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ABSTRACT
We study the mutual evolution of the orbital properties of high-mass ratio, circular, co-planar binaries and their surrounding discs,
using 3D Smoothed Particle Hydrodynamics simulations. We investigate the evolution of binary and disc eccentricity, cavity
structure, and the formation of orbiting azimuthal overdense features in the disc. Even with circular initial conditions, all discs
with mass ratios q > 0.05 develop eccentricity. We find that disc eccentricity grows abruptly after a relatively long time-scale
(∼400–700 binary orbits), and is associated with a very small increase in the binary eccentricity. When disc eccentricity grows,
the cavity semimajor axis reaches values acav ≈ 3.5 abin. We also find that the disc eccentricity correlates linearly with the cavity
size. Viscosity and orbit crossing appear to be responsible for halting the disc eccentricity growth – eccentricity at the cavity
edge in the range ecav ∼ 0.05–0.35. Our analysis shows that the current theoretical framework cannot fully explain the origin
of these evolutionary features when the binary is almost circular (ebin � 0.01); we speculate about alternative explanations. As
previously observed, we find that the disc develops an azimuthal overdense feature in Keplerian motion at the edge of the cavity.
A low-contrast overdensity still co-moves with the flow after 2000 binary orbits; such an overdensity can in principle cause
significant dust trapping, with important consequences for protoplanetary disc observations.
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1 IN T RO D U C T I O N

Binaries are common in our Universe, and many phases during the
formation and evolution of these binaries involve accretion discs.
Their appearance in the electromagnetic spectrum depends on the
nature of the objects composing the binary [black holes (BHs),
stars, planets, and moons] and the origin of the gaseous material
surrounding them. Among these systems, protostellar/protoplanetary
systems (star+star/planet) and BH binaries (BH+BH) have recently
attracted significant attention in the scientific community.

On the one hand, protostellar/protoplanetary systems are the
outcome of the gravitational collapse of molecular cloud cores (for
reviews, see Pringle 1989; Mac Low & Klessen 2004). Even when
a binary system is formed, not all the cloud material will land on
the forming stars, and the remainder will form a disc around the
binary. Furthermore, planet–disc interactions will be the result of
planet formation facilitated by the growth of dust grains. Planet–disc
systems are just binaries with extreme mass ratios.

BH binaries are expected to be found both in the supermassive
regime (SMBH binaries) in the gas-rich centres of galaxies powering
active galactic nucleus activity (Begelman, Blandford & Rees 1980)
and in the stellar regime [SBH binaries, the existence of which has
been confirmed by the detection of gravitational waves (Abbott et al.
2016)], marking the endpoint of the life of massive stars – outflows
during the life of their stellar progenitors throw gas into the binary
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surrounds (de Mink & King 2017; Martin et al. 2018). Stellar BH
binaries are also expected to be found in the gas-rich central regions
of galaxies (Bartos et al. 2017; Stone, Metzger & Haiman 2017).

Despite the differences in physical scales between BH binaries
and protostellar binary systems, the gas dynamics is fundamentally
the same, and the interaction between binaries and discs appears to
obey the same rules.

Conservation of angular momentum during infall on to the binary
forces the material to form a disc. The binary exerts a tidal torque
on the disc (Lin & Papaloizou 1979; Goldreich & Tremaine 1980),
altering its structure by forming a gap (Crida, Morbidelli & Masset
2006; Duffell 2015; Kanagawa et al. 2020) or, if the binary mass
ratio is sufficiently high, a cavity (Cuadra et al. 2009; Shi et al. 2012;
D’Orazio, Haiman & MacFadyen 2013; Farris et al. 2014; Miranda,
Muñoz & Lai 2017). Vice versa, the disc exerts a back-reaction
torque on the binary causing evolution of its orbital properties
(migration, eccentricity evolution) and also producing characteristic
accretion patterns (Artymowicz & Lubow 1996; Günther & Kley
2002; Farris et al. 2014; Young, Baird & Clarke 2015; Ragusa,
Lodato & Price 2016; Muñoz, Miranda & Lai 2019; Teyssandier &
Lai 2019a).

The disc and the binary primarily exchange angular momentum
and energy at resonant locations (Goldreich & Tremaine 1979, 1980).
A number of theoretical studies have been carried out investigating
the effects of individual resonances, in order to determine how they
contribute to the evolution of the orbital properties (e.g. Artymowicz
et al. 1991; Goodman & Rafikov 2001; Rafikov 2002; Goldreich &
Sari 2003).
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Numerical studies have focused on the evolution of binary and disc
parameters (e.g. Kley & Dirksen 2006; Paardekooper et al. 2010;
Dunhill, Alexander & Armitage 2013; Thun, Kley & Picogna 2017;
Kanagawa, Tanaka & Szuszkiewicz 2018), probing the behaviour of
the system for large secondary-to-primary mass ratios (e.g. Cuadra
et al. 2009; Roedig et al. 2012; D’Orazio et al. 2013; Dunhill, Cuadra
& Dougados 2015; Shi & Krolik 2015; D’Orazio et al. 2016; Muñoz
et al. 2019, 2020), as the theory generally relies on the assumption
that the mass ratio of the binary, q, is �1.

Some issues remain poorly understood, in particular the long-term
evolution. The theoretical relationship between the cavity truncation
radius and binary properties (Artymowicz & Lubow 1994; Pichardo,
Sparke & Aguilar 2005, 2008; Miranda & Lai 2015) appears to
not be fully consistent with the numerical simulations on very long
time-scales (Thun et al. 2017; Ragusa et al. 2018), where in some
cases binaries are observed to carve larger cavities than are predicted
theoretically. Recently, resonant theory was found in good agreement
with numerical simulations by Hirsh et al. (2020), but it failed to
predict the cavity size for the circular, co-planar binary case – on
which we focus in this paper.

A number of numerical simulations starting with circular discs and
circular binaries show the growth of both binary and disc eccentricity
(e.g. Papaloizou, Nelson & Masset 2001; D’Angelo, Lubow & Bate
2006; Kley & Dirksen 2006; Dunhill et al. 2013; D’Orazio et al.
2016; Ragusa et al. 2018), even though a seed binary eccentricity e
> 0 is required in order to excite the eccentric Lindblad resonances
that drive eccentricity growth (Goldreich & Sari 2003; Ogilvie &
Lubow 2003). Furthermore, for high mass ratios, a crescent-shaped
overdense feature orbiting at the edge of the cavity is likely to form
for almost any choice of disc parameters (Shi et al. 2012; Farris
et al. 2014; Ragusa et al. 2016; Miranda et al. 2017; Ragusa et al.
2017; Poblete, Cuello & Cuadra 2019). The physical mechanism(s)
responsible for these features, and their long-term evolution, is still
poorly understood.

This last issue is of particular interest following the observations
performed by the Atacama Large Millimetre Array and other inter-
ferometers. These have imaged a number of protostellar discs with
cavities (sometimes referred to as transition discs) and prominent
non-axisymmetric features (Tuthill et al. 2002; Andrews et al. 2011;
Isella et al. 2013; van der Marel et al. 2016; Boehler et al. 2017;
Casassus et al. 2018; Pinilla et al. 2018; van der Marel et al. 2018;
van der Marel et al. 2019), whose origin is still being widely discussed
(see Section 5 for a thorough discussion).

In this paper, we use a set of 3D Smoothed Particle Hydrodynamics
(SPH) simulations to explore the mutual evolution of the binary,
which is left free to evolve under the action of the forces exerted by
the disc, and disc orbital parameters. We place particular emphasis
on the evolution of the disc eccentricity and other disc orbital prop-
erties, aiming to explain the physical origin of the crescent-shaped
azimuthal overdense features in discs surrounding high-mass ratio
binaries, and understand the mutual interplay between the binary and
the evolution of disc eccentricity and cavity truncation radius. Long-
time-scale 3D simulations (i.e. t � 1000 binary orbits) performing a
similar analysis are not available in the literature. Three-dimensional
effects might affect the evolution of the eccentricity, as not allowing
the material to access the vertical direction forcing it to move in the
x–y 2D plane might spuriously increase the orbital eccentricity.

