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ABSTRACT

Context. The transport of angular momentum is fundamental during the formation of low-mass stars; too little removal and rotation
ensures stellar densities are never reached, too much and the absence of rotation means no protoplanetary disks can form. Magnetic
diffusion is seen as a pathway to resolving this long-standing problem.
Aims. We aim to investigate the impact of including resistive magnetohydrodynamics (MHD) in simulations of the gravitational
collapse of a 1 M� gas sphere, from molecular cloud densities to the formation of the protostellar seed; the second Larson core.
Methods. We used the adaptive mesh refinement code RAMSES to perform two 3D simulations of collapsing magnetised gas spheres,
including self-gravity, radiative transfer in the form of flux-limited diffusion, and a non-ideal gas equation of state to describe H2
dissociation which leads to the second collapse. The first run was carried out under the ideal MHD approximation, while am-
bipolar and ohmic diffusion was incorporated in the second calculation using resistivities computed from an equilibrium chemical
network.
Results. In the ideal MHD simulation, the magnetic field dominates the energy budget everywhere inside and around the first hydro-
static core, fueling interchange instabilities and driving a low-velocity outflow above and below the equatorial plane of the system.
High magnetic braking removes essentially all angular momentum from the second core. On the other hand, ambipolar and ohmic
diffusion create a barrier which prevents amplification of the magnetic field beyond 0.1 G in the first Larson core which is now fully
thermally supported. A significant amount of rotation is preserved and a small Keplerian-like disk forms around the second core. The
ambipolar and ohmic diffusions are effective at radii below 10 AU, indicating that a spatial resolution of at least ∼1 AU is necessary
to investigate the angular momentum transfer and the formation of rotationally supported disks. Finally, when studying the radiative
efficiency of the first and second core accretion shocks, we found that it can vary by several orders of magnitude over the 3D surface
of the cores.
Conclusions. This proves that magnetic diffusion is a prerequisite to star formation. Not only does it enable the formation of proto-
planetary disks in which planets will eventually form, it also plays a determinant role in the formation of the protostar itself.
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1. Introduction

Angular momentum transport, and its regulation through mag-
netic braking, is one of the most important, yet poorly un-
derstood, physical mechanisms in star formation (e.g.,
Hennebelle & Charbonnel 2013). Under the ideal magneto-
hydrodynamic (hereafter MHD) approximation, magnetic
fields typically observed in molecular clouds (Crutcher 2012)
are powerful enough to remove all angular momentum from
collapsing dense stellar progenitors: a problem known as the
“magnetic braking catastrophe” (Matsumoto & Tomisaka 2004;
Hennebelle & Fromang 2008; Hennebelle & Teyssier 2008;
Mellon & Li 2008; Commerçon et al. 2010). Angular momentum
is needed to form protoplanetary disks around young stars,
and three possible solutions are currently being investigated by
theoretical studies to try and solve the magnetic braking puzzle.

The first invokes the omnipresent turbulence in the
molecular clouds, which, through turbulent reconnection, is
thought to effectively regulate the concentration of magnetic
flux and lead to the formation of protoplanetary disks

(Santos-Lima et al. 2012, 2013; Leão et al. 2013; Lazarian 2013;
Joos et al. 2013). Indeed, the first numerical studies of low-mass
star formation were carried out in a rather simplified set-
up where the collapsing cloud was in solid body rotation,
permeated by a uniform magnetic field. It has also been proposed
that a disorganised field is simply less efficient at removing an-
gular momentum from the system (Seifried et al. 2013, 2015).
The second solution is once again related to the simulation set-
up; it is argued that the situation where the magnetic field di-
rection is aligned with the parent body’s rotation axis is a very
special case, with its own peculiarities, and unlikely to hap-
pen in nature. While the alignment between magnetic field
and large density structures in molecular clouds has been stud-
ied with recent observations (Planck Collaboration Int. XXXV
2016; Hull et al. 2017), the spatial resolution does not allow to
perform the same quantitative analysis at the cloud dense core
level. It is however perfectly possible that rotation axis and mag-
netic field are misaligned, especially if the magnetization is weak
(Mocz et al. 2017; Hull et al. 2017). Hull et al. (2013) present
dust-polarization observations towards 16 nearby low-mass
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protostars and conclude that their data are consistent with disks
that are not aligned with the magnetic fields in the cores from
which they formed. This scenario was investigated by several
authors (Hennebelle & Ciardi 2009; Joos et al. 2012; Li et al.
2013; Krumholz et al. 2013; Masson et al. 2016) and was found
to also be conducive to disk formation. Nevertheless, we note
that as the magnetic dissipation relies on numerical diffusion,
these studies do not always yield resolution converged results in
the ideal MHD framework.

Finally, resistive effects in the induction equation were sug-
gested as a means to reduce the pile-up of magnetic field around
the central object (Duffin & Pudritz 2008; Mellon & Li 2009;
Krasnopolsky et al. 2010; Li et al. 2011; Machida & Matsumoto
2011; Dapp & Basu 2012). The gas inside protostellar envelopes
and protoplanetary disks is poorly ionised, and ion-neutral col-
lisions, which act as a diffusive process in the MHD equations,
are omnipresent. While in early 2D studies, neither ohmic nor
ambipolar diffusion were able to circumvent the magnetic brak-
ing catastrophe without requiring abnormally large resistivities
(Krasnopolsky et al. 2010; Li et al. 2011), more recent 3D cal-
culations have shown that magnetic diffusion with realistic resis-
tivities can facilitate the formation of flat rotationally dominated
structures, with radii of about 50–60 astronomical units (AU;
Tomida et al. 2015; Tsukamoto et al. 2015a; Masson et al. 2016;
Hennebelle et al. 2016)1. This third pathway provides a physical
diffusion mechanism which does not depend on the numerical
resolution or the orientation of the magnetic field, it is simply
governed by the microphysics of molecular cloud.

The vast majority of the works listed above have studied
the first hydrostatic core stage of star formation (scales of
∼10 AU), and very few have considered the scales typical of
the protostellar seed; the second Larson core (<0.1 AU; Larson
1969; Masunaga & Inutsuka 2000; Vaytet et al. 2013). The first
full 3D hydrodynamical simulations of the formation of the
second Larson core were carried out by Bate (1998). Since
then, only a limited number of studies have reached the second
core stage, with different numerical methods (nested grid codes,
smoothed particle hydrodynamics), incorporating increasingly
complex microphysics including magnetic fields, radiative trans-
fer, magnetic diffusion. We summarise the list of these papers
in Table 1. The recent works by Tomida et al. (2015), using a
nested-grid code, and Tsukamoto et al. (2015a), using smoothed
particle hydrodynamics, were the first ones to include radiative
transfer coupled to MHD with both ambipolar and ohmic diffu-
sion2. Even more recently, Wurster et al. (2018) went a step fur-
ther by adding the Hall effect in their calculations of the second
core formation. To help establish theoretical results, it is crucial
to verify computational results across different codes and numer-
ical methods. This paper aims to do precisely this, expanding on
the latest Japanese and British studies to strengthen the validity
of the star formation process. We follow the gravitational col-
lapse of a dense sphere of magnetised gas, from molecular cloud
densities to the formation of the protostar, including ambipolar
and ohmic diffusion. We compare the results to the classical
ideal MHD (IMHD) framework, and illustrate why magnetic
diffusion is of paramount importance in low-mass star formation.

1 It is not clear why Krasnopolsky et al. (2010) and Li et al. (2011)
were not able to form rotationally supported disks in their calculations.
Possible reasons include that their models were only 2D, and did not
incorporate self-gravity, although this has never been confirmed.
2 We note that Tomida et al. (2015) did not quite follow the evolution
of the collapsing system all the way up to the formation of the second
core.

2. Numerical method and initial conditions

2.1. RAMSES with non-ideal MHD and flux-limited diffusion

The simulations were carried out using a modified version of the
adaptive mesh refinement (AMR) code RAMSES (Teyssier 2002;
Fromang et al. 2006) which incorporates the effects of ambipolar
and ohmic diffusion (Masson et al. 2012), and radiative transfer
via a time-implicit flux-limited diffusion (FLD) approximation
(Commerçon et al. 2011b, 2014). The governing equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂ρv
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+∇ ·
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+ ∇ · (vEr) + Pr : ∇v
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arT 4 − Er

)
+ ∇ ·

(
cλ
ρκR
∇Er

)
. (7)

The quantities are (in order of appearance): the gas density ρ,
time t, the gas velocity v, the gas pressure p, the magnetic field
B, the identity matrix I, the gravitational potential Φ, the radia-
tive flux limiter λ, the radiative energy Er. The total gas energy
is defined as E = ε +ρv ·v/2 + B ·B/2 where ε is the internal gas
energy. ηO and ηA are the ohmic and ambipolar magnetic resis-
tivities, κP is the Planck mean opacity, c is the speed of light, ar
is the radiation constant, while T represents the gas temperature,
G is the gravitational constant, Pr is the radiation pressure, and
κR is the Rosseland mean opacity.

Equations (1)–(3) describe the conservation of mass, mo-
mentum, and energy, respectively. Equation (4) is the induc-
tion equation, Eq. (5) is the divergence-free condition, Eq. (6)
is the Poisson equation for self-gravity, and Eq. (7) is the con-
servation of radiative energy density. In this work, we used the
HLL Riemann solver for the MHD, and the Minerbo flux limiter
(Minerbo 1978) for the FLD which is defined as

λ =

 2/(3 +
√

9 + 12R2), if 0 ≤ R ≤ 3/2,
(1 + R +

√
1 + 2R)−1, if 3/2 < R ≤ ∞,

(8)
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Table 1. 3D numerical studies of the formation of the second Larson core.

Reference Numerical Equation Radiative Magnetic Non-ideal MHD
method of state transfer? fields? Ohmic? Ambipolar? Hall?

Bate (1998) SPH Barotropic No No No No No
Machida et al. (2006, 2007, 2008) Nested grid Barotropic No Yes Yes No No

and Machida & Matsumoto (2011)
Whitehouse & Bate (2006) SPH H2+H+He Yes (FLD) No No No No
Saigo & Tomisaka (2006) Nested grid Barotropic No No No No No

and Saigo et al. (2008)
Stamatellos et al. (2007) SPH H2+H+He Yes (cooling) No No No No
Bate (2010, 2011) SPH H2+H+He Yes (FLD) No No No No
Tomida et al. (2013) Nested grid H2+H+He Yes (FLD) Yes Yes No No
Bate et al. (2014) SPH H2+H+He Yes (FLD) Yes No No No
Tomida et al. (2015) Nested grid H2+H+He Yes (FLD) Yes Yes Yes No
Tsukamoto et al. (2015a) SPH H2+H+He Yes (FLD) Yes Yes Yes No
Wurster et al. (2018) SPH H2+H+He Yes (FLD) Yes Yes Yes Yes
This work AMR H2+H+He Yes (FLD) Yes Yes Yes No

where R = |∇Er|/(ρκREr). The radiation pressure is given by
Pr = DEr, and the Eddington tensor is

D =
1 − χ

2
I +

3χ − 1
2

n ⊗ n, (9)

with χ = λ + λ2R2 and n = ∇Er/|∇Er| (Levermore 1984).
The code incorporates the gas equation of state of Saumon et al.
(1995), and its extension to low densities (see Vaytet et al.
2013), for a mixture of hydrogen (73%) and helium (27%,
in mass). The interstellar dust and gas opacities were taken
from Vaytet et al. (2013). These comprise the dust opacities of
Semenov et al. (2003; assuming a 1% dust content, by mass)
at low temperatures (below 1500 K), the molecular gas opac-
ities of Ferguson et al. (2005) for temperatures between 1500
and 3200 K, and the atomic gas opacities from the OP project
(Badnell et al. 2005) above 3200 K. To aid the convergence of
the implicit radiative transfer solver, we artificially limited the
optical depth per cell to a minimum value of 10−4. When the gas
is optically thin, it is not crucially important for the heating and
cooling mechanisms whether the opticaly depth is 10−8 or 10−4,
but we observed that choosing the latter can typically cut the
number of iterations in the conjugate gradient solver by a factor
of 4 or more. We show a validation of this acceleration scheme in
Appendix A.

