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ABSTRACT
Streaming instability is a powerful mechanism which concentrates dust grains in protoplanetary
discs, eventually up to the stage where they collapse gravitationally and form planetesimals.
Previous studies inferred that it should be ineffective in viscous discs, too efficient in inviscid
discs and may not operate in local pressure maxima where solids accumulate. From a linear
analysis of stability, we show that streaming instability behaves differently inside local pressure
maxima. Under the action of the strong differential advection imposed by the bump, a novel
unstable mode develops and grows even when gas viscosity is large. Hence, pressure bumps
are found to be the only places where streaming instability occurs in viscous discs. This offers
a promising way to conciliate models of planet formation with recent observations of young
discs.
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1 IN T RO D U C T I O N

The main challenge of planet formation consists in figuring out
how solids originating from the interstellar medium concentrate
and grow over orders of magnitude up to form planetary cores
(Chiang & Youdin 2010). Up to decimetric sizes, surface forces
are strong enough for dust grains to grow by hit-and-stick col-
lisions (Blum & Wurm 2008). This is not the case anymore for
larger pebbles, and solid aggregates are expected instead to un-
dergo bouncing or fragmentation (e.g. Güttler et al. 2010; Zsom
et al. 2010). On the other hand, rocky structures should typically
reach hundreds of metres in size to be glued by their own gravity.
Thus, a third mechanism must bridge the gap and collect peb-
bles up the stage where their local weight becomes sufficient.
Goodman & Pindor (2000) suggested that such a concentra-
tion may originate from a hydrodynamical instability. Youdin &
Goodman (2005) and Youdin & Johansen (2007) demonstrated that
the flow resulting from the radial drift of dust particles in weakly
viscous discs is actually linearly unstable. In the non-linear regime,
this so-called streaming instability develops dust overconcentrations
(Johansen & Youdin 2007), which may ultimately form planetes-
imals by gravitational instabilities in discs of sufficient metallic-
ities (Johansen et al. 2007; Johansen, Youdin & Mac Low 2009;
Bai & Stone 2010c,b; Carrera, Johansen & Davies 2015). Hence,
streaming instability may be responsible for the initial mass func-
tion of planetesimals in discs (Simon et al. 2016; Schäfer, Yang &
Johansen 2017). The robustness of the streaming instability has
been tested against several numerical schemes (Balsara et al. 2009;
Bai & Stone 2010a; Miniati 2010; Tilley et al. 2010; Johansen,
Youdin & Lithwick 2012; Johansen et al. 2014), towards the aim of

� E-mail: guillaume.laibe@ens-lyon.fr

simulating its effect in a global disc (Kowalik et al. 2013; Lyra &
Kuchner 2013; Yang & Johansen 2014). Other physical processes
such as vortices (Raettig, Klahr & Lyra 2015), photoevaporation
(Carrera et al. 2017), presence of small grains (Laibe & Price 2014),
grain growth (Dra̧żkowska & Dullemond 2014) or snow lines
(Schoonenberg & Ormel 2017) may reinforce the ability of stream-
ing instability to concentrate dust.

Discs may therefore contain only a moderate amount of dust
grains, since up to 50 per cent of their retained solid material
may be converted into planetesimals (e.g. Johansen et al. 2015;
Dra̧żkowska, Alibert & Moore 2016). However, the emission from
a continuous dense phase of millimetre grains is commonly de-
tected in young discs (e.g. ALMA Partnership et al. 2015; Andrews
et al. 2016), except at some specific locations. Dark rings are of-
ten associated with ongoing planet formation (e.g. Zhang, Blake &
Bergin 2015; Gonzalez et al. 2015; Okuzumi et al. 2016) or even
to planets (e.g. Dipierro et al. 2015; Dong, Zhu & Whitney 2015;
Picogna & Kley 2015; Rosotti et al. 2016). To explain the persistence
of the dust population almost everywhere, one may invoke the tur-
bulent viscosity of the gas, which damps efficiently the small-scale
perturbations at which streaming instability develops, but this would
prevent planetesimal formation (see however Johansen et al. 2007;
Dittrich, Klahr & Johansen 2013).

