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ABSTRACT

Characterizing stellar convection in multiple dimensions is a topic at the forefront of stellar astrophysics. Numerical simulations
are an essential tool for this task. We present an extension of the existing numerical tool-kit A-MaZe that enables such simula-
tions of stratified flows in a gravitational field. The finite-volume based, cell-centered, and time-explicit hydrodynamics solver of
A-MaZe was extended such that the scheme is now well-balanced in both momentum and energy. The algorithm maintains an ini-
tially static balance between gravity and pressure to machine precision. Quasi-stationary convection in slab-geometry preserves gas
energy (internal plus kinetic) on average, despite strong local up- and down-drafts. By contrast, a more standard numerical scheme
is demonstrated to result in substantial gains of energy within a short time on purely numerical grounds. The test is further used
to point out the role of dimensionality, viscosity, and Rayleigh number for compressible convection. Applications to a young sun
in 2D and 3D, covering a part of the inner radiative zone, as well as the outer convective zone, demonstrate that the scheme meets
its initial design goal. Comparison with results obtained for a physically identical setup with a time-implicit code show qualitative
agreement.
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1. Introduction

In a wide range of astrophysical objects, the balance between
gravitation and gas pressure is a key element, on top of which
additional physics may take place. Ascertaining the robustness
of corresponding numerical results, by applying different codes
to the same physical problem, is a motivation behind this paper
on the adaptation of the A-MaZe tool-kit (Walder & Folini 2000;
Folini et al. 2003; Melzani et al. 2013) so that it can tackle grav-
itationally stratified flows.

Stars and planets are prominent astrophysical examples
harboring such flows. Although quasi-static in a global sense, a
wealth of dynamics takes place. Energy transport via convection
is often essential in maintaining a globally quasi-static state.
This is notably the case for the outer parts of low mass stars and
the inner regions of high mass stars, where energy transport via
radiation is not efficient enough. Multidimensional simulations
of such transport processes contribute to the 321D link for stellar
modeling (e.g., Arnett et al. 2015), that is, the effort to improve
one-dimensional stellar evolution models via simulating short
episodes in 2D and 3D. These studies motivate the overall project
into which this study is embedded (see e.g., Geroux et al. 2016;
Pratt et al. 2017; Baraffe et al. 2017). Other examples exist where
the pressure-gravity balance plays a crucial role and associated
numerical challenges resemble the ones we are interested in here.
We mention the vertical structure of accretion disks and super-
nova explosions, notably the moment just before the onset of the

collapse and then again when the prompt shock stalls
(Couch & Ott 2013; Müller et al. 2016, 2017).

From a numerical point of view, the above astrophysi-
cal problems are challenging because the gravity and pres-
sure forces, which are both typically large but of oppo-
site sign, may not cancel out in their discretized form. This
non-cancellation may severely impact the solution. A num-
ber of remedies have been suggested (for a short overview,
see e.g., Käppeli & Mishra 2016). Here we focus on so called
well-balanced schemes, that is, schemes which are designed
to exactly maintain a discrete equivalent of the underly-
ing stationary state. Initially put forward by Cargo & LeRoux
(1994) and Greenberg & Leroux (1996), numerous concrete
forms of well-balanced schemes meanwhile exist (LeVeque
1998; Noelle et al. 2009; Wang et al. 2009; Xing & Shu 2013;
Käppeli & Mishra 2014, 2016; Chandrashekar & Klingenberg
2015; Berberich et al. 2017; Desveaux et al. 2016; Touma et al.
2016). Major differences among them include the allowed equa-
tion of state (EoS), roughly speaking “simple” or “complicated,”
whether the EoS explicitly enters the well-balanced reconstruc-
tion or not, the required knowledge about the stationary state
(from “analytical form” to “none at all”), whether the method is
designed for shallow water problems or the full Euler or Navier–
Stokes equations, and whether the scheme relies on velocities
being (and remaining) zero or not.

The goal of this paper is to document the implementation of
a well-balanced scheme into the A-MaZe simulation tool-kit, to
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demonstrate its performance with a series of tests, to illustrate
the behavior of a not well-balanced scheme for the same tests,
and to draw attention to selected physical aspects of the tests.

As our primary interest is with stellar convection, we want
a well-balanced scheme that is applicable to the full Euler or
Navier–Stokes equations, works for flows in external gravita-
tional fields and for self-gravitating flows, can cope with an
arbitrary EoS, does not rely on prior knowledge of the sta-
tionary state, and can accommodate non-zero velocities. The
scheme should be simple enough so that it can be easily accom-
modated in an existing code and, in the future, can be com-
bined with adaptive meshes and general curvilinear grids. With
these considerations in mind, we decided for the approach
by Käppeli & Mishra (2016; KM16 in the following) as a start-
ing point for our own work; however, we did adapt the treatment
of the energy source term.

The paper is structured as follows. In Sect. 2, we present the
overall problem along with our algorithm as part of the simu-
lation tool-kit A-MaZe and with particular focus on the well-
balanced scheme. A first set of test cases, static configurations,
and convective slabs, are examined in Sect. 3. The performance
of the algorithm for a test case closer to our finally envisaged
applications, featuring in particular a general EoS that is in the
form of a look-up table, is demonstrated in Sect. 4. A discussion
follows in Sect. 5, and a summary and conclusions are in Sect. 6.

2. Equations and methods

We look for numerical solutions of the compressible Navier–
Stokes equations in the presence of a gravitational field, as
detailed in Sect. 2.1. Essential aspects of A-MaZe, our host-
ing numerical tool-kit, are summarized in Sect. 2.2. The well-
balanced extension of A-MaZe is detailed in Sect. 2.3.

2.1. Navier–Stokes equations with gravity

The Navier–Stokes equations for a thermally conductive and
compressible medium in the presence of a gravitational poten-
tial φ can be written as a system of balance laws in the form

∂ρ

∂t
+ ∇(ρu) = 0, (1)

∂(ρu)
∂t

+ ∇(ρu ⊗ u) + ∇p − ∇τ = −ρ∇φ, (2)

∂E
∂t

+ ∇ (u(E + p)) − ∇ (K∇T ) − ∇(τu) = −ρu ∇φ, (3)

with

E = ρe +
ρu2

2
(4)

the gas energy density, ρ the density, u the velocity vector, p the
gas pressure, e the specific internal energy, K the (potentially
nonlinear) heat-transfer coefficient, and T the temperature. The
components of the dynamic viscous stress tensor, denoted τ, are
defined as

τi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
δi j
∂uk

∂xk

)
, (5)

where µ is the dynamic viscosity (volume or bulk viscosity is
neglected). The EoS as well as µ and K, are problem specific
and, consequently, are further specified along with the test cases
in Sects. 3 and 4.

