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Abstract
We compare with one-dimensional particle-in-cell simulations the aperiodically growing
instabilities driven by a bi-Maxwellian velocity distribution in unmagnetized electron plasma
(Weibel instability) and in pair plasma. The simulation box is aligned with the cool direction.
The waves in both simulations evolve towards a circularly polarized non-propagating magnetic
structure. Its current and magnetic field are aligned and the structure is in a force-free state. We
examine how a background magnetic field B0, which is parallel to the simulation direction,
affects the waves in the pair plasma. A weak B0 cannot inhibit the growth of the aperiodically
growing instability but it prevents it from reaching the force-free stable state. The mode collapses
and seeds a pair Alfvén waves. An intermediate B0 couples the thermal anisotropy to the pair
Alfvén mode and propagating magnetowaves grow. The phase speed of the pair of Alfvén waves
is increased by the thermal anisotropy. Its growth is suppressed when B0 is set to the value that
stabilizes the mirror mode.

Keywords: particle-in-cell simulation, Thermal anisotropy, pair plasma, mirror instability,
Weibel instability

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma far from a thermal equilibrium, in which binary col-
lisions between particles are infrequent on the time scales of
interest, relaxes via the growth of electromagnetic waves. The
growing waves extract energy from a nonthermal feature of
the plasma and the waves scatter the charged particles
bringing the plasma closer to an equilibrium. We call a
plasma collisionless if all instabilities grow and saturate on
time scales that are shorter than those of collisional processes.

An electron plasma with an anisotropic temperature
distribution is unstable. Weibel [1] considered spatially uni-
form electrons with a bi-Maxwellian velocity distribution
with a temperature that was lower along the direction dc than
along the two orthogonal ones. The temperature orthogonal to
dc was isotropic. He showed that the plasma is unstable for
the general case that a background magnetic field B0 is
aligned with dc. He derived the spectrum of the growing
waves in the limit = =B B 00 0∣ ∣ . Weibel found an instability
that gives rise to a non-oscillatory exponential (aperiodic)
growth of waves over a wide range of wavenumbers k dc .
Their magnetic fields are oriented orthogonally to dc.

A ¹B 00 changes the spectrum of undamped modes in
the plasma and introduces additional instabilities. The whis-
tler wave instability [2–4] yields propagating waves while the
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electron mirror instability results in aperiodically growing
magnetic fields with a growth rate that peaks for wavevectors
´ ¹k B 00 . Its growth rate is typically well below that of the

Whistler wave instability [5].
Thermally anisotropic ion distributions can also trigger a

mirror instability. An ion mirror instability grows in the
magnetohydrodynamic limit if the thermal pressure along B0

is significantly lower than the perpendicular one and if
=B B0 0∣ ∣ is sufficiently weak [6–13]. Its growth rate peaks at

oblique angles between k and B0. The ion mirror instability
tends to grow faster than the competing ion-cyclotron
instability [14] and it is thus frequently observed [5].

Evidence for positrons in astrophysical accretion discs
and jets [15] and the creation of clouds of electrons and
positrons in the laboratory (see [16] for a review) motivate
further studies of instabilities in pair plasma. A pure pair
plasma supports a wave spectrum that differs significantly
from that of an electron–ion plasma [17–20]. We restrict our
attention to waves with k B0 . Instabilities in pair plasma
with a bi-Maxwellian velocity distribution like that in [1]
were discussed in [21, 22]. It turns out that aperiodically
growing instabilities exist also in a pure pair plasma. They are
not suppressed by a ¹B 00 and compete with a pair Alfvén
mode instability.

The aforementioned instabilities may develop in the
unstable inner accretion discs of black hole binaries that
reached a temperature that is high enough to generate elec-
tron-positron pairs [23], in pair jets that flow along a guiding
magnetic field [24] and in the transition layers of their internal
collisionless shocks [25, 26]. These instabilities can dissipate
the energy of the inflowing upstream material in the pair
shocks that are thought to exist in energetic astrophysical
environments [27]. A better understanding of the conditions
under which instabilities driven by bi-Maxwellian velocity
distributions develop and how they evolve is also important
for the interpretation of the data sets provided by the large
simulations in [23, 24].