Such an interpretation is based on properties of the streaming in-
stability derived for discs with monotonically decreasing pressure
profiles. On the other hand, local pressure maxima may be created
in the disc at some locations by internal processes (e.g. Béthune,
Lesur & Ferreira 2016; Estrada, Cuzzi & Morgan 2016; Ruge
et al. 2016; Gonzalez, Laibe & Maddison 2017). These pressure
bumps are privileged locations for planetesimal formation since
they concentrate dust (e.g. Nakagawa, Sekiya & Hayashi 1986;
Haghighipour 2005). Finding a way for streaming instability to de-
velop specifically in these pressure bumps would conciliate current
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scenario of planetesimal formation and recent observations of discs.
Simulations have been recently performed to show that streaming
instability may deform the bump (Taki, Fujimoto & Ida 2016). So
far, the resilience of the streaming instability against viscosity in
pressure bumps has not been investigated.

In this study, we show that the development of the streaming
instability in local pressure maxima is more complex than for discs
with monotonic pressure profiles. We address the problem analyt-
ically by performing a linear perturbation analysis in a shearing
box centred around a pressure maximum. In Section 2, we derive
new solutions for the steady state, since pressure curvature provides
additional advection compared to the usual case. The analysis of
the unstable modes of the system as a function of the steepness of
the bump is performed using a WKB approximation. The appari-
tion of a second unstable mode for the streaming instability and
its resilience against viscous damping are analysed in Section 3.
Properties of this mode are brought back into the context of planet
formation in Section 4.

2 EQUATI O N S O F M OT I O N

2.1 Evolution in a global disc

2.1.1 Hypothesis

We consider non-self-gravitating, non-magnetic, vertically isother-
mal discs made of perfect gas. The background surface densities
and temperatures of the gas are modelled by power laws of decreas-
ing exponents, � ∝ r−p and T ∝ r−q. We use p = 1 and q = 0.4 to
be consistent with models which include detailed radiative transfer
(e.g. Pinte & Laibe 2014). Under these assumptions, the gas density
ρg and the pressure P in the midplane of the disc scale as ρg ∝ r−ξ

and P ∝ r−ξ − q, where ξ ≡ p − q/2 + 3/2. The effective viscosity
of the disc is parametrized using an alpha prescription (Shakura &
Sunyaev 1973). Numerical simulations of visco-turbulent discs ex-
hibit values of α ∼ 10−3–10−2 (e.g. Meheut et al. 2015). Dust grains
are assumed to be compact, spherical, uncharged and of constant
size and density. In observed discs (e.g. Williams & Best 2014),
local gas surface densities are low enough for dust grains to be in
the dilute Epstein drag regime (Epstein 1924; Baines, Williams &
Asebiomo 1965). The drag stopping time of the particles is denoted
tstop. For millimetre-in-size grains, tstop is of the order of the or-
bital period at ∼50 au (Laibe, Gonzalez & Maddison 2012). The
ratio between the drag and the orbital times, often called the Stokes
number of the flow, is denoted τ s, consistently with the notations
of Youdin & Goodman (2005). The dust phase is modelled by a
continuous viscousless and pressureless fluid (Saffman 1962; Ga-
raud, Barrière-Fouchet & Lin 2004). The local dust-to-gas ratio ε ≡
ρp/ρg is larger than the typical 1 per cent of the interstellar medium
since dust concentrates vertically and radially in the disc. We follow
Youdin & Goodman (2005) and neglect the vertical stratification of
the disc. Our study is therefore relevant for grains with typical sizes
�10μm which have settled close enough to the midplane (Dubrulle,
Morfill & Sterzik 1995; Fromang & Nelson 2009).

2.1.2 Pressure maximum

We model a local pressure maximum by superimposing a Gaussian
perturbation to the usual gas density profile, i.e.

ρg(r) = ρ0

[(
r

ru

)−ξ

+ Ae− (r−r0)2

2σ2

]
. (1)

Figure 1. Zoomed-in density profiles around pressure bumps. Solid and
dash–dotted lines correspond to relative width of the bump σ/ru = 1 and
σ/ru = 10, while grey and black lines correspond to relative amplitudes
Ã = 1 and Ã = 10, respectively. The gas density profile of exponents p = 1,
q = 0.4 in absence of perturbation is given as a reference (dashed line/light
grey).

Hence, the amplitude and the width of the density maximum are
parametrized by A and σ , respectively. The radial coordinate is
scaled with a radius ru and the Gaussian bump is centred around
a position r0. Fig. 1 shows different shapes of density profiles ob-
tained when varying A and σ . Note that A should be large enough for
the Gaussian perturbation to dominate locally over the decreasing
background and thus, for the pressure maximum to exist. The rel-
ative amplitude Ã of the maximum respectively to the background
is

Ã ≡ A (r0/ru)ξ . (2)

Ã varies from ∼0.1 for a perturbation due to a Neptune-like mass
planet (e.g. Dipierro & Laibe 2017) up to ∼10 for self-induced
dust traps (Gonzalez et al. 2017). The width of the bump σ is
of the order of ∼H, the pressure scaleheight. In absence of any
pressure maximum, or when the pressure perturbation is negligible,
the orbital correction with respect to a pure Keplerian rotation is of
the order O (

H 2/r2
)
. In a pressure bump, the orbital correction is

of the order O (
ÃH 2/σ 2

)
and should remain small enough for the

disc to be supported by rotation.

