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ABSTRACT
We describe a new implementation of the one-fluid method in the SPH code PHANTOM to
simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend
previously developed algorithms by computing the evolution of a new fluid quantity that
produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover,
by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal
velocity approximation, we avoid fatal numerical errors in mass conservation. We test and
validate our new algorithm by running 3D SPH simulations of a large range of disc models
with tightly and marginally coupled grains.

Key words: accretion, accretion discs – hydrodynamics – methods: numerical.

1 IN T RO D U C T I O N

Protoplanetary discs are composed of a mixture of gas and dust.
While gas usually dominates the mass, and hence the hydrodynam-
ics of the system, dust is the dominant source of opacity in the bulk
of the disc. As a result, the optical appearance of discs is strongly in-
fluenced by the dust distribution (Testi et al. 2014; Birnstiel, Fang &
Johansen 2016). Recent high-resolution observations of protoplan-
etary discs have revealed a wealth of asymmetric structures in both
gas and dust phases (e.g. Casassus 2016; Boehler et al. 2018). The
physical mechanisms driving the formation of these structures are
best understood using 3D hydrodynamical simulations that accu-
rately model the coupling between gas and dust for a wide range of
grain sizes (Haworth et al. 2016).

Solid particles embedded in a gas fluid are often treated using
a continuous fluid description (Garaud, Barriére-Fouchet & Lin
2004). The macroscopic properties of the dust (e.g. density and ve-
locity) are evolved on a set of grid points or particles that represent a
volume large enough to be statistically meaningful, but sufficiently
small as to ignore variations of the fluid quantities within that vol-
ume. In smoothed particle hydrodynamic (SPH) simulations, the
dust dynamics can be computed using two different approaches: the
two-fluid algorithm described in Laibe & Price (2012), typically
used for large dust grains in weak drag regimes, and the one-fluid
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algorithm (Price & Laibe 2015) based on the so-called terminal
velocity approximation (Youdin & Goodman 2005), which is better
suited for simulating dust phases that are tightly coupled with the
gas. In terms of gas-dust modelling, the two-fluid implementation
treats the gas and the dust as two separate sets of simulation par-
ticles, coupled by a drag force. In contrast, the SPH particles in
the one-fluid approach represent the mixture, whose composition is
determined by the dust fraction, that is evolved as a local property
of the mixture.

Since it is numerically difficult to simulate all of the physical
drag regimes that occur in nature with a single algorithm, meth-
ods/studies are often distinguished by the degree of coupling be-
tween phases, usually quantified by the so-called Stokes number:
particles with the same Stokes number are aerodynamically iden-
tical – regardless of their shape, size, and/or density. The Stokes
number is found by comparing the typical dynamical time-scale of
the system, tdyn, to the typical stopping time-scale, ts, i.e. the time it
takes for drag to significantly modify the relative velocity between
a single grain and the gas. When the grains size is smaller than the
mean free path of the gas (Epstein 1924) – which is generally the
case for mm-cm size grains in protoplanetary discs (Garaud et al.
2004) –, the Stokes number is given by (Price & Laibe 2015)

St ≡ ts

tdyn
=

√
πγ

8

ρinta�k

ρcsl
, (1)

where a is the grain size, ρ int is the intrinsic grain density, cs is the
sound speed, γ is the adiabatic index, �k is the Keplerian angular
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velocity (�k = t−1
dyn), l is a correction factor for supersonic drag, and

ρ is the total density.

1.1 The one-fluid method

The one-fluid equations can be derived by rewriting the fluid equa-
tions for the gas and the dust in the barycentric reference frame
of the mixture (Laibe & Price 2014a). In doing so, we substitute
out the individual velocities of the gas and dust phases in favour of
the new barycentric velocity of the mixture,

v = ρgvg + ρdvd

ρg + ρd
, (2)

and the differential velocity between the two phases,

�v = vd − vg, (3)

where ρ is the density, v is the velocity, and the subscripts g and
d identify gas and dust quantities, respectively. Similar to the ve-
locities, we replace the gas and dust densities by the total density,
ρ = ρd + ρg, and the dust fraction, ε ≡ ρd/ρ, such that

ρg = (1 − ε)ρ, (4)

ρd = ερ. (5)