Throughout the paper we neglect changes of gravity due to
matter re-distribution. We assume a problem specific but time-
constant gravitational potential φ with associated free-fall accel-
eration vector g

g = −∇φ. (6)

Hydrostatic equilibrium is therefore defined by

∇p = −ρ∇φ. (7)

The gravitational energy density Eg of the gas is given by

Eg =
1
2
ρφ. (8)

Two characteristic time scales are the sound crossing time

τs =

∫ x1

x0

dx
cs(x)

(9)

and the convective turnover time τc

τc =

∫ x1

x0

dx
|ux(x)|

=

∫ x1

x0

dx
1

M(x)
·

1
cs(x)

≈
τs

M
· (10)

The integral extends over a characteristic length scale, e.g a scale
height or the depth of convection zone (here in x-direction).
The local (at distance x) sound speed, Mach number, and flow
velocity in direction of g are denoted by cs(x), M(x), and ux(x),
respectively, and M̄ is the depth-averaged Mach number. In
many astrophysically relevant cases, the convective motion is
very subsonic and thus τc >> τs. For instance, in their study
of a young sun in 2D with M ≤ 0.05, Pratt et al. (2016) needed
an integration time of several hundred τc, translating into several
thousand τs, for robust statistics. This sets the time scale of inter-
est, over which Eqs. (1)–(3) have to be integrated numerically.

2.2. Numerical tool-kit A-MaZe

We build on the numerical tool-kit A-MaZe (Walder & Folini
2000; Folini et al. 2003; Melzani et al. 2013), a collection of
adaptive mesh (Berger & Oliger 1984; Berger & Colella 1989;
Folini et al. 2003) multi-scale, multi-physics codes and analysis
tools to support simulations of astrophysical objects. A-MaZe
has been applied to a range of problems, including accretion
and blasts in novas (Walder et al. 2008), full scale simulations
of X-ray binaries (Walder et al. 2014), colliding winds and emit-
ted spectra (Nussbaumer & Walder 1993; Folini & Walder 1999,
2000), particle acceleration in relativistic magnetic reconnection
(Melzani et al. 2014a,b), investigation of supersonic turbulence
(Folini & Walder 2006; Folini et al. 2014), and the dynamics of
circum-stellar material (Folini et al. 2004; Georgy et al. 2013).

Until now, A-MaZe lacked a proper treatment of a static
balance between gravitational and pressure forces. The present
paper remedies this shortcoming by appropriately augmenting
(see Sect. 2.3) the hydrodynamic solver. Key characteristics of
the latter, as far as relevant for and used in this paper, are sum-
marized in the following.

Equations (1)–(3) are solved using a finite volume discretiza-
tion on the basis of mapped grids (Calhoun et al. 2008) for gen-
eral curvi-linear coordinates. A regular Cartesian mesh (the com-
putational mesh) is mapped to the desired mesh in physical space
(the physical mesh). Within this paper, physical meshes are truly
Cartesian (in 1D, 2D, and 3D), 2D axi-symmetric, or 3D spher-
ical shell wedges. Other mappings have not yet been imple-
mented, although the code infrastructure to hold them is in place.
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As the concrete mapping functions depend on the specific appli-
cation, they are formulated in the context of the latter in Sect. 3.
Advective fluxes through the cell faces are computed with the
help of a Riemann-solver, which feeds on data at cell inter-
faces (left and right state, at the geometrical center of the inter-
face) obtained by standard (limited) reconstruction techniques.
Within the context of mapped grids, advective as well as diffu-
sive fluxes can be computed on the computational mesh, with the
physical mesh entering only via cell surface areas and cell vol-
umes. This procedure avoids geometrical source terms (see e.g.,
Kifonidis & Müller 2012, for a more detailed discussion).

The semi-discretized three-dimensional version of Eqs.
(1)–(3) is

∂Ui, j,k

∂t
+

S i+1/2, j,k Fi+1/2, j,k − S i−1/2, j,k Fi−1/2, j,k

Vi, j,k

+
S i, j+1/2,kGi, j+1/2,k − S i, j−1/2,kGi, j−1/2,k

Vi, j,k

+
S i, j,k+1/2Hi, j,k+1/2 − S i, j,k−1/2Hi, j,k−1/2

Vi, j,k
= Ψi, j,k. (11)

Here, Ui, j,k =
(
ρ, ρux, ρuy, ρuz, E

)T

i, j,k
is the vector of conserved

quantities at cell centers (i, j, k) ∈ (1, . . . ,Nx, 1, . . . ,Ny,
1, . . . ,Nz), with Nx,Ny, and Nz the number of cells in x-, y-,
and z-direction of computational space. Half indices denote cell
faces. Fi±1/2, j,k, Gi, j±1/2,k, and Hi, j,k±1/2 denote the fluxes through
the cell faces. We note that they contain advective and diffusive
terms. Physical space enters only via the cell surfaces (terms
S i±1/2, j,k) and cell volumes (terms Vi, j,k), both evaluated in phys-
ical space, as well as via the source term Ψi, j,k, also evaluated in
physical space.

Time integration of Eq. (11) in this paper is done with a first
order Runge–Kutta method (a forward Euler method), although
A-MaZe also offers strong stability preserving (SSP) higher
order integration schemes (Shu & Osher 1988; Gottlieb et al.
2001). We used different Riemann solvers, notably the approx-
imate HLLC (Toro et al. 1994), as well as the exact solver
by Colella & Glaz (1985). Likewise, we used both minmod and
van Leer limiters together with second order reconstruction.
Results seem overall robust to the particular choice of integra-
tor and limiter, but no detailed analysis in this respect was done.
Diffusive fluxes are approximated by a dimensionally split sec-
ond order central finite difference discretization in space, that is,
each spatial direction is treated independently of the others. In
the following, we refer to the above approach as the standard
scheme.

A variant better suited for situations with a gravitational
field, in the following referred to as well-balanced scheme, is
described in Sect. 2.3. The difference between the two schemes
is small in terms of code: it concerns only the reconstruction of
pressure at cell interfaces and the discretization of the source
term on the right hand side of Eq. (3).

2.3. The well-balanced algorithm

Related to the gravitational potential, source terms for momen-
tum and energy, S M and S E, exist on the right hand side of
Eqs. (2) and (3), respectively. Thus care must be taken to avoid
associated numerical sources or sinks of momentum and energy.

2.3.1. Momentum balance

The momentum equation, Eq. (2), includes the hydrostatic bal-
ance equation, Eq. (7), to which it reduces in the case of zero

velocities. Unless the numerical scheme respects this balance to
machine precision, the momentum equation will suffer from spu-
rious gains or losses of momentum associated with S M.

We adopt the scheme of KM16, the key aspects of which we
summarize here. The overarching idea is to arrive at a recon-
structed pressure at cell interfaces that is (a) identical on the
left and right side of the interface and (b) respects a discrete
version of the hydrostatic equilibrium equation, Eq. (7). Con-
dition (a) ascertains that the Riemann solver is not fed any spuri-
ous pressure jumps that would be translated into waves. Con-
dition (b) ascertains that the pressure gradient across a cell,
that is, the pressure contribution to the flux differencing term,
matches the source term of the discrete hydrostatic equilibrium.
As is stressed in KM16, the equilibrium is a mechanical one,
no assumption is made on a thermal equilibrium, that is, no
explicit temperature or entropy profile has to be assumed and the
hydrostatic equilibrium may be physically unstable to convec-
tion. Perturbations on top of the hydrostatic equilibrium pressure
are addressed by decomposing the total pressure for the recon-
struction as p = p0 + p1, with the hydrostatic part p0 and the
perturbation part p1. The well-balanced reconstruction of p0 is
second order. For p1 and all other variables, any higher order
reconstruction may be used. We use second order in this paper
with a minmod limiter.