2.2 Shearing box approximation

For simplicity, the evolution of gas and dust is studied in a local
frame corotating with the disc at a location r̂0 and a frequency 
0. In
this shearing box, the coordinates are expanded to the linear order
(Goldreich & Lynden-Bell 1965), and x ≡ r − r̂0, y ≡ r̂0 (θ − 
0t)
and z denote the radial, azimuthal and vertical directions, respec-
tively. In the shearing box approximation, the large-scale contribu-
tion of the background pressure gradient comes under the form of a
constant force (Youdin & Goodman 2005). In a box centred around
a pressure bump, the large-scale background pressure gradient is
a linear function of the distance from the pressure maximum. For
convenience, we centre the box around r̂0 = r0, the maximum of
the Gaussian perturbation. Expanding the pressure gradient term to
the second order in x provides

− ∇P

ρg
� 2r0


2
0

(
η + 


2r0
x

)
ux, (3)
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798 J. Auffinger and G. Laibe

Figure 2. Acomparison between the gas density and its expansion used
in the shearing box approximation (dashed and solid lines, respectively).
Errors are of the order 1 per cent in L1 norm, peaking at 5 per cent at the
edges of the box of width ±σ delimited by a grey zone. The amplitude and
width of the bump are Ã = 1 and σ/ru = 1, respectively.

with

η ≡ 1

2

d ln ρg

d ln r

∣∣∣∣
r0

(
H0

r0

)2

, (4)


 ≡ r2
0

d2 ln ρg

dr2

∣∣∣∣
r0

(
H0

r0

)2

, (5)

where H0 denotes the scaleheight of the disc at r0. Following
Youdin & Goodman (2005) notations, we denote η0 = η|A = 0 the
pressure gradient term in absence of bump. Young protoplanetary
discs are denser and warmer in the inner regions, which implies
η0 > 0. In typical discs, η0 � 10−2. Note that discs with power-law
profiles have in general non-zero values for 
. This contribution
from the curvature of the density profile is neglected in Youdin &
Goodman (2005), which is an excellent approximation. A pressure
bump is defined by 
 > 0. The pressure maximum position xmax

≡ −2r0η/
 is slightly shifted with respect to the centre of the box
as a result of the small contribution of the decreasing unperturbed
pressure profile. Using equation (1) in equations (4) and (5) gives

η ≡ ξ

2(1 + Ã)

(
H0

r0

)2

, (6)


 ≡
{

− ξ (ξ + 1)

1 + Ã
+ ξ 2

(1 + Ã)2

} (
H0

r0

)2

+ Ã

1 + Ã

(
H0

σ

)2

. (7)

The first term of the right-hand side of equation (7) corresponds to
the contribution of the background profile, which increases with ξ

(steeper and more curved density profiles). The second term cor-
responds to the contribution added by the Gaussian perturbation
and scales like Ã (H0/σ )2. The relative contribution between the
maximum and the background is therefore of the order Ã (r0/σ )2.
Fig. 2 shows that the size of the box is constrained by the validity
of the linear approximation. For equation (3) to remain valid, the
size of the box should not exceed ∼min (σ , H). Note that on the
other hand, very narrow bumps may be Rayleigh unstable (Yang &
Menou 2010). In practice, we use σ = 1 ru. The discrepancy be-
tween the real pressure force and its linear approximation is of the
order ∼20 per cent at most at the edges of the box (Fig. 3). Viscous
forces are similarly decomposed in large and small scales compo-
nents. In a typical α −disc, the relative contribution between the
viscosity and the radial pressure gradient is of the order α � 1 at

Figure 3. Similar to Fig. 2: comparison between the normalized pressure
force (dashed line) and its linearization expansion (solid line) around r0, the
maximum of the Gaussian perturbation. Errors are of the order 10 per cent
in L1 norm, peaking at 20 per cent at the edges of the box.