The magnetic resistivities were computed from a reduced
chemical network including neutral and charged species, as well
as dust grains, using an earlier version of the Marchand et al.
(2016) model. It is in fact identical to the fiducial model of
(Marchand et al. 2016; with a cosmic ray ionisation rate of
10−17 s−1) for densities below 10−8 g cm−3, but features a
smooth decay in both ηA and ηO beyond this point, following
Machida et al. (2007) who use this to represent the thermal ion-
ization of alkali metals, instead of taking into account the effects
of grain evaporation, thermal ionisation of potassium, sodium,
and hydrogen, and grain thermionic emission. Using this tool,
a three-dimensional table of density, temperature, and magnetic
field dependent resistivities was computed. During the simula-
tions, the resistivities in each grid cell were interpolated on-
the-fly according to the local state variables, greatly reducing
computational cost but implying thermodynamical equilibrium.
The resistivities severely limit the integration timestep, and a
stable super-time stepping method for ambipolar diffusion on an
AMR grid with level-by-level sub-cycling is still lacking from

the literature. To speed up the calculations, the timestep was pre-
vented from going below a fraction of the ideal MHD timestep.
It is taken to be the minimum of the three timescales:

∆tID = 0.8
∆x∑

i=x,y,z ui + |vi|
,

∆tO = max
(
0.1

∆x2

ηO
, ξ∆tID

)
, (10)

∆tA = max
(
0.1

∆x2

ηA
, ξ∆tID

)
,

where ∆x is the cell size, ξ = 0.1, and

ui =

√√√
1
2

(
w2 + v2

A

)
+

1
2

√(
w2 + v2

A

)2
− 4w2

B2
i

4πρ
(11)

is the fast magnetosonic speed in direction i, where vA =√
|B|2/(4πρ) is the Alfvén speed, and the sound speed

w =

√
γp
ρ

+
4Er

9ρ
(12)

includes the contribution from the radiation pressure (see
Commerçon et al. 2011b). The idea is that the exact amount of
magnetic diffusion included is not crucially important, as long as
some diffusion is operating (see Appendix B for more details). It
is, however, necessary to compute the resistivity coefficients ac-
curately with a chemical network, as in Marchand et al. (2016),
as the densities and temperatures at which they either rise or fall
are important. The mesh refinement criterion was defined so that
the local Jeans length was always sampled with a minimum of 32
cells everywhere in the computational domain. Initial tests with
lower resolutions yielded spurious heating between the first and
second core stages, due to inefficient cooling (see Appendix C
and Vaytet & Haugbølle 2017).

2.2. Simulation set-up

We adopt initial conditions similar to those in Commerçon et al.
(2010). A magnetised isothermal sphere of molecular gas with
quasi uniform density, rotating about the z-axis with solid body
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rotation, is placed in a surrounding medium a hundred times
less dense with equal temperature. The sphere has a mass M0 =
1 M�, a radius R0 = 2753 AU, and a temperature T0 = 10 K, for
an initial ratio of thermal to gravitational energies of

α =
5R0kBT0

2GM0µmH
= 0.28, (13)

where kB is Boltzmann’s constant, µ is the mean molecular
weight (=2.31 initially for the H2 + He mixture), and mH is the
hydrogen atomic mass. The density in the domain is defined by

ρ =

 ρ0

[
1 + ∆ρ cos

(
2 arctan

(
y
x

))]
, if r < R0,

ρ0/100, if r > R0,
(14)

where ρ0 = 6.76×10−18 g cm−3 and includes an m = 2 perturba-
tion of amplitude ∆ρ = 0.1, which has been used in many of our
previous works to favour fragmentation in the collapsing sys-
tem (see Commerçon et al. 2008; Commerçon et al. 2010). The
amount of rotation given to the cloud is parametrised accord-
ing to the ratio of rotational to gravitational energies, which was
chosen to be

R3
0Ω2

0

3GM0
= 0.01, (15)

where Ω0 is the angular velocity. The strength of the magnetic
field is defined in terms of the mass-to-flux ratio normalised by
the critical value of stability for a uniform sphere

µ =

∫ R0

0 dM
/ ∫ R0

0 dφB

(M/φB)crit
= 4, (16)

where φB = πr2
cylB0 and (M/φB)crit = 0.53

3π

(
5
G

)1/2

(Mouschovias & Spitzer 1976) and rcyl =
√

x2 + y2 is the cylin-
drical radius. The magnetic field is initially parallel to, and invari-
ant along, the axis of rotation z. The field is stronger in a cylinder of
radius R0 (with the dense core at its centre) than in the surrounding
medium, with Bz(rcyl < R0) = B0 = 1002/3Bz(rcyl > R0), where
the factor of 100 comes from the difference in density between
the core and the surroundings (see Masson et al. 2016). The base
grid at the coarsest level counted 643 cells, and an additional
21 AMR levels yielded a final effective resolution of 8×10−5 AU.

3. Results

We performed two simulations: the first using the ideal MHD ap-
proximation (runID), and the second including ambipolar and
ohmic diffusion (runAO), requiring 40 000 and 180 000 CPU
hours, respectively3. In the remainder of this paper, we focus
on describing the differences between the two models.

3.1. Early evolution

The evolution of a gravitationally collapsing dense molecu-
lar cloud core has been described in detail in past works (see
Masunaga & Inutsuka 2000; Vaytet et al. 2013, for instance),
and is displayed in Fig. 1 for our two runs. It begins with an

3 The high cost for the non-ideal MHD simulation does not origi-
nate from a computationally expensive magnetic diffusion module, but
comes primarily from a highly reduced integration timestep between the
first and second collapse stages, as ambipolar and ohmic resistivities in-
crease inside the first hydrostatic core (see Eq. 10).

Fig. 1. Density (panel a), temperature (panel b) and magnetic field
strength (panel c) as a function of time, for the densest cell in the sys-
tem. The red lines represent runID, while the blue lines are for runAO.
In the top panel, the two insets show maps of the logarithm of density
in runID just before (panel d) and after (panel e) the development of
the interchange instability (see text).

isothermal phase of contraction, clearly visible in the lower
left corner of panel b, where the compressive heating is lost
via radiative cooling. As the density rises, the system’s opti-
cal thickness increases and the radiative cooling becomes less
and less efficient, until it can no longer counter-balance the
compressive heating. The system enters its first adiabatic phase
when densities exceed ∼10−13 g cm−3, where the first hydrostatic
Larson core is formed. The first core continues to accrete mate-
rial from its envelope, and the sustained increase in mass forces
the temperature to rise in the centre. When the gas reaches
2000 K, H2 molecules begin to dissociate. The effective adia-
batic index drops below the critical value of 4/3 for support
against gravitational contraction, and a second, very rapid, phase
of collapse takes place, at the end of which the second hydro-
static Larson core is formed. The moment where the curves in all
three panels exhibit a very sharp rise marks the onset of second
collapse.
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In the early stages (t < 28 230 yr) runID and runAO have
very similar central density and temperature evolutions. Only the
strength of the magnetic field differs significantly already after
28 000 yr, because the ambipolar and ohmic diffusion strongly
hinders the condensation of magnetic flux. Just before the
second collapse in runAO (t ' 28 230 yr), the discrepancy in
B has grown to almost 3 orders of magnitude. The effects of
a strong field amplification are visible in the subsequent evolu-
tion of runID. All three displayed quantities show a plateau after
28 250 yr, where contraction and heating is halted, delaying the
second collapse. As illustrated by maps of the gas density in in-
sets (d) and (e), this is caused by interchange instabilities that de-
velop in the presence of extreme gradients in the magnetic field
(Spruit et al. 1995). This effect was already observed in other
works (e.g. Zhao et al. 2011; Tomida et al. 2015; Masson et al.
2016), and is discussed further below.

3.2. Physical picture at the time of second core formation

We now turn to describing in more detail the properties of the
first and second Larson cores, at a time right after the forma-
tion of the second core. Finding a moment in both simulations
where all aspects and structures of the collapsing systems can be
directly compared is not trivial. The two runs reach the second
core stage at slightly different times, and with different densi-
ties and temperatures in their centres. We defined the formation
of the second core as the moment when a fully formed accre-
tion shock is present, with a sharp density and velocity gradient
at the core border. The justification for this somewhat arbitrary
criterion will become clear in the following paragraphs. In addi-
tion, in the remainder of this work, a density threshold criterion
– favoured for its simplicity and robustness – will be used to de-
fine the first and second Larson cores (see Appendix E). All the
cells with a density higher than 10−10 g cm−3 make up the first
core, while the threshold is 10−5 g cm−3 for the second core.

We first look at the evolution of the gas temperature at the
centre of the system as a function of density, represented by the
dashed lines in Fig. 2a. The quasi isothermal contraction at low
densities (<10−13 g cm−3) is clearly visible in the lower left cor-
ner. The curves then follow an isentrope with an almost constant
adiabatic index γeff ' 7/54 until temperatures reach 2000 K and
γeff falls to ∼1.1, initiating the second collapse. The value of 7/5
is recovered towards the end of the tracks, once temperatures
exceed ∼104 K. The evolutions in runID and runAO are very
similar, following tracks which strongly resemble the results
of past 1–3D studies (Masunaga & Inutsuka 2000; Vaytet et al.
2013; Tomida et al. 2013; Bate et al. 2014, to only name a few).
The colour maps in Fig. 2a show a single snapshot in time of
the distributions in the (ρ,T ) plane of all the cells in the sim-
ulation domain, just after the formation of the second Larson
core. Red colours are for runID while blue is for runAO. The
cells have been divided into two regions; the equatorial region
(light colours) where the polar coordinate θ = cos−1(z/r) is in
the range π/4 < θ < 3π/4, and the polar region above and be-
low the central protostellar object where θ < π/4 or θ > 3π/4.
The centre of the polar coordinate system is the centre of the
second Larson core, found by calculating the mean coordinate of
all cells with ρ > 10−5 g cm−3. The results from the two different
calculations are overall qualitatively similar. The most notice-
able difference is the density at which the shock heating occurs
when the gas enters the second core. The shock heating hap-

4 It is actually closer to 5/3 for 10−13 < ρ < 10−12 g cm−3 (see
Vaytet et al. 2014).

pens at densities two orders of magnitude higher in runID than
in runAO, suggesting that the protostellar core is more compact
in the IMHD run. We also note that the gas in the polar regions
(darker colours) undergoes shock heating earlier (i.e. at lower
densities) than around the equator (lighter colours), suggesting
that the gas reaching the second Larson core is more diffuse close
to the poles. This is actually visible below, in the density map
around the second core in Fig. 3r.

Figure 2b shows the distributions of the magnitude of the
magnetic field vector B = |B| as a function of gas density. At
low densities (<10−15 g cm−3), runID and runAO yield identi-
cal results. Above this point, we observe the same behaviour
as in Masson et al. (2016). While the magnetic field follows a
B ∝ ρ2/3 power law in runID (consistent with magnetic flux
conservation for a contracting gas sphere), a clear magnetic dif-
fusion plateau appears in runAO around 0.1 G. This diffusion
barrier strongly limits the amplification of the magnetic field,
reduces magnetic braking, and prevents several IMHD peculiari-
ties such as counter-rotation of gas inside the envelope surround-
ing the first core, or the development of interchange instabilities
(see Masson et al. 2016). As the resistivities begin to drop above
densities of ∼10−8 g cm−3 (see Sect. 2.1), B rises once again,
but will remain between one and two orders of magnitude below
the IMHD values. This has very important consequences for the
properties of the second Larson core.