In 1D (arbitrarily in x-direction) the relevant formulas read
as follows. The gravitational source term −ρ∇φ on the right hand
side of Eq. (2) is discretized as a centered difference,

S M
i = −ρi

φi+1 − φi−1

xi+1 − xi−1
· (12)

The well-balanced reconstruction of the equilibrium part p0 of
the pressure of cell i is given by

p0
i (xi−1/2) = pi + ρi

φi − φi−1

xi − xi−1

(
xi − xi−1/2

)
,

p0
i (xi+1/2) = pi − ρi

φi+1 − φi

xi+1 − xi

(
xi+1/2 − xi

)
. (13)

With p0
i (xi+1/2) = p0

i+1(xi+1/2) (see condition (a) above), Eq. (13)
leads to the discrete, spatially second-order accurate form of the
hydrostatic equilibrium equation, Eq. (7),

pi+1 − pi

xi+1 − xi
= −

ρi + ρi+1

2
φi+1 − φi

xi+1 − xi
· (14)

The reconstruction of the perturbation part p1 of the pressure
(which can be of any order, see KM16) takes as input cell cen-
tered values

p1
i (xi−1) = pi−1 − p0

i (xi−1),

p1
i (xi+1) = pi+1 − p0

i (xi+1), (15)

with

p0
i (xi−1) = pi +

ρi−1 + ρi

2
(φi − φi−1) ,

p0
i (xi+1) = pi −

ρi + ρi+1

2
(φi+1 − φi) . (16)

2.3.2. Energy balance

The source term S E in the energy equation, Eq. (3), mediates
between the gravitational potential energy Eg of the gas and its
internal plus kinetic energy E: as mass is advected along the
gravitational field, energy is transferred from Eg to E and vice

A129, page 3 of 12



A&A 630, A129 (2019)

versa. A numerical pitfall then opens: with φ constant in time
there is an unlimited reservoir of gravitational energy, thus arbi-
trary amounts of gas energy may be gained or lost on numer-
ical grounds if S E is not accurately computed. The issue is
particularly relevant for quasi-stationary convection, where Eg
and E are constant when integrated over the domain of inter-
est, although there is a steady exchange between the two on
local scales: in down-flows energy is transferred from Eg to E
whereas the opposite is true in regions of up-flow. The numer-
ical scheme must respect the global balance despite the steady
local exchange.

In KM16, centered differences are used for the source term
in Eq. (3). As we illustrate in Sect. 3, this choice leads to a sys-
tematic increase of E with time when simulating quasi-stationary
convection. This although there is no net motion of mass in the
direction parallel to the gravitational force.

We use an alternative formulation, expressing S E in terms of
discrete mass fluxes FM, GM, and KM as

S E
i, j,k = 0.5(FM

i+1/2, j,kgi+1/2, j,k + FM
i−1/2, j,kgi−1/2, j,k

+ GM
i, j+1/2,kgi, j+1/2,k + GM

i, j−1/2,kgi, j−1/2,k

+ KM
i, j,k+1/2gi, j,k+1/2 + KM

i, j,k−1/2gi, j,k−1/2). (17)

Here, gi+1/2, j,k = (φi+1, j,k − φi, j,k)/(xi+1, j,k − xi, j,k) etc. The expres-
sion for S E can be motivated in two ways. From a physical point
of view, one may argue with the connection between the mass
flux, projected onto ∇φ, and the local exchange between Eg and
E. The above equation ascertains that the domain average of S E

i, j,k
is zero – there is no domain averaged net exchange between E
and Eg – unless there is some domain averaged net mass flux par-
allel to ∇φ. Another way to obtain Eq. (17) is to start from a con-
servative discretization for the total energy Etot = E +Eg, instead
of using a source term in the energy equation. This is done, for
example, in Jiang et al. (2013). Starting from their equations for
the total energy (Eq. (9)), for the energy flux Fg due to grav-
ity (Eq. (14)), and for the update of the energy (Eq. (16)), not-
ing in addition that in our case the gravitational potential φ is
time constant and the gravitational potential energy is given by
Eq. (8), and using for the components of Fg the discrete expres-
sions FM

i+1/2, j,kgi+1/2, j,k etc. one obtains Eq. (17).
For an individual time step, we expect the difference between

our formulation and a centered difference formulation for S E to
be small. This is because the mass fluxes at cell interfaces must
closely resemble the mass fluxes evaluated at cell centers, the
difference arising in essence from the reconstruction (from cell
center to cell interface). An analytical error estimate is, however,
not trivial as we use the fluxes from the (approximate) Riemann
solver. The difference between the two approaches is, however,
systematic and thus cumulative over many time steps, at least for
a stratified medium in the presence of a fixed gravitational field.
The numerical results in Sect. 3 will further underpin this point.

3. Simulating convection: basic tests

Our goal here is twofold: we want to demonstrate that the well-
balanced scheme lives up to expectations and we want to illus-
trate the consequences of using a standard scheme. Section 3.1
focuses on static (zero velocity), marginally stably stratified sit-
uations with polytropic EoS in different geometries. Section 3.2
addresses quasi-stationary convection, from 1D to 3D, for an
ideal gas EoS. The description of each test follows the same
basic scheme: sketch of the physical problem (equations, bound-
ary conditions, analytical solution where possible), information

on the numerical domain and its discretization, details on
problem initialization and numerical boundary conditions, and,
finally, the results of the test.

3.1. Static stratified layers

Tests in this section consist of a stratified medium at rest. Integra-
tion in time of such a configuration may or may not preserve its
initial, static state, depending on whether the integration scheme
is well-balanced or not.

3.1.1. Plane-parallel 1D slab

We repeat one of the tests from KM16, their Sect. 3.1: a hydro-
static 1D plane-parallel atmosphere with gravitational potential
φ(x) = g x and the EoS of a mono-atomic ideal, isentropic gas,
p (ρ, s) = es/cvργ with s = s0 = Rgas/(γ − 1) ln(p0/ρ

γ
0). We use

g = 1, γ = 5/3, and Rgas = 1. The analytical solution of Eq. (7)
under these conditions is given by

ρ(x) =

(
ρ
γ−1
0 − e−s/cv

γ − 1
γ

g x
)1/(γ−1)

. (18)

For our numerical domain x ∈ [0, 2] pressure scale heights
hp(x) = −p/(dp/dx) range from hp(0) = 1 to hp(2) ∼ 0.578.
Meshes range from 64 cells to 1024 cells. Thermal and viscous
diffusion terms are set to zero in the numerical solution.

As our goal is to test whether our well-balanced scheme can
maintain to machine precision a configuration that is initially
stratified and at rest, we must ascertain that the initialization sat-
isfies Eq. (14), the discrete counterpart of Eq. (7). To this end,
we anchor our discrete solution at the lower domain boundary,
where we set ρ0 = 1 and p0 = 1 (implying s0 = 0). We then use
a Newton–Raphson method to integrate Eq. (14) together with
the above EoS toward the upper domain boundary. The velocity
is set to zero everywhere.