Here we compare with particle-in-cell (PIC) simulations
the evolution of the Weibel instability and of its counterpart in
pair plasma, which we call the aperiodically growing
instability. Both instabilities drive aperiodically growing
waves but Weibel considered only the one driven by elec-
trons. Naming that one Weibel instability allows us to dis-
tinguish between both. We compare both instabilities for
B0=0 and study the effects a ¹B 00 has on the instability in
pair plasma. All species have a bi-Maxwellian nonrelativistic
velocity distribution. The perpendicular temperature is twice
as high as the one along dc. We align dc with B0 and the 1D
simulation box. We examine the instability for several values
of B0.

The Weibel instability and the aperiodically growing
instability for B0=0 evolve alike. Their final state is a non-
propagating wave with a circularly polarized magnetic field that
is stable in our 1D geometry. The magnetic field of this wave
structure reaches a force-free equilibrium with the plasma current.
A second study considers a value for B0 that leads to an initial

growth of the aperiodically growing instability. In time the wave
power is shifted to lower wave numbers until it matches one at
which pair Alfvén waves can grow. The mode driven by the
aperiodically growing instability collapses and launches pair
Alfvén modes. The thermal anisotropy is rapidly depleted for this
value of B0. Three studies employ values of B0 that destabilize
the pair Alfvén mode. The phase speed of the pair Alfvén wave is
increased by the thermal anisotropy if its speed is comparable to
the thermal speed of the electrons and positrons. We show by
means of simulations and for our initial conditions that the value
of B0 that suppresses the mirror instability stabilizes also the
aperiodically growing mode and the pair Alfvén mode.

This paper is structured as follows. Section 2 summarizes
the numerical scheme of a PIC code and presents the initial
conditions we selected for the simulations. Section 3 shows
the results obtained from the simulations of the instabilities
with the electron plasma and with the pure pair plasma for
B0=0. Section 4 presents the simulation results for the
magnetized plasmas. We summarize our findings in section 5.

2. The PIC code and the initial conditions

2.1. The code

An electromagnetic PIC code solves Ampère’s law and
Faraday’s law

m m
¶
¶

=  ´ -
t

E
B J, 10 0 0 ( )

¶
¶

= - ´
t

B
E, 2( )

on a numerical grid ( m ,0 0: vacuum permittivity and perme-
ability). The electric E field and the magnetic B field are
coupled to the plasma via the current density J. PIC codes
approximate the plasma by an ensemble of computational
particles (CPs), which have the same charge-to-mass ratio as
the particles they represent, and compute J from the ensemble
of all CPs. The CPs evolve under the influence of E and B.
The numerical scheme of the EPOCH code we use (see [28]
for a detailed discussion) satisfies Gauss’ law and the
magnetic divergence law to round-off precision.

2.2. Initial conditions

We give the positrons and electrons the density n0/2 in the
simulations with the pair plasma. We set the electron density to
n0 in the simulation of the electron Weibel instability and con-
sider the ions to be an immobile positively charged background
that cancels out the electron charge at the simulation’s start. All
mobile species have a bi-Maxwellian velocity distribution with a
thermal speed =v k T me1 B 1 (k m T, ,eB 1: Boltzmann constant,
electron mass and temperature T1=5 keV) along x and

=v v22 1 ( =T T22 1) along y and z. We align B0 with x
and vary its strength. The ratio between the perpendicular
(parallel) thermal pressure and the magnetic pressure of B0 is
b m=^ n k T B 20 B 2 0