a large scale. This contribution is therefore neglected. On the other
hand, the small-scale viscous forces, which damp local gas fluc-
tuations, are treated as usual. To avoid unnecessary complications,
the local gas sound speed cs, the viscosity ν = αcsH, the stopping
time of dust grains tstop and the background dust-to-gas ratio ε are
assumed to be constant over the size of the box. This implies that
there is more dust in the centre of the bump than at the edges. The
equations of motion for the gas and the dust are therefore

∂ρg

∂t
+ ∇ · (ρgVg) = 0, (8)

∂ρp

∂t
+ ∇ · (ρpVp) = 0, (9)

(
∂

∂t
+ Vg · ∇

)
Vg = −r0x

d
2
K

dr

∣∣∣∣
r0

ux − 2
0uz × Vg

+ 2r0

2
0

(
η + 


2r0
x

)
ux + ν�Vg

+ ρp

ρg

Vp − Vg

tstop
, (10)

(
∂

∂t
+ Vp · ∇

)
Vp = −r0x

d
2
K

dr

∣∣∣∣
r0

ux − 2
0uz × Vp

− Vp − Vg

tstop
. (11)

In particular, gas and dust have different advection velocities Vg,p

and the drag from the dust on to the gas is not neglected (Youdin &
Goodman 2005). For simplicity, physical quantities are used in a
dimensionless form, i.e. ω̃ ≡ ω/
0, x̃ ≡ x/η0r0, k̃ ≡ kη0r0 and
ṽ ≡ v/η0r0
0. As a remark, equations (8)–(11) differ from the
system studied by Taki et al. (2016), where the large-scale pres-
sure gradient is similar to the constant background introduced in
Youdin & Goodman (2005), and on top of which a small local
Gaussian perturbation of width half of the box is superimposed.
This situation corresponds to a pressure perturbation developing at
small scales which is weak enough for not affecting background
radial velocities of the gas and the dust.
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Figure 4. Radial and azimuthal (top/bottom) velocities for the gas and the dust (left/right) in the box. Bumps with relative amplitudes Ã = 0.1−1−10 are
considered (dashed, dot–dashed and dotted black lines), other parameters being those of the linB problem. Velocities in absence of pressure bump are indicated
for a reference (grey dotted lines).

2.3 Steady state

The steady-state velocities for gas and dust in the pressure maximum
are determined by seeking for solutions of the form

(
U g, V g

) =(
agx + bg, αgx + βg

)
and

(
U p, V p

) = (
apx + bp, αpx + βp

)
. The

linear dependence of the velocities with respect to x is enforced to
ensure consistency between the presence of the pressure maximum
and the shearing box formalism. Using this Ansatz in equations
(8)–(11) provides the non-linear system of equations

a2
p − 3
2

0 − 2
0αp + 1

tstop
(ap − ag) = 0, (12)

apbp − 2
0βp + 1

tstop
(bp − bg) = 0, (13)

apαp + 2
0ap + 1

tstop
(αp − αg) = 0, (14)

bpαp + 2
0bp + 1

tstop
(βp − βg) = 0, (15)

a2
g − 3
2

0 − 2
0αg − ε

tstop
(ap − ag) − 

2

0 = 0, (16)

agbg − 2
0βg − ε

tstop
(bp − bg) − 2r0


2
0η = 0, (17)

agαg + 2
0ag − ε

tstop
(αp − αg) = 0, (18)

bgαg + 2
0bg − ε

tstop
(βp − βg) = 0. (19)

These non-linear terms originate from non-trivial advection terms
specific to the pressure bump and require care for numerical root
finding (see Appendix B for technical details). Neglecting this ad-
ditional advection provides a crude approximation of the solution
of equations (12)–(19) by taking the solution of Nakagawa et al.
(1986) given in Appendix B and replacing η by η + 


2r0
x. We find

errors of the order ∼10 per cent up to ∼100 per cent between the
two approaches, a discrepancy becoming important for the radial
velocity of the gas. Fig. 4 illustrates the dust and the gas motion
inside the bump for various relative amplitudes of the pressure
maximum. As a reminder, pure Keplerian shear is vy = − 3

2 
0x. In
absence of a bump, dust (resp. gas) drifts inwards (resp. outwards)
by conservation of angular momentum. Both the gas and the dust
are sub-Keplerian. Inside a bump, dust drifts towards the pressure
maximum, while gas drifts outwards. This requires for gas and dust
to orbit at super-Keplerian frequency in the inner edge of the bump.
Both the gas and the dust radial velocities are rigorously zero at
xmax < 0 the location of the pressure maximum. Although the dif-
ferent velocities appear to cross each other at the same location in
Fig. 4, this is actually not the case. Mathematically, the intersec-
tion between the line corresponding to Ã = 0 and the other lines
depends slightly on the different physical parameters. In particular,
for increasing values of 
, the intersecting point becomes closer to
the centre of the box.
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2.4 Perturbation