Two sets of numerical boundary conditions are used,
employing again the Newton–Raphson method to integrate the
analytical solution (given here by Eqs. (14) and (18)) from the
last within domain cell to fill the ghost cells before each time
step. The bottom boundary is reflecting in both cases. The top
boundary is set to one or the other of two possible choices. The
first possible choice we denote by “free-float”: the current den-
sity and pressure profile is extrapolated, velocities are copied
from within the domain. The second possible choice we denote
by “historical”: the initial density and pressure profile is extrap-
olated, velocities are set to zero. The free-float boundary condi-
tions correspond to boundary conditions as used in KM16. The
historical boundary conditions are a variant thereof, designed to
draw the boundaries in each time step to the initial state.

Using the standard scheme, average velocities are around
10−6–10−4 after only 2 τs. The sound speed, for comparison, is
around one. In KM16 a more detailed error analysis of these non-
zero velocities is given. Here we want to draw attention to a fol-
low up effect: a net transfer of mass toward the upper boundary
and a decrease of the mass M(t) of the slab with time, as illus-
trated in Fig. 1. As can be seen, the mass loss depends on the
discretization (more severe for coarser grids) and on the bound-
ary conditions (more severe for free-flow). The well-balanced
scheme maintains zero velocities and M(t)/M(0) = 1 to machine
precision for both boundary conditions, even for the most coarse
discretization of 64 cells.

The test demonstrates not only that the well-balanced
scheme works as expected, but also that it is necessary: the
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Fig. 1. Total mass in 1D hydrostatic slab, normalized by the initial
mass (M(t)/M(t = 0), y-axis), as function of time (x-axis, in τs), inte-
grated with the standard scheme, using either historical (dashed lines)
or free-float (solid lines) boundary conditions and different meshes
(colors; number of grid cells). The well-balanced scheme maintains
M(t)/M(t = 0) = 1 to machine precision in all cases.

solution suffers from severe numerical artifacts if the standard
scheme is used.

3.1.2. Lane–Emden polytrope in 2D and 3D

Lane–Emden polytropes are a good first approximation for the
structure of a star. They are solutions to the Lane–Emden equa-
tion (see e.g., Kippenhahn & Weigert 1990),

1
r2

d
dr

(
r2γ ξ

dρ
dr

)
= −4πGρ, (19)

which follows from the equation of hydrostatic equilibrium in
3D spherical symmetry, dp/dr = −ρ(r)GM(r)/r2, for a poly-
tropic EoS p = ξργ, with γ = 1 + 1/n and n = 1, 2, . . . the poly-
trope index. A few analytical solutions are known, for instance
for γ = 2 (n = 1), our test case:

ρ(r) = f (αr), p(r) = ξ f (αr)2, φ(r) = −2ξ f (αr). (20)

Here, r is the radius, α =
√

2πG/ξ, and f (αr) = ρc sin(αr)/(αr).
We use ξ = 1, G = 1, and ρc = 1. The situation is marginally
stably stratified.

Our goal is again to test whether the well-balanced scheme
can maintain the initial, static situation and how, for compari-
son, the standard scheme behaves. We consider two geometries:
a 2D axi-symmetric mesh as well as a 3D Cartesian mesh. The
discretized analytical solution, Eq. (20), exactly satisfies the dis-
crete hydrostatic equilibrium, Eq. (14), for both meshes, thus
can be used as numerical initial condition.

In the 2D axi-symmetric case, we map the computational to
the physical mesh via the mapping function [x, y, z] → [r, θ, ϕ],
with [0 . . . 1, 0 . . . 1,∆z] 7−→ [0.19 . . . 0.95, 0.25π . . . 0.75π,∆ϕ].
This produces a spherical wedge with a width of one cell in z-
direction. We tested that the result does not depend on the choice
of the size of ∆ϕ. The domain is discretized by a regular 2562

mesh. In radial direction, historical and reflecting boundary con-
ditions are used at the top and bottom boundary, respectively
(see Sect. 3.1.1). Periodic boundary conditions are used in angu-
lar direction.

With the well-balanced scheme, velocities remain zero up
to machine precision over several hundred sound crossing times
(not shown). With the standard scheme velocities start develop-
ing early on. After a few hundred sound crossing times a flow

Fig. 2. Lane–Emden test case, preservation of initially static configu-
ration. Top panel: using the standard scheme, a convection like veloc-
ity field develops. Shown is absolute velocity (from purple to white;
sound speed ranging from 0.76 to 1.39) with velocity arrows (rainbow
colored according to magnitude) for the axi-symmetric 2562 mesh after
300 τs. Bottom panel: using the well-balanced scheme, an initially static
polytrope on a 3D Cartesian mesh (1283, star in a box) is preserved to
machine precision. Shown are iso-surfaces in density after 300 τs. They
remain perfectly spherical despite the Cartesian grid, because velocities
remain zero to machine precision, thanks to the well-balanced scheme.

field featuring roll-ups, updrafts, and downdrafts has formed, as
illustrated in Fig. 2, top panel. The apparent symmetry of the
flow structure merely mirrors the symmetry of the code and the
initial conditions. Mach numbers are around 0.0005 on average
but exceed 0.001 in substantial portions of the flow (green, yel-
low, and red arrows). This may not seem dramatic. We recall,
however, that sound speeds typically exceed convective veloci-
ties by one or two orders of magnitude for the stellar situations of
interest here (see Sect. 2). This translates the velocities in Fig. 2,
which are of purely numerical origin, into a range between 1% to
10% of typical convective velocities. A serious numerical con-
tamination of the physics to be studied thus seems possible if the
standard scheme is used.

Using a uniform 1283 3D Cartesian mesh as physical mesh
on a [0, 1]3 domain with historical boundary conditions, we
repeated the above exercise. The approach is of interest for sim-
ulating entire stars, where spherical coordinates struggle with
(coordinate-) singularities in the center and along the z-axis.
Our approach, often termed “star in a box”, also suffers from
a non-optimal mesh: it is a spherical problem on a physically
Cartesian mesh. Nevertheless, an initially static configuration is
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maintained to machine precision by the well-balanced scheme.
Figure 2, bottom panel, shows density after 300 τs. Spherical
density contours are perfectly preserved, despite the Cartesian
mesh. The standard scheme (not shown) develops jittery density
contours, the spherical symmetry is broken, and large scale, con-
vection like velocities develop that reach Mach numbers of about
0.1.

3.2. Convective layers

So far we have looked at stationary situations with zero-
velocities (up to machine-precision), implying that the energy
source term ρu∇φ vanishes as well. In this section, we look at
convectively unstable situations that are, nevertheless, in a glob-
ally stable equilibrium. The test case, to be detailed below, fol-
lows Hurlburt et al. (1984; H84 in the following). It consists of
a gravitationally stratified slab in planar geometry with parame-
ters and boundary conditions such that compressible convection
develops. In H84, a large test-suite of different 2D cases is pre-
sented. We repeat two tests for comparison. We then go beyond
H84 by briefly addressing the formation of zonal flows in 2D
as well as convection in 3D. These additional tests shall demon-
strate that our implementation is fit for 3D and draw attention to
a specific 2D flow regime. They are not meant to be a parameter
study.