2
0( ) (b m= n k T B 20 B 1 0

2
0( ) ).
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According to [10] the threshold for the mirror instability in
a spatially uniform plasma that consists of several species s is
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The charge density of species s is ρs. Its parallel and perpend-
icular temperatures are Ts1 and Ts2 with >T Ts s2 1. The b ^s and
bs are the contributions of the species s to β⊥and βP. Electrons
and positrons have identical initial conditions and our simula-
tions will show that they maintain equal values of their aniso-
tropies in time. Their opposite charge densities cancel each other
out in the numerator of the second term on the right hand side of
equation (3). The contributions s=e (electrons) and s=p
(positrons) yield b b b+ =^ ^ ^e p . Hence the threshold A for
the mirror instability of electrons and positrons is

b= - = ^A T T 1 12 1 and its growth is limited to β⊥>A−1

or β⊥>1 for our initial condition =T T22 1.
We normalize space to l w= cs p with the total plasma

frequency w = n e mp e0
2

0
1 2( ) (e m c, ,e : elementary charge,

electron mass and light speed). The normalized cyclotron
frequency is w w= eB mc e p0 . Times are normalized to ωp.
Wavenumbers k are normalized to l-s

1 and frequencies to ωp

unless stated otherwise. We normalize E and B to wm c ee p

and wm ee p and currents to en0c.
The simulation box resolves the length Lx=265 along

x by 2000 grid cells and employs periodic boundary
conditions. Reference [29] estimates the maximum wave
number km that can be destabilized by the electron Weibel
instability as =k Am

1 2. The corresponding wavelength is
l p= k L2m m x for our initial conditions. We evolve all
simulations for a time tmax=13 400, which we resolve with
105 time steps. A total of 103 CPs per cell resolves the plasma
and they are distributed in equal parts over electrons and
positrons where appropriate.

3. Instabilities in unmagnetized electron plasma and
pair plasma

We compare the Weibel instability driven by one electron
species with the density n0 with the aperiodically growing
instability driven by a pair plasma with the same total
density. Figure 1 compares the evolution in time of their box-
averaged thermal anisotropies A(t), which are computed
for each species separately, their magnetic energy densities

m= á ñ + á ñP t B t B t n k T2B y x z x
2 2

0 0 B 1( ) ( ( ) ( )) ( ) and that of
B x t,y ( ) and B x t,z ( ). Brackets with the subscript x denote a
spatial average over the entire simulation box.

Magnetic field oscillations have grown in the distribu-
tions of B x t,y ( ) and B x t,z ( ) in both simulations. We observe
a rapid growth of small filaments with a wavelength λ�λm
until t≈300 or »tlog 2.4710( ) when PB(t) reaches the value
0.01. Both A(t) and PB(t) evolve identically in both simula-
tions until then. Filaments merge in time and their growth is
tied to a further decrease of A(t) and increase of PB(t). Both

simulations show a continuing growth of PB(t) in figure 1(f)
after the instability saturated at t≈300.

What is the final state to which the plasma is evolving?
Figures 1(a), (b) show that both magnetic field components
are practically stationary at late times. The electric field
E x t,x ( ) is at noise levels (not shown). The corresponding
equation of motion for a fluid with the mass density ρm and
the thermal pressure pth is

r = ´ -
t

p

x

v
J B

d

d

d

d
. 4m

th ( )

The left-hand term vanishes at late times in both simulations
since the fluid is stationary. Studying both terms on the right-
hand side will reveal the final state of the unstable modes in
our 1D geometry. We examine the final state in the simulation
with only electrons. We average B x t,y ( ), B x t,z ( ), J x t,y ( ) and
J x t,z ( ) over the time interval 12 700�t�13 400 and
denote the averaged quantities by brackets with the subscript
t. We compute the moduli = á ñ + á ñB̂ x B x B xy t z t

2 2 1 2( ) ( ( ) ( ))
and = á ñ + á ñĴ x J x J xy t z t

2 2 1 2( ) ( ( ) ( )) and show them in
figures 2(a), (b). Almost constant values B⊥(x)=0.02 and

» ´^
-J x 6 10 3( ) are observed for 0�x�145 and

155�x�230.
We compute the integrals ò=I x t v f x v t v, , , dx x x x

2( ) ( ) ,

ò=I x t v f x v t v, , , dy y y y
2( ) ( ) , and ò=I x t v f x v t v, , , dz z z z