The linear stability of the system equations (8)–(11) is investigated
by looking for perturbations of the form

ρg = ρ0
g (1 + δg), (20)

ρp = ρ0
p (1 + δp), (21)

Vg = Vg + vg = Vg + ugux + vguy + wguz, (22)

Vp = Vp + vp = Vp + upux + vpuy + wpuz, (23)

where

δ(x, z, t) = �(x)ei(kxx+kzz−ωt). (24)

In absence of a pressure bump, the perturbation must develop in
both the x and the z direction to become unstable (Youdin &
Goodman 2005; Jacquet, Balbus & Latter 2011). This property
originates from local conservation of the gas mass. With a pressure
bump, advection terms enforce the amplitude of the perturbation
� to depend on x. For simplicity, we focus on cases where this
amplitude varies slowly compared to the phase (Hkx � 1) and use
a WKB approximation to compute spatial derivatives, i.e.

∂δ(x, z, t)

∂x
� ikx�(x)ei(kxx+kzz−ωt). (25)

We obtain the following set of eight linear equations for the pertur-
bation

−iωδg + iδgkxU g + δgag + ikxug + ikzwg = 0, (26)

−iωδp + iδpkxU p + δpap + ikxup + ikzwp = 0, (27)

−iωvg + ikxU gvg + (ugag − 2vg
0)ux + ug(αg + 2
0)uy

− ε

tstop
(vp − vg + (δp − δg)(Vp − Vg))

+ ic2
s δgk + ν(k2

x + k2
z )vg = 0, (28)

−iωvp + ikxU pvp + (upap − 2vp
0)ux + up(αp + 2
0)uy

+ 1

tstop
(vp − vg) = 0, (29)

where the four background velocities U g, U p, V g and V p are the
linear functions determined in Section 2.3 and not the solutions
derived by Nakagawa et al. (1986). In practice, the eigenmodes ω1,8

of the system equations (26)–(29) are determined by finding zeros
of the determinant of the perturbation matrix numerically, using
a sufficient precision. Note that the eigenmodes obtained by this
procedure depend on x, i.e. ω1,8(x), which may sound inconsistent
with equation (24). However, at small times,

k−1
x

dω

dx
t � 
0t

kxH
. (30)

In this case, the solution is consistent with the initial Ansatz and
the WKB approximation over a number n = kxH � 1 of orbital
periods. To compare our results with the case of an inviscid disc with
no pressure bump, we use the test cases linA, linB, linC
and linD studied in Youdin & Johansen (2007) and Bai & Stone
(2010a) (see parameters in Appendix A). Our procedure provides
the expected coefficients with similar precision.

3 R ESULTS

3.1 Unstable modes

The growth rates s obtained from the procedure described in Sec-
tion 2.4 are shown in Fig. 5. Three modes are considered: two
modified epicyclic modes and the secular mode of the streaming in-
stability identified in Youdin & Goodman (2005), the other modes
playing no particular role in this problem. For tiny perturbations of
the pressure profile, the only unstable mode is the secular mode,
similarly to what happens in a disc with no bump. Novel features
appear when increasing progressively the relative amplitude of the
bump. Fig. 5 shows that one of the two epicyclic modes becomes un-
stable. The related growth rate may become larger than the growth
rate of the secular mode as the amplitude of the bump increases.
The possible instability of the epicyclic modes was mentioned in
Youdin & Goodman (2005). When increasing further the amplitude
of the bump, a transition between two distinct regimes occurs for
relative amplitudes of the order Ã � 0.2, a conservative value for
typical bumps. Fig. 5 shows that a bifurcation between the secular
and the stable epicyclic modes gives birth to two new modes. We
find that this bifurcation is universal and, in particular, does not de-
pend on the dust-to-gas ratio. The exact number of unstable modes
depends on the distance to the pressure maximum. Near xmax, two
modes are unstable, whereas at the edges of the bump, only one
mode is unstable. This mode corresponds to the novel unstable
mode originating from the bifurcation and is not the secular mode
of the streaming instability which grows in absence of maximum.