3.2.1. Description of test case

We summarize only some key aspects. A comprehensive
description of the test can be found in H84. The test has two
free parameters: the assumed stratification of the slab, χ, and
the Rayleigh number, R. Quantities are in dimensionless form.
Gravity points along the negative y-axis. A perfect mono-atomic
gas is assumed with gas constant Rgas = 1, specific heats at con-
stant pressure and volume of cp = 2.5Rgas and cv = 1.5Rgas,
respectively, and with γ = cp/cv. The thermal conductivity K
and the dynamic viscosity µ are constant, with values such that
the viscous diffusion rate is equal to the thermal diffusion rate:
σ = µcp/K = 1, with σ the Prandtl number. In the absence of
motion, the mean stratification follows a polytrope with temper-
ature, density, and pressure given by

T = y, ρ = ym, p = ym+1. (21)

As H84, we take for the polytropic index m = 1. In the y-
direction, the (dimensionless) slab extent is d = 1, with the
top and bottom boundaries of the slab at yt and yb = yt + 1,
respectively. The vertical coordinate y and the desired stratifi-
cation χ are linked via χ = ρ(yb)/ρ(yt) or yt = 1/(χ − 1). As
m = g/Rgasβ0 − 1, with β0 = dT/dy = 1 the initial temperature
gradient, it follows that, again in scaled units, g = 2.

The degree of instability of this configuration can be mea-
sured in terms of the Rayleigh number (see H84)

R(y) =
Q2(m + 1)

σ

[
1 − (m + 1)

γ − 1
γ

]
y2m−1, (22)

with

Q =
(Rgas |β0| d)1/2d

(K/(ρ0 cp))
=

2.5
K
, (23)

the ratio of the sound travel time to thermal diffusion. The last
equality exploits that Rgas = β0 = d = 1, cp = 2.5, and uses
density normalized as in H84, that is, ρ0 = ρ(yt) = 1. For the

(convective) instability to set in, one must have R > RC, where
RC is the critical Rayleigh number (see Fig. 1 in H84) and R =
R(yt + 1/2) is the Rayleigh number evaluated at mid-level. The
choice of R, or of the factor fR defined via R = fRRC, together
with the choice of χ yielding yt = 1/(χ − 1), translates into a
choice of K, via Eqs. (22) and (23),

K = (2.5 (yt + 1/2)/R)1/2 , (24)

thereby also fixing µ = K/2.5, where we used σ = µcp/K = 1.
Boundary conditions at the bottom and top are stress-free for

horizontal velocities, zero velocity in the vertical direction, fixed
temperature at the top boundary (T = yt), and fixed tempera-
ture gradient at the bottom boundary (dT/dy = 1). The bottom
boundary translates into a steady energy input into the slab in the
form of a radiative flux (see Eq. (27) below). Numerical bound-
ary conditions in the horizontal direction are periodic.

To trigger convection we perturb the initial velocities by at
most v0 = 10−4. We tested that varying the perturbation has no
effect on the results. Without any triggering perturbations, the
well-balanced scheme maintains the initial profile and convec-
tion does not develop.

Energy transport in the slab can be split into three contribu-
tions: the convective flux FC, the kinetic flux FK, and the radia-
tive flux FR (a fourth contribution, the viscous flux, H84 showed
to be negligible),

FC = −cp ρvy(T − T ), (25)

FK = −
1
2

(ρvivi)vy, (26)

FR = K
∂T
∂y
. (27)

The over-bar denotes horizontal (normal to the direction of grav-
ity) averaging. We evaluate Eqs. (25)–(27) numerically for diag-
nostic purposes in each time step.

3.2.2. 2D simulations

We examine two 2D setups analogous to H84 and show that
we obtain similar results, notably similar convection patterns
and energy fluxes. One setup is mildly stratified (χ = 1.5,
R = 310 RC, RC = 400, K = 7.1 × 10−3, µ = 2.8 × 10−3),
the other is more strongly stratified (χ = 21, R = 1480 RC,
RC = 750, K = 1.1 × 10−3, µ = 4.5 × 10−4), with RC estimated
from Figure 1 in H84. The computational domain has an exten-
sion of 4 in x-direction, and of 1 in y-direction, with a uniform
mesh of Nx × Ny = 160 × 40.

The solution obtained with the well-balanced scheme (along
with some not well-balanced solutions, to be discussed below)
is illustrated in Fig. 3. Convective roll-ups develop that persist
as time evolves (panels a and b), closely resembling results by
H84, their Fig. 4. Vertical time averaged profiles of FR, FC, and
FK (green lines in panels d to f) are equally in line with H84. The
radiative flux accounts for around 80% of the total flux in both
cases. This value is to be expected for m = 1, while for m < 1 the
convective flux will become more important and flow structures
will be less smooth (see Brandenburg et al. 2005). In the mildly
stratified case, energy transport via convection accounts for the
remaining 20% of the total energy flux. In the strongly strati-
fied case, the convective flux in addition compensates for the
downward directed kinetic flux. Also shown in Fig. 3 are verti-
cal time averaged profiles of the root mean square velocity, vrms.
The quantity is clearly dominated by the horizontal branches of
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Fig. 3. Test case following H84. Typical flow patterns for χ = 1.5
and χ = 21 are shown in panels a and b, respectively, in (dimen-
sionless) absolute velocity (color coded) with velocity arrows superim-
posed. Horizontally averaged vertical profiles of vrms, convective (FC),
kinetic (FK), and radiative (FR) fluxes are given in panels c–f. Colors
denote solutions obtained with the well-balanced scheme for χ = 1.5
(dark green) and χ = 21 (light green), with the well-balanced scheme
but central differences for S E and χ = 21 (yellow), and with the standard
scheme for χ = 21 (red). Solid lines are time averages, dashed lines are
temporal variability (±1 standard deviation, where distinguishable from
the mean). Panel g: time integrated gain of energy via S E if the scheme
is not well balanced in energy (red dashed and blue solid) or if the stan-
dard scheme (purple dashed and cyan solid) is used for χ = 1.5 (dashed
lines) and χ = 21 (solid lines, scaled by a factor of 30).

the convective motion. As such, vrms mirrors the overall shift of
the convective roll-ups toward the lower boundary of the slab
for χ = 21 as compared to χ = 1.5. The same dependence was
reported in H84.

To demonstrate the importance of the well-balanced scheme,
we repeated each test case but relaxed the well-balanced proper-
ties of the scheme. The resulting, purely numerical energy gain

Fig. 4. Test case in 2D, following H84, for χ = 1.5 with µ = 0,
K = 1.4 × 10−2, and a Rayleigh number of 1.24 × 105. The flow alters
between long zonal-flow phases (panel a) and intermittent, convective
burst phases (panel b). Absolute velocity is color coded, velocity arrows
are overplotted in gray shadings.

via S E is illustrated in Fig. 3, panel g). The energy gain is found
to be more severe for χ = 21 than for χ = 1.5 (by more than a
factor of 30) and also more severe for the standard scheme than
for the scheme that is well-balanced in S M but not in S E (more
than a factor of 10). For χ = 21 and the standard scheme, the
time integrated energy gain equals the total gas energy E of the
slab after only about 1000 τs. The solution adjusts such that the
temperature gradient steepens close to the top of the slab (not
shown) and the excess energy gained is radiated via FR. This
excess in FR near the top boundary is clearly visible in Fig. 3,
panel f, yellow and red curves, showing the χ = 21 case. In the
interior of the slab, FR remains unchanged whereas FC and FK
both increase, as does vrms. If the standard scheme is used, the
damage to the solution is particularly severe. Vertical profiles for
χ = 21 (red lines in Fig. 3, panels c–f) now deviate substantially
from the well-balanced solution, with strong temporal variability
in the case of FC and FK. The latter is in line with the 2D flow
field no longer being quasi-stationary: convective plumes move
and occasionally the up-draft and down-draft branch approach
so closely that convection collapses and re-forms.