2( ) ( ) ,
where f x v, i( ) are the projections of the electron phase space
density distribution along the direction i. We obtain the
effective temperatures =T x t I x t I x, , , 0x x x( ) ( ) ( ), =T x t,y ( )
I x t I x, , 0y x( ) ( ) and =T x t I x t I x, , , 0z z x( ) ( ) ( ), which are
normalized to T1. We average them over 12 700�t�13 400
and show them in figure 2(c). The effective temperature along
x has increased at the expense of the perpendicular ones as
expected from the curve A(t). A summation of the effective
temperatures is proportional to pth and its value changes only
slowly along x, which suggests that the thermal pressure gra-
dient in equation (4) is not important. Oscillations of J⊥(x) and
B⊥(x) at x≈150 and 240 are tied to different effective tem-
peratures along y and z; the electron velocity distribution is not
a bi-Maxwellian in both intervals.

Stationary plasma structures and weak thermal pressure
variations suggest that J×B≈0 in equation (4). The latter
can be fullfilled by J B . Since B0=0 cannot change
during the simulation time due to geometrical constraints and
because the current J x t,x ( ) is down to noise levels (not
shown) we have to test this condition only for the perpend-
icular magnetic field and current components.

We compute the complex vector = á ñ +B̂ x B xy t*( ) ( )
qá ñ = ^B x B xi exp iz t B( ) ( ( )) and extract q xB ( ). The complex

current = á ñ + á ñ^J x J x J xiy t z t*( ) ( ) ( ) yields the phase angle
q xJ ( ) while - = -á ñ - á ñ^J x J x J xiy t z t*( ) ( ) ( ) has the phase
angle q- xJ ( ). Figure 2(d) reveals that q- xJ ( ) follows q xB ( ) over
the entire left half of the simulation box. We find
q q=x xB J( ) ( ) for 150�x�235 in the right half of the box
shown in figure 2(e). Two domains with force-free magnetic
structures have formed which are separated by intervals
with particle velocity distributions that deviate locally from a
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bi-Maxwellian one. Force-free structures develop also in the
simulation with electrons and positrons.

4. Magnetized pair plasmas

We examine effects of B0 ¹ 0 along x in this section and
increase its amplitude in each subsection. We start with
β⊥=20, which corresponds to ωc=1/22.6. The case
β⊥=4 gives ωc=0.1, β⊥=2 gives ωc=0.14 and β⊥=
1.5 gives ωc=0.163. Our final study considers values of B0

that are close to the critical β⊥=1 (ωc=0.2) that sup-
presses the mirror instability. The electric field and the
current along B0 remain at noise levels in all simulations,
which is a necessary condition for the mirror instability [9].

The pair Alfvén mode is important in our simulations
and we summarize some of its properties. Its normalized
phase speed is m=v B c n mA e0

2
0 0

1 2( ) in the limit of low
wave numbers k provided that all temperatures are non-
relativistic and isotropic [22]. Its phase speed decreases with
increasing k due to a resonance at the cyclotron frequency.
We compare our simulation results to the dispersion relation
of the pair Alfvén wave in cold electron–positron plasma
derived in [20].

4.1. Case β⊥=20

Figures 3(a), (b) depict the initial evolution of B x t,y ( ) and
B x t,z ( ) in the box interval 0�x�100 until t=3000.
Filaments grow during 0�t�1500 in both field compo-
nents. They damp out after this time and are replaced by
low-amplitude waves with a larger wavelength. We compute
the spatial power spectrum of the magnetic field =Q k t,( )

+B k t B k t, ,y z
2 2∣ ( )∣ ∣ ( )∣ , where B k t,y ( ) and B k t,z ( ) were

obtained from the Fourier transforms of B x t,y ( ) and B x t,z ( )
over Lx, and display the result in figure 3(c). Waves grow
initially up to the maximum wave number km=1 that is
unstable to the Weibel instability for B0=0.

Figure 3(d) shows that PB(t) grows approximately
exponentially until t≈500 and saturates at t=700. The
wave spectrum in figure 3(c) shifts in time to lower k. This
shift enables a continuing wave growth as the thermal
anisotropy decreases (see figure 3(d)) because =k Am

1 2. The
modes damp out at t≈2000 and a wave emerges at k≈0.15
with an amplitude that remains practically unchanged until
the end of the simulation. The modes do not evolve towards a
force-free equilibrium because B0 ¹ 0. The thermal aniso-
tropy has been depleted at t≈2500 while PB(t) decreases by
more than an order of magnitude after its initial saturation at
the value 8×10−3.