We prescribe a simple locally isothermal equation of state, and
we assume that the binary and the disc lie on the same plane. Other
studies have been carried out to discuss the effects of misalignment
between the disc and the binary (e.g. Bitsch et al. 2013b; Aly et al.
2015; Lubow, Martin & Nixon 2015; Nealon et al. 2018; Price et al.

2018b; Hirsh et al. 2020) and alternative prescriptions of the disc
thermal structure (e.g. Baruteau & Masset 2008; Bitsch et al. 2013a;
Benı́tez-Llambay et al. 2015).

We allow our simulations to evolve long enough to reach the onset
of a quasi-steady evolution. However, we note that most of the results
presented in this paper focus on the transition between the initial
conditions and the quasi-steady state, as we find that this phase lasts
long enough to be relevant for the interpretation of the observations.

The paper is structured as follows: We begin with a broad
introduction to resonant binary–disc interaction theory and how
this affects the disc and binary evolution (Sections 1.1 and 1.2); in
Section 2, we present our numerical simulations; Section 3 presents
the results from the simulations; we discuss them in Section 4; in
Section 5, we provide a detailed discussion about the implications
of our results in the context of protostellar discs, and we draw our
conclusions in Section 6.

1.1 Resonant binary–disc interaction

Resonant locations (or resonances) are regions in the disc where the
binary and the gas orbital frequency have an integer (or rational) ratio.
At these locations, the time-varying gravitational potential of the
binary excites density waves (Goldreich & Tremaine 1980). Waves
carry angular momentum and energy that are transferred to the disc
through viscous dissipation or shocks (Goodman & Rafikov 2001).
Resonances are identified by couples of integers (m, l) and come in
two broad types: corotation resonances that are located at

RC =
(m

l

)2/3
abin (1)

and Lindblad resonances, located at

RL =
(

m ± 1

l

)2/3

abin, (2)

where ±1 depends on whether they are outer Lindblad resonances
or inner Lindblad resonances, respectively. The efficiency of angular
momentum transfer at a given resonance depends on a number of
factors (Goldreich & Sari 2003), such as the mass ratio of the
binary, the eccentricity of the binary, the ‘type’ of resonance, and
(for corotation resonances only) the disc vortensity gradient.

When the binary is circular, only resonances (m, m) are effective
as the intrinsic efficiency of each resonance scales as e|m − l|, where e
is the binary eccentricity (and not the exponential function). For this
reason, l = m resonances are called ‘circular’ resonances. Circular
corotation resonances all fall at the co-orbital radius of the binary
R

m,m
C = abin and for this reason they are also referred to as co-orbital

resonances. When the binary is eccentric a new set of resonances,
known as ‘eccentric’ resonances, becomes effective.

The ratio between the exchange of angular momentum and energy
is fixed by the properties of each resonance. The overall contribution
of the interaction between the binary and the disc at resonant locations
determines the evolution of the disc structure and binary orbital
parameters. The torque exerted by the binary on the disc causes the
formation of a gap, or if the mass ratio is sufficiently high (q > 0.04;
D’Orazio et al. 2016),1 a cavity in the disc, and the onset of disc
eccentricity (Lubow 1991; D’Angelo et al. 2006). The disc exerts
a back reaction torque on the binary causing the binary to migrate
(change of semimajor axis) and change the orbital eccentricity.

1We refer to this threshold value for the transition between gap and cavity as
for mass ratios q > 0.04 no stable orbits around Lagrange points L4 and L5
can be found (tadpole and horseshoe orbits).
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1.2 Mutual evolution of binary and disc orbital properties

All resonances lying in the circumbinary disc (i.e. outside the
binary orbit) cause inward migration of the binary, while inner
resonances (within the binary orbit) promote outward migration.
Different resonances in the disc provide different contributions to
the binary eccentricity evolution (Goldreich & Sari 2003): outer
circular Lindblad resonances (OCLRs; i.e. RL > abin) and non-co-
orbital eccentric Lindblad resonances (ELR with RL �= abin) pump
the eccentricity, while circular inner Lindblad resonances (i.e. RL <

abin), eccentric corotation resonances, and co-orbital (i.e. ELR with
RL = abin) resonances damp it. Furthermore, the evolution of the disc
density structure in the region of corotation resonances is expected
to cause them to saturate (Ogilvie & Lubow 2003), at which point
these resonances become ineffective in their eccentricity damping
action, allowing the binary eccentricity to grow. The same ELRs
expected to pump the binary eccentricity are expected to pump the
disc eccentricity, provided again that some initial disc eccentricity is
present (Teyssandier & Ogilvie 2016).

Due to the absence of ELRs in discs surrounding circular binaries,
the evolution of the binary eccentricity in principle should not be
possible (Goldreich & Sari 2003). However, a number of numerical
works have shown that it is possible for both the binary and the
disc to increase their eccentricities, even in the absence of any initial
‘seed’ binary or disc eccentricity (Papaloizou et al. 2001; Dunhill
et al. 2013). It is important to note that this result is not surprising
at all. The concept itself of circular Keplerian orbit by definition
does not imply the presence of a binary object at the centre of the
system. Thus, initializing the velocities of fluid elements around a
binary using the Keplerian velocity already provides a small seed
of orbital eccentricity for the disc. Finally, we note that fixing the
binary orbit throughout the length of the simulation – as often done
in previous works – breaks the conservation of angular momentum,
possibly leading to some spurious growth of the disc eccentricity.

In addition to the resonant interaction, secular interactions also
affect the evolution of the disc and binary eccentricity (Miranda
et al. 2017; Ragusa et al. 2018; Teyssandier & Lai 2019b) on long
time-scales. Secular interaction is not expected to provide long-term
growth or damping of the disc eccentricity. Secular effects are instead
responsible for periodic oscillations of the eccentricity at fixed
semimajor axis (exchange of angular momentum but not of energy).
Secular interactions are also responsible for the precession of the
longitude of pericentre of both the binary and the disc. Nevertheless,
we note that there are some hints that the individual strengths of
different oscillation modes (which depend on the disc-to-secondary
mass ratio) appear to have some role in determining the very long
time-scale growth of the binary eccentricity (t � 105 binary orbits;
Ragusa et al. 2018).

2 N U M E R I C A L S I M U L AT I O N S

We performed a set of numerical hydrodynamical simulations using
the SPH code PHANTOM (Price et al. 2018a).

Our set-up consists of two gravitationally bound masses M1 and M2

surrounded by a circumbinary disc (a cavity is already excised when
the simulation starts). These masses are modelled as sink particles,
where gas particles can be accreted (Bate, Bonnell & Price 1995).
For numerical reasons, we start all our simulations with Mtot = M1 +
M2 = 1; we use different binary mass ratios q = M2/M1 that we will
detail in Section 2.2. We initialize our binary on circular orbits with
separation abin = 1. We use Rsink = 0.05 for both sinks. The sinks are
free to migrate due to their mutual gravitational interaction and their

Table 1. Summary of the numerical simulations presented in the paper. The
reference name for each simulation contains a number, which refers to the
binary mass ratio, and a letter, which refers to the disc properties used. Each
simulation has been evolving for Norb = 2000 binary orbits.

Ref. q p H0/R0 αss Md/Mtot Rin

1A 0.01 1.5 0.05 5 × 10−3 5 × 10−3 2.0
2A 0.05 1.5 0.05 5 × 10−3 5 × 10−3 2.0
3A 0.075 1.5 0.05 5 × 10−3 5 × 10−3 2.0
4A 0.1 1.5 0.05 5 × 10−3 5 × 10−3 2.0
5A 0.2 1.5 0.05 5 × 10−3 5 × 10−3 2.0
6A 0.5 1.5 0.05 5 × 10−3 5 × 10−3 2.0
7A 0.7 1.5 0.05 5 × 10−3 5 × 10−3 2.0
8A 1.0 1.5 0.05 5 × 10−3 5 × 10−3 2.0

5C 0.2 1.5 0.10 5 × 10−3 5 × 10−3 2.0
5E 0.2 1.5 0.05 10−1 5 × 10−3 2.0
5Z 0.2 1.5 0.05 10−2 5 × 10−3 2.0
5N 0.2 1.5 0.03 5 × 10−3 5 × 10−3 2.0
5O 0.2 3 0.05 5 × 10−3 5 × 10−3 2.0
5P 0.2 0.25 0.05 5 × 10−3 5 × 10−3 2.0
5H 0.2 1.5 0.05 5 × 10−3 10−2 2.0
5A3.0 0.2 1.5 0.05 5 × 10−3 5 × 10−3 3.0

6A1.5 0.5 1.5 0.05 5 × 10−3 5 × 10−3 1.5
6A1.7 0.5 1.5 0.05 5 × 10−3 5 × 10−3 1.7
6A1.8 0.5 1.5 0.05 5 × 10−3 5 × 10−3 1.8
6A3.0 0.5 1.5 0.05 5 × 10−3 5 × 10−3 3.0

interaction with the circumbinary disc. This enforces conservation
of angular momentum throughout the length of the simulation.