The ratio of thermal to magnetic pressure, otherwise known
as the plasma β = 2p/B2 is displayed in panel c as a function
of density. The effects of magnetic diffusion are once again un-
equivocal. At low densities, outside of the first core, the mag-
netic pressure dominates everywhere in both runID and runAO.
It also mostly dominates (or is comparable to the thermal pres-
sure) inside the first and second cores in runID. However, the
thermal pressure is orders of magnitude higher than the mag-
netic pressure when magnetic diffusion is included, as was re-
ported in Masson et al. (2016). The first and second hydrostatic
cores are genuinely supported by thermal pressure, and the two
simulations are forming two completely different protostars.

Panel d displays the ratio of thermal to isotropic radiative
pressure Prad = Er/3, as a function of density. The two runs yield
similar results. At low densities, radiative and thermal pressures
are comparable, but as the gas contracts isothermally, Prad re-
mains constant while p scales linearly with density. As a result,
the thermal pressure vastly dominates virtually everywhere in
the collapsing system.

We now turn to studying in panels e to l the distributions
of the fluid variables as a function of radius. Panel f shows the
gas density as a function of radius, and the distributions are rel-
atively similar between IMHD and non-ideal MHD (NIMHD)
models. The densities are in general lower along the polar
directions than in the equatorial plane, which is expected for a
disk forming in the plane of rotation. The second core in runID
appears to be more compact than its runAO counterpart, and
seems to also have a different structure; its density is relatively
uniform, suggesting a more spherical morphology, while the
runAO core is elongated in the equatorial plane and has density
peaks away from the centre. The temperature distribution in
panel e shows again the more compact nature of the runID sec-
ond core. It also reveals that in runID, temperatures are higher
in most of the computational domain. This includes the regions
inside the second core (r < 0.003 AU), around the first core
border (1 < r < 10 AU) and also at larger radii (r ∼ 100 AU).

Panels i and j show the radial (vr) and azimuthal (vφ) com-
ponents of the gas velocity, as a function of radius. Two (neg-
ative) spikes in vr around 1 and 0.01 AU in runAO mark the
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Fig. 2. Left column: temperature (panel a), magnetic field (panel b), plasma β (panel c), and ratio of thermal to radiative pressure (panel d) as a
function of density, for every cell in the computational domain at the epoch of second core formation. The IMHD simulation is represented by the
red colours, while the blue shades are for the NIMHD run. The green colours correspond to areas where IMHD and NIMHD results agree within
10%. Each data set is delineated by a solid contour line which outlines the data distributions. The dark and light colours give an indication of
the positions of the cells in the simulation box according to the θ = cos−1(z/r) angle: the light colours denote cells close to the equatorial region
(π/4 < θ < 3π/4) while dark colours show cells in the polar regions (θ < π/4 or θ > 3π/4). The dashed lines in panels a and b represent the time
evolution of the central (densest) cell inside the mesh. The thin black line in panel b is the power law predicted from magnetic flux conservation
in a contracting gas sphere. Center and right columns: radial distributions of various quantities for every cell in the computational domain. As in
the left column, red colours are for runID while blue colours are for runAO. In panels g and h additional lines show the integrated enclosed mass
and angular momentum, respectively, in successive spherical shells going outward from the centre of the system.

first and second core borders, respectively. In runID, the first
core border is less well defined and has a radius 3 times larger,
while the second core is clearly visible around 3 × 10−3 AU.
As expected, the highest velocities are found in the polar re-
gions, where the gas is free-falling along the magnetic field lines,
meeting no resistance along its path. The IMHD model has posi-
tive vr between 2 and 100 AU, representative of an outflow; a fea-
ture absent from runAO. The positive radial velocities inside the
second core in runAO are a sign that the core is expanding be-
cause of strong rotation. Indeed, panel j shows a colossal amount
of rotation in and around the runAO second core, while it is ef-

fectively zero in runID. The magnetic braking is so efficient in
the latter that it has removed all angular momentum from the
second core (this confirms the results of Tomida et al. 2013).

Panels k and l display the vertical (Bz) and toroidal (Bφ)
components of the magnetic field, divided by the magnitude of
the B field vector. This reveals that around the first core re-
gion (0.5 < r < 50 AU), the field is much more vertical in
runAO (Bφ falls to zero), while the opposite happens in runID.
The magnetic diffusion allows the field lines to remain vertical
without being drawn in by the fluid, unlike the IMHD model
where perfect coupling between fluid and magnetic field means
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that the field lines are dragged into a pinched hourglass shape
(see Krasnopolsky et al. 2010, for example), changing the orien-
tation of the field and strongly reducing Bz. The picture is almost
reversed for the second Larson core, but for a different reason.
The field is almost entirely toroidal in runAO (Bz/B → 0 and
Bφ/B→ 1), because of the strong rotation of the gas which drags
the field lines along (at these densities and temperatures, the gas is
almost fully ionised and the field is once again perfectly coupled
to the gas). On the other hand, Bφ remains rather small in runID
because of the lack of rotation at the second core level. We also
note that throughout the domain, the field remains mostly vertical
in the polar regions, in both simulations, which is fully expected in
a set-up where the rotation axis is initially aligned with the mag-
netic field.

Finally, in panels g and h we show the distribution of the mass
and angular momentum, respectively, contained in the grid cells.
The mass contained inside a cell may not provide much valuable
information, as it is governed by our mesh refinement strategy,
and the fact that it varies only lightly across the entire radial ex-
tent is simply a result of choosing to refine the grid according to the
Jeans criterion. More interestingly, if we integrate the mass inside
successive spherical shells around the protostar, we obtain the en-
closed mass which we represent by the two solid lines in the upper
half of panel g. The two systems have similar mass profiles, apart
from inside the second core which is more compact in runID. In
the case of the angular momentum, the main difference between
the two runs is a collection of cells in runAOwith much higher an-
gular momentum than in runID, in the range−3 < log(r) < −1.5.
This corresponds to the cells with high azimuthal velocities found
in panel j. As a consequence, the integrated angular momentum
for radii below 1 AU is orders of magnitude higher in runAO than
in runID. In fact, the exceedingly strong magnetic braking in
runID even forced a sign reversal of the angular momentum inside
the second Larson core (dashed red line). However, the amount of
rotation is so small (see also Sect. 3.3) that it is difficult to see as
a bulk counter-rotating motion; the main component of the gas
velocity is radially infalling at these radii.

This result is of crucial importance. It shows that magnetic
diffusion (both ambipolar and ohmic) starts to become effective
for radii below 10 AU, and even more so below 1 AU, indicat-
ing that a spatial resolution of at least ∼1 AU is necessary to
correctly study angular momentum transfer and the formation of
rotationally supported disks around protostars5.

3.3. Morphologies

Figure 3 contains multiple slices through the data, comparing the
morphologies of the protostellar system in runID (columns 1
and 3) and runAO (columns 2 and 4) on three different scales.
The top two rows display a wide region around the first Larson
core, the typical scale of a protoplanetary disk. The two middle
rows show the immediate vicinity of the first Larson core, while
the bottom two rows present the second Larson core and its close
surroundings. The two left columns show side x–z views of the
system, while the two right columns display the top x–y perspec-
tive. The simulation times are the same as in Fig. 2.

3.3.1. The first Larson core and its surroundings

Panels a–d show gas density maps with velocity vectors. An
equatorial density enhancement, typical of an accretion disk,

5 The maximum resolution of 0.15 AU in Masson et al. (2016) verifies
this condition.

is clearly visible in the side view of both simulations. In the
top view, a filamentary structure extending from the north-west
to the south-east of the protostar has formed from the initial
density m = 2 perturbation6. A magnetic tower with outflow-
ing velocity arrows (corresponding to the positive radial veloci-
ties in Fig. 2e) is observed in runID (a), while it is absent from
runAO (b), as was the case in the strongly magnetised simula-
tions of Masson et al. (2016). Another large difference between
the two runs, and another sign of strong amplification of the
magnetic field, is the presence of “bubbles” in the x–y view
(c) of runID which are caused by interchange instabilities (see
Zhao et al. 2011; Krasnopolsky et al. 2012, for a detailed study
of these structures). While it has been argued that misalignement
between the initial B field and the rotation axis and turbulence
are both able to prevent the formation of such structures (Li et al.
2013, 2014), ambipolar and ohmic diffusion provide a physi-
cal rather than numerical diffusion that dominates the dissipa-
tion processes, with no dependence on the initial direction of the
B field nor the numerical resolution. The aligned case is no
longer a special set-up with its strange behaviours and artefacts
(see Masson et al. 2016). Further evidence of the rearrangement
of magnetic field lines provided by resistive effects is seen in
the second row (panels e and f), where the magnetic field lines
are very pinched in runID, while they are much more vertical
in runAO. This corroborates our findings above; the field lines
are no longer perfectly coupled to the gas and get less dragged
in by the collapsing fluid. The modification of the magnetic field
topology is provoked by the ambipolar diffusion, the dominant
mechanism in this region (r < 30 AU; see Appendix D)7. The
temperature maps are also markedly different, with runID show-
ing higher temperatures everywhere around the central protostar,
up to a radius of ∼100 AU.

Taking a closer look at the first Larson core in panels i to
p, we notice that the disk is “puffed” up in runID (i) com-
pared to runAO. The top view (k) also clearly show gas ejec-
tions from the interchange instabilities with outflowing velocity
vectors. When looking at the time evolution of the gas tempera-
ture, we found that a sudden heating of the gas around the first
core coincides with the development of the interchange insta-
bilities, although we have not been able to establish if the in-
stability is directly responsible for the heating. Other possible
explanations include shock heating from waves launched by the
instabilities, or irradiation from the protostar which is enhanced
because the density – and hence optical thickness – of the gas
around the first core drops as it gets ejected. One could even en-
visage a combination of the two, where shock heating raises the
temperature around the core above ∼1000 K where dust grains
start to sublimate, abruptly lowering the opacities, which in turn
intensifies the irradiation.

In runAO, all the gas is moving towards the core, and the
accretion is highly anisotropic, occuring primarily along the
two high-density streams seeded by the perturbation in the
initial conditions. In panels m and n, the contrast in magnetic
field orientation is glaring; the field in runID is pinched to
the extreme, while it has become almost vertical in runAO due
to the resistive effects. Panel p shows the high-density accre-
tion streams hindering the propagation of heat from the central
source, which progresses instead along the perpendicular direc-

6 This may seem a little artificial but it in fact reproduces very well
the density structures seen in simulations with more realistic turbulent
initial conditions (Commercon et al., in prep.).
7 This was once again already observed in the simulations of
Masson et al. (2016, see their Fig. 6).
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Fig. 3. Slices through the centre of the domain, comparing the morphologies of the protostellar system in runID (columns 1 and 3) and runAO
(columns 2 and 4) on three different spatial scales at the epoch of second core formation. Panels a–h: display a wide region around the first Larson
core, the typical scale of a protoplanetary disk. Panels i–p: immediate vicinity of the first Larson core. Panels q–x: present the second Larson
core and its close surroundings. Two left columns: side x–z views of the system, while the two right columns display the top x–y perspective. The
coloured maps in each row alternate between representing the gas density and temperature. The arrows on the density maps depict the gas velocity
field. Overlayed onto the temperature maps are magnetic field lines (left column) and AMR level contours (right column).
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tion. In runID, the more homogeneous density structure leads
to a more homogeneous temperature distribution. The magnetic
reconnection that occurs when interchange instabilities develop
may also provide additional heating. However, this is not recon-
nection enabled by ohmic diffusion (that generates Joule heat-
ing) since it appears in the IMHD simulation; it is known as
numerical reconnection. We have not been able to determine
whether numerical reconnection heating is significant (or even
happening at all) when compared to the irradiation from the cen-
tral object, but the gas heating does appear to coincide with the
development of the bubble-like ejections.