Figure 1. The time evolution of the magnetic fields and the thermal anisotropy in the simulations with B0=0: panels (a), (b) show the
amplitudes of the magnetic B x t,y ( ) and B x t,z ( ) fields in the simulation with only electrons for 0�x�100 multiplied by 100. Panel
(c) compares the thermal anisotropy A(t) for the simulation with only electrons (black) to those in the simulation with electrons and positrons,
which are both plotted in blue and follow each other closely. Panels (d), (e) show the amplitudes of the magnetic B x t,y ( ) and B x t,z ( ) fields
in the simulation with electrons and positrons for 0�x�100 multiplied by 100. Panel (f) compares the magnetic energy density PB(t) in the
simulation with only electrons (black) with that with the pairs (blue).
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Figure 3(c) reveals oscillations at k=0.15 after
t=2500 with a constant amplitude, which suggest the pre-
sence of an undamped or weakly damped plasma eigenmode
at this k. Magnetic oscillations imply that this mode is
electromagnetic. Thermal noise spectra can be used to detect

eigenmodes [30]. We Fourier transform B x t,y ( ) and B x t,z ( )
over all x and over suitable time intervals, which gives

wB k,y ( ) and wB k,z ( ). The spatiotemporal power spectrum of
the magnetic field is w w w= +FT k B k B k, , ,y z

2 2( ) ∣ ( )∣ ∣ ( )∣ .
We compute this spectrum over 0�t�3000 giving

Figure 2. The steady-state distribution of the Weibel modes in the simulation with only electrons averaged over the time
12 700�t�13 400. Panel (a) shows the modulus B̂ x( ) of the perpendicular magnetic field. Panel (b) shows the modulus Ĵ x( ) of the
perpendicular current. Panel (c) compares the time-averaged effective temperatures Tx(x) (black), Ty(x) (blue) and Tz(x) (red), which are
expressed in units of T1. Panel (d) compares the phase q xB ( ) (black line) of B̂ x*( ) with the phase q- tJ ( ) of the current - ^J t*( ) (red line) in
the left half of the box. Panel (e) compares q tB ( ) (black) with q tJ ( ) (red) of ^J t*( ) in the right half.

Figure 3. The evolution of the magnetic fields in the simulation with b =^ 20. Panel (a) shows the initial evolution of 100By and (b) that of
100Bz in the same spatial sub-interval. Panel (c) displays the spatial power spectrum of the magnetic field Q k t,( ), which is normalized to its
peak value, while (d) plots A(t) for both particle species (black curves) and P t10 B

2 ( ) (red curve) until t=3000.

5
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wFT k,1( ). The magnetic field data from 3000�t�tmax is
used to compute wFT k,2 ( ). Both spectra are displayed in
figure 4.

According to figure 4(a) most wave power in wFT k,1( ) is
concentrated at frequencies below 0.3ωc, which corresponds
to a normalized frequency 0.013, and k>0.2. These waves
are driven by the aperiodically growing instability. We note
that the spread of wave power to frequencies ω>0 in
figure 4(a) does not necessarily evidence propagating waves
with ω/k>0. The Fourier spectrum of a function that grows
exponentially between two values peaks at ω=0 but it also
stretches out to frequencies ω>0. Only a signal with a

constant amplitude yields a spectrum that is zero for all ω¹ 0.
Figure 3(c) demonstrated that these initial waves had damped
out at t≈3000 and gave rise to a stable electromagnetic
mode at k≈0.2. The power peak at k≈0.1 and the fre-
quency 0.08ωc in figure 4(b) is located on the dispersion
relation of the pair Alfvén mode.

We interpret the evolution of the instability as follows:
initially the instability grows at large wave numbers and low
ω and its wave power can not easily couple to the pair Alfvén
mode. In time the power peak moves to lower k and even-
tually the instability drives also the pair Alfvén mode (see
also figure 3(c)).