We use SPH artificial viscosity to model the physical processes
responsible for the angular momentum transfer through the disc (as
prescribed in Price et al. 2018a), which results in an equivalent
Shakura & Sunyaev (1973) viscosity. We discuss the parameters we
used for this purpose in Section 2.2.

We allow our simulations to evolve for t = 2000 torb, where torb

= 2π (GMtot/a3)−1/2 is the orbital time of the binary. We note that
our choice of disc parameters implies a viscous time tν = 1.8 ×
104–105 torb for radii R = 1–7. Evolving the system for such a long
time-scale is computationally intractable. However, we will see that
that after 2000 torb all our discs reach a quasi-steady state, meaning
that no fast variations of the quantities examined throughout the
paper are visible in our results at the end of our simulations (see also
the end of Section 5.1). We used Npart = 106 SPH particles.

2.1 Reference case

In this section, we introduce the disc set-up that will be referred to
as the ‘A’ set-up throughout the paper (see all Ref. ‘A’ in Table 1).
The changes to the parameters used in this set-up will be detailed in
the next section.

The initial circumbinary disc density profile in our simulations
extends from Rin = 2 to Rout = 7. For the inner edge of the disc, we
follow the rule of thumb that tidally induced cavities around circular
binaries have Rin ≈ 2a (Pichardo et al. 2008). We also note that
Rin lies in between the outermost circular Lindblad resonance (m, l)
= (1, 1) (OCLR; 2:1 frequency commensurability, R

1,1
L = 1.59 abin)

and the location of the outermost first-order (m, l) = (2, 1) ELR
(3:1 frequency commensurability, R

2,1
L = 2.08 abin). We prescribe a

tapered power-law density profile of the type

�(R) = �0

(
R

R0

)−p

exp

[
−
(

R

Rc

)2−p
]

, (3)
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Figure 1. Disc surface density as a function of semimajor axis (x-axis) and time (y-axis) for ‘A’ discs with different mass ratios (top left to bottom right q =
{0.01; 0.05; 0.1; 0.2; 0.5; 0.7; 1}; see Table 1). The magenta curve superimposed on the plot marks the location of the 10 per cent of the maximum value at
each time (i.e. acav in equation 4). Vertical lines in different colours mark the location of commensurabilities between the disc and binary orbital frequencies.
The main ELRs responsible for eccentricity growth are located at the commensurabilities 1:2 (blue line), 1:3 (orange line), and 1:4 (green line). Note the abrupt
transition in the cavity structure that takes place after ≈400 binary orbits.

where we use power-law index p = 1.5, reference radius R0 = Rin =
2, and tapering radius Rc = 5. We choose �0 in order to have a disc-
to-binary mass ratio Md/Mtot = 0.005. We use a locally isothermal
equation of state cs = cs,0(R/R0)−qcs with qcs = 0.25. We choose
cs,0 in order to get a disc aspect ratio H0/R0 = 0.05 at the reference
radius R0.

Concerning the disc viscosity, we used an artificial viscosity
parameter αAV = 0.2, β = 2 to prevent particle interpenetration,
and allowed artificial viscosity to act also on receding particles (as
prescribed in Price et al. 2018a). This viscous set-up results in an
equivalent Shakura & Sunyaev (1973) viscous parameter αss = 0.005
(Lodato & Price 2010; Price et al. 2018a). We increase the value of
αAV to obtain larger values of αss in other set-ups.

2.2 Spanning the parameter space

In order to study how the system reacts to different physical
parameters, we ran a large number of different simulations (see
Table 1 for a list of the simulations). We vary the binary mass ratio
q between the following values q = {0.01, 0.05, 0.075, 0.1, 0.2, 0.5,
0.7, 1} (different numbers in the ‘Ref.’ column of Table 1 represent
different values of q). In addition, we also vary some disc properties
to test how these affect the dynamics of the system. In each of them,
one single parameter is changed with respect to the disc reference
case ‘A’ (different letters in the Ref. column of Table 1). In particular,
in the case ‘5C’ a thicker disc with H/R = 0.1 is used; in the cases
labelled as ‘5E’ and ‘5Z’ the disc is more viscous than that in the ‘5A’
cases, using αss = 10−1 and 10−2, respectively. The cases ‘5N, 5O, 5P,
5H, and 5A3.0’ use a thinner disc H/R = 0.03, a steeper initial density
profile p = 3, a shallower density profile p = 0.2, a larger disc mass,
and a different inner radius Rin = 3, respectively. Finally, in order to
investigate the dependence on the initial conditions, we performed
a set of simulations with q = 0.5 varying the inner disc radius Rin.
In particular, simulations ‘6A1.5, 6A1.7, 6A1.8, and 6A3.0’ have
Rin = {1.5, 1.7, 1.8, 3.0} abin.

3 R ESULTS

Figs 1 and 2 summarize how the surface density profile (vertically
integrated volume density) in the disc varies as a function of time in
our reference simulations [simulations labelled as ‘(1–8)A’] and for
different initial inner disc radii (simulations 6A1.5, 6A1.7, 6A1.8,
and 6A3.0 in Table 1). These plots show the evolution of the surface
density profile �(a, t) (colours, azimuthal average), as a function
of the semimajor axis (x-axis) and time (y-axis). We stress here the
importance of producing density profiles using the semimajor axis as
a space coordinate instead of radius (Teyssandier & Ogilvie 2017).
When gas orbits in the disc become eccentric, plotting the density
as a function of the radius is not ideal, as an element of material
spans radii a(1 − e) ≤ R ≤ a(1 + e) along its orbit, and this makes
it impossible to define the edge of the density profile precisely with
a single value of the orbital radius.

All our simulations spend ∼ 400–700 torb in a ‘circular’ steady
state, maintaining their circular cavities and without altering their
size from the initial configuration. With the exception of the case q
= 0.01, for times t � 400 torb, an abrupt growth of the semimajor
axis and eccentricity of the cavity occurs. Furthermore, for mass
ratios q > 0.2, a prominent azimuthal overdensity forms (see
Fig. 3), which co-moves with the flow with Keplerian velocity.
After this time-scale, the system moves to an ‘eccentric’ config-
uration; the gas orbits consist of a set of nested ellipses with
aligned pericentres and an eccentricity profile decreasing with radius
(see the top panel of Fig. 4). The rigid precession of the disc
longitude of pericentre �d – i.e. the angle the pericentre forms
with the positive x-axis – always starts when the transition to
the eccentric configuration takes place. We note that this happens
because before that time the disc is circular, and it is therefore not
possible to attribute any value to the longitude of the pericentre.
The binary also starts precessing, although at a much slower rate,
as soon as the disc rigid precession starts (see the bottom panel of
Fig. 5).
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Figure 2. Disc surface density as a function of semimajor axis for a fixed mass ratio q = 0.5 but different disc initial radii (simulations 6A1.5, 6A1.7, 6A1.8,
and 6A3.0; see Table 1 for the simulations details with Rin = {1.5, 1.7, 1.8, 3.0}abin, respectively), in order to show that the transition to the eccentric disc
configuration occurs earlier when the inner disc is closer to the 1:2 resonance.

Figure 3. Gas surface density snapshots from simulations ‘A’ – different panels show different binary mass ratios, as detailed in the top right corner of each
panel – after t ≈ 500 torb (apart from simulation 6A, with q = 0.50, which is taken at t = 750 torb, as the transition to an eccentric configuration occurs at later
times). The colour scale is logarithmic. An orbiting overdense lump can be noticed in all simulations with q ≥ 0.2.