3.3.2. The second Larson core

Panels q to t show once again density maps with velocity vec-
tors for runID and runAO, but this time in the vicinity of the
second Larson core. The morphologies are here also very differ-
ent. The second core border is not very well defined in runID,
where the gas density shows a rather smooth transition from
10−7 to 10−3 g cm−3, as was already found in Fig. 2f. The
protostellar seed also displays a loss of top-down symmetry (q),
most probably due to magnetic flux redistribution during the de-
velopment of the interchange driven magnetic “bubbles”. We
also note the absence of any rotation in panel s, as already men-
tioned in Sect. 3.2. On the other hand, the runAO second core has
a sharp border, strong rotation and a preserved top-down symme-
try. It is flatter around the poles, due to both the rotation and the
high infall speeds in the polar direction. The top view (t) also re-
veals the early development of a spiral structure inside the core.
The second core masses for runID and runAO are 3.8×10−3 M�
and 7.4 × 10−3 M�, respectively.

The temperature maps with overlayed magnetic field lines in
panels u and v expose the compact nature of the second core in
runID. Temperatures at the very centre are higher than in runAO,
and the core surroundings are also slightly warmer. The field
lines in the side view from both simulations have a very similar
pinched shape, which is expected because the field is coupled
to the gas in both runs as it is fully ionised at these scales. It is
always a challenge to view magnetic field lines in a 2D plane,
and Fig. 4 shows a 3D rendering of the magnetic field lines for
both simulations, along with density isosurfaces. This view re-
veals the true topology of the field; a near perfect hourglass in
runID, and strong winding inside the second core in runAO.
The generation of toroidal field in runAO is expected to eventu-
ally lead to the launching of a fast outflow (Machida et al. 2006;
Tomida et al. 2013).

3.4. Late evolution

In this section, we look at the subsequent evolution of the IMHD
and NIMHD systems. Figure 5 shows density and temperature
slices in the two simulations, approximately one month (24 days)
after the formation of the second core. The second core in runID
is still compact, has reached even higher densities and temper-
atures in its centre (0.1 g cm−3; 105 K), and appears to have fil-
amentary accretion streams that are associated to the magnetic
field topology (see panel b). Its mass is now 9.5× 10−3 M�, with
an effective mass accretion rate of ∼7 × 10−2 M� yr−1.

The small spiral instability in runAO detected in Fig. 3t
has developed into a small disk around the second core with
two spiral arms. At this point, the second core mass has
grown to 7.7 × 10−3 M�, for an effective mass accretion rate of
∼4 × 10−3 M� yr−1 (the core is delineated by the black dashed
contour in Fig. 5c). It has a rotation period of ∼22 days. The

Fig. 4. 3D visualization of logarithmically spaced density isosurfaces in
the inner-most region of the computational domain showing the struc-
ture of the second Larson core, in the case of ideal (top) and non-
ideal (bottom) MHD. The isosurfaces have been cut half-way in the x-
direction. The magnetic field lines are overlayed and have been coloured
according to the magnitude of the magnetic field vector. The insets in
the lower left corner of each panel show (with the same spatial scale)
the central region of the system without the B field for a better view of
the morphology. The density and magnetic field colour scales apply to
both panels.

disk mass is 1.8 × 10−4 M� (the disk was defined as the gas with
densities in the range 10−6.7 g cm−3 < ρ < 10−5 g cm−3; this is
marked by the yellow and dashed black contours). We computed
the magnetic Toomre stability criterion Qmag (Kim & Ostriker
2001) for this disk according to

Qmag =
ω

√
c2

s + v2
A

πGΣ
, (17)

where cs is the gas sound speed, Σ is the disk surface density, and

ω =

(
4Ω2 + 2Ωr

dΩ

dr

)1/2

(18)

is the epicyclic frequency of the gas with angular velocity Ω.
The surface density was integrated over the height of the disk,
while ω, cs, and vA in Eq. (17) actually represent the mass-
weighted average values inside a given vertical column (we
note that vA � cs because β � 1 at the densities considered).
A map of Qmag is displayed in Fig. 5e, revealing that the disk
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Fig. 5. Slices of the gas density with velocity vectors in runID (panel a) and runAO panel c, about one month after the formation of the second
Larson core. The area shown is the same as in Figs. 3s and 3t. In panel c, the yellow contour marks the disk limit, taken as ρ > 10−6.7 g cm−3, while
the black dashed contour delineates the second hydrostatic core with ρ > 10−5 g cm−3. Panels b and d: slices of the gas temperature with magnetic
field streamlines overlayed. Panel e: logarithmic map of the magnetic Toomre stability criterion Qmag inside the disk that forms around the second
core in runAO. The grey-shaded areas indicate regions in the disk where the epicyclic frequency ω is imaginary and no Q could be computed. The
yellow and dashed black contours are the same as in panel c. Panel f : radial profile of the azimuthal velocity for all the cells inside the runAO
second core disk. The colours code for the mass contained in a particular region of the plot. A Keplerian velocity profile is overlayed (black solid
line).

is stable against gravitational contraction. This is suggesting
that forming tight binaries from fragmentation inside the second
core disk may be difficult, but this is at such an early stage in
the protostar’s life that we cannot rule it out with the present
result. Indeed, the disk is still rapidly growing in mass (see
below), and may become unstable at a later stage. In addition,
Fig. 5f shows the distribution of the azimuthal velocity as a
function of radius of all the cells inside the disk. Even though
the shape of the rotation profile is Keplerian-like, the disk is
mostly sub-Keplerian, which is in agreement with the fact that
the core is still accreting mass. Finally, it should also be noted
that our resolution is insufficient to correctly characterise the
viscous dissipation inside the disk and adequately treat the
protostellar core accretion shock cooling through the disk.
Moreover, following the disk evolution for many orbital periods
is computationally prohibitive (see below), and by limiting our-
selves to such early epochs, we are not capturing the global disk
cooling. These two mechanisms can affect the disk temperature
and hence its dynamics and gravitational stability.

The very stringent Courant-Friedrichs-Lewy (CFL;
Courant et al. 1967) condition inside the second core (because
of the high sound speed) makes it very difficult to integrate for
long periods of time after the second core formation. The simu-
lation essentially “freezes” in time, as the timestep in a central
region about 0.05 AU in diameter plunges to 10–20 s, which is
not tracktable on astrophysical timescales. In addition, the 27
levels of refinement needed to resolve the second core imply that

the vast majority of cells lie in a tiny region in the centre of the
simulation box, a situation where the CPU domain decom-
position along a Hilbert space-filling curve performs poorly.
Many processors end up holding no cells in the top AMR levels
and spend much of their time waiting for the finer timesteps
to complete on the other CPUs. Increasing the number of
CPUs beyond 48 did not show convincing boosts in execution
speeds, as any gain in processing power gets almost entirely
counter-balanced by a heightened communications load.

4. The first and second core accretion shocks

In this final section, we investigate in more detail the accretion
flows onto the first and second Larson cores, and more partic-
ularly the radiative efficiency of the accretion shocks. Over the
years, this subject has been of paramount importance to early
evolutionary models of low-mass stars (e.g. Baraffe et al. 2012)
as well as planets forming via the core accretion scenario (e.g.,
Mordasini et al. 2012). Small changes in the fraction of the in-
falling gas energy that is either absorbed by the core, or radi-
ated away at the accretion shock can yield significant differ-
ences in stellar and planetary luminosities and temperatures.
However, the lack of accurate models of the accretion shocks
which can predict the exact fraction of energy that is accreted
or radiatied away in the literature have forced authors to bracket
their results using two limiting cases known as “cold” (all en-
ergy is radiated away) and “hot” (all energy is absorbed) accre-
tion. Recent numerical studies have suggested that the first Lar-
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Fig. 6. Hammer projections (runAO only) of the mass accretion rate (left column), the radiative flux (middle column), and the ratio of radiative to
accretion flux (right column). The first row is for the first Larson core, while the second row shows the second Larson core just after its formation.
The third and fourth rows show the second Larson core 24 days after formation and the accretion flow at the edge of the disk around the second
hydrostatic core, respectively. The green colours in panels g and i indicate negative values.

son core accretion shock tends to be in the super-critical regime,
radiating most of the infalling energy away (Commerçon et al.
2011b; Vaytet et al. 2012), while the shock at the second Larson
core border is sub-critical, transfering all the energy to the core
(Vaytet et al. 2013; Tomida et al. 2013).

These predictions were mainly obtained with one-
dimensional models of protostellar formation, and we now
have the possibility to examine the 3D structure of the accretion
flow and the resulting shock efficiency. Because it boasts the more
complete microphysics, we consider only the runAO results in
this section. In Fig. 6, panels a, b, and c show Hammer projections
of the mass accretion rate per unit area Ṁ, the radiative flux,
and the ratio of outgoing radiative flux to incoming gas energy
flux Frad/Facc just upstream of the first core accretion shock.
Because the hydrostatic core is not spherical, we computed the
maps by extracting density, velocity and radiative flux profiles
along 64×128 different directions, starting from the centre of the
second Larson core. The location of the accretion shock in each
direction was chosen where the density and velocity gradients are
at their maximum. Equations (3) and (7) give us the conservation
of total and radiative energy, respectively. Figure 2d revealed
that at densities of the first and second Larson cores, the radiative
energy is negligible compared to the gas internal energy, and
we can thus drop the λv · ∇Er term in (3). In a similar manner,
we drop all the terms involving the magnetic field because the
plasma β is above 100 for all densities above 10−10 g cm−3 (see
Fig. 2c). In a purely conservative form, the gravity term in the
right-hand side of Eq. (3) should be included inside the left-hand

side divergence. We rewrite it as

ρv · ∇Φ = ∇ · (ρvΦ) − Φ∇ · (ρv). (19)

Then, because we wish to look at a snapshot of the energy
balance at the shock and not an evolution in time, we can
assume a stationary state at the core accretion shocks, which
means that (19) reduces to ∇ · (ρvΦ) by virtue of (1), and can be
inserted directly into the left-hand side divergence. We are now
able to write the energy fluxes as

Facc = −vr

(
ε +

ρv2
r

2
+

GMenc

r

)
ds, (20)

Frad =
−cλ∇Er

ρκR
ds, (21)

where Menc is the mass enclosed inside the sphere of radius r
and ds = r2 sin θdθdφ is the line of sight area element. Since
we are computing an angular-dependent shock efficiency, we
must measure it locally, rather than use a more global definition
such as the energy balance scheme recently suggested by
Marleau et al. (2017).