Figure 4. Spatiotemporal power spectra of the magnetic field for the simulation with β⊥=20: panel (a) shows wFT k,1( ) computed for
0�t�3000. Panel (b) displays wFT k,2 ( ) computed for 3000�t�tmax. Both are normalized to their respective peak values and shown
on a 10-logarithmic colour scale. Frequencies are given here in units of the cyclotron frequency w = -22.6c

1. The black curves show the
dispersion relation of the pair Alfvén mode in cold pair plasma.

Figure 5. The evolution of the magnetic fields in the simulation with b =^ 4. Panel (a) shows the initial evolution of 100By and (b) that of
100Bz in the same spatial sub-interval. Panel (c) displays the spatial power spectrumQ k t,( ), which we normalized to its peak value, while (d)
plots A(t) of the electrons and positrons (black curves) and P t100 B ( ) (red curve).
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4.2. Case β⊥=4

Figures 5(a), (b) reveals propagating magnetic field structures.
They are organized in packets that move in opposite direc-
tions. Two strong wave packets cross each other at t≈1500
and x≈80 causing wave interference. Figure 5(c) demon-
strates that the waves grow in a narrow interval 0.25�
k�0.5. The anisotropy does not decrease as fast as in the
previous case study and the maximum of = »P t 2500B ( )
´ -5 10 3 is lower.

We subdivide again the data into the interval
0�t�3000 with which we compute wFT k,1( ). It captures
the growth phase of the instability. The second one
3000�t�tmax is used to compute wFT k,2 ( ). We show both
spatiotemporal power spectra in figure 6 and overplot the
dispersion relation of the pair Alfvén mode. Both spectra
resemble each other. The power accumulates in both cases in
the interval 0.25�k�0.4 and at frequencies of about w 3c ,
which corresponds in this case to a normalized frequency
30−1. The wave spectrum is not monochromatic, which
explains why we observe wave packets in figure 5. Their
power accumulates above the dispersion relation of the pair
Alfvén mode. The pair Alfvén mode has a frequency that
exceeds the expected one by the factor 1.25.

We perform three additional simulations in order to test
the validity of the solution of the linear dispersion relation in
cold pair plasma. They use the same resolution and plasma
parameters as the simulation with β⊥=4 except for the
temperature. The electrons and positrons have isotropic
velocity distributions with the temperatures 100, 5 and
10 keV. We selected the temperatures T1=5 keV and
T2=10 keV in order to demonstrate how strongly the dis-
persion relation is affected by the temperatures we used in the
simulations with a thermally anisotropic plasma. The ratios of
the pair Alfvén speed to the plasma’s thermal speed are 7, 1
and 0.7, respectively. Figure 7 shows the spatiotemporal
power spectrum wFT k,( ) of the magnetic components

B x t,y ( ) and B x t,z ( ) computed over the full simulation time
0�t�tmax.

The dispersion relation for the cold pair plasma in
figure 7(a) is a good approximation for the magnetic fluc-
tuations up to the frequency w 2c and wave number k=0.6.
An increasing temperature reduces the range of wavenumbers
that show a pronounced pair Alfvén mode branch. Thermal
effects yield a decreasing phase speed of the wave in a narrow
k-interval and the emergence of broadband fluctations at large
k, which differs qualitatively from the observed acceleration
of the pair Alfvén mode at low k in figure 6.

The pair Alfvén speed in figure 6 is comparable to the
thermal speeds of the positrons and electrons and it may thus
be affected by a resonance with particles that have an ani-
sotropic velocity distribution. According to equation (60) in
[22] a thermal anisotropy can increase the phase speed of the
pair Alfvén mode by the factor b+ -A1 1( ( ˜ ) ) , where the

thermal anisotropy is defined as =A T T2 1˜ in [22] giving
= +A A 1˜ . This factor equals 3 for the case β⊥=4,

which exceeds the factor 1.25 in figure 6 by 40%. The
decrease of A to 0.6 in figure 5(d) reduces the quantitative
mismatch to 20%. Furthermore the finite number of CPs
implies that the velocity distribution is a Maxwellian only up
to a few times the thermal speed, which is likely to modify the
upshift compared to the analytic result in [22].