The equations describing the evolution of a dust-gas mixture can be
therefore written in the form (Laibe & Price 2014a)

dρ

dt
= −ρ(∇ · v), (6)

dε

dt
= − 1

ρ
∇ · [ε(1 − ε)ρ�v], (7)

dv

dt
= −∇P

ρ
− 1

ρ
∇ · [ε(1 − ε)ρ�v�v] + f, (8)

d�v

dt
= −�v

ts
+ ∇P

(1 − ε)ρ
− (�v · ∇)v

+ 1

2
∇ · [(2ε − 1)�v�v], (9)

dũ

dt
= −P

ρ
∇ · (v − ε�v) + ε(1 − ε)

�v2

ts
, (10)

where P is the gas pressure and f represents the external forces
acting on both components (e.g. gravity). Moreover, for convenience
we have parametrized the thermal energy as ũ = u(1 − ε). The
stopping time, ts, is given by

ts = ε(1 − ε)ρ

K
, (11)

where K is the drag coefficient, which regulates the aerodynami-
cal coupling between the two phases (Weidenschilling 1977). The
equations of the mixture are closed by the equation of state, such as
the adiabatic one, i.e.

P = (γ − 1)ρ ũ. (12)

There are several advantages to using the one-fluid formulation over
the two-fluid approach (see Price & Laibe 2015), particularly for
small dust grains. For example, since the gas and dust are co-located
in the one-fluid approach, it does not require (or can easily circum-
vent) the prohibitive temporal and spatial resolution requirements
at high drag (needed in two-fluid simulations by the interpolation
of fluid quantities between different phases, Laibe & Price 2012).

Furthermore, the one-fluid method prevents artificial trapping of
dust beneath the resolution length of the gas. Finally, the one-fluid
formalism naturally generalises to account for multiple dust species
coupled to the same gas phase (Laibe & Price 2014c; Hutchison,
Price & Laibe 2018).

Terminal velocity approximation

The fluid equations in the one-fluid formalism can be simplified
when the stopping time is small compared to the typical hydrody-
namic time-scale, i.e. the time required for a sound wave to prop-
agate over a characteristic distance. In the context of SPH, we can
write this condition as, ts < h/cs, where h is the local smoothing
length of the particles. In this regime, usually referred to as termi-
nal velocity regime (Youdin & Goodman 2005), the relative velocity
between the two phases rapidly reach a terminal velocity due to the
balancing of the drag and pressure forces. As a consequence, the
time dependence of the differential velocity between the gas and
the dust can be ignored,

�v = ts
∇P

ρg
= ts

(1 − ε)

∇P

ρ
. (13)

Neglecting terms of second order in ts, equations (6)–(10) reduce
to

dρ

dt
= −ρ(∇ · v), (14)

dε

dt
= − 1

ρ
∇ · (εts∇P ), (15)

dv

dt
= −∇P

ρ
+ f, (16)

dũ

dt
= −P

ρ
(∇ · v). (17)

Apart from the additional evolution equation for the dust fraction,
the equations in the terminal velocity approximation bear striking
resemblance to the usual hydrodynamic equations for the gas with-
out the dust. Therefore, the SPH discretisation of the continuity
and momentum equations are identical to that of a regular gas-only
simulation while the dust fraction and the thermal energy are dis-
cretized directly as shown in equation (43) in Price & Laibe (2015)
and equation (55) in Hutchison et al. (2018).

1.2 Time stepping

The addition of the diffusion equation for the dust fraction (equa-
tion 15) leads to an additional constraint on the timestep. As-
suming a constant density and an isothermal equation of state,
P = c2

s (1 − ε)ρ, equation (15) can be rewritten as

dε

dt
= ∇ · (ηε ∇ε), (18)

where ηε ≡ εtsc
2
s is the diffusion coefficient. A new constraint on

the time step is needed when the diffusion coefficient is larger.
Indeed, Price & Laibe (2015) provide a stability criterion of the
form

�t < �tε ≡ C0
h2

ηε

= C0
h2

εc2
s ts

, (19)

which implies that the time step needs to be constrained when the
stopping time is long – the opposite of the two-fluid case where
the time step is constrained for short stopping times. It is worth
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remarking that the terminal velocity approximation is only strictly
valid when the stopping time is less than the computational time
step. Actually, a more general time step condition can be derived,
taking into account possible gradients in ε (see Appendix A). This
is given as

�t < C0
h2

εc2
s ts

2a

a2 + b2
, (20)

where a = (1 − h2∇2ε/ε) and b = 2h|∇ε|/ε. It can be easily
seen that equation (20) reduces to equation (19) for constant ε. This
condition is safer than equation (19) in regions of strong gradients of
ε, but it is more difficult to implement (since it requires an additional
loop over the particles to obtain the gradient of ε) and can lead to
severe time step restrictions in certain practical applications (see
Sect. 4). As a result, we default back to equation (19) for our time
step control in this work.