Panel a reveals that mass accretion onto the first core is fun-
neled along the dense filaments that we observed in Fig. 3l.
These appear as two large, almost circular, hot-spots in the
panel a map, centred at longitudes of 75◦ and −105◦. These re-
gions dominate the total mass accretion rate, and illustrate once
again that mass accretion is highly anisotropic. We also note that
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there are no negative values for Ṁ, meaning that radial veloci-
ties are negative everywhere; there are no outflows. In contrast,
the radiative flux appears strong in regions of low accretion rate,
although this is not a strict correlation. The radiation appears to
propagate in directions where it meets low density gas which
has a low optical depth. The resulting ratio of radiative to accre-
tion flux in panel c is fascinating. Going against the commonly
accepted paradigm that the core endures either cold or hot ac-
cretion, the map shows that it can be both at the same time.
The accretion flux vastly dominates over its radiative counter-
part (by 3 orders of magnitude) in the accretion hot-spots, while
the two become comparable elsewhere. Going back to Fig. 2e,
we note that the temperature profile of runAO seems to show a
temperature discontinuity for some of the gas at a radius of 1 AU,
where the temperature jumps from 100 to almost 1000 K. Such
a discontinuity is indicative of a radiatively inefficient accretion
shock, and the fact that this gas belongs to the equatorial regions
(light blue colour) is consistent with the accretion hot-spots we
report here. By contrast, there is a small dark blue (polar) region
in the temperature profile of Fig. 2e around ∼3 AU that exhibits
a less pronounced discontinuity, which corresponds to the radia-
tively efficient polar regions in Fig. 6c.

In the case of the second Larson core (panel d), the mass
accretion rate is highest all around the equator, with no predom-
inant hot-spots. This is a result of a higher gas density in the
equatorial region just ahead of the shock (see Fig. 3r). On the
other hand, the radiative flux is higher in the polar regions where
the lower density gas it has to travel through allows it to escape
more freely. However, when we compare the accretion and ra-
diative fluxes, even though we see structure dividing equatorial
and polar regions, the accretion flux still dominates everywhere,
by at least 4 orders of magnitude. This result is thus in agree-
ment with past 1–3D studies (Vaytet et al. 2013; Tomida et al.
2013). The surface integrated mass accretion rate is colossal at
0.28 M� yr−1 (also in agreement with Vaytet et al. 2013), and it
is difficult to imagine that this will be sustained for very long,
as the protostar would finish accreting its entire 1 M� envelope
in under 4 years. Even though we have only run the simulation
for ∼1 month after the formation of the second core, we already
observe a dramatic drop in mass accretion rate in our final
snapshot. Figure 6g displays the structure of the accretion flow
onto the second core once the disk seen in Fig. 5 has formed; the
strong equatorial accretion has disappeared and some regions of
negative accretion (corresponding to positive values of vr, shown
in green) have even emerged. The disk acts as a buffer between
the infalling material and the protostar; the gas is rotating in
almost Keplerian fashion (see Fig. 5) inside the disk, and radial
inward motion is governed primarily by viscous transport. The
radial velocity – and hence the mass accretion rate – at the
protostellar surface is thus considerably reduced. For this final
snapshot, we measure a surface integrated mass accretion rate of
0.074 M� yr−1 onto the protostar, but neither this nor the initial
mass accretion rate of 0.28 M� yr−1 are a good indication of how
fast the core is growing. Indeed, the accretion flow is unsteady
and the average mass accretion rate during the first 24 days is
only 4 × 10−3 M� yr−1 (as mentioned in the previous section).
Conversely, the mass accretion onto the disk is much more
stable, with an average value of 2×10−2 M� yr−1. It should, how-
ever, be noted that we probably do not have sufficient resolution
to adequately resolve instabilities such as the magnetorotational
instability (Balbus & Hawley 1991), which generate turbulence
and regulate material and angular momentum transport inside
the disk. Nevertheless, even if the mass accretion flow is
unsteady, the ratio of infalling (kinetic and gravitational) to

outgoing (radiative) energy is actually very stable; the accretion
shock is radiatively inefficient throughout the early evolution
of the protostar (panels f and i). The accretion energy flux also
dominates over the radiation flux at the edge of the disk (panel 1).

We emphasise here that these results only apply to the very
early stages of the protostar’s evolution, and cannot be assumed
to hold for the remainder of the main accretion phase. They
merely suggest that the second core accretion shock is initially
radiatively inefficient, and reveal that it is possible to have both
hot and cold accretion at the same time over the surface of the
first core. We are reporting on the structure of the accretion flow
at the birth of the protostar, and we do not know if this accretion
arrangement can be applied to protostellar evolution models. We
simply hint that the picture may not be either fully hot or cold;
both regimes could be operating at the same time over the sur-
face of the hydrostatic cores.

5. Comparison with previous works

In this section, we compare the present study with previous arti-
cles that report on simulations of protostellar formation. For the
sake of brevity, we limit ourselves to 3D non-ideal MHD simu-
lations that have reached the second Larson core stage.

The first 3D models including ohmic diffusion were per-
formed by Machida et al. (2006) using a nested-grid MHD code.
The main difference between their models and our runs is that
they use a barotropic equation of state, while we include radia-
tive transfer via the FLD. They also lack ambipolar diffusion.
Nevertheless, they already report a strong increase in plasma
β and angular momentum when number densities exceed
1014 cm−3 in the resistive run compared to using ideal
MHD. In the past five years, Tomida et al. (2013, 2015) and
Tsukamoto et al. (2015a) performed simulations including ra-
diative transfer via the FLD, as well as non-ideal MHD with
ohmic diffusion and ambipolar diffusion. The most recent work
by Wurster et al. (2018) includes radiative transfer and the three
non-ideal MHD effects.

Table 2 shows the properties of the first and second cores
formed in our simulations. Overall, our results are qualitatively
similar to those reported in the recent literature within a fac-
tor of a few (since we do not use the same definition criteria
for the first and second cores, we expect to have small differ-
ences). For instance, Tomida et al. (2013) reported second core
mass of 2 × 10−2 M� one year after its formation. Assuming the
system settles on timescales much shorter than a year after for-
mation (i.e. about a month, as observed in our simulation), this
yields an average mass accretion rate of 2×10−2 M� yr−1, which
is five times our measured rate of 4 × 10−3 M� yr−1. However,
Tomida et al. (2013) define their protostellar core as a pressure-
supported body that would also include the small disk in our
simulation (see Fig. E.1). Considering the disk as part of the
second core means the second core mass accretion is now the
flux at the disk border, which stands at 2 × 10−2 M� yr−1 (cf.
Sect. 4) and is now entirely consistent with Tomida et al. (2013).
The second core mass and size we derive are also roughly con-
sistent with the results of Wurster et al. (2018) six months after
the stellar core formation, who find masses of 1.5 × 10−2 M�
in IMHD and 3.4 × 10−3 M� in NIMHD, as well as a ra-
dius of 0.013 × 10−2 AU in both cases. We note that they
use a similar criterion as ours for the second core definition,
but with a density threshold a factor of ten higher. In addi-
tion, Tsukamoto et al. (2015a) found plasma beta within the first
cores β > 104 in NIMHD and β ∼ 10 in IMHD, which is fully
consistant with Fig. 2c.
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Table 2. Properties of the first and second Larson cores extracted about one month after the birth of the second core.

Model Rfc (AU) Mfc τfc Rsc (AU) Msc
x y z (M�) (yr) x y z (M�)

runID 1.9 1.7 1.2 0.030 239 0.023 0.020 0.021 0.0095
runAO 1.5 1.1 1.1 0.019 129 0.028 0.028 0.012 0.0077

Notes. The columns are: first core radius (in the x, y, z directions), mass, and lifetime, second core radius (in the x, y, z directions), and mass.

Besides this qualitative agreement, there are some discrep-
ancies in the structure of the collapsing core, as well as in the
first core lifetime. First, Tomida et al. (2013, 2015) found that
outflows and disks form early, even prior to the second collapse
(with ohmic and ambipolar diffusion). The outflows reported in
Tomida et al. have a relatively small extent 170 AU maximum
at the end of the first core phase. Second they observed longer
first core lifetimes and the latter increases when non-ideal
MHD effects are included, whereas we find the opposite. In our
models, we attribute this increase in the first core lifetime with
IMHD to the development of interchange instabilities which heat
up and bloat the first core (see Sect. 3.1). Interchange instabilities
are reported in Tomida et al. (2015) but do not affect the first core
in IMHD as in ours. We think that these differences originate
from the initial conditions. While we use uniform initial density
profile, Tomida et al. used Bonnor-Ebert profile which is close to
equilibrium. The time spent to form the first core is much longer
when the initial core mass is close to the Bonnor-Ebert mass
(see Vaytet & Haugbølle 2017, Fig. 7 therein). As previously
mentioned, the accretion rate is a factor ∼5 higher in our models
than in Tomida’s, so that the first core evolves much quicker
and the dynamic is more violent, leading to powerful magnetic
interchange instability. The absence of outflows and large disks
in our results is also consistent with the differences excepted
between models using either a uniform or a Bonnor–Ebert den-
sity profile (Machida et al. 2014). In addition, Tsukamoto et al.
(2015a) used uniform initial density and found that the proto-
stellar disk forms after the second core in their NIMHD models.
Wurster et al. (2018) also report outflows at first core scales
in NIMHD models using similar initial conditions as ours.
However, they observe that outflows become broader and slower
as the cosmic ray ionisation rate is reduced. The minimum
ionisation rate they explore is 10−16 s−1 while we use 10−17 s−1.
Whether outflows launching at the first core scale depends on
the cosmic ray ionsitation rate remains to be studied in detail.
Clearly, the effect of the initial conditions, as well as the effect
of the chemical set up used to estimate the MHD resistivities,
has to be investigated in the near future to truly compare results.

6. Conclusions
We have performed two 3D simulations of the gravitational
collapse of a dense sphere of molecular cloud gas. Both runs
include the following physics: hydrodynamics, radiative trans-
fer, self-gravity, a non-ideal gas equation of state, and magnetic
fields. In the second run, the effects of ambipolar and ohmic
diffusion were included in the MHD equations, and their impact
on the simulation results were assessed through comparisons
with the ideal MHD model. The magnetic diffusion creates
a barrier which prevents amplification of the magnetic field
beyond 0.1 G in the first Larson core, with many consequences
for the structure and evolution of the system. In the IMHD
simulation, the magnetic field dominates the energy budget ev-
erywhere inside and around the first core, spawning interchange

instabilities that create bubble-like ejections, as well as driving
a low-velocity outflow above and below the equatorial plane of
the system. A strong magnetic field also implies a heightened
magnetic braking, removing essentially all angular momentum
from the second Larson core.

When ambipolar and ohmic diffusion are present, the first
and second cores become genuinely thermally supported and
have a large amount of rotation. This leads to the formation
of a small Keplerian-like gravitationally stable disk around the
second core, and rolls the magnetic field lines into a toroidal
topology which is expected to propel an outflow at the second
core level. Due to stringent CFL limitations, it was, however,
not possible for us to follow the evolution of the system long
enough to observe the launch. We were also neither able to
study the formation of a protoplanetary disk and a low-velocity
outflow (Gerin et al. 2017) around the first Larson core because
the simulation essentially “froze” in time when the second core
was formed. Future plans involve replacing the second core
with a sink particle, allowing for much longer time integrations.
The stark contrast between the ideal and NIMHD simulations
proves that magnetic diffusion is of crucial importance to
star-formation; not only does it enable the formation of disks in
which planets will eventually form (Masson et al. 2016), it also
shapes the protostar itself by preventing angular momentum
loss and restoring thermal pressure support.