We note here that in a number of previous works the individual
masses of the binary are surrounded by circum-primary and circum-
secondary discs (e.g. Farris et al. 2014; Ragusa et al. 2016; Miranda
et al. 2017) – usually referred to as ‘circum-individual discs’ or
‘mini’-discs. Given the relatively low disc viscosity and thickness
in our simulations, if these discs form, the low rate at which the
binary is fed with the gas from the edge of the cavity makes them
progressively sparser, causing SPH numerical viscosity to grow and
triggering a positive feedback loop that leads to the disappearance of
the circum-individual discs (see Section 3.3 for further discussion).

3.1 Evolution of the cavity size

In order to provide a quantitative comparison, we define the cavity
size as the semimajor axis at which the value of surface density
azimuthal average reaches the 10 per cent of the maximum of the
profile at each time, such that

�(acav, t) ≡ 0.1 × max
a

[�(a, t)] . (4)

We show in the left-hand panel of Fig. 6 the value of acav as a function
of time for our reference simulations (simulations labelled as ‘A’ in
Table 1).

These density profiles were obtained by grouping gas particles
in semimajor axis bins, computing the semimajor axis of the i-th
particle as

ai = −GmiMtot

2Ei

, (5)

where Ei is the sum of the potential energy and kinetic energy
of the i-th particle and mi its mass. We note that since our
estimate of ai depends on the total mechanical energy of the
particle, the velocity corrections due to pressure effects (which
we account for when initializing our discs) result in the semi-
major axis being slightly underestimated. We note that this dis-
crepancy for our purposes is negligible though, as it scales as
	v2

k ≈ (H/R)2 � 1 per cent.
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Evolution of disc cavities and eccentricity 3367

Figure 4. Top panel: Azimuthally averaged eccentricity profile (colour) as a function of time (y-axis) and semimajor axis (x-axis); the red and magenta curves
superimposed to the plot mark the location of the density maximum and location of the 10 per cent of its value at each time (i.e. acav in equation 4). Bottom
panel: Longitude of the pericentre (colour, azimuthal average) as a function of time (y-axis) and semimajor axis (x-axis) from the simulations: 1A, 2A, 3A, 4A,
5A, 6A, and 7A in Table 1 (q = 0.2; see Table 1). We show the main characterizing features of the eccentricity evolution: growth of the eccentricity in the disc
for t � 400 torb, eccentricity profile decreasing with radius, and disc rigid precession of the pericentre longitude.

3.2 Evolution of disc eccentricity

In order to quantify the disc eccentricity, we define a measure of
the ‘global’ disc eccentricity as follows. We compute the total disc
angular momentum deficit (AMD) summing the individual contribu-
tion of each particle in the disc domain D = {R : 1.5 ≤ R ≤ 7} – a
restriction of the disc domain is required as particles with R � 1.5
are no longer moving on Keplerian orbits – as follows:

AMDtot =
∑
i∈D

(
Jcirc,i − Ji

)
, (6)

where the subscript i refers to the i-th particle, Jcirc,i = mi

√
aiGMtot

is the angular momentum of a particle of mass mi and semimajor

axis ai if it was on a circular orbit, and Ji is the particle angular
momentum. We then estimate the ‘total’ eccentricity as

etot =
√√√√√2

AMDtot∑
i∈D

Jcirc,i

. (7)

We plot etot as a function of time for simulations ‘A’ in the left-hand
panel of Fig. 7. We remark that this definition provides a global
estimate of the disc eccentricity and it is not meant to give a measure
of the cavity eccentricity, which is generally higher.

Interestingly, the disc eccentricity grows rapidly until it reaches
a maximum value. This value appears to depend on the disc
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3368 E. Ragusa et al.

Figure 5. Pericentre phase (y-axis) as a function of time (x-axis) for the disc at a = 4 (blue dots) and binary (orange dots) for the same simulations in Fig. 4.
The disc and the binary start precessing at the same time. The binary pericentre phase precesses at a slower rate than the disc.

Figure 6. Left-hand panel: Cavity size acav satisfying equation (4) as a function of time for the simulations: 1A, 2A, 3A, 4A, 5A, 6A, and 7A in Table 1. We
deliberately omit the case q = 0.01 in the left-hand panel of the top row as acav as the algorithm to solve equation (4) in order to find acav of the maximum is
not working properly for this case, being very close to the edge of the space domain we use for the analysis of the results (R = 1.5). Right-hand panel: Same as
the left-hand panel but for simulations: 5A, 5C, 5E, 5Z, 5N, 5O, 5P, 5H, and 5A3.0 (see Table 1).

Figure 7. Left-hand panel: total disc eccentricity etot in equation (7) as a function of time for the simulations: 1A, 2A, 3A, 4A, 5A, 6A, and 7A in Table 1.
Right-hand panel: same as the left-hand panel but for the simulations: 5A, 5C, 5E, 5Z, 5N, 5O, 5P, 5H, and 5A3.0 (see Table 1).
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Evolution of disc cavities and eccentricity 3369

Figure 8. Binary semimajor axis abin in equation (8) as a function of time
for different mass ratios (simulations 1A, 2A, 3A, 4A, 5A, 6A, 7A, and 8A
in Table 1). We note that the migration rate increases for simulations with q
≥ 0.2 when the cavity becomes eccentric.

properties and binary mass ratio (a more thorough discussion is
provided in Section 4.1). As for the value of acav, we note that,
since the total eccentricity etot is computed using equation (6), the
pressure velocity correction results in a small spurious eccentricity
etot,spur ∼ √

1/2 × (H/R) even when the disc is circular (such that
etot,spur ∼ 3–5 per cent in our simulations).

When in the eccentric configuration, discs always show an eccen-
tricity profile that decreases with radius. As previously mentioned,
the disc longitude of pericentre points in the same direction through-
out the entire disc, precessing on a time-scale of the order of 100 torb,
as shown in Fig. 4. This implies that the disc behaves rigidly, as
originally predicted by Teyssandier & Ogilvie (2016) and observed
later numerically by Miranda et al. (2017) and Ragusa et al. (2018).

3.3 Evolution of the binary orbital parameters

Since our simulations are performed with a ‘live’ binary, the back
reaction torque the disc exerts on the binary causes the evolution of
the orbital properties of the binary.

We compute the binary semimajor axis abin as

abin = −GM1M2

2Ebin
, (8)

where Ebin is the binary mechanical energy

Ebin = 1

2
M1v

2
1 + 1

2
M2v

2
2 − GM1M2

Rbin
, (9)

where Rbin = |R2 − R1| is the physical distance between the two
masses and v1 and v2 are velocities computed in the centre of mass
(CM) frame. We compute the binary eccentricity ebin as

ebin =
√

1 − L2
bin

μ2GMtotabin
, (10)

where Lbin is the total binary angular momentum, in the CM frame,
and μ = M1M2M

−1
tot is the binary reduced mass.

Fig. 8 shows the evolution of the binary semimajor axis as a func-
tion of time. We note that for q ≥ 0.2 the evolution of the semimajor
axis is characterized by a temporary increase in the migration rate of
the binary. We will discuss this effect later in Section 4.3. The lack
of the circum-individual discs surrounding the binary (see the end of
Section 3) might impact the evolution of the binary – some recent
works showed that they might produce a positive torque on the binary
that leads to outward migration of the binary (Tang, MacFadyen &
Haiman 2017a; Duffell et al. 2019; Moody, Shi & Stone 2019; Muñoz
et al. 2019, 2020). However, Tiede et al. (2020) and Heath & Nixon
(2020) recently showed that migration still occurs inward when the
disc aspect ratio is sufficiently small. More generally, we note that
conclusions regarding the evolution of the binary, such as exact mi-
gration or eccentricity growth rate, are beyond the scope of this paper.
The presence of a live binary mainly allows us to capture secular
oscillations of the binary eccentricity, which might play a role in
the evolution of the system, and informs us about the intensity of the
binary–disc interaction – when the binary increases its migration rate.

The left-hand panel in Fig. 9 shows the evolution of the binary
eccentricity as a function of time for different binary mass ratios
of our reference disc simulations. Secular oscillations of the binary
eccentricity can be seen for all cases except for q = 0.01 and q
= 1. The first is consistent with the fact that both disc and binary
remain circular for q = 0.01, and no oscillations can take place. The
second is consistent with the fact that equal-mass binaries (q = 1) are
not expected to show secular oscillations of the binary eccentricity
(Miranda et al. 2017).