Figure 5. Growth rates of the two epicyclic modes and the secular mode
of the streaming instability for increasing values of the relative amplitude Ã

of the bump. In absence of any pressure maximum, the only unstable mode
is the usual secular mode (dot–dashed/black). In pressure maxima, a novel
unstable mode develops (dashed/black). A bifurcation between the secular
mode and the other epicycle (dotted/black) occurs at Ã � 0.2. Parameters
correspond to the linA problem.
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Streaming instability in pressure bumps 801

Figure 6. Growth rate of the streaming instability in the box for bumps of
relative amplitudes Ã = 0.1−0.25−1−10 (dashed/grey, dot–dashed/grey,
dotted/black and dashed/black, respectively). For shallow bumps, stream-
ing instability develops everywhere except near the maximum where the
pressure gradient is zero. For large bumps, the instability develops more ef-
ficiently close to the maximum. Parameters are those of the linD problem.
The growth rate in absence of maximum is given by the dotted/grey line.

Figure 7. Growth rate of the instability for two same ratios λ/lstop = 1.
Growth rates are almost similar, discrepancies of a few per cent originating
from slightly different advection velocities. We use Ã = 10, ε = 2, τ s = 0.01,
k̃x,z = 100 (black dashed line) and τ s = 0.001, k̃x,z = 1000 (grey solid line).

Physically, this novel instability originates from the strong differ-
ential advection between the gas and the dust at the edges of the
bump powered by the background velocities in the bump.

Fig. 6 shows how the growth rates depend on the radial location
in the bump for increasing amplitudes, showing the consequences
of the bifurcation identified above. Rigorously, the exact location
of the pressure maximum depends on Ã and is slightly offset from
the centre of the shearing box due to the local curvature of the pres-
sure profile in absence of maximum (see Section 2.3). For shallow
bumps (Ã � 0.2), streaming instability develops everywhere except
close to the pressure maximum. Its efficiency is maximum at the
edges of the bump, where the local pressure gradient is the greatest.
This behaviour is consistent with the linear analysis of Youdin &
Goodman (2005), valid for discs with monotonic pressure profiles.
For larger amplitudes (Ã � 0.2), the streaming instability grows
more efficiently in the centre of the bump than at the edges. As

Figure 8. Growth rates for a bump of relative amplitude Ã = 10 and
different wavenumbers k̃x,z = 50−100−300−1500 (dotted/black, dot–
dashed/grey, dashed/grey, dotted/grey). The region where the instability
develops is more extended for larger wavelengths. Parameters are those of
the linC problem.

shown in Fig. 6, its efficiency is slightly reduced at x = xmax. At
the edges of the bump, the growth rate decreases up to eventually
reach zero. No instability develops in this particular case. Hence,
for a shallow bump in an inviscid disc, gas and dust are linearly
unstable everywhere except at the exact location of the pressure
maximum. On the opposite, when the disc contains a bump which
is large enough (i.e. for pressure perturbation to be of a least a few
ten per cents), dust concentration may occur preferentially inside
the maximum, and not at the edges, as one would have expected
with the classical linear stability analysis.

The growth rates depend on the ratio between the wavelength λ

of the perturbation and lstop ≡ η0r0
0tstop, the length over which
the gas decouples from the dust, sometimes referred as the stopping
length. The ratio λ/lstop measures the number of perturbations over
which the stopping length spreads. Fig. 7 shows that for similar
values of λ/lstop or equivalently k̃x,z τs, the growth rates obtained
are almost identical. Corrections of the order a few per cent are due
to slightly different values for the advection velocities. Fig. 8 shows
growth rates obtained for different wavelengths λ. For lstop � λ,
dust and gas experience the details of the pressure profile before
being coupled together by the drag, and the growth rate profile is
narrow. Instead, for lstop < λ, dust and gas are quickly coupled by the
drag, their differential velocity is proportional to the local pressure
gradient, and this information is carried away by the perturbation.
In this case, the growth rate profile is wider. The ratio λ/lstop sets
the width of the region where no instability develops for shallow
bumps, and the width of the central region where the instability is
weakened for large bumps.

3.2 Viscosity

The ability for viscosity to damp the instability is now investi-
gated. Fig. 9 shows that in absence of a pressure bump, viscosity
prevents the development of the streaming instability for values of
α as low as ∼10−5. This value depends on the wavelength of the
perturbation, smaller fluctuations being damped more efficiently
by viscosity. Streaming instability therefore does not grow in typ-
ical visco-turbulent discs where α ∼ 10−3–10−2. However, when
a significant bump is present in the disc, a different behaviour is
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Figure 9. Growth rate of the instability in absence of bump for increas-
ing viscosities. The unstable mode is damped for α � 10−5. Parameters
correspond to the linA problem.