The use of idealised isolated initial conditions has been
challenged by recent studies which claim that accretion pro-
cesses in star formation are vastly influenced by the environment
around the protostellar system (Kuffmeier et al. 2017). And
while this may indeed be relevant at the first Larson core
scale, we postulate that the dynamics at the second Larson
core level are so disconnected, both in terms of spatial scales
and evolutionary timescales, from the material 100 AU away,
that the impact of large-scale turbulence would be negligible.
Nevertheless, we are currently investigating the robustness
of our results across different initial conditions, varying the
parent cloud mass, changing the magnetic field strength and
orientation, and introducing turbulence in the initial velocity
field. Another shortcoming of the model presented in this paper
is the lack of Hall effect in the MHD solver. Believed to be
prominent in protoplanetary disks, the Hall effect has attracted
much attention of late (e.g. Lesur et al. 2014; Tsukamoto et al.
2015b, 2017; Wurster et al. 2016), and is considered to play
a major role in angular momentum transport both inside the
disk and in the protostellar envelope. We are in the process of
implementing the Hall effect in our version of RAMSES. Last
but not least, large uncertainties remain in the models used to
estimate the resistivity coefficients because of poor constraints
on the dust size properties (charge, size distribution) and on the
chemistry at play in the high density and temperature regions of
protostellar collapse. As a result, it is currently not clear which
non-ideal effects dominate in the different parts of the collapsing
cloud, particularly for the Hall and ambipolar resistivities that
strongly depend on the local physical and chemical conditions.
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Further work is required to better estimates of the non-ideal
resitivities, which would in turn allow a more robust assess-
ment of their impact on the star, disk, and planet formation
process.

Acknowledgements. We are indebted to the anonymous referee for his/her
insightful comments that have vastly improved the solidity of our study, with no
stones left unturned. We also thank Troels Haugbølle for very useful discussions
during the writing of this paper. NV gratefully acknowledges support from
the European Commission through the Horizon 2020 Marie Skłodowska-Curie
Actions Individual Fellowship 2014 programme (Grant Agreement no. 659706).
The research leading to these results has also received funding from the
European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement no. 247060). We ac-
knowledge financial support from “Programme National de Physique Stellaire”
(PNPS) of CNRS/INSU, CEA and CNES, France. This work was granted access
to the HPC resources of CINES (Occigen) under the allocation 2016-047247
made by GENCI. We also made use of the astrophysics HPC facility at the
University of Copenhagen, which is supported by a research grant (VKR023406)
from Villum Fonden. In addition, we thank the Service d’Astrophysique, IRFU,
CEA Saclay, and the Laboratoire Astrophysique Instrumentation Modélisation,
France, for granting us access to the supercomputer IRFUCOAST where the
groundwork with many test calculations were performed. All the figures were
created using the OSIRIS8 visualization package for RAMSES, except Fig. 4
which was rendered with the PARAVIEW9 software.

References
André, P., Di Francesco, J., Ward-Thompson, D., et al., 2014, in Protostars and

Planets VI, eds. H. Beuther, R. F. Klessen, C. P. Dullemond, & T. Henning
(Tucson: The University of Arizona Press), 27

Badnell, N. R., Bautista, M. A., Butler, K., et al., 2005, MNRAS, 360, 458
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Baraffe, I., Vorobyov, E., & Chabrier, G. 2012, ApJ, 756, 118
Bate, M. R. 1998, ApJ, 508, L95
Bate, M. R. 2010, MNRAS, 404, L79
Bate, M. R. 2011, MNRAS, 417, 2036
Bate, M. R., Tricco, T. S., & Price, D. J. 2014, MNRAS, 437, 77
Béthune, W., Lesur, G., & Ferreira, J. 2016, A&A, 589, A87
Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G., & Teyssier, R. 2008,

A&A, 482, 371
Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G., & Teyssier, R. 2010,

A&A, 510, L3
Commerçon, B., Hennebelle, P., & Henning, T. 2011a, ApJ, 742, L9
Commerçon, B., Teyssier, R., Audit, E., Hennebelle, P., & Chabrier, G. 2011b,

A&A, 529, A35
Commerçon, B., Debout, V., & Teyssier, R. 2014, A&A, 563, A11
Courant, R., Friedrichs, K., & Lewy, H. 1967, IBM J. Res. Dev., 11, 215
Crutcher, R. M. 2012, ARA&A, 50, 29
Dapp, W. B., & Basu, S. 2012, A&A, 541, A35
Duffin, D. F., & Pudritz, R. E. 2008, MNRAS, 391, 1659
Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., & Klessen, R. S. 2011,

ApJ, 731, 62
Ferguson, J. W., Alexander, D. R., Allard, F., et al., 2005, A&AS, 623, 585
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371
Gerin, M., Pety, J., Commerçon, B., et al. 2017, A&A, 606, A35
González, M., Vaytet, N., Commerçon, B., & Masson, J., 2015, A&A, 578,

A12
Hennebelle, P., & Charbonnel, C. 2013, EAS Pub. Ser., 62
Hennebelle, P., & Ciardi, A. 2009, A&A, 506, L29
Hennebelle, P., & Fromang, S. 2008, A&A, 477, 9
Hennebelle, P., & Teyssier, R. 2008, A&A, 477, 25
Hennebelle, P., Commerçon, B., Chabrier, G., & Marchand, P. 2016, ApJ, 830,

L8
Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, ApJ, 768, 159
Hull, C. L. H., Mocz, P., Burkhart, B., et al. 2017, ApJ, 842, L9
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128
Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S. 2013, A&A, 554, A17
Kim, W.-T., & Ostriker, E. C. 2001, ApJ, 559, 70

8 https://bitbucket.org/nvaytet/osiris
9 http://www.paraview.org

Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2010, ApJ, 716, 1541
Krasnopolsky, R., Li, Z.-Y., Shang, H., & Zhao, B. 2012, ApJ, 757, 77
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2012, ApJ, 754, 71
Krumholz, M. R., Crutcher, R. M., & Hull, C. L. H. 2013, ApJ, 767, L11
Kuffmeier, M., Haugbølle, T., & Nordlund, Å. 2017, ApJ, 846, 7
Larson, R. B. 1969, MNRAS, 145, 271
Lazarian, A. 2013, in Numerical Modeling of Space Plasma Flows, 7th Int. Conf.

(ASTRONUM2012), ASP Conf. Ser., 474, 15
Leão, M. R. M., de Gouveia Dal Pino, E. M., Santos-Lima, R., & Lazarian, A.

2013, ApJ, 777, 46
Lesur, G., Kunz, M. W., & Fromang, S. 2014, A&A, 566, A56
Levermore C. D. 1984, JQSRT, 31, 149
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2013, ApJ, 774, 82
Li, Z.-Y., Krasnopolsky, R., Shang, H., & Zhao, B. 2014, ApJ, 793, 130
Machida, M. N., & Matsumoto, T. 2011, MNRAS, 413, 2767
Machida, M. N., Inutsuka, S.-i, & Matsumoto, T. 2006, ApJ, 647, L151
Machida, M. N., Inutsuka, S.-i, & Matsumoto, T. 2007, ApJ, 670, 1198
Machida, M. N., Tomisaka, K., Matsumoto, T., & Inutsuka, S.-i. 2008, ApJ, 677,

327
Machida, M. N., Inutsuka, S., & Matsumoto, T. 2014, MNRAS, 438, 227
Marchand, P., Masson, J., Chabrier, G., et al. 2016, A&A, 592, A18
Marleau, G.-D., Klahr, H., Kuiper, R., & Mordasini, C. 2017, ApJ, 836, 221
Masson, J., Teyssier, R., Mulet-Marquis, C., Hennebelle, P., & Chabrier, G.

2012, ApJS, 201, 24
Masson, J., Chabrier, G., Hennebelle, P., Vaytet, N., & Commerçon, B., 2016,

A&A, 587, A32
Masunaga, H., & Inutsuka, S.-i 2000, ApJ, 531, 350
Matsumoto, T., & Tomisaka, K. 2004, ApJ, 616, 266
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Mellon, R. R., & Li, Z.-Y. 2008, ApJ, 681, 1356
Mellon, R. R., & Li, Z.-Y. 2009, ApJ, 698, 922
Minerbo, G. N. 1978, J. Quant. Spec. Rad. Transf., 20, 541
Mocz, P., Burkhart, B., Hernquist, L., McKee, C. F., & Springel, V. 2017, ApJ,

838, 40
Mordasini, C., Alibert, Y., Klahr, H., & Henning, T. 2012, A&A, 547, A111
Mouschovias, T. C., & Spitzer, Jr. L. 1976, ApJ, 210, 326
Planck Collaboration Int. XXXV. 2016, A&A, 586, A138
Saigo, K., & Tomisaka, K. 2006, ApJ, 645, 381
Saigo, K., Tomisaka, K., & Matsumoto, T. 2008, ApJ, 674, 997
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, ApJ,

747, 21
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2013, MNRAS,

429, 3371
Saumon, D., Chabrier, G., & van Horn H. M. 1995, ApJS, 99, 713
Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2013, MNRAS, 432,

3320
Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2015, MNRAS, 446,

2776
Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E., 2003, A&A,

410, 611
Spruit, H. C., Stehle, R., & Papaloizou, J. C. B. 1995, MNRAS, 275, 1223
Stamatellos, D., Whitworth, A. P., Bisbas, T., & Goodwin, S. 2007, A&A, 475,

37
Teyssier, R. 2002, A&A, 385, 337
Tomida, K., Machida, M. N., Saigo, K., Tomisaka, K., & Matsumoto, T. 2010,

ApJ, 725, L239
Tomida, K., Tomisaka, K., Matsumoto, et al. 2013, ApJ, 763, 6
Tomida, K., Okuzumi, S., & Machida, M. N. 2015, ApJ, 801, 117
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S.-i.

2015a, MNRAS, 452, 278
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S.-i.

2015b, ApJ, 810, L26
Tsukamoto, Y., Okuzumi, S., Iwasaki, K., Machida, M. N., & Inutsuka, S.-i.

2017, PASJ, 69, 95
Vaytet, N., Audit, E., Chabrier, G., Commerçon, B., & Masson, J. 2012, A&A,

543, A60
Vaytet, N., Chabrier, G., Audit, E., et al. 2013, A&A, 557, A90
Vaytet, N., Tomida, K., & Chabrier, G. 2014, A&A, 563, A85
Vaytet, N., & Haugbølle, T. 2017, A&A, 598, A116
Whitehouse, S. C., & Bate, M. R. 2006, MNRAS, 367, 32
Wurster, J., Price, D. J., & Bate, M. R. 2016, MNRAS, 457, 1037
Wurster, J., Bate, M. R., & Price, D. J. 2018, MNRAS, 475, 1859
Zhao, B., Li, Z.-Y., Nakamura, F., Krasnopolsky, R., & Shang, H. 2011, ApJ,