3.2.3. 2D flows with low viscosity or high Rayleigh number

We repeated both 2D test cases to highlight two limiting cases
that are well-documented in the literature and are of potential
interest in the context of stellar convection modeling: low vis-
cosity and high Rayleigh number (e.g., Muthsam et al. 1995;
Brandenburg et al. 2005; Goluskin et al. 2014; van der Poel et al.
2014).

Setting µ = 0, we no longer observe quasi-stationary con-
vection but intermittent, bursty convection. Figure 4, illustrates
the situation for the χ = 1.5 case (with a Rayleigh number
of 1.24 × 105, K = 1.4 × 10−2 and for a domain size of 8
instead of 4, which, however, has no effect). Strong horizontal
or zonal flows prevail for most of the time (panel a), interrupted
by occasional, short phases dominated by convective roll-ups
(panel b). A similar behavior is reported by van der Poel et al.
(2014). Going to much higher Rayleigh numbers while keep-
ing σ = 1, the convective roll-ups permanently vanish in favor
of zonal flow. A discussion of the underlying mechanisms may
be found in Goluskin et al. (2014). Once a strong horizontal
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flow component starts developing, it hinders the organization of
convection in the vertical direction. Stress-free boundaries,
which are otherwise well-suited to model part of a stratified
flow (e.g., Hossain & Mullan 1993), promote the occurrence of
the phenomenon (e.g., Goluskin et al. 2014; van der Poel et al.
2014). We note that numerical viscosity is still present in all
of the above flows, but it is apparently too small to prevent the
occurrence of zonal flows. While zonal flows are widely reported
in the context of compressible or Rayleigh–Bénard convection
in 2D or quasi 2D for specific categories of flows (in particular
for flows featuring high Rayleigh number, small viscosity, and
stress-free boundaries), there exist to our knowledge no reports
of zonal flows in truly 3D situations (Muthsam et al. 1995;
Goluskin et al. 2014; van der Poel et al. 2014; Anders & Brown
2017).

3.2.4. 3D simulation

We repeat the χ = 1.5 and χ = 21 setups in 3D to demon-
strate that our algorithm works in 3D and to highlight some
differences between 2D and 3D compressible convection (e.g.,
Muthsam et al. 1995; Ludwig & Nordlund 2000; Arnett et al.
2007; Mocák et al. 2009; Garaud & Brummell 2015). We use
three 3D domains that have identical x- and y- extent as in
Sect. 3.2.2 but differ in their z-extent: a “half bar” (z-extend 0.5),
a “bar” domain (z-extent 1), and a “square” domain (z-extent 4).
Gravity points along the y-axis. Discretization is as in 2D, that
is, an extent of 1 is covered by 40 cells. We slightly perturb the
velocity in the initialization to trigger convection but tested that
this does not affect the results.

Aspects of the settled solutions for χ= 21 are illustrated in
Fig. 5. From the velocity fields it can be seen that the half bar
domain (panel a) settles into a very similar state to 2D. This orga-
nization remains stable over time. In the bar domain (panel b), the
coherence of the 2D flow pattern already tends to be lost. Horizon-
tal velocities near the top boundary and near the updraft (to the left
in the figure) are no longer aligned with each other. The updraft
region occasionally splits in two. In the square domain (panel c)
the solution does not organize at all. Updrafts and downdrafts
form and disappear, potentially moving around in between. A
limitation on the geometrical degrees of freedom thus seems cru-
cial for the organization of convection into steady roll-ups, at least
in this particular test case. The relevant energy fluxes in the ver-
tical direction, FR and FC, averaged horizontally and over time,
(Fig. 5, panels e–g) change as well as. In particular, the convective
flux FC peaks at lower values as one goes from 2D over half bar
to bar to square. At the same time, the time variability (dashed
lines in the figure) decreases. The root mean square velocity
close to the top and bottom boundary of the slab decreases as
the geometrical freedom increases from 2D to half bar, bar, and
square. Differences are most pronounced between 2D and half bar
on the one hand, and bar and square on the other hand.

The χ = 1.5 case shows qualitatively the same behavior, but
differences as one goes from 2D to square domain are generally
less pronounced.

4. Application to the young sun

As a last test case we move to a more complicated and astro-
physically more relevant situation: the model of a partially
convective young sun. The test aims at demonstrating that the
methods introduced work beyond comparatively simple test
cases. In the absence of any analytical solution of the prob-
lem, we benchmark our results against corresponding, published

Fig. 5. Convective H84 slabs in 3D. Shown are the flow field (absolute
dimensionless velocity color coded) for χ = 21 on domains half bar,
bar and square (panels a–c), as well as vertical flux profiles (time aver-
ages, solid, and one standard deviation, dashed) for vrms, FC, FK, and
FR (panels d–g). Discretization is 40 cells per interval [0, 1].

simulations with the code MUSIC (Viallet et al. 2011, 2013,
2016; Goffrey et al. 2017). Our physical setup, to be detailed
below, follows the one used in these studies. The section does not
aim at a detailed physical comparison of the solutions obtained
by MUSIC and A-MaZe, which is beyond the scope of the
present paper and a topic of future studies.

4.1. Definition of the problem

We consider a model of a convective young sun with mass
Mstar = 1 M� and radius Rstar = 3 R� at an age of a few Myr.
We use the same realistic stellar, tabulated EoS p = p(ρ, e)
(or, equivalently, T = T (ρ, e)) as in Pratt et al. (2016; see refer-
ences therein). Inversion of the EoS is done numerically. Heat
transfer is nonlinear and the heat conduction K(T ) is, within
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the diffusion approximation for radiative transfer, given by the
approximation

K(T ) =
16σT 3

3κρ
, (28)

where σ is the Stefan–Boltzmann constant and κ is the tab-
ulated Rosseland opacity of the gas (Iglesias & Rogers 1996;
Ferguson et al. 2005). The explicit viscosity µ is assumed to
be zero, as the actual physical value is much smaller than the
numerical viscosity. We use the same 1D initial model as used
in Pratt et al. (2016). The gravitational potential φ is taken from
the 1D simulations and is kept fixed in time. The average Mach
number of the problem ranges from around 0.001 in the bulk
of the convective zone to about 0.01 close to surface (see also
Viallet et al. 2016).