Fig. 5 shows the evolution of the longitude of pericentre of the
binary (orange lines) compared to the evolution of the disc one (blue
line, we remark that the disc precesses rigidly, i.e. same pericentre

Figure 9. Left-hand panel: binary eccentricity ebin in equation (10) as a function of time for simulations 1A–8A (left-hand panel) and for simulations with mass
ratio q = 0.2 and different disc parameters (right-hand panel).
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3370 E. Ragusa et al.

Figure 10. Density azimuthal contrast ratio of as a function of time for simulations ‘A’ with different mass ratios (left-hand panel) and simulations 6A1.5,
6A1.7, 6A1.8, and 6A3.0 (right-hand panel) (see Table 1). We note that when the cavity size grows while the disc becomes eccentric, for q ≥ 0.2 the disc
develops a pronounced azimuthal asymmetry, which progressively decays to a density contrast of ∼4 after ∼1000 binary orbits, consistent with that expected
from an eccentric ‘traffic jam’. Larger initial inner disc radii Rin postpone the time the disc transitions eccentric configuration and reduces the maximum contrast
ratio the overdensity can achieve.

Figure 11. Surface density map of simulation 6A for times t = 1985–1999 torb, using a linear colour scale. The plot is meant to show that, besides the ‘eccentric’
overdense feature at the cavity apocentre, a periodic (≈7–8 torb) variation of the density at cavity pericentre still occurs at the end of the simulation. The reader
will notice that, besides the higher contrast non-orbiting feature at the cavity apocentre (North of each snapshot), at the cavity pericentre (South) the surface
density varies by a factor of ≈1.5–2 every ≈7–8 torb. This suggests that a low-contrast overdensity (δφ ∼ 1.5–2) is still orbiting, co-moving with the flow, at the
edge of the cavity. See also Fig. 12.

longitude at all radii). It is interesting to note that the precession rate
is much lower in the binary than that in the disc. The existence of
two eigenfrequencies for the precession rate has been discussed and
interpreted through a simplified toy model in Ragusa et al. (2018).

3.4 Evolution of azimuthal overdense features

As previously mentioned, when the transition to an ‘eccentric’
configuration occurs, the disc develops a prominent azimuthal
overdensity at the cavity edge with the shape of a horseshoe. This

feature can be seen in all our simulations with a mass ratio of q > 0.2.
Its initial contrast ratio grows with the binary mass ratio, as shown
in Fig. 10 where we evaluate the contrast ratio δφ of an overdense
feature by averaging the surface density in the surroundings of its
maximum value and comparing it with the value at the opposite
side of the cavity. Each data point for the value of δφ in Fig. 10 is
obtained performing a moving average over a window of 5 binary
orbits. This makes the plot significantly less ‘noisy’, but it smooths
away fluctuations in the contrast ratio that may occur on time-scales
shorter than 10 binary orbits.
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Evolution of disc cavities and eccentricity 3371

Figure 12. Periodogram of the accretion rate Ṁ on to the binary (frequency
is on the x-axis and powers are coded with different colours) at different
times (y-axis). The x-axis reports frequencies in units of (torb)−1, so that the
vertical line centred at frequency t−1 = 0.5 (torb)−1 for the first 500 binary
orbits and t−1 = 1 (torb)−1 from t � 800 torb indicates that the binary shows a
modulation of the accretion rate once every two binary orbits and once every
orbit, respectively. On the top of that, a slower modulation with frequency
t−1 = 0.12–0.13 (torb)−1 appears as soon as the orbiting overdense lump
forms (t � 800 torb). Such an accretion feature is linked to the presence of the
orbiting overdensity that makes a close passage at the cavity pericentre every
7–8 torb (as also shown in Fig. 11). The presence of such accretion feature at
late times implies that an orbiting overdense lump of material is still present
at the end of the simulation.

In order to better capture the orbiting/non-orbiting nature of such
features, we introduce also two additional figures. First, Fig. 11 shows
15 snapshots towards the end of simulation 6A (q = 0.5, times shown
are t = 1985–2000torb, one per binary orbit). Secondly, Fig. 12 shows
a Lomb–Scargle periodogram of the accretion rate on to the binary
throughout the length of simulation 6A. Frequencies are on the x-axis
[in units of (torb)−1], colours code the powers of different frequencies,
and times are on the y-axis. Horizontal lines (t = const) in this plot
represent the periodogram of the accretion rate on a window of 30
binary orbits, at a fixed time of the simulation.

From now on, when relevant, we will distinguish among azimuthal
overdense features referring to them as ‘orbiting overdense lumps’,
when the feature moves with Keplerian motion at the edge of the
cavity, and ‘eccentric traffic jam’, for non-orbiting features. We
discuss the formation mechanism of these features in detail in
Section 4.3.

3.5 Results for different disc parameters

Here we present a second set of simulations we performed for a fixed
mass ratio q = 0.2 while varying some of the disc parameters. The
right-hand panels in Figs 6 and 7 show the time evolution of the
cavity size (left-hand panel) and ‘total’ disc eccentricity (right-hand
panel) using equation (7) for the simulations: 5A, 5C, 5E, 5Z, 5N,
5O, 5P, 5H, and 5A3.0 in Table 1. We first note that interestingly
the case 5A3.0 suggests that the transition to the ‘eccentric’ disc
configuration takes place only when the still circular cavity edge
reaches a minimum separation from the binary. Indeed, simulation
5A3.0, being initialized with a larger cavity (Rin = 3), shows a
delay in the growth of the disc eccentricity, probably due to the
need for the disc to spread viscously until it reaches some resonant
location. The slope of the density profile (5O and 5P), the disc mass

(5H), and small changes in the disc viscosity (5Z) are not causing
significant differences in the evolution of the disc eccentricity. An
increased disc thickness (sim 5C), besides opposing the opening of
a cavity due to the stronger pressure gradient at the cavity edge,
increases the disc viscosity ν, since it is parametrized using the
Shakura & Sunyaev (1973) prescription. This provides a faster spread
of the disc towards the resonant location and transition to the disc
eccentric configuration at earlier times, even though the maximum
disc eccentricity is lower than that in the reference case. Explicitly
increasing the disc viscosity through the αss parameter (sim 5E)
produces the same effect. Consistent with this scenario, a reduction
in the disc thickness (sim 5N) shows that the disc transition to the
eccentric configuration occurs at later times. In this last case, the
final value of the disc eccentricity is higher than that in the reference
case 5A. The right-hand panel in Fig. 9 shows how different disc
parameters affect the evolution of the binary eccentricity.

Simulations 5A3.0, 6A1.5, 6A1.7, 6A1.8, and 6A3.0 all share the
same disc properties of ‘A’ discs, with the only difference that their
initial inner truncation radius is set to Rin = {1.5, 1.7, 1.8, 3.0} abin

according to their reference label, as outlined in Table 1. The surface
density evolution from these simulations appears in Fig. 2; they will
be discussed further in Section 4.3.

4 D ISCUSSION

The results presented in the previous sections hint at a number of
interesting features in the evolution of eccentric discs. We note that
items i–iii below have been previously discussed in the literature, and
items iv–viii, to our knowledge, did not receive the same attention
and will be subject of a deeper discussion.

(i) All discs with sufficiently large binary mass ratios (which here
appears to be q� 0.05) become eccentric, consistently with what was
previously found (D’Orazio et al. 2016; Ragusa et al. 2017; Muñoz
& Lithwick 2020). Previous studies have shown that binaries with
mass ratios q < 0.05 may excite the eccentricity of the circumbinary
disc (D’Angelo et al. 2006; Kley & Dirksen 2006; Teyssandier &
Ogilvie 2017). Nevertheless, in this work we mainly refer to the
abrupt growth of the disc eccentricity that occurs in most of our
simulations after an initial ‘circular phase’ that lasts for ∼400–700
orbits (see Fig. 1 and top panel of 4 – see also 14 below).