742, 10

A5, page 14 of 18

https://bitbucket.org/nvaytet/osiris
http://www.paraview.org/
http://linker.aanda.org/10.1051/0004-6361/201732075/1
http://linker.aanda.org/10.1051/0004-6361/201732075/1
http://linker.aanda.org/10.1051/0004-6361/201732075/2
http://linker.aanda.org/10.1051/0004-6361/201732075/3
http://linker.aanda.org/10.1051/0004-6361/201732075/4
http://linker.aanda.org/10.1051/0004-6361/201732075/5
http://linker.aanda.org/10.1051/0004-6361/201732075/6
http://linker.aanda.org/10.1051/0004-6361/201732075/7
http://linker.aanda.org/10.1051/0004-6361/201732075/8
http://linker.aanda.org/10.1051/0004-6361/201732075/9
http://linker.aanda.org/10.1051/0004-6361/201732075/10
http://linker.aanda.org/10.1051/0004-6361/201732075/11
http://linker.aanda.org/10.1051/0004-6361/201732075/12
http://linker.aanda.org/10.1051/0004-6361/201732075/13
http://linker.aanda.org/10.1051/0004-6361/201732075/14
http://linker.aanda.org/10.1051/0004-6361/201732075/15
http://linker.aanda.org/10.1051/0004-6361/201732075/16
http://linker.aanda.org/10.1051/0004-6361/201732075/17
http://linker.aanda.org/10.1051/0004-6361/201732075/18
http://linker.aanda.org/10.1051/0004-6361/201732075/19
http://linker.aanda.org/10.1051/0004-6361/201732075/20
http://linker.aanda.org/10.1051/0004-6361/201732075/21
http://linker.aanda.org/10.1051/0004-6361/201732075/22
http://linker.aanda.org/10.1051/0004-6361/201732075/23
http://linker.aanda.org/10.1051/0004-6361/201732075/23
http://linker.aanda.org/10.1051/0004-6361/201732075/24
http://linker.aanda.org/10.1051/0004-6361/201732075/25
http://linker.aanda.org/10.1051/0004-6361/201732075/26
http://linker.aanda.org/10.1051/0004-6361/201732075/27
http://linker.aanda.org/10.1051/0004-6361/201732075/28
http://linker.aanda.org/10.1051/0004-6361/201732075/28
http://linker.aanda.org/10.1051/0004-6361/201732075/29
http://linker.aanda.org/10.1051/0004-6361/201732075/30
http://linker.aanda.org/10.1051/0004-6361/201732075/31
http://linker.aanda.org/10.1051/0004-6361/201732075/32
http://linker.aanda.org/10.1051/0004-6361/201732075/33
https://bitbucket.org/nvaytet/osiris
http://www.paraview.org
http://linker.aanda.org/10.1051/0004-6361/201732075/34
http://linker.aanda.org/10.1051/0004-6361/201732075/35
http://linker.aanda.org/10.1051/0004-6361/201732075/36
http://linker.aanda.org/10.1051/0004-6361/201732075/37
http://linker.aanda.org/10.1051/0004-6361/201732075/38
http://linker.aanda.org/10.1051/0004-6361/201732075/39
http://linker.aanda.org/10.1051/0004-6361/201732075/40
http://linker.aanda.org/10.1051/0004-6361/201732075/40
http://linker.aanda.org/10.1051/0004-6361/201732075/41
http://linker.aanda.org/10.1051/0004-6361/201732075/42
http://linker.aanda.org/10.1051/0004-6361/201732075/43
http://linker.aanda.org/10.1051/0004-6361/201732075/44
http://linker.aanda.org/10.1051/0004-6361/201732075/45
http://linker.aanda.org/10.1051/0004-6361/201732075/46
http://linker.aanda.org/10.1051/0004-6361/201732075/47
http://linker.aanda.org/10.1051/0004-6361/201732075/48
http://linker.aanda.org/10.1051/0004-6361/201732075/49
http://linker.aanda.org/10.1051/0004-6361/201732075/50
http://linker.aanda.org/10.1051/0004-6361/201732075/50
http://linker.aanda.org/10.1051/0004-6361/201732075/51
http://linker.aanda.org/10.1051/0004-6361/201732075/52
http://linker.aanda.org/10.1051/0004-6361/201732075/53
http://linker.aanda.org/10.1051/0004-6361/201732075/54
http://linker.aanda.org/10.1051/0004-6361/201732075/55
http://linker.aanda.org/10.1051/0004-6361/201732075/56
http://linker.aanda.org/10.1051/0004-6361/201732075/57
http://linker.aanda.org/10.1051/0004-6361/201732075/58
http://linker.aanda.org/10.1051/0004-6361/201732075/59
http://linker.aanda.org/10.1051/0004-6361/201732075/60
http://linker.aanda.org/10.1051/0004-6361/201732075/61
http://linker.aanda.org/10.1051/0004-6361/201732075/62
http://linker.aanda.org/10.1051/0004-6361/201732075/62
http://linker.aanda.org/10.1051/0004-6361/201732075/63
http://linker.aanda.org/10.1051/0004-6361/201732075/64
http://linker.aanda.org/10.1051/0004-6361/201732075/65
http://linker.aanda.org/10.1051/0004-6361/201732075/66
http://linker.aanda.org/10.1051/0004-6361/201732075/67
http://linker.aanda.org/10.1051/0004-6361/201732075/68
http://linker.aanda.org/10.1051/0004-6361/201732075/68
http://linker.aanda.org/10.1051/0004-6361/201732075/69
http://linker.aanda.org/10.1051/0004-6361/201732075/69
http://linker.aanda.org/10.1051/0004-6361/201732075/70
http://linker.aanda.org/10.1051/0004-6361/201732075/71
http://linker.aanda.org/10.1051/0004-6361/201732075/71
http://linker.aanda.org/10.1051/0004-6361/201732075/72
http://linker.aanda.org/10.1051/0004-6361/201732075/72
http://linker.aanda.org/10.1051/0004-6361/201732075/73
http://linker.aanda.org/10.1051/0004-6361/201732075/73
http://linker.aanda.org/10.1051/0004-6361/201732075/74
http://linker.aanda.org/10.1051/0004-6361/201732075/75
http://linker.aanda.org/10.1051/0004-6361/201732075/75
http://linker.aanda.org/10.1051/0004-6361/201732075/76
http://linker.aanda.org/10.1051/0004-6361/201732075/77
http://linker.aanda.org/10.1051/0004-6361/201732075/78
http://linker.aanda.org/10.1051/0004-6361/201732075/79
http://linker.aanda.org/10.1051/0004-6361/201732075/80
http://linker.aanda.org/10.1051/0004-6361/201732075/81
http://linker.aanda.org/10.1051/0004-6361/201732075/82
http://linker.aanda.org/10.1051/0004-6361/201732075/83
http://linker.aanda.org/10.1051/0004-6361/201732075/83
http://linker.aanda.org/10.1051/0004-6361/201732075/84
http://linker.aanda.org/10.1051/0004-6361/201732075/85
http://linker.aanda.org/10.1051/0004-6361/201732075/86
http://linker.aanda.org/10.1051/0004-6361/201732075/87
http://linker.aanda.org/10.1051/0004-6361/201732075/88
http://linker.aanda.org/10.1051/0004-6361/201732075/89
http://linker.aanda.org/10.1051/0004-6361/201732075/90
http://linker.aanda.org/10.1051/0004-6361/201732075/90


N. Vaytet et al.: Protostellar birth with ambipolar and ohmic diffusion

Appendix A: Minimum optical depth per cell

In this section, we describe a scheme we devised to aid the
convergence of the implicit radiative transfer solver. When the
gas is optically thin, it is not crucially important for the heat-
ing and cooling mechanisms whether the optically depth inside
a given cell is 10−8 or 10−4, as long as it is much less than unity.
However, very low optical depths typically require many itera-
tions for a time-implicit radiation solver to converge. We artifi-
cially limited the optical depth per cell to a minimum value of
10−4, by setting the mean Rosseland opacity to

κR = max
(
κR,

10−4

ρ∆x

)
. (A.1)

The flooring occurs in the large (low AMR level) low den-
sity cells, in the outer regions of the protostellar envelope.
Figure A.1a shows the fraction of cells where the optical depth is
being limited, with respect to the total number of cells in the sim-
ulation, as a function of time (red solid line). The black dashed
line shows the evolution of the density at the centre of the col-
lapsing cloud (i.e. inside the densest cell) with time. We see that
while the fraction of cells with limited κRρ∆x is large (∼80%) at
early times, it drops below 0.1 when the first Larson core forms
(t ∼ 28 kyr and ρ ∼ 10−10 g cm−3). In panel b of Fig. A.1, we
show the total number of cells per AMR level (grey histogram),
for a snapshot at a time of 28.180 kyr. The red histogram shows
the cells where the optical depth is being limited. We can see
that the floor is operating only in the outer layers of the collaps-
ing system, from AMR level 6 to 11, and will not impact the
properties of the first and second Larson cores. In the ideal MHD
simulation presented in the main part of this paper (up until a
simulation time of 28.180 kyr), the total number of iterations is
reduced by 25%, and the computational time reduced by 20%.

To validate the optical depth flooring scheme, we show in
panel c the temperature/density distribution of all the cells in the
mesh for two simulations. The first has the optical depth limita-
tion switched on, while it is turned off in the second. The coloured
contours show the relative difference R between the two simu-
lations, for each (ρ,T ) pixel in the plot. It is defined as R =
Nlimited/Nnot limited − 1, where N... is the number of cells binned
inside a (ρ,T ) pixel. A red area indicates that there are more
cells from the simulation with the limitation scheme than from
the run without the κRρ∆x floor in that particular region of the
plot, and vice versa for blue areas. The differences are expected
to be the largest at low densities. However, in this isothermal
phase of collapse, all the gas has a constant temperature of 10
K and the optical depth limiting scheme has basically no impact
on the results. Small differences, of the order of 1%, are visi-
ble at higher densities, but these mostly originate from the fact
that the two simulation outputs have been written at slightly dif-
ferent times10. Finally, in panel d we show the Rosseland mean
opacity as a function of density, using the same convention as
in panel c. It is once again obvious that the limiter is only ac-
tive in the outer layers of the infalling envelope, where the flow
is still isothermal. The limited opacities show a stripy pattern
which is due to the refinement of cells. We conclude that the
optical depth limitation scheme does not appear to affect the
thermodynamics of the system as it operates only in the isothermal
stage of the collapse.

10 In RAMSES, outputs are only written when a coarse step has been com-
pleted, and it is often not trivial to write snapshots at exactly the same
simulation time in two different simulations.

Fig. A.1. Panel a: fraction of cells inside the mesh where the optical
depth is being limited as a function of time (red solid line). The dashed
black line shows the density at the centre of the system as a function
of time. Panel b: number of cells in each level (grey) and the number
of cells where the optical depth floor is operating (red), at a time of
28.180 kyr, when the first Larson core is formed. Panel c: relative dif-
ference in 2D histograms of gas temperature as a function of density for
all the cells in a simulation with optical depth limitation and a second
simulation without, at t = 28.180 kyr. The colour scale gives a measure
of R = Nlimited/Nnot limited − 1, where N... is the number of cells binned
inside a (ρ,T ) pixel for the two different simulations. Panel d: same as
panel c but in the case of the Rosseland mean opacity as a function of
density.
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Appendix B: The timestep limitation scheme

One of the difficulties when working with diffusion processes on
a mesh based framework is that the timestep criterion for nu-
merical stability usually scales with the square of the mesh size
∆x. This is indeed the case for ambipolar and ohmic diffusion,
and is made worse by the fact that as densities increase, not only
does ∆x decrease but the resistivities can also increase by several
orders of magnitude (see Fig. 5 in Marchand et al. 2016). This
double effect (see Eq. 10) causes the timestep ∆t to fall abruptly
after the first Larson core is formed, and would require millions
of timesteps to reach the second Larson core formation, making
the problem non-tracktable. In the same spirit as limiting the op-
tical depth per cell in the previous section, where we found that
as long as the optical depth in a cell is much less than unity its
exact value does not matter for our purposes, we postulate that
as long as a strong magnetic diffusion is operating, the precise
amount will not affect our results in a crucial way.

As mentioned in Sect. 2, the method we have chosen to try
and prevent the MHD timestep from reaching prohibitively low
values is to artificially limit the value of ∆t to a fraction ξ of
the ideal MHD timestep ∆tID. In practice, we found that set-
ting the lower limit to ξ = 0.1 was a good compromise be-
tween speedup and accuracy of results. We emphasise that we
have no physical justification for the value of 0.1, it was sim-
ply chosen after months of testing. To ensure consistency be-
tween the imposed value of ∆t and the magnetic diffusion, one
has to artificially lower the resistivities in the cells which would
have ∆tO,A < ξ∆tID. The resistivities are thus overwritten with
ηO,A = min(ηO,A,

0.1∆x2

ξ∆tID
). Note here that the factor of 0.1 in the

numerator of the fraction on the right-hand side is different from
the ξ = 0.1; it corresponds to the CFL-like factor that is used
to compute the diffusion timestep, taken as a tenth of the time it
would take for all the magnetic field inside the cell to diffuse.