2 EN F O R C I N G P O S I T I V I T Y O F T H E D U S T
F R AC T I O N

The one-fluid approach does not put any constraint on the positivity
of the dust fraction. This problem can arise in regions where, for
example, particles containing a finite amount of dust are adjacent
to pure gas particles (i.e. ε = 0). As the particles evolve in time,
the infinite gradient in ε created at this interface leads the pure
gas particles to develop a negative dust fraction. We can avert this
problem by parameterising and evolving the dust fraction using a
new variable, s = √

ερ. The positivity of the physical variable ε is
now guaranteed since

ε = s2/ρ. (21)

The corresponding diffusion equation for the new variable s is

ds

dt
= − 1

2s
∇ ·

(
s2

ρ
ts∇P

)
− s

2
∇ · v

= −1

2
∇ ·

(
s

ρ
ts∇P

)
− ts

2ρ
∇P · ∇s − s

2
∇ · v. (22)

We note that the first term on the right-hand side of equation (22)
is written so as to prevent an infinite gradient in ε when s → 0 (i.e.
ε → 0). The usual method for discretising equation (14),

ρa =
∑

b

mbWab(ha), (23)

trivially conserves the total mass of the mixture, but does nothing
to conserve the mass of each of the components. Formally, mass
conservation of the dust and gas also holds as long as the energy
equation is modified appropriately Price et al. (2017), i.e. such that

dE

dt
= d

dt

∑
a

ma

[
1

2
v2

a + (1 − εa)ua

]
= 0, (24)

which, in terms of the new variable s, requires that∑
a

ma

[
va

dva

dt
+ρg

a

dua

dt
−ua

(
2sa

ρa

dsa

dt
− s2

a

ρ2
a

dρa

dt

)]
= 0. (25)

The SPH discretization for the evolution of s is shown in equation
(280) of Price et al. (2017). Although the formulation prevents ε

from going negative, it does not guarantee that the dust fraction
will remain smaller than unity. Numerical artefacts can appear in
regions where the gradient of the dust fraction is steep, resulting in a
spontaneous increase in dust mass. These artefacts are most severe
when ε → 0 or ε → 1 and, at least in some instances, quickly drive
the dust fraction to values larger than unity.

3 A N E W IM P L E M E N TAT I O N

In this section, we propose a new parametrization of the dust fraction
similar to that used by Price & Laibe (2015), but that enforces the
constraint 0 < ε < 1 by mapping the dust fraction to a function
whose co-domain is only defined from [0,1], thereby preventing ε

from becoming unphysical. A promising parametrization that meets
the above criterion is given by

ε = s2

1 + s2
such that s =

√
ε

1 − ε
. (26)

In this new formulation, the variable s is then related simply to the
ratio of dust to gas densities, s = √

ρd/ρg. We calculate the time
derivative as

ds

dt
= 1

2s(1 − ε)2

dε

dt
. (27)

Substituting equation (7) and manipulating the term on the right
hand side of equation (27), we obtain

ds

dt
= − 1

2ρ(1 − ε)2

{
∇ ·

[
s(1 − ε)ts∇P

]
+ (1 − ε)ts∇P · ∇s

}
.

(28)

The SPH discretisation is implemented in the form

dsa

dt
= − 1

2ρa (1 − εa)2

∑
b

[
mbsb

ρb

(Da + Db) (Pa − Pb)
Fab

|rab|

]
,

(29)

where Da ≡ ts, a(1 − εa). Like the previous implementation (Sec-
tion 2), our new expressions conserve linear and angular momen-
tum, energy, and mass – at least up to the accuracy of the time
stepping algorithm. Although it is true that the total mass is trivially
conserved by virtue of equation (23), this attribute is not bequeathed
to the individual phases due to their dependence on ε, an evolved
quantity. This contingency on the time-evolution accuracy of ε plays
an important role in the discussion that follows.