We perform five simulations that differ in their resolution,
geometry, and dimensionality. Four simulations use an axi-
symmetric geometry, on grids of 642, 1282, 2562 and 5122. One
simulation uses a 3D computational mesh of 643. A uniform
mapping as in Sect. 3.1.2 is used: (x, y) → (r, θ) in the 2D axi-
symmetric case and (x, y, z) → (r, θ, ϕ) in the 3D case with uni-
form grid spacing. In the radial direction and in units of stellar
radius Rstar, the computational domain extends from Rmin = 0.21
to Rmax = 0.94 (“Low 3” case in Pratt et al. 2016), thereby com-
prising both, the convective envelope and parts of the radiative
core. The domain extends from 0.2π to 0.8π in polar angle θ (and
in azimuth angle ϕ in 3D).

Boundary conditions are periodic in angular directions. The
slight dependence of the ghost cell volume for meridional direc-
tions (between a few percent and fractions of a percent, depend-
ing on resolution) is neglected, yet the fluxes at the periodic
boundaries respect the conservative scheme. In radial direction,
we set the mass fluxes at the domain boundary to zero (stress free
for tangential velocities, reflecting for radial velocities), retain
only the pressure term for the momentum fluxes (to ascertain
well-balance), and prescribe fixed (radiative) energy fluxes taken
from the initial 1D profile: 1.28×1032 ergs s−1 at the inner bound-
ary and 8.91×1033 ergs s−1 at the outer boundary, which are then
both scaled according to the fraction of the full sphere contained
in the simulation domain. The luminosity L at the top and bottom
of the domain is taken from the initial 1D profile. We note that
more energy is radiated at the outer boundary than enters through
the inner boundary, in line with the young sun being slowly con-
tracting. To sustain a reasonable temperature profile close to the
top boundary, despite our rather coarse numerical grid, we apply
Newtonian cooling (Dobler et al. 2006; Viallet et al. 2011).

4.2. Axi-symmetric simulations

An illustration of the fully developed convection in the form of
2D velocity maps is given in Fig. 6 for the resolutions 2562

and 5122, comparable to cases “Low” and “Hi” in Pratt et al.
(2016). The separation of the radiative core from the convec-
tive envelope is clearly apparent (transition to predominantly
white color), at the same radial distance for both resolutions
shown. Structures appear overall finer in the 5122 resolution
case than in the 2562 case, as expected. The difference is par-
ticularly apparent when looking at the up- and down-drafts (col-
ored in red and blue). Velocities tend to reach higher peak values
in the 5122 case and are generally higher closer to the upper
boundary.

The bottom panel of Fig. 6 roughly corresponds to Fig. 5,
left panel, in Pratt et al. (2016). Comparing the two figures, they

Fig. 6. Quasi-stationary convective structure of the young sun on the
mesh 2562 (top panel) and 5122 (bottom panel). Shown is radial veloc-
ity (color coded, from blue, at −3000 m s−1 downward, to red, at
+3000 m s−1 upward) with velocity arrows (rainbow colors according
to magnitude, linear from 0 to 104 m s−1) after about 107 s (for compar-
ison with Fig. 7). Color coding is the same in both panels. The domain
extends in radial direction from 0.21 to 0.94 in units of Rstar, and from
0.2π to 0.8π in meridional direction.

indeed look similar. In both figures, the separation between the
radiative core and the convective envelope is located at about
1/3 of the radius shown. The up- and down-drafts appear rather
more fine-grained and slightly more elongated in Fig. 6 than in
Pratt et al. (2016).

Convection in the A-MaZe simulations is overall more vig-
orous than in the MUSIC simulations, in terms of total kinetic
energy or also with regard to vrms, both shown in Fig. 7. The
total kinetic energy in the A-MaZe simulations is compara-
ble for all resolutions, but systematically exceeds the value in
MUSIC by roughly an order of magnitude. Turning from the
total kinetic energy to the radial dependence of vrms, some more
facets emerge. In the convection zone, vrms is larger in A-MaZe
than in MUSIC (Fig. 7, middle panels). More specifically, both
codes produce a comparable vrms close to the boundary between
the radiative and the convective zone. But while in MUSIC there
is little net increase of vrms with radius within the convective
zone, vrms increases by about one order of magnitude in A-MaZe.
Out to about 0.8 Rstar, the radial and tangential component
of vrms increase in concert, reaching values somewhat above
∼1000 m s−1 (Fig. 7, bottom panels). Meanwhile, in MUSIC vrms
reaches only ∼250 m s−1, yet again tangential velocities domi-
nate for large radii. The difference also impacts the convective
turnover time, which is often used as a characteristic time scale:
the overall larger radial velocities in A-MaZe result in an over-
all shorter convective turnover time compared to MUSIC. At
yet larger radial scales, beyond 0.8 Rstar, a large part of vrms in
A-MaZe is contained in tangential velocities along the stel-
lar surface. In the radiative zone, by contrast, A-MaZe yields
robustly lower vrms than MUSIC (Fig. 7, middle panels).
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Fig. 7. Axi-symmetric young sun simulations, 2D, with A-MaZe (left
panels, 2562 mesh unless otherwise stated) and MUSIC (right panels,
“Low 3” case in Pratt et al. 2016). Shown are the total kinetic energy in
the domain, scaled to a full spherical layer (0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,
0.21 ≤ R ≤ 0.94), as function of time (different resolutions color coded
for A-MaZe, shifted in time such as to ramp up simultaneously), as
well as radial profiles of volume-weighted vrms and its decomposition
into radial and tangential component (middle and bottom panels, solid
lines give time averages, dotted lines indicate the range) after convec-
tion has become quasi-stationary. The black long-dashed line (middle
right panel) shows the convective velocity calculated within Mixing
Length Theory formalism. We note that the y-axes in panels e and f
are different.

In summary, the above findings suggest qualitative agree-
ment between A-MaZe and MUSIC, enhancing overall
confidence in the results obtained by both codes. Yet quanti-
tative differences exists. A detailed analysis of the underlying
causes is beyond the scope of this paper. The analysis performed
with MUSIC in Pratt et al. (2016) highlights the sensitivity of
convective velocities to boundary conditions, extension of the
radial domain and resolution, easily yielding a factor 5 dif-
ference between results based on different setups. Algorithmic
differences may also contribute. On a more general level, the
low Mach number limit of the compressible Euler (or Navier–
Stokes) equations remains challenging, despite much progress
in terms of physical understanding and numerical handling (e.g
Guillard & Viozat 1999; Dellacherie 2010; Guillard & Nkonga
2017; Avgerinos et al. 2019). From this perspective, the differ-
ences documented here provide a basis for further numerical and
physical progress.

4.3. 3D simulations

The results from the 3D simulation are illustrated in Fig. 8, at a
time when convection has become quasi-stationary. The goal of
these simulations is not the physical study of the young sun. The
grid of 643 is too coarse to reasonably resolve numerous relevant
physical structures, such as the strong temperature and density
gradients characterising the near-surface layers. The purpose is
rather to illustrate that the well-balanced scheme can cope with
the application, despite coarse resolution and more complicated
physics, notably in terms of EoS.

Fig. 8. Young sun simulation in 3D, 643 mesh. Panel a: surfaces of
constant velocity along with velocity arrows. Panel b: slices along the
equator and perpendicular to the equator. Shown is velocity magnitude
(color coded) along with velocity arrows (arrows color coded according
to velocity magnitude). Bottom panels: radial profiles of vrms (panel c,
logarithmic scale) and of vrms split into radial and tangential components
(panel d, total vrms also shown). Solid lines show time averages, the
range (minimum to maximum) is indicted by dotted lines.