(ii) Eccentric discs undergo rigid longitude of pericentre preces-
sion (the pericentre of the eccentric disc orbits remains aligned
throughout the entire disc; see bottom panel of Fig. 4). The precession
rate of the disc is independent from that of the binary, which precesses
at a much slower rate (Fig. 5). This had been previously found
numerically (MacFadyen & Milosavljević 2008; Miranda et al. 2017;
Thun et al. 2017; Ragusa et al. 2018) and discussed theoretically by
Teyssandier & Ogilvie (2016), and recently by Muñoz & Lithwick
(2020). The physical explanation of the origin of this pericentre
alignment is that the clustering of eccentric orbits at the apocentre is
‘pinching’ (Dermott & Murray 1980)2 together all the elliptic orbits,
preventing them from precessing differentially.

(iii) As noted above, a prominent orbiting overdense lump devel-
ops for mass ratios q > 0.2 that is co-moving with the gas (i.e. not
an eccentric ‘traffic jam’) as shown in Fig. 14. This feature has been
observed in previous works (e.g. Farris et al. 2014; Miranda et al.
2017; Ragusa et al. 2017) and is referred to as ‘overdense lump’ or
‘horseshoe feature’ in the BH and protoplanetary disc community,

2We note that in Dermott & Murray (1980) the ‘pinching’ occurs at the
pericentre as the eccentricity profile has a positive gradient.
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3372 E. Ragusa et al.

Figure 13. Left-hand panel: Correlation between disc eccentricity (y-axis) and cavity semimajor axis (x-axis) throughout the entire length of the simulation for
different ‘A’ discs. Right-hand panel: The cavity pericentre radius as a function of time, computed using Rd, peri = acav(1 − ed, tot) for different ‘A’ discs. As in
the left-hand panel of Fig. 6, we deliberately omit the case q = 0.01.

respectively. A discussion about its formation mechanism has been
provided by Shi et al. (2012). However, many aspects regarding
formation and evolution of such features remain unclear – see
Section 4.3 for further discussion.

(iv) In all cases, the binary gains a small amount of eccentricity
before entering the ‘eccentric cavity’ phase – ebin ∼ 0.001–0.007 in
most cases. Two cases, which, respectively, used a more massive and
a thinner disc than the reference case (simulations 5H, larger disc
mass, and 5N, lower disc thickness, in Table 1), rapidly reach ebin ∼
0.01 and keep growing. This behaviour is consistent with previous
studies (Dunhill et al. 2013; Ragusa et al. 2018), which found that
a larger disc-to-binary mass ratio qd = Md/(M1 + M2) (sim 5H, qd

= 0.01) leads to a larger binary eccentricity. The higher value of the
binary eccentricity associated with a thinner disc (sim 5N, H/R =
0.03) is consistent with a reduction of the resonance width for lower
values of H/R, which provides a stronger Lindblad torque on the
binary (Meyer-Vernet & Sicardy 1987). See equations (21) and (22)
in Goldreich & Sari (2003) for the dependence of binary torque on
both disc mass and resonance width.

(v) The duration of the initial phase during which the disc remains
circular depends on the initial radius of the disc, suggesting that the
disc spreads viscously and then encounters resonances. Our results
suggest that the resonances located at the 1:2 frequency commensura-
bility play a role in explaining the evolution of the disc eccentricity we
observe, as previously suggested by D’Angelo et al. (2006). We will
discuss further about the role of different resonances (or alternative
non-resonant mechanisms) for the growth of the cavity eccentricity
in Section 4.3. We will see that it is hard to interpret the results within
the theoretical framework currently available in the literature, posing
the basis for possible future developments of the theory.

(vi) In all the simulations, the disc eccentricity stops growing when
it reaches a maximum value. For q > 0.5, the disc eccentricity appears
to saturate at a maximum value that is independent of the binary mass
ratio – inner edge of the cavity ed(acav) ∼ 0.5, ‘total’ eccentricity
ed, tot ∼ 0.25. For q < 0.5, this maximum value scales with the disc
viscosity (see Fig. 7). We discuss this further in Section 4.3.

(vii) When discs become eccentric, they appear to have larger
cavities than when they are circular: The cavity semimajor axis
becomes up to 3.5 times the binary separation, whereas during the
start of the simulations the inner edges of the disc all remain at ∼2
binary separation for ∼400 binary orbits (see Fig. 1 and left-hand
panel of Fig. 6). There is a strong correlation between the cavity

eccentricity and its size, as shown in the left-hand panel of Fig. 13.
We will discuss this aspect further in Section 4.2.

(viii) The radius of the cavity pericentre, the evolution of which
is shown in the right-hand panel of Fig. 13, remains approximately
constant at Rd, peri = acav(1 − ed, tot) � 2 throughout the simulation.
This is consistent with the correlation found between acav and ed, tot.
This suggests that the minimum separation of gas particles from
the binary is fixed for a given mass ratio, and growth of the disc
eccentricity (at fixed pericentre) therefore results in corresponding
growth of the cavity semimajor axis – see Section 4.2 for further
discussion.

In the following sections, we interpret these results within the
existing theoretical framework. We also speculate about possible
interpretations of some results that cannot be explained with our
current understanding of resonant and non-resonant binary–disc
interaction, hinting at the direction that further theoretical studies
should take to confirm the interpretation of our numerical results.

4.1 Evolution of the cavity eccentricity

In Section 1.1, we discussed that the role resonant interaction is
expected to play for the evolution of both binary and disc eccentricity.
Non-resonant mechanisms might also play a role. We identify four
possible sources of the eccentricity growth.

(i) Resonance (m, l) = (3, 2) ELR located at the 1:2 binary-
to-disc orbital frequency commensurability (RL = 1.59 abin). This
resonance is expected to pump the disc eccentricity (Goldreich &
Sari 2003); its role in the evolution of the disc eccentricity has
been previously discussed by D’Angelo et al. (2006). This resonance
requires the binary eccentricity to be ebin �= 0 to be effective, which,
despite small values of binary eccentricity are excited, is the case for
our simulations.

(ii) At the same location as the {m, l} = {3, 2} ELR (RL =
1.59 abin), lies the (m, l) = (1, 1) OCLR, which is expected to
pump the disc eccentricity as well. This resonance is also effective
for circular binaries. We note that OCLRs are the only available
resonances that can increase the disc and binary eccentricity if the
binary is fixed on a circular orbit (MacFadyen & Milosavljević 2008).

(iii) Resonance {m, l} = {2, 1} ELR at the 1:3 frequency
commensurability (R2, 1 = 2.08 × abin) has also been previously
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Evolution of disc cavities and eccentricity 3373

Figure 14. Snapshots of the case 6A (q = 0.7) after t = 330 torb (left-hand panel) and t = 450 torb (right-hand panel). A Three lobed cavity (left-hand panel)
marks transition from a ‘small’ circular cavity to a ‘large’ eccentric cavity.

suggested to play a role in eccentricity evolution by Papaloizou et al.
(2001).

(iv) The lack of stable closed orbits around Lagrange points L4
and L5 for binary mass ratios q > 0.04 has been discussed to be
possibly causing the growth of the disc eccentricity (D’Orazio et al.
2016); this mechanism is non-resonant.

(v) Impact of gaseous streams from the disc cavity pericentre
hitting the opposite edge of the cavity wall (Shi et al. 2012; D’Orazio
et al. 2013). This mechanism is non-resonant.

The disc eccentricity has been shown to increase exponentially
when a small eccentricity seed in the disc is present (see equation
14 in Teyssandier & Ogilvie 2016). Thus, as soon as the disc and/or
the binary have a small fluctuation in their orbital eccentricity, if the
disc covers an OCLR/ELR location, the eccentricity increases rapidly
until some other physical mechanism limits its growth. Non-resonant
growth of the disc eccentricity has not been quantitatively discussed
in the literature. However, in essence, as soon as the gas spreads
towards the co-orbital region it will be forced to move on non-closed
orbits, perturbing the circularity of the cavity. As for resonant mech-
anisms, non-resonant eccentricity growth stops when eccentricity
damping through some secondary mechanism becomes dominant.

As soon as the simulation starts, the disc viscously spreads inwards
from its initial radius, without growing its eccentricity at all. Then
a three-lobed structure appears (see Fig. 14). Immediately after the
appearance of this three-lobed structure, the disc eccentricity rapidly
increases towards its maximum value.