We implemented the above formalism into the SPH code PHAN-
TOM (Lodato & Price 2010; Price et al. 2017) and tested it using
PHANTOM’s standard nightly test suite (described in section 5.1 of
Price et al. 2017), which includes (among others) the DUSTYWAVE,
DUSTYSHOCK, and DUSTYDIFFUSE tests described in Price & Laibe
(2015). The new implementation not only passed within the ‘ac-
ceptable’ tolerances set for each test, it outperformed the existing
algorithm. As a specific example, when compared with the previ-
ous method, the ‘derivatives test’ (Section 5.1.1 of Price et al. 2017)
showed an improvement in the accuracy of the time derivative of ε

by a factor of five while the total energy conservation improved by
a factor of ∼400.

Next we looked at some typical configurations involving the inter-
action of an embedded protoplanet with its parent disc. Comparing
the two parametrizations discussed in this paper, Fig. 1 follows the
evolution of the dust surface density (initial power law profile with
index p = −0.5) in a 3D simulation of a dusty protostellar disc
with a radial extent of R ∈ [1, 120] au and an embedded planet of
mass 0.5 MJ located at a distance of 60 au from the central star. The
temperature profile drops as a power law with q = −0.7 and the disc
aspect ratio is H(R0)/R0 = 0.025, at R0 = 1 au. We embed the planet
in order to further investigate diffusivity gradients that arise due to
planet-disc interactions. The planet also alters the relative dust frac-
tions in the inner and outer parts of the disc with time. The sim
ulation describes the evolution of a 0.1 millimeter grain population.

MNRAS 477, 2766–2771 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/2/2766/4939289 by guest on 02 July 2022



Simulating coupled dust with PHANTOM 2769

Figure 1. Rendered images of dust surface density (in code units) at different times during a 3D SPH simulation of a dusty protostellar disc with a radial extent
of R ∈ [1, 120] au and an embedded planet of mass 0.5 MJ at 60 au. The dust surface density profile follows a power law with index p = 0.5. We used both the
implementations described in Section 2 (upper panels) and Section 3 (lower panels). The gas disc density structure (not shown) is spatially larger than the dusty
disc, producing a region in the outer disc with a strong gradient in the dust diffusivity. The evolution of the dust dynamics in these regions is better handled
with the new implementation. In particular, the spurious dust rings, that appear at late times with the old formulation and that signal that dust mass is not well
conserved, disappear with the new formulation. The temperature profile drops as a power law with q = −0.7 and the disc aspect ratio is H(R0)/R0 = 0.025, at
R0 = 1 au. The simulation describes the evolution of a 0.1 millimeter grain population.

Particles with a non-negligible dust fraction exhibit Stokes numbers
in the range [0.02, 0.2], which safely correspond to stopping times
below h/cs.

As time progresses, the viscous and pressure forces in the disc
cause the gas to expand radially outward, creating a strong gradient
in the dust fraction (and hence diffusivity) at the edge of the dusty
disc. Fig. 1 shows that the numerical artefacts that occurred with the
old implementation are removed with the new parametrization. This
improved accuracy is thanks to the more accurate time-evolution of
ε in regions with steep gradients in the dust diffusivity (i.e. at the
outer edge of the dusty disc).

Again comparing the two implementations, Fig. 2 shows the
time evolution of the total dust mass, i.e. ε = s2/ρ (dashed line) and
ε = s2/(1 + s2) (solid line). While with the old implementation the
dust mass increases in time (starting from a value of 5 · 10−6 M	 and
reaching 3 · 10−4 M	, after ∼2 · 104 yr), the new implementation
better computes the evolution of the dust density, avoiding most of
the numerical artefacts occurring at the edge of the dusty disc due to
the strong gradients in the dust fraction. Moreover, our tests show
that the computation of the dust fraction and the thermal energy
in our new implementation is faster than the

√
ερ parametrization

described in Section 2.

4 LIMITING THE STOPPING TIME

As mentioned earlier, despite the conservation ensured by the spatial
discretization of the fluid equations, non-conservation may still arise
due to time stepping errors. Non-conservation of gas/dust mass are
particularly vulnerable in regions of small ε where the dust fraction
tends to relax the time step (see equation 19). However, since these
regions are usually occupied by dust grains with large stopping
times, they are the very regions that need a small time step in
order to be accurate. This breakdown of our time step criterion is

Figure 2. Time evolution of the total dust mass for the parametrization
ε = s2/ρ described in Section 2 (dashed line) and ε = s2/(1 + s2) in
Section 3 (solid line). Importantly, the dust mass does not increase over time
with the new parametrization.