Figure 10. Growth rates of the unstable modes for increasing viscosities.
An unstable mode exists even in highly viscous discs. Its growth rate is weak-
ened by one order of magnitude compared to the inviscid case. Parameters
correspond to the linA problem.

observed. Fig. 10 shows that for increasing values of α, one of the
two unstable modes is suppressed, whereas the other one is only
weakened, but not damped. The growth rate is reduced by one order
of magnitude compared to the inviscid case (see Fig. 11). Still, this
mode develops in a time relevant for planetesimal formation (see
Section 4). Hence, streaming instability is found to always develop
in a pressure bump, even in highly viscous discs. The fact that vis-
cosity does not entirely damp the instability in the bump may appear
counterintuitive. This apparent conundrum can be explained by not-
ing that viscosity damps only the perturbations of the gas velocity.

Figure 11. Growth rates for viscous parameters α = 0–10−6–10−5–10−4–
10−3 (dashed/light, dotted, dashed, dash–dotted grey and dashed/black lines,
respectively). Parameters are those of the linA problem, the relative am-
plitude of the bump is Ã = 1.

Figure 12. Amplitude of the perturbation of the radial velocity of the gas
|ug| for increasing viscosities. The fluctuations are damped efficiently at
large viscosities. The instability does not require fluctuations in the gas
velocity to grow, since differential back-reaction is provided by the bump
itself. Parameters are those of the linA problem.

Fig. 12 shows that these perturbations are actually suppressed more
and more efficiently when viscosity increases. However, in pres-
sure bumps, the required gradients of back-reaction are provided
by the background velocities resulting from the local pressure pro-
file. Hence, the instability can grow even if perturbations in the
gas velocity are damped by viscosity. This effect is not observed
in a disc with monotonic pressure profiles, since local gradients of
back-reaction originate only from perturbations of the gas veloc-
ity which are killed by viscosity. Consistently, growth rates in the
viscous regime do almost not depend on the wavelength, as shown
in Fig. 13. Figs 14 and 15 show that similarly to the usual case,
streaming instability is most efficient for τ s ∼ 1 and ε ∼ 1, such
parameters being typical protoplanetary discs.

Fig. 16 summarizes where streaming instability develops in
discs, whether a pressure bump is present or not and whether the
disc is inviscid or viscous. A dusty disc with monotonic pressure
profile is linearly unstable everywhere if it is inviscid, and sta-
ble everywhere if it is viscous (Youdin & Goodman 2005). The
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Figure 13. Growth rate of the instability for different wavenumbers k̃x,z in
a viscous disc with α = 10−2. No dependence is found, consistently with a
mechanism powered by the background profile of the bump. Parameters are
those of the linA problem.

Figure 14. Growth rate of the instability as a function of the Stokes number
τ s for α = 10−2. Maximal efficiency is reached for τ s ∼ 1 as expected.
Parameters are those of the linA problem.

Figure 15. Growth rate of the instability as a function of the dust-to-gas
ratio ε for α = 10−2. Maximal efficiency is reached for ε ∼ 1 as expected.
Parameters are those of the linA problem.

latter is not true anymore in presence of a pressure maximum:
streaming instability always grows in the bump, even if the disc is
viscous.

4 D I SCUSSI ON

We now verify that the assumptions made in Section 3 are consistent
with the global evolution of the disc. The dust-to-gas ratio, the
stopping time and the background velocities have been assumed
to be constant during the time tgrowth it takes for the instability to
grow. Fig. 17 compares tgrowth to the drift time of dust into the
bump tdrift and shows that in the inviscid case, the disc remains in
a steady state during the growth of the perturbation since tgrowth �
tdrift. In viscous discs, tgrowth increases by one order of magnitude
and the two time-scales become comparable. Long-lived global
numerical simulations are therefore required to determine how the
instability develops in this case. Moreover, the local depletion of gas
caused by back-reaction empties the bump. Its lifetime is compared
to the growing time by estimating the ratio tdrift/tgrowthε. As long
as ε ∼ 1, this condition is similar to the precedent one. Hence,
our assumptions are essentially valid in real discs and streaming
instability is expected to develop linearly as described in Section 3.