4.3. Cases β⊥=2, 1.5 and 1

Figure 8(a) shows the spatial power spectrum Q k t,( ) of the
magnetic field. A wave is growing in the interval
0.3�k�0.5. We show the spatiotemporal power spectrum

wFT k,( ), which is integrated over all 0�t�tmax, in
figure 8(b) and overplot the dispersion relation of the pair
Alfvén mode in cold plasma. The wave in figure 8(a) is
growing on the pair Alfvén wave branch. The noise and the
signal follow the overplotted curve up to k≈0.6. The phase

Figure 6. Spatiotemporal power spectra of the magnetic field for the simulation with b =^ 4: panel (a) shows the spectrum wFT k,1( )
integrated over 0�t�3000. Panel (b) displays wFT k,2 ( ), which is integrated over 3000�t�tmax. Both are normalized to their
respective peak values and displayed on a 10-logarithmic color scale. Frequencies are given here in units of the cyclotron frequency w = 0.1c .
The black curves are the dispersion relation of the pair Alfvén mode in cold plasma. The red curves multiply the frequencies of the black ones
by 1.25.
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speed of the pair Alfvén wave in the simulation exceeds the
one computed from the cold plasma model by the factor 1.1.
The anisotropy A has only been reduced to 0.7 at the simu-
lation’s end, which is higher than in the previous case studies,
and the maximum value of PB(t) is lower. The growth of the
instability has been slowed down by the low β⊥. The decrease
in β⊥has increased vA to 1.5 times the thermal speed v1 of
particles with the temperature T1. The phase space density of
electrons and positrons that can interact resonantly with the
pair Alfvén mode has decreased compared to the case
β⊥=4.

We decrease the value of β⊥below 2. Figure 9 plots A(t)
and PB(t) for the cases β⊥=2, 1.5 and 1 and depicts the
spatiotemporal power spectra of the magnetic field wFT k,( )
integrated over 0�t�tmax for values β⊥=1.5 and

β⊥=1. The thermal anisotropies A(t) decrease and the
magnetic energy densities PB(t) increase in all three simula-
tions. The decrease of A(t) and the increase of PB(t) slows
down with decreasing β⊥. Figure 9(b) suggests an initial
exponential growth of PB(t) in the interval 0�t�1000 for
the cases β⊥=2 and 1.5, while that of β⊥=1 grows line-
arly. The growth of the latter could be due to the growth of
thermal noise. The value of vA for β⊥=1 is double the
thermal speed of electrons and positrons with the temperature
T1. Only a small fraction of the particles can keep up with this
pair Alfvén wave and interact resonantly with it, which delays
the growth of thermal noise. The dispersion relations of both
Alfvén modes computed from the magnetic field distribution
in the simulations with β⊥=1.5 and 1 follow closely the
solutions of the linear dispersion relation up to k≈0.6. The

Figure 7. The spatiotemporal power spectra wFT k,( ) of the magnetic field in the test simulations with isotropic temperatures. Panel
(a) corresponds to the plasma temperature 100 eV, (b) to the temperature 5 keV (equal to T1) and (c) to the temperature 10 keV (equal to T2).
The power spectra are normalized to the peak value in (c) and displayed on a 10-logarithmic color scale. The black curves are the solution of
the linear dispersion relation for a cold pair plasma. Frequencies are expressed in units of ωc=0.1.

Figure 8. The evolution of the magnetic field in the simulation with β⊥=2. Panel (a) shows its spatial power spectrum Q k t,( ) and (b) its
spatiotemporal power spectrum wFT k,( ) integrated over 0�t�tmax. Both are normalized to their respective peak values and the latter is
shown on a 10-logarithmic scale. We overplotted the solution of the linear dispersion relation (black curve) of the pair Alfvén mode in cold
pair plasma in (b) and a second (red) curve that multiplies the phase speed of the pair Alfvén mode by the factor 1.1. Panel (c) shows the
thermal anisotropy A and the magnetic energy density PB(t) multiplied by 100. Frequencies are expressed in units of ωc=0.14.
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phase speed of the pair Alfvén wave in figure 9(c) exceeds the
one for a cold plasma by the factor 1.05 and that in figure 9(d)
exceeds it by the factor 1.02. A wave speed that decreases
with b b= ^ 2 agrees qualitatively with the factor

b+ -A1 1( ( ˜ ) ) in [22].