most likely due to the violation of the assumptions used to derive
equation (19), and, in particular, to the fact that it was derived
neglecting gradients in the dust fraction, as discussed already in
Section 2 above. In theory, we should be able to reduce our time
step (by adopting the full time step condition, equation (20), or by
reducing C0) to maintain mass conservation. We have verified that
maintaining a ‘sufficiently small’ time step for these problematic
particles preserves mass conservation for the system, but at the
cost of impossibly slow simulations when, for example, very small
amounts of dust get flung out and stranded in the low-density outer

MNRAS 477, 2766–2771 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/477/2/2766/4939289 by guest on 02 July 2022



2770 G. Ballabio et al.

Figure 3. Rendered images of dust surface density (in code units) at different times using our new
√

ρd/ρg parametrization, including the limit on the stopping
time (top panels) and not (bottom panels). To test the limits of our algorithm, we alter the disc model so that a large fraction of the dust grains in the outer disc
have a stopping time larger than h/cs. We further exacerbate the conditions by placing a massive protoplanet near the outer disc edge to stir up the dust in low
density regions. Limiting the stopping time allows mass conservation to hold, even in these extreme conditions. The protoplanetary disc used in this simulation
has a radial extent of r ∈ [25, 200] au, with an aspect ratio, H(R0)/R0 = 0.09, at R0 = 25 au and a power-law temperature profile with index q = −0.5. The
gaseous disc mass is 0.034 M	, with a dust-to-gas ratio of 0.007. The initial gas and dust surface densities are given by a power law (index p = −1) with an
exponential cut-off at Rtap = 70 au. We considered a dust grain size of 1 mm. Two planets are embedded in the disc at 35 and 140 au, of 4 and 6 MJ, respectively.

disc. Therefore, in practice we seek a more viable option that can
circumvent these problem particles while still conserving gas/dust
mass for the system. It is rather vexing that such violations most
likely occur in ‘peripheral’ particles that often have little influence
on the simulation at large. From experience, numerical artefacts
are mostly likely to occur in the upper/outer regions of discs with
high aspect ratio, H/R, and low (in absolute value) radial power-law
index for the temperature, q. The dust diffusion, i.e. εts∇P, in these
regions is strong due to the steep gradients in the pressure and for
particles with large stopping time.

To prevent the numerical inaccuracies, we see when such strong
gradients are present in the disc for particles with large stopping
time, we propose moderating the rapid dust diffusion for problem-
atic particles by enforcing the following limit on the stopping time

t̃s = min (ts, h/cs), (30)

that results in limiting the flux of the mass embodied in large par-
ticles. Limiting the flux of dust mass through the stopping time (as
opposed to the pressure gradient or the diffusion coefficient as a
whole) has the advantage that it is localized strictly to particles that
violate the terminal velocity approximation and requires no prior
knowledge about the dynamical state of the system.

Fig. 3 compares the evolution of the dust surface density using
our new dust implementation presented in Section 3 (lower panels)
and the same implementation, but limiting the stopping time (upper
panels). The protoplanetary disc used in these two simulations has
a radial extent of r ∈ [25, 200] au and it is thicker than the one used
in Fig. 1, with an aspect ratio, H(R0)/R0 = 0.09, at R0 = 25 au
and a temperature profile index q = −0.5. The gaseous disc mass
is 0.034 M	, with a dust-to-gas ratio of 0.007. The initial gas and
dust surface densities are given by a power law (index p = −1)

with an exponential cut-off at Rtap = 70 au. The dust grain size is
1 mm. In this case, we include two planets at 35 and 140 au, of 4
and 6 MJ, respectively. The outer planet is deliberately placed so as
to fling dust into regions where we know the terminal velocity ap-
proximation has difficulty. Importantly, the flux limited simulations
conserve the dust mass to machine precision while our other simu-
lations do not. The spurious increase in dust mass in our unmodified
simulation takes place in the outer disc where the gradients in the
dust diffusivity are large.