Our simulations were started with Rin = 2 in order to deliberately
cover the 1:3, {m, l} = {2, 1}, binary–disc orbital frequency
commensurability, which is located at RL,21 = 2.08 abin. Given the
delay in the growth of the eccentricity, we can exclude this resonance
as being the main contributor to the abrupt growth. Resonances {m,
l} = {3, 2} and {m, l} = {1, 1}, located at the 1:2 binary–disc
orbital frequency commensurability (RL,32 = 1.59 abin) appear to be
better candidates (see also D’Angelo et al. 2006; MacFadyen &
Milosavljević 2008; Miranda et al. 2017). The right-hand panel of
Fig. 10 shows that reducing the disc inner radius Rin at the beginning

of the simulation moves forward the abrupt growth of the disc
eccentricity and cavity size (producing the high contrast ratio showed
in that plot); the growth of eccentricity starts immediately when Rin

= 1.5 < RL, 32 for simulation 6A1.5. Resonance {m, l} = {1, 1},
being a circular resonance, appears to be the strongest resonance
among those proposed. However, the formation of the three-lobed
structure suggests that an m = 3 resonance is effective, implying
that also {m, l} = {3, 2} ELR resonance might be playing a role,
despite the binary eccentricity being small ebin � 0.01. Non-resonant
eccentricity growth cannot be excluded, but it is hard to justify the
m = 3 spiral in that framework.

We note that for binaries with a mass ratio of q = 1 the
OCLR resonance {m, l} = {1, 1} is not effective. MacFadyen &
Milosavljević (2008) showed that the OCLR resonance {m, l} =
{2, 2} located at the 3:2 binary-to-disc frequency commensurability
(RL,22 = 1.31 abin) is effective for the growth of the eccentricity
for this specific case. However, it is not clear whether in our
simulations some material reaches that separation before the abrupt
disc eccentricity growth starts. More generally, our simulation with q
= 1 (simulation 8A) does not show sufficient evolution of the binary
eccentricity for ELRs to be effective, making the growth of the disc
eccentricity for the q = 1 case hard to justify within our current
understanding of resonances. In Section 4.2, we will speculate about
the possible growth of the intensity of ELRs to solve this and other
issues that will arise when discussing the cavity size.

The evolution of the disc eccentricity is ruled by competing effects
that damp or pump the eccentricity. We mentioned in Section 1.1 that
corotation resonances damp the eccentricity, but they are expected
to saturate and lose their circularizing effect. Viscous dissipation
and eccentric orbit intersection, which occurs when the disc eccen-
tricity gradient is sufficiently steep to satisfy the following criterion
(Dermott & Murray 1980)

a

(
de

da

)
� 1, (11)

then become the main mechanisms acting to damp the disc eccentric-
ity. Nested elliptical orbits with eccentricity decreasing with radius
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Figure 15. Disc eccentricity as a function of time (y-axis) and semimajor axis (x-axis) for the two cases 5N (left-hand panel) and 7A (right-hand panel); see
Table 1. A higher eccentricity can be achieved at the cavity edge of case 5N (between the purple and red lines) than in case 7A, since orbits are not intersecting
(see also Fig. 16).

are expected to be subject to friction that becomes stronger depending
on the eccentricity gradient.

Viscous dissipation occurs when the eccentricity pumping effect is
progressively balanced by the damping effect provided by viscosity.
The criterion for orbit intersection is instead a physical limit, beyond
which strong shocks rapidly damp the eccentricity. This explains the
maximum values the disc eccentricity can reach in our simulations.
With reference to Fig. 7, in our reference simulations (‘A’ simulations
in Table 1) cases with q < 0.5 progressively grow their eccentricity
until viscous circularization balances the effect of the ELRs. For
larger mass ratios (q ≥ 0.5), ELRs can in principle pump more
eccentricity in the disc, but orbit intersection prevents its further
growth, causing the eccentricity to saturate to the same maximum
value for all q ≥ 0.5. Fig. 15 and 16 show a comparison between the
eccentricity profile and the values of equation (11) throughout the
disc for two different simulations. We see clearly that the region at
the edge of the cavity fully satisfies the criterion for orbit intersection
for q = 0.7 (sim 7A), but not for q = 0.2 (sim 5N). Despite reaching
very similar maximum values of disc eccentricity, the case 5N, with a
thinner disc, has a lower value of disc viscosity and thus the viscous
damping is weakened, allowing the eccentricity to grow to larger
values, with respect to the reference q = 0.2 case (sim 5A). However,
the steepness of the eccentricity profile does not appear to be high
enough to provide orbit intersection.

Orbits do not intersect for shallow eccentricity profiles for any
value of the eccentricity (see Fig. 16). The maximum value the
eccentricity can reach is thus determined by two mechanisms. When
the right resonances are excited, the binary pushes the disc to become
eccentric, while the viscous dissipation in the disc tends to circularize
the orbits. When these two processes balance, the eccentricity stops
evolving.

4.2 Cavity size: strengthening of eccentric resonances or
non-resonant truncation?

If small binary eccentricities as those we observe in our simulations
can in principle activate ELRs, causing them to produce typical
density features – as the m = 3 spiral right before the onset of the
eccentricity growth – it is very hard to believe they have sufficient
strength to truncate the disc.

In our simulations, we observe an initial growth of the binary
eccentricity (see Fig. 9), which could in principle cause the strength
of ELRs to grow.

However, the values of binary orbital eccentricity that are excited
in our simulations are in most cases ebin < 0.01. Our current
understanding of ELRs tells us that for such small values of binary
eccentricity, resonances cannot overcome the viscous forces in the
disc to open a large cavity (Artymowicz & Lubow 1994). We show
this in Fig. 17, where we provide an estimate of the intrinsic strength
of ELRs whose location in the disc is consistent with the size of the
cavity, and then compare it to a criterion for a cavity to be opened by
that resonance (Artymowicz & Lubow 1994).

OCLRs cannot be invoked to explain disc truncation at radii R >

RL,11 = 1.59 abin, being the {m, l} = {1, 1} the OCLR. Given the
low strength of ELRs in our simulations, we cannot invoke resonant
truncation to explain cavities as large as acav ≈ 4 abin shown in Fig. 6.

We here speculate about two possible scenarios that can be
responsible of the depletion of such large cavities.

First, the intrinsic strength of ELRs also depends on the disc
eccentricity, instead of being exclusively related to the binary one.
This possibility would set the basics for a new physical mechanism
producing the unstable growth of cavity size, which relates with the
disc eccentricity since the higher its value is, the stronger the outer
ELRs are. This speculative scenario is supported by calculations that
use fixed binaries (i.e. not allowed to change their orbital parameters,
as we allow here) showing an evolution of the cavity structure in terms
of size and eccentricity beyond the location of the OCLR (e.g. Kley
& Dirksen 2006; Shi et al. 2012; Farris et al. 2014; D’Orazio et al.
2016), implying that having ebin �= 0 is not a fundamental requirement
in order to activate ELRs.

Secondly, a non-resonant mechanism sets the cavity size (Pa-
paloizou & Pringle 1977; Rudak & Paczynski 1981; Pichardo et al.
2005, 2008). In this interpretation, disc truncation takes place at
the innermost separation from the binary where gas orbits are not
anymore ‘invariant loops’ (Pichardo et al. 2005, 2008), implying that
gas particle orbits are ‘intersecting’, dissipating the orbital energy and
clearing the cavity region – which is analogous to what happens when
the eccentricity gradient exceeds the ‘orbit intersection’ threshold
(see above equation 11 in Section 4.1).

Previous studies that considered the dependence of the truncation
radius of the cavity on the binary properties assumed circular orbits
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Figure 16. Colour plot of the quantity in equation (11) as a function of time (y-axis) and semimajor axis (x-axis) for the cases 5N (left-hand panel) and 7A
(right-hand panel), as in Table 1. When a de/da > 1 eccentric orbits are expected to cross, suppressing further eccentricity growth in the disc, as shown in
Fig. 15 where the case 5N reaches a larger value of maximum eccentricity at the cavity edge.