Pockets of high-velocity material are visible in the top panel
of Fig. 8, in cyan, blue, and green colors. The separation of the
convective and the radiative zone is visible in Fig. 8, middle
panel, as the transition to uniformly reddish colors. Also clearly
visible in the same panel are numerous up- and down-drafts,
some of the latter penetrating into the radiative zone. Across the
transition from the convective to the radiative zone, vrms drops
by a factor between ten to hundred, as can be taken from the
bottom panels in Fig. 8. Radial profiles of vrms are qualitatively
similar to their 2D counterparts (see Fig. 7). Also similar is the
dominance of the tangential component for vrms for radii larger
than about 0.8 Rstar, roughly the same radius as in the 2D simula-
tions. The kinetic energy of the 3D 643 simulation is comparable
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to that in the 2562 and 5122 simulations in 2D (Fig. 7, top left
panel). We take the above as an indication that our well-balanced
implementation works equally well in both, 2D and 3D.

5. Discussion

In the following, we want to put the well-balanced extension
to A-MaZe somewhat more into context. We will argue at the
same time that the well-balanced extension, despite or because
of its simplicity, makes A-MaZe a valuable tool for the numer-
ical investigation of multidimensional stellar convection, espe-
cially in concert with other codes.

We noted already in Sect. 1 that there exist various
approaches to cope with a gravitational field, be it external or
due to self-gravity. With our choice of algorithm and its con-
crete implementation, we compromised on accuracy (second
order in space in our implementation) and generality (station-
ary potential) in favor of simplicity and efficiency, both with
regard to coding and execution time. The algorithm is compact
and self-contained so that it can be implemented within an exist-
ing scheme or framework without difficulty. Additionally, the
extension of the scheme to higher order accuracy for the non-
hydrostatic part of the problem (p1 in Sect. 2.3.1) is straight-
forward. Going beyond second order for the hydrostatic recon-
struction (p0 in Sect. 2.3.1) is more complex. The underlying
assumption of φ being piece-wise linear is exactly fulfilled in the
tests of Sect. 3, but only up to truncation errors in the case of the
young sun, Sect. 4. In real application cases, the solution thus
is potentially vulnerable again to too coarse meshes. However,
this may not be a too severe restriction. In many astrophysical
applications, φ varies more slowly and smoothly as a function of
space and time than other physics of interest. A computational
mesh fit for the latter is thus likely fine enough to somewhat miti-
gate the second order only reconstruction of p0 in practical appli-
cations. Issues potentially also exist in multi-dimensions if the
gravitational force is not aligned with a coordinate axis, although
practical applications do not appear to be severely impacted by
this (see KM16 for a discussion). For the tests and applications
of interest here, the restriction to a time-constant gravitational
potential is not an issue. We see no principle obstacle as to why
our approach should not be extendable to cases where φ is time
dependent. In fact, KM16 present in their paper a correspond-
ing test case, a toy model of a core-collapse supernova. It then
would be interesting to compare the source term based approach
presented here and a pure flux formulation as e.g., in Jiang et al.
(2013).

Further advantages of the scheme exist beyond the previ-
ously mentioned simplicity and efficacy. The approach used here
does not make any assumption on the thermal equilibrium, does
not rely on a fixed mesh size, and allows for any time integration
scheme, explicit or implicit (see KM16). Also, our cell-centered
finite-volume scheme lends itself more easily to adaptive meshes
than do staggered grids. The latter is potentially of interest in the
context of our envisaged applications to stellar convection. In
such applications, it may be desirable to have higher resolution
at large stellar radii, toward the stellar surface, or also in the
vicinity of ionization edges further inward. Finally, we have
demonstrated in Sect. 4 that the current implementation, with-
out adaptive grids, is useful for studying stellar convection: suf-
ficiently long, physical integration times are possible despite
explicit time stepping, and results are qualitatively compara-
ble to MUSIC results. Associated integration times cannot be
compared as the simulations were run on different machines.
Comparisons of integration times for MUSIC alone may be

found in Viallet et al. (2013; explicit versus previous implicit
solver) and Viallet et al. (2016; previous versus current implicit
solver).

Multidimensional studies of the interior dynamics of stars,
from core to atmosphere, are still not common place and pose
multiple, non-trivial challenges for numerical simulations. To
ascertain the physical robustness of simulation results it is then
advantageous to study the same situation with different simu-
lation codes. This overarching idea resulted in the two codes
MUSIC (Viallet et al. 2011, 2013, 2016) and the well-balanced
hydro code within the A-MaZe tool-kit presented here. Similari-
ties between both codes are, briefly, that they simulate hydrody-
namic convection in stellar interiors in 2D and 3D for a realistic
EoS. Major differences between A-MaZe and MUSIC concern
the grid (cell-centered versus staggered) or the time integration
(explicit versus implicit).

The differences between the two codes translate into differ-
ent code-dependent strengths and weaknesses. The present paper
demonstrates that both codes are basically fit to simulate stel-
lar convection, thereby opening the possibility to duplicate at
least some simulations or part thereof with both codes. Arriving
at similar physical results with both codes greatly strengthens
their credibility. Likewise, qualitative or quantitative difference
point the way to where further improvement is needed in terms
of numerics and physics.

6. Summary and conclusions

We equipped the multi-scale, multi-physics numerical tool-kit
A-MaZe with a well-balanced algorithm that balances both,
momentum and energy of a flow in the presence of a static grav-
itational field. The balancing with regard to energy is less of a
topic in literature than the momentum balance, at least if the
equations are formulated with source terms and not as a con-
servation law for the total energy of the gas, that is, internal plus
kinetic plus gravitational energy.

A series of tests are presented that demonstrate the capa-
bilities of our implementation, even at low resolution. An ini-
tially static configuration can be maintained to machine preci-
sion, even for a spherical setup on a Cartesian mesh. A quasi-
stationary convective situation can be simulated without net gain
or loss of energy despite strong local up-drafts and down-drafts.
If a not (fully) well-balanced scheme is used, a substantial and
steady energy gain on purely numerical grounds is shown to
occur that affects the solution. The convection test is further used
to exemplify differences between 2D and 3D convection, includ-
ing the occurrence of zonal flows in 2D convection. Applica-
tion of our code to a young sun in 2D and 3D, comprising an
inner radiative and an outer convective part, completes our tests.
Simulation results show reasonable agreement with published
results.

With A-MaZe and MUSIC we now have two largely inde-
pendent codes within our collaboration, with which to study
multidimensional stellar convection or also simpler setups of
compressible convection, like the ones used here primarily for
code testing. Being able to repeat selected simulations or parts
thereof with different codes promotes credibility of the obtained
numerical results in case they are reasonably similar, or points
the way to necessary physical or numerical improvements in case
of substantial disagreement. The present work may also provide
a direction of travel to defining benchmark cases for stellar con-
vection beyond the usual Rayleigh–Bénard convection test cases,
which would be useful for the rest of the community interested
in the study of compressible convection.
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