the recon-
structed images. This result might appear puzzling at first sight, but
angular resolution is a sophisticated concept that cannot be fully
enclosed in a simple Rayleigh-like criterion (e.g. den Dekker &
van den Bos 1997). Because we have prior information (enforced
by the regularization and positivity of the solution), a reasonable
SNR and relatively smooth objects, it is expected that the image
reconstruction achieves significant super-resolution.
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Figure 3. Examples of image reconstructions for the stellar cluster. Each column corresponds to a different level of regularization, and every row matches a
different configuration of the synthetic observations. The lateral image size is 20 mas.
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Figure 4. Same as in Fig. 3, but for the YSO.
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Figure 5. Same as in Figs 3 and 4, but for the stellar photosphere.
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Table 2. Value of the hyper-parameter μ obtained by the human panel. The given values are the median of the values chosen by the
experts, while the first and third quartiles are indicated between brackets.

Object 2TPhR 3TPhC 3TPhR 4TPhC 4TPhR 6TPhC

Stellar cluster 10
(

30
3

)
30

(
150

3

)
3

(
30
3

)
3

(
30
3

)
10

(
30
10

)
10

(
150
10

)
YSO 1

(
1
1

)
0.1

(
1
0.001

)
3

(
10
3

)
3

(
3
1

)
3

(
3
1

)
3

(
10
3

)
Stellar photosphere 300

(
1000
100

)
300

(
1000
100

)
300

(
1000
100

)
1000

(
1000
100

)
300

(
300
300

)
100

(
300

10

)
Table 3. Mean values of the href σ for the synthesized objects, observational scenarios and merit functions. The numbers between
parenthesis correspond to the standard error of the mean on the last digit.

σ /mas
Metric 2TPhR 3TPhC 3TPhR 4TPhC 4TPhR 6TPhC

Stellar cluster

ACC 0.14612(3) 0.1484(3) 0.1481(2) 0.1472(2) 0.1587(9) 0.1481(1)
L1N 0.14373(7) 0.1483(4) 0.1464(4) 0.1458(3) 0.1625(9) 0.1498(3)
L2N 0.14985(3) 0.1522(3) 0.1518(2) 0.1508(2) 0.1629(9) 0.1520(1)
IBC 0.15437(3) 0.1560(3) 0.1560(2) 0.1550(1) 0.1648(8) 0.15547(9)

YSO

ACC 0.281(2) 0.273(4) 0.294(2) 0.281(2) 0.320(2) 0.263(2)
L1N 0.204(2) 0.191(5) 0.198(2) 0.216(4) 0.259(4) 0.207(2)
L2N 0.306(3) 0.298(4) 0.320(1) 0.301(2) 0.347(2) 0.282(2)
IBC 0.343(4) 0.333(4) 0.367(2) 0.334(2) 0.384(2) 0.305(3)

Stellar photosphere

ACC 0.293(2) 0.216(3) 0.270(2) 0.255(2) 0.242(2) 0.189(4)
L1N 0.274(2) 0.198(3) 0.239(2) 0.232(2) 0.219(2) 0.166(4)
L2N 0.269(2) 0.198(2) 0.245(2) 0.233(2) 0.221(2) 0.170(3)
IBC 0.277(2) 0.201(3) 0.251(2) 0.239(3) 0.226(2) 0.173(4)

In order to check the robustness of Figs 6 to 8 to different realiza-
tions of the data, we carried out 12 simulations of the 18 synthetic
observations. The statistics of the minima for the human determined
μ are presented in Table 4 (the errors in Table 3 were computed
from this same data set). The standard error of the mean is very
small, supporting the robustness of the results to the noise in the
data set.

4.5 Benchmarking the metrics

As explained in Section 3.4, a reconstructed image is a function of
the final chosen μ. Furthermore, the application of a given metric
requires the convolution by href, whose width is characterized by
σ . In this subsection we present and discuss the results for the
behaviour of the merit functions.

Table 4, where μ is determined by human selection, provides an
initial benchmark. The values of the quality functions show that IBC
mimics the behaviour of L2N in most objects and configurations. On
the one hand, this is explained by the quadratic nature of both metrics
and, on the other hand, by the fact that the weighting function of
IBC is the reference image itself, which makes the metric disregard
pixels where the latter is zero. The failure of ACC in properly
characterizing the quality of restored images in some scenarios
is related to the fact that it applies a mask to the reference image
before comparison, thus eliminating parts containing reconstruction
artefacts that are important to determine the quality of the image.
This however could be an interesting merit function when we are
focused on certain parts of the image and want to eliminate others
that we safely identify as artefacts of the reconstruction. For all

objects and configurations, the L1N metric appears to properly
characterize the quality of the restored images.