Figure 17. Intensity of individual resonances using the r.h.s. of equation (16)
by Artymowicz & Lubow (1994) (y-axis) versus their location in the disc
(x-axis). The dashed line represents the viscous threshold in their intensity
in order to create a depletion in the disc surface density. Each intensity is
computed at different times using the orbital properties of the binary (crosses).
Star markers are instead computed using the disc eccentricity. We use different
marker colours to indicate the order of ELRs: namely, purple are first order
(m = l), cyan second order (m = l + 1), olive third order (m = l + 2), and
coral fourth order (m = l + 3). We note that this is not meant to prove our
claims, but it simply shows that if the disc eccentricity affects the intensity
of resonances in the same way as the binary, a growth of the cavity size is
reasonable to occur up to the 1:5 resonant location.

in the disc (Pichardo et al. 2005, 2008). We speculate that non-
intersecting orbits of the gas are expected up to a minimum separation
from the binary, and this sets the pericentre radius of the cavity edge.
This is supported by the behaviour of the cavity pericentre, plotted in
the right-hand panel Fig. 13, where the pericentre radius depends on
the binary eccentricity and mass ratio, but remains roughly constant
for all the mass ratios throughout the simulation.

If the pericentre radius Rd, peri of the cavity is fixed non-resonantly,
when the disc eccentricity grows, it will cause the growth of the cavity
semimajor axis. The correlation between the cavity size and disc
eccentricity shown in Fig. 13 supports this scenario. The relationship

between the disc eccentricity and innermost non-intersecting orbit
has not been established yet, and will be subject to future studies.

Completing this second scenario, we note that if the non-resonant
eccentricity growth scenario introduced in Section 4.1 is effective,
the mechanism we describe would be completely non-resonant.

However, we note that we are not able to verify this interpretation
without substantial further development of the theoretical framework
of resonant and non-resonant binary–disc interaction for eccentric
discs. Indeed, we are not aware of any previous work suggesting or
directly studying these effects.

4.3 Formation of the azimuthal overdensity

One of the most interesting features that arises from these simulations
is the formation of a well-defined azimuthal asymmetry in the density
field (see the right-hand panel of Fig. 14) in all simulations with a
binary mass ratio of q > 0.2. This feature is often referred to as a
‘horseshoe’ in the protoplanetary disc community, due to its shape, or
‘overdense lump’ in the BH community. It has been seen in a number
of previous studies (Shi et al. 2012; Farris et al. 2014; Ragusa et al.
2016, 2017; Miranda et al. 2017; Calcino et al. 2019). In order to
evaluate the intensity of the asymmetry, we define the contrast ratio
δφ as the ratio between the density in the azimuthal feature and the
density at the opposite side of the cavity.

If the disc eccentricity profile has a negative radial gradient, it is
expected to form a non-orbiting azimuthal overdensity with a contrast
ratio of δφ ≈ 3– 4. This is referred to as the ‘eccentric feature’ or
‘traffic jam’, and caused by the clustering of orbits at their apocentres
(Ataiee et al. 2013; Teyssandier & Ogilvie 2016; Thun et al. 2017).
This feature (we refer to it as ‘eccentric traffic jam’) is fixed at the
apocentre of the cavity, and moves only because of the precession of
the longitude of pericentre of the cavity.

The overdensity visible in Fig. 14 (we refer to it as ‘orbiting
overdense lump’) not only moves around the edge of the cavity with
Keplerian motion, but also reaches a contrast ratio δφ ≥ 10, larger
than the typical values in ‘traffic jams’.

Tidal streams being thrown from the cavity pericentre against its
opposite edge have been discussed to cause the formation of the
feature (Shi et al. 2012; D’Orazio et al. 2013). Consistent with this
picture, from our work it emerges that one of the key elements
for the formation of a high contrast ratio overdensity is the fast

MNRAS 499, 3362–3380 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/3362/5911605 by IN
IST-C

N
R

S IN
SU

 user on 07 July 2023



3376 E. Ragusa et al.

outward motion of the gas when the cavity progressively increases
in size. Moving outwards, the gas first produces an overdense ring
of material, which then evolves into an azimuthal structure.

Ragusa et al. (2017) found a threshold value for the formation of
high-contrast overdensities of q > 0.05. Simulations in that work used
discs that initially extended up to Rin = 1.5 < RL, 11, making that result
consistent with what we found in this paper. Even though no whirling
motion is present in orbiting overdense lumps, Hammer, Kratter &
Lin (2017) noted that Rossby-wave instability (RWI) vortices are
weaker when planets inducing them appear in the simulation slowly
increasing their mass; similarly, this leads to a slower build-up of
material at the gap/cavity edge.

4.3.1 Evolution and life expectation of the azimuthal overdense
feature

This qualitative picture described above appears to be confirmed by
the evolution of the contrast ratio. Fig. 10 shows the contrast ratio
of the azimuthal overdensity, δφ , as a function of time for our ‘A’
reference cases and for four different choices of initial Rin of the
simulation (simulations 6A1.5, 6A1.7, 6A1.8, and 6A3.0).

The contrast ratio of the azimuthal overdensity grows when
the cavity size starts growing, reaching a peak when the cavity
size reaches its maximum value. When the material stops moving
outwards, the overdensity stops growing. After its peak, the contrast
ratio of the overdensity progressively decreases – probably due to
viscous dissipation – until it appears to stabilize at a value of ≈4
for q ≥ 0.2, which are characterized by the maximum eccentricity
gradient being fixed by orbit-crossing limit, equation (11). This final
value of the contrast ratio corresponds to the contrast ratio of the
slowly precessing ‘eccentric traffic jam’ structure that forms at the
cavity apocentre following the growth of the disc eccentricity.

Initializing the disc with a larger inner radius Rin leads to later
growth of the cavity size and eccentricity (Fig. 2). Since the amount
of material that viscously spreads inwards is less than that present
in a simulation starting with the disc extending to smaller inner
radii, the amount of material pushed outwards when the cavity
becomes eccentric and increases its size is lower, resulting a less
pronounced overdense feature. When starting the simulation with
Rin = 3 (simulation 6A3.0), the system seems to directly form an
‘eccentric traffic jam’ feature.

Despite the ‘eccentric traffic jam’ becoming the dominant over-
density at late times, a feature with a contrast ratio of ∼1.5–2 keeps
orbiting at the cavity edge, as shown in Fig. 11. This result is
consistent with what was previously found by Miranda et al. (2017),
where the authors found that an orbiting overdensity with a contrast
of δφ ∼ 2–3 is found to be present after 6000 binary orbits, with
a viscosity 10 times higher than the one used in this work.3 Such a
feature makes a close passage to the binary when it reaches the cavity
pericentre, i.e. every ∼7–8 binary orbits. This boosts the accretion
rate with the same periodicity (see Fig. 12) as previously found in a
number of work (e.g. Cuadra et al. 2009; D’Orazio et al. 2013; Farris
et al. 2014; Ragusa et al. 2016; Miranda et al. 2017).

We note that in our analysis (not shown here to reduce the paper
length) also simulation 6A3.0, where the contrast ratio never exceeds
δφ = 4, shows a low-contrast ratio (δφ ∼ 1.5) orbiting overdense
feature that produces a modulation of the accretion rate of 7–8 binary
orbits.

3Miranda et al. (2017) used αss = 0.05 for the aforementioned simulation.

Even though the orbiting overdense lump maintains a contrast ratio
of δφ � 10 for a limited number of orbits (∼1000 torb), it survives
with a low contrast (δφ ≈ 1.5–2) for longer time-scales. This result
does not depend on the previous history of the evolution of δφ ,
as mentioned before for simulation 6A3.0, where the contrast ratio
never exceeded δφ = 4.

These results may explain azimuthal overdense features observed
in dust thermal emission in protoplanetary discs (see Section 5.1 for
further discussion).

4.4 Effects of different disc parameters

The right-hand panels of Figs 6 and 7 show how disc parameters affect
the eccentricity and cavity size. The relevant parameters for the long-
time-scale evolution appear to be α, H/R, and q. Apart from some
effects on the initial evolution, all the simulations evolve towards
the same long time-scale behaviour apart from simulation 5N (larger
cavity, higher final disc eccentricity, H/R = 0.03, i.e. smaller than
the ‘A’ reference case), simulation 5E (smaller cavity, lower final
disc