It is important to note that by limiting the stopping time we are
artificially modifying the Stokes number. Rewriting equation (30)
in terms of the Stokes number (for discs in vertical hydrostatic
equilibrium, i.e. H = cs/�k) yields

St < h/H. (31)

Since in typical SPH simulations h/H < 1, this new implementation
affects the dust density evolution of large dust grains, even with
moderately low St > h/H. Since the radial dust velocity increases
with St for St < 1 (Nakagawa, Sekiya & Hayashi 1986), limiting
the stopping time leads to an underestimate of the radial flux of
large grains towards disc regions of high pressure. Consequently,
the new-found mass conservation afforded by limiting the flux is not
an excuse to apply our method in every situation. In particular, care
should be taken when simulating protoplanetary discs with high
aspect ratio and low q, where it is more likely to find dust grains
with both large and small Stokes number. For these discs, a correct
physical description of the system may only be attainable with
the full one-fluid approach (Laibe & Price 2014a), hybrid method
combining the one- and two-fluid approaches or semi-analytical
two-fluid methods (e.g. Lorén-Aguilar & Bate 2014).
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In summary, limiting the stopping time conserves dust mass and
prevents numerical artefacts from developing in particles in the outer
disc where Stokes numbers are large and dust mass is negligible. The
evolution of the dust density in these situations can be considered
reliable. However, when the stopping time of particles are being
limited in the bulk of the disc, where mass fractions are still high,
we recommend using a different approach.

5 C O N C L U S I O N S

We introduce a new algorithm to compute the dynamics of tightly
coupled dust grains in the context of the one fluid approach de-
scribed in Laibe & Price (2014a). Our algorithm avoids certain
numerical artefacts that arise in the previous formalism (Price &
Laibe 2015), rendering our method both faster and more accurate.
We do this by

(i) parameterising the dust fraction using the square root of the
dust-to-gas ratio, which enforces ε ∈ [0, 1];

(ii) limiting the stopping time below a value that ensures the
validity of the equations of motion in the terminal velocity approx-
imation, i.e. ts < h/cs.

The latter leaves the numerically stable, strongly coupled dust grains
untouched, while limiting the amount of dust that can be transferred
between weakly coupled particles that would otherwise violate the
assumptions of the one-fluid diffusion approximation. When the
flux in these weakly coupled grains is not constrained, the dust
mass can unphysically grow over long times in some regions of
the disc, violating mass conservation. We find no adverse effects
of limiting the flux of particles with low dust fraction, which are
typically found in the upper/outer regions of the disc. However,
we caution that the stopping time limiter needs to be used with
care, since it can lead to an incorrect computation of the dust
dynamics of large decoupled dust grains when the dust fraction
is non-negligible. In these situations, we recommend switching
to a two-fluid formalism (Laibe & Price 2012; Lorén-Aguilar &
Bate 2014).

Finally, there are realistic scenarios in which a single grain size
can be strongly coupled in one region of the disc and weakly cou-
pled in another – with a significant dust mass in each region. In
this scenario, neither the one-fluid diffusion approximation or the
two-fluid method would be adequate, but would require a hybrid
scheme that marries the two approaches or, alternatively, the full
one-fluid formalism that allows for a wider range in drag regimes
(Laibe & Price 2014a,b). Alternatively, implicit or semi-analytic
methods have been proposed to simulate tightly coupled particles
in multifluid simulations with strong drag regimes (Lorén-Aguilar
& Bate 2014; Booth, Sijacki & Clarke 2015; Lorén-Aguilar & Bate
2015).
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APPENDI X A : TI ME STEPPI NG WI TH
G R A D I E N T S O F ε

For simplicity, we derive the time step condition with non-zero
derivatives of the dust fraction in 1D first, from

dε

dt
= ∂

∂x

(
εtsc

2
s

∂ε

∂x

)
. (A1)

For the first order backward Euler scheme, the linear expansion of
equation (A1) for modes of the form εn = ε0 + δεneikx provides

δεn+1 = δεn

[
1 + �t

(
tsc

2
s

) (
−k2ε0 + ∂2ε0

∂x2
+ 2ik

∂ε0

∂x

)]
. (A2)

The numerical scheme requires |δεn + 1/δεn| < 1 for stability. With
the usual substitution k → h−1, this condition gives

|1 − q (a + ib)| < 1, (A3)

where q ≡ �t/(h2/ηε, 0), a ≡ 1 − h2

ε0

∂2ε0
∂x2 and b ≡ 2 h

ε0

∂ε0
∂x

. Hence,

(1 − qa)2 + (qb)2 < 1. (A4)

Expanding the left-hand side of equation (A4) and dividing by q > 0
provides finally

q <
2a

a2 + b2
. (A5)

Putting a safety constant C0 in front of the right-hand side of equa-
tion (A5) gives the generic form for the time step condition with
gradients of ε, which can be generalized in 3D accordingly.
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