Gonzalez et al. (2017) found that formation of pressure bumps
can be triggered by the sole action of dust drag on to the gas,
with a spatial resolution insufficient to capture streaming instabil-
ity. Their fig. 9 shows that the relative amplitude of the bump is
at least of the order a few ten per cent, even for viscous discs
with α = 10−2. Streaming instability in self-induced dust traps of-
fers therefore a promising way to build planetesimals at specific
locations. Millimetre grains are converted efficiently into planetes-
imals – and potentially later on into planets – in the trap and only
there. Such a scenario is consistent with the dark rings probed re-
cently by ALMA. Similarly, streaming instability may also grow
specifically at the edges of the gap created by a massive planet.
Since the tidal torque from the planet acts both on dust and gas,
it does not induce additional differential velocities and we expect
the results derived above to hold. Johansen et al. (2009) found that
for large enough metallicities (Z � 0.03), dust clumps formed by
streaming instability collapse gravitationally. We expect a similar
trend in a pressure bump, although numerical simulations at high
resolution are required to investigate the non-linear stages of the
instability.

5 C O N C L U S I O N

In this study, we extend the linear theory of streaming instabil-
ity in dusty protoplanetary discs to include the eventual presence
of local pressure maxima, where solids drift in and pile up. We
find that for pressure bumps with a relative amplitude larger than
∼20 per cent, a bifurcation occurs, giving birth to a novel unstable
mode. The instability is powered by the strong differential advec-
tion locally imposed by the bump and as such, is resilient against
viscous damping from the gas. The growth rate of the instability is
typically reduced by one order of magnitude compared to the invis-
cid case. Hence, in viscous discs, streaming instability is found to
grow in and only in local pressure maxima. In particular, streaming
instability in self-induced dust traps provides a scenario for the early
stages of planet formation consistent with the recent millimetre ob-
servations of dark rings in young discs. Numerical simulations are
required to investigate the further non-linear development of the
instability.
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804 J. Auffinger and G. Laibe

Figure 16. Sketch illustrating where the streaming instability grows in different discs. An inviscid disc is linearly unstable everywhere, with or without a
pressure bump. In visco-turbulent discs, the streaming instability develops only inside pressure bumps.

Figure 17. Time-scales of streaming instability (dotted/black) and dust drift
(dashed/black) at the outer edge of the pressure bump. Top: inviscid disc,
instability grows faster than dust drifts. Bottom: viscous disc (α = 10−3), the
two time-scales are comparable for significant pressure bumps. Parameters
correspond to the linA problem.
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Dra̧żkowska J., Dullemond C. P., 2014, A&A, 572, A78
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A P P E N D I X A : PA R A M E T E R S O F TH E L I N E A R
TESTS

The sets of parameters for the linA, linB, linC and linD
problems are provided in Table A1.

Table A1. Parameters of the linA, linB, linC and linD problems,
where η0r0
0/cs = 0.05.

Problem k̃x k̃z τ s ε s̃

linA 30 30 0.1 3 0.419 0204
linB 6 6 0.1 0.2 0.015 4764
linC 1500 1500 0.01 2 0.598 0690
linD 2000 2000 0.001 2 0.315 4373

A P P E N D I X B: SO LV I N G F O R BAC K G RO U N D
V E L O C I T I E S

Solving equations (12)–(19) by elimination leads to a 256th-order
polynomial equation in one of the variables (e.g. ag), making
the numerical resolution difficult. Simplifications can be made
up to almost obtain an analytical solution. Combining equation
(12) ± equation (16), equation (13) ± equation (17), equation
(14) ± equation (18), equation (15) ± equation (19), we obtain
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where

a± ≡ ap ± ag, b± ≡ bp ± bg,

α± ≡ αp ± αg, β± ≡ βp ± βg,
(B9)

and γ ± ≡ 1±ε
tstop

. Equations (B1), (B3), (B5) and (B7) contain only

a± and α± and can be combined to obtain a+ as a root of a much
simpler fifth-order polynomial. No analytic root exists for such
a polynomial. However, its single real root can easily be found
numerically. From there, the determination of all the other quantities
is algebraic, except choosing one root between the two of a second-
order polynomial. Yet, one of the root is unphysical and can be
easily discarded when looking at the numerical values (e.g. Vp �
103r0
0). In the case η = 0 (pure maximum), we obtain analytically
bg,p = βg,p = 0, i.e. the stationary velocities are centred around
x = 0, as expected. The non-linearity of the system comes from non-
linear advection terms, even in the steady state. Although alternative
functional forms may solve the equations of motion, we restrain
ourselves to a linear form to remain consistent with the shearing
box approximation. In absence of any pressure maximum (
 = 0),
we obtain the expressions given in Youdin & Johansen (2007)
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