Validation of this acceleration scheme is explicited in
Fig. B.1. Panel a shows the fraction of cells inside the compu-
tational domain where the resistivities are being modified, as a
function of time. The black dashed line represents the evolution
of the central density, and we can see that as it reaches values
characteristic of the first Larson core (∼10−12 to 10−10 g cm−3),
the numbers of cells where ∆tO,A is floored begin to increase.
However, these fractions remain small throughout the simula-
tion, peaking at 25% for the ambipolar diffusion (red) and 10%
for the ohmic diffusion (blue). In addition, the flooring is only
important during a transition phase between the formation of
the first and second Larson cores, since after having increased
with density, the resistivities begin to fall again once tempera-
tures increase beyond ∼1500 K where the dust grains evaporate
(see Fig. 2b and Marchand et al. 2016). This is indeed reflected
by the sharp fall in fractions (blue and red lines) as the density
abruptly increases past 10−8 g cm−3. A histogram showing the
number of cells affected by the ∆t flooring for each AMR level,
taken at a time of 28.2 kr where the fractions in panel a reach
their maxima, is displayed in panel b. As the flooring operates
only in the densest parts of the system, only the highest AMR
levels are affected.

The resistivities affect primarily the magnetic field, and we
show in panel c a distribution of the magnetic field as a function
of density in every cell in two different simulations. The first has
the acceleration scheme switched on, while the other is without.
Because of the prohibitively small values of ∆t in the simula-
tion without timestep acceleration, we ran both calculation with
a resolution of only 12 points per Jeans length. As in the previ-
ous section, the coloured contours show the relative difference

Fig. B.1. Panel a: fraction of cells inside the mesh where ηA (red) and ηO
(blue) are being modified to prevent the MHD timestep from becoming
too small, as a function of time. The dashed black line shows the evo-
lution of the central density. Panel b: number of cells per AMR level
(grey) and the number of cells where the ambipolar (red) and ohmic
(blue hatched) diffusion timestep floor is operating, at a time of 28.2 kyr.
Panel c: relative difference in 2D histograms of magnetic field strength
as a function of density for all the cells in a simulation with ∆t flooring
and a second simulation without, at t = 28.2 kyr. The colour scale is
analogous to that of Fig. A.1. Panel d: same as panel c but in the case
of the ambipolar (red-blue) and ohmic (green-brown) resistivities.
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R between the two simulations, for each (ρ, B) pixel in the plot.
It is defined as R = Naccel/Nno accel − 1, where N... is the num-
ber of cells binned inside a (ρ, B) pixel. A red area indicates that
there are more cells from the simulation with the acceleration
scheme than from the run without the ∆t floor in that particular
region of the plot, and vice-versa for blue areas. As expected,
the timestep limitation scheme changes the magnetic diffusion
plateau at high densities (ρ > 10−13 g cm−3), but only in a very
minor way. The accelerated simulation still displays a strong
magnetic diffusion barrier around 0.1 G, and the values of B
differ by 5% or less in the rest of the computation box, com-
pared to the run with the correct ∆t11. This, we argue, is the
justification for using the acceleration scheme; the magnetic
diffusion is still operating, and still dominates over any nu-
merical diffusion. The diffusion is crucial to limiting the mag-
netic braking and the accumulation of magnetic flux, and this
is still achieved in the accelerated run. In the last panel d, we
show for informative purposes the values of the resistivities as
a function of density, using the same colour convention as in
panel c. The differences below ρ ∼ 10−13 g cm−3 are once again
due to a different simulation time output, and the resistivities are
only modified by the acceleration scheme at high densities. Even
though the resistivities can be modified by more than an order of
magnitude, as long as they are high enough, the exact values of
ηA,O do not seem to be important in the scope of our simulations.

It is of course difficult to predict the impact of such an
acceleration scheme on simulation results without running the
full (non ∆t-limited) simulation first, as it is potentially highly
problem-dependent. Even though we tested the method across
a range of initial conditions (different parent cloud masses, ini-
tial magnetization, temperature, rotation) and it always gave ex-
cellent results, we limited ourselves to the problem of a gravita-
tionally collapsing magnetised body, and we must advise caution
when using it for a different kind of set-up.

Appendix C: Resolution study

In star formation studies, the refinement criterion when us-
ing an AMR mesh is usually based on the Jeans length. In
other words, the Jeans length needs to be adequately sam-
pled to properly resolve the system dynamics. There has been
some debate as to how many cells per Jeans length are actually
necessary, and authors commonly use 10–16 cells per Jeans
length (e.g. Commerçon et al. 2011a; Krumholz et al. 2012).
Vaytet & Haugbølle (2017) recently showed, using 1D simula-
tions, that resolution can affect the thermodynamics of collaps-
ing dense clouds, because of poor sampling of the optical depth
which limits radiation cooling and causes spurious heating inside
the first Larson core. If the optical depth within a cell is too large
(typically >100), Vaytet & Haugbølle (2017) found that the
radiative flux points inward the first core, which creates a
spurious bump in the temperature profile. This numerical ef-
fect happens when the numerical resolution is too low, and
Vaytet & Haugbølle (2017) showed empirically that limiting the
optical depth within a cell to a few tens is enough to prevent it.
We performed a resolution study to show that this effect can be
also prevented in 3D simulations and to ensure it was not affect-
ing the evolution of the protostellar system.

To determine the resolution requirements of our set-up, we
ran a simulation with a lower resolution of 16 cells per Jeans
length and compare it to our fiducial resolution of 32 cells per

11 Many of these errors are also due to the fact that the snapshots from
the two simulations are not written at exactly the same simulation time.

Fig. C.1. Temperature as a function of density, for every cell in the com-
putational domain (ideal MHD case). The simulation using NJeans = 32
cells per Jeans length is represented by the blue area, while the red re-
gion is for the run with only 16 cells per Jeans length. Each data set
is delineated by a solid contour line which outlines the data distribu-
tions. The two snapshots were taken at similar evolution times, chosen
to be just after the NJeans = 16 run has departed from its initial adia-
batic track. The dashed lines represent the time evolution of the central
(densest) cell inside the mesh (these tracks continue beyond the time of
the snapshots to provide a wider context). The black arrow indicates the
place where the low-resolution track departs from its original adiabat.

Jeans length. The results are shown in Fig C.1. The red contours
are for the low-resolution run, while the blue contours are for
the calculation with 32 cells per Jeans length. The dashed lines
show the evolution of the densest cell in the system, and can
be compared to the 1D results of Vaytet & Haugbølle (2017). In
the low-resolution run, we actually observe a “turn off” in the
first adiabatic phase, at densities ∼10−9 g cm−3, while the high-
resolution path continues along the same adiabatic track. This
departure from adiabaticity actually looks identical to the phe-
nomenon observed by Vaytet & Haugbølle (2017). We also note
that the gas is hotter in the low-resolution simulation. It is ob-
vious here that 16 cells per Jeans length is not enough to prop-
erly describe the physical processes at work. In fact, we can also
see just at the top right end of the high-resolution track a small
“kink” in the curve, suggesting that even 32 cells might not be
enough for fully converged results. However, the simulation with
ambipolar and ohmic diffusion would have been too expensive to
run with anything more than NJeans = 32, and we determined that
the consequences of such a small kink would only be minimal.

From this short resolution study, we see that a refinement
criterion solely based on the local Jeans length is not adapted
to describe the adiabatic evolution of a hydrostatic core in col-
lapse calculations. A dedicated study of the necessary numerical
resolution within the different components of a collapsing core
(envelope, disk, hydrostatic cores) is clearly needed and should
be the focus of future work.

Appendix D: Regions of active ambipolar and
ohmic diffusion

We compute here dimensionless numbers which reveal the re-
gions on active ambipolar and ohmic diffusion in our system.
Following Tomida et al. (2015) and Masson et al. (2016), we de-
fine the ambipolar and ohmic Reynolds (or sometimes called
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Fig. D.1. Map of the ambipolar (filled blue/red contours) and ohmic
(green) Reynolds numbers close to the first Larson core. The light grey
lines represent the magnetic field.

Elsasser) numbers as

EA =
VL
ηA

; EO =
VL
ηO

, (D.1)

where V is the magnitude of the gas velocity vector, and L
represents the typical scale of the system, which we take as
the distance from the current cell to the centre of the protostar.
Figure D.1 shows a map of the logarithm of EA (coloured con-
tours) in the vicinity of the first Larson core (side view) with the
magnetic field lines overlayed (light grey). The regions where
EA . 1 (white and red) have strong ambipolar diffusive effects
that modify the magnetic field topology. Indeed, the equatorial
pinching of field lines, which is evident in the IMHD run (see
Fig. 3m), is reduced when EA < 5 (inside 30 AU), and eventu-
ally disappears when EA < 1 (inside 10 AU).

In contrast, the green region in Fig. D.1 represents areas
where ohmic diffusion is active (EO < 5); it is much smaller
because the ohmic resistivities peak at higher densities than
their ambipolar counterpart (see Fig. B.1d). This reveals that
the straightening of the field lines observed in Sect. 3.3.1 and
Fig. 3f,m is due to the effects of ambipolar diffusion.

Appendix E: Definitions of the first and second
proto-stellar cores

In this section, we take a look at two different definitions of
the first and second Larson cores and how they may affect core
morphologies, masses and radii. The cores are often referred to
as “hydrostatic cores” in the literature, as they are supposedly
(for the most part) in hydrostatic equilibrium. Computing the
condition for hydrostatic equilibrium is often expensive in a 3D
system, as pressure gradients have to be calculated in all direc-
tions, and authors have often favoured simpler criteria such as
vanishing radial velocities or thermal-to-kinetic pressure equi-
librium. Choosing one definition over the other can sometimes

Fig. E.1. Maps and contours showing the morphologies of the cores
using two different definitions. The coloured maps show the ratio of
thermal to infalling ram (kinetic) pressure, while the black solid contour
defines the region where the gas density exceeds density thresholds of
ρcore = 10−10 g cm−3 for the first Larson core and ρcore = 10−5 g cm−3 for
the second Larson core. The panels are: (a) runID first core, (b) runAO
first core, (c) runID second core, (d) runID second core. We note the
difference in spatial scales between panels a and b.

result in large differences in the extent of the core, and con-
sequently the mass that is attributed to it. In Fig. E.1, we
compare two different definitions for the proto stellar cores.
These are:

1. Thermal pressure exceeds ram pressure: p > ρv2
r

2. Density exceeds a chosen threshold: ρ > ρcore

The first condition characterises a thermally supported body,
and is equivalent (within a factor of γ) to the definition in
Tomida et al. (2010). The second definition is the one we have
used throughout this paper. We chose ρcore = 10−10 g cm−3 for
the first Larson core and ρcore = 10−5 g cm−3 for the second Lar-
son core.

The left column of Fig. E.1 shows the first and second cores
in runID, while the right one is for runAO. For the first core
in runID (panel a), it is clear that definitions 1 is affected by
the interchange instability which creates a large region of ther-
mally supported gas. The resulting morphology is not what is
usually associated with a hydrostatic core, with loops presum-
ably connected to the magnetic field. On the other hand, defini-
tion 2 yields a close-to-spherical body. In contrast, both defini-
tions produce similar results for the runAO first core (panel b),
where the core is an unbroken/continuous body, flattened on its
north and south faces by the heavy accretion streams that slam
onto its surface. In the case of the second core, the situation is
reversed. Both definitions agree for runID (panel c) but large
discrepancies emerge for runAO (panel d). Indeed, the small disk
around the second core is also pressure-supported (see Sect. 3.4)
and definition 1 considers it to be part of the proto-stellar core,
while definition 2 selects only a small spheroidal core, excluding
the disk around it.
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