5. Summary

We studied the growth of magnetoinstabilities in an electron
plasma with a bi-Maxwellian velocity distribution. We con-
sidered the case where one direction was cooler than the ones
perpendicular to it, which is the scenario that was studied by
Weibel in [1]. We compared this instability to that in a pair
plasma with the same distribution and aligned a magnetic
field with its cool direction. The cool direction and the
magnetic field were parallel to the simulation direction. We
obtained the following results.

The Weibel instability grew in the electron plasma and
the aperiodically growing instability developed in the pair
plasma. Their initial evolution was identical until the growing
waves reached a nonlinear amplitude. We observed a con-
tinuing growth of the energy density of the magnetic field in
both simulations. The final state of the instability in one
spatial dimension was that where the currents and the
magnetic fields reached a force-free equilibrium. Two con-
figurations were observed: the current was parallel to the
magnetic field in one and anti-parallel in the other. Nonlinear
modes with different orientations of the current were sepa-
rated by intervals with a particle velocity distribution that was
not a bi-Maxwellian. The numerical value of the magnetic
energy density depended on the exact distribution of the
nonlinear modes. Nonlinear Weibel modes constitute a cir-
cularly polarized electromagnetic wave with vanishing phase
and group speeds. Such modes do not exist in the linear

regime of a plasma that is not permeated by a background
magnetic field (see also [31]).

We studied the impact of a guiding magnetic field, which
was aligned with the cool direction, on the instability in the
pair plasma. A weak B0 ¹ 0 broke the force-free equilibrium
and the nonlinear modes collapsed. The wave power shifted
in time to lower wavenumbers and it was eventually coupled
into the pair Alfvén mode. This coupling led to a particularly
fast depletion of the thermal anisotropy. A further increase of
B0 quenched the aperiodically growing instability and desta-
bilized the pair Alfvén mode. We showed that the Alfvén
mode instability ceased to grow when the amplitude of the
magnetic field was set to the value that suppressed the mirror
mode. We observed an increased phase speed of the pair
Alfvén mode in the simulations in which the pair Alfvén
wave grew. This increase was predicted in [22].

It was not evident from the simulation data if the pair-
Alfvén wave is driven resonantly by the thermal anisotropy
since the magnetic field distribution did not show any obvious
phase relation between both perpendicular magnetic field
components for ¹B 00 . We did however observe an
increased phase speed of the wave when it was slow enough
to interact with particles that streamed along B0, which sug-
gests that resonant interactions take place. By giving only one
species a thermal anisotropy one can drive pair-Alfvén waves
via a cyclotron resonance [21]. Our choice of equal dis-
tributions for electrons and positrons may have obscured the
wave polarization.

Future studies have to examine the stability of the non-
linear Weibel modes in more than one dimension and the
exact nature of the aperiodically growing instability in pair
plasma for ¹B 00 . Reference [22] demonstrates that several
instabilities compete if the thermal anisotropy of the electrons
matches that of the positrons. These are the Weibel modes,
the mirror modes and the pair cyctronic modes.

Figure 9. Instability in the simulations with β⊥=2, 1.5 and 1: panel (a) compares the time evolution of A(t) for the simulations with β⊥=2
(black curves), β⊥=1.5 (red curves) and β⊥=1 (blue curves). We plot the anisotropies for electrons and positrons separately. The
evolution of PB(t) (same colors) is plotted in panel (b). The spatiotemporal power spectra wFT k,( ) (integrated over 0�t�tmax) are
depicted in the panels (c), (d) for β⊥=1.5 and 1 respectively. The dispersion relations of the cold pair Alfvén modes are overplotted in (c),
(d). Frequencies are expressed in units of ωc=0.163 in (c) and ωc=0.2 in (d).
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