We also conducted a systematic study of the metric behaviour as
a function of μ and σ . We varied μ logarithmically between 104

and 10−3, and σ linearly between 0 and 0.5 mas. The average values
of the merit functions for three realizations of the simulated obser-
vations versus μ and σ are plotted in Fig. 6 (for the stellar cluster),
Fig. 7 (for the YSO) and Fig. 8 (for the stellar photosphere). The
top, middle and bottom rows present the results for the quality func-
tions L1N, L2N and IBC, respectively. The columns are organized
as the rows of Figs 3–5. The colour palette is inverted, such that
the minima (darker colours) indicate a better agreement between
the restored images and the references. All merit functions exhibit
regions of minima, which is also verified in the ACC metric (not
depicted). The red crossed circles point to the global minima of the
panels. The pink stars are located at the position of the aforemen-
tioned values of μ determined by human selection. The position of
the corresponding σ was obtained by minimizing the merit function
for the fixed μ, using the NEWUOA algorithm (Powell 2006).

The first result is that, generally, the merit functions are reason-
ably convex (i.e. they depict regions with a clear minima). Overall,
the effective resolution worsens with the hyper-parameter μ, as ex-
pected (i.e. the dark regions bend towards larger values of σ and
μ). This is expected because increasing μ amounts to smooth the
image.

The shape of the minima regions of Figs 6 to 8 depends on the
object. In the case of the stellar cluster (Fig. 6), the minima regions
exhibit a horizontal branch up to a certain level of regularization.
This is compatible with the aforementioned limiting value of regu-
larization, below which restored images present no noticeable dif-
ferences in quality and the (super-)resolution becomes limited by
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Figure 6. Average scores of the metrics L1N (top row), L2N (central row) and IBC (bottom row) for three sets of simulated observations as function of the
standard deviation σ of href and the level of regularization μ. The object is the stellar cluster of Fig. 1. From left to right, the panels are organized as follows:
2TPhR, 3TPhC, 3TPhR, 4TPhC, 4TPhR, and 6TPhC. The red crossed circles correspond to global minima, while the pink stars are positioned at the human
determined value of μ and the value of σ that minimizes the merit function. A logarithmic and a linear scale were respectively used for μ and σ .

Table 4. Mean values of the merit functions at the positions of μ determined by human selection (pink stars in Figs 6–8). The scores were obtained by
computing the statistics for at least 12 realizations in each scenario. The smaller the values, the better the agreement. The numbers between parenthesis
correspond to the standard error of the mean of the last digit.

2TPhR 3TPhC 3TPhR 4TPhC 4TPhR 6TPhC

Stellar cluster

ACC 0.03760(9) 0.0364(2) 0.065(5) 0.060(4) 0.066(4) 0.063(3)
L1N 0.239(1) 0.231(2) 0.19(1) 0.199(9) 0.191(8) 0.195(7)
L2N 6.08(1) × 10−8 5.73(6) × 10−8 2.3(3) × 10−8 2.7(2) × 10−8 2.0(2) × 10−8 2.3(2) × 10−8

IBC 4.76(1) × 10−5 4.49(4) × 10−5 2.0(2) × 10−5 2.3(2) × 10−5 1.8(1) × 10−5 2.0(1) × 10−5

YSO

ACC 0.064(7) 0.092(7) 0.067(4) 0.077(4) 0.066(3) 0.072(3)
L1N 0.254(6) 0.274(5) 0.207(9) 0.220(8) 0.200(7) 0.208(7)
L2N 4.3(4) × 10−8 2.9(3) × 10−8 2.5(2) × 10−8 2.2(2) × 10−8 2.2(2) × 10−8 2.0(2) × 10−8

IBC 3.5(2) × 10−5 2.5(2) × 10−5 2.2(2) × 10−5 2.0(1) × 10−5 2.0(1) × 10−5 1.8(1) × 10−5

Stellar photosphere
ACC 0.083(6) 0.068(5) 0.074(4) 0.068(4) 0.070(3) 0.066(3)
L1N 0.24(1) 0.19(1) 0.208(8) 0.187(8) 0.201(7) 0.187(7)
L2N 2.5(3) × 10−8 1.9(3) × 10−8 2.0(2) × 10−8 1.8(2) × 10−8 2.0(2) × 10−8 1.8(1) × 10−8

IBC 2.2(2) × 10−5 1.7(2) × 10−5 1.8(1) × 10−5 1.6(1) × 10−5 1.8(1) × 10−5 1.6(1) × 10−5

the size of the pixel. A single pixel encompasses the totality of the
flux emanating from a restored unresolved star lying inside of it.
The value of σ ∼ 0.15 mas indicated by the branch is compatible
with the pixel size of 0.25 mas. For sources with extended emission,
the branch is not visible because the image degrades rapidly below a
certain level of regularization (cf. Figs 4 and 5 for some examples).
Nevertheless, regions of minima are also evident, the position of
which largely depends on the merit function.

4.5.1 L1N as the most robust metric

For L1N, the global minima typically lie well inside the limits
defined by the plots. That is not the case for many L2N and IBC

observations (especially for the cluster and YSO), suggesting that
if the study was extended to larger values of σ and μ, the global
minima would point to more blurred images. The minima valley
oriented in the direction of increasing μ and σ is less pronounced
for L1N than for L2N and IBC. For L2N and IBC, this would
indicate a better agreement between the restored and the reference
images in those extreme regions of the plots, where the restored
images are more blurred. This clearly shows that these metrics are
biased and are not robust to over-smoothing by large values of the
μ hyper-parameter. They will consider that an image with lower
‘angular resolution’ is a better image than one with higher ‘angular
resolution’. These results support L1N as the most robust of the
merit functions used for the variety of cases considered.
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Figure 7. Same as in Fig. 6, but for the YSO.

Figure 8. Same as in Figs 6 and 7, but for the stellar photosphere.

The morphology of the object has some impact on the behaviour
of the metrics. The quality of extended resolved objects can be more
easily assessed than that of unresolved sources. When the emitting
source combines both types of objects (resolved and unresolved),
the studied merit functions seem to have a harder job to evaluate
the quality of the restored images. The great imbalance in intensity
between the central star and the surrounding disc might explain the
differences in quality.

4.6 Automatic image quality assessment

The distance between the pink stars (minima obtained from human
selection) and the circled red crosses (global minima) in Figs 6
to 8 indicates how well a given merit function translates the human
perception of a ‘good’ restored image. In this regard, L1N is clearly
the best of all studied metrics, as it is the only one where both
beacons lie close together for the typology of objects and observing
configurations.
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This is not as well verified with the other metrics, being IBC the
less robust of the tested merit functions. In the case of the stellar
photosphere (Fig. 8), all metrics behave similarly.

Since we are truncating the intervals of σ and μ, those distances
most probably would increase in the cases where the global minima
lie at extreme points of the plots.

These results open the possibility of automatic image quality
assessment, thus removing human intervention in the process.

5 C O N C L U S I O N S A N D F U T U R E
D E V E L O P M E N T S

This article addresses the question: what is the best metric to assess
the quality of a reconstructed image?

Several merit functions are considered in the realistic context of
the VLTI and using the MIRA image reconstruction software.

A semi-automatic pipeline is developed to reconstruct im-
ages, with the only human intervention being the determina-
tion of the final value of the hyper-parameter μ. It is found
that the image reconstruction process outputs images with an ef-
fective angular resolution, characterized by a Gaussian, whose
standard deviation σ is significantly smaller than an equiva-
lent Rayleigh-like criterion, based on the maximum baseline.
Hence, a certain amount of super-resolution is achievable thanks
to the constraints imposed by a regularized image reconstruction
algorithm.

In order to cope with the mismatch between the effective reso-
lution of the restored image and that of the simulated object, we
advocate that convolution by an effective PSF is mandatory for
proper image quality assessment. This effective PSF can be further
used to compensate for image shift, which is unavoidable when
image reconstruction is performed from power-spectrum and phase
closure data.

Of all the merit functions considered, the �1-norm is the most ro-
bust. The commonly used Interferometric Imaging Beauty Contest
quadratic metric is biased, considering as best images those with
higher smoothing (or hyper-parameter μ), and not fully exploiting
the effective angular resolution of the data and image reconstruction
process.

By minimizing the �1-norm over the μ and σ parameter space, it
is possible to implement automated image quality assessment.

Based on this work, several developments are foreseen, the most
obvious of which being algorithm comparison with the �1-norm and
proper convolution. The most ambitious is automated image recon-
struction. To achieve this goal, two aspects must be addressed: (i)
the determination of an initial image for the reconstruction algo-
rithm (for phase closure only), and (ii) the determination of the
final μ in the reconstruction. The second aspect is clearly the
most difficult. It opens the requirements for image reconstruc-
tion algorithms to output tables of images for different levels of
regularization, allowing the end-user to determine the final values
of μ.

An important aspect is to identify the situations where phase ref-
erencing or phase closure are the best options for imaging. This
choice is now possible with the GRAVITY and PIONIER instru-
ments. Its study requires the inclusion of other ingredients not
addressed in the present article, such as (i) compatible uv-coverages,
(ii) noise models taking into account photon and detector statis-
tics (e.g. Tatulli & Chelli 2005) and/or light splitting between
telescopes (e.g. Gordon & Buscher 2012), and (iii) a span of
SNRs.
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Schöller M., 2007, New Astron. Rev., 51, 628
Schutz A., Vannier M., Mary D., Ferrari A., Millour F., Petrov R., 2014,

A&A, 565, A88
Strong D., Chan T., 2003, Inverse Problems, 19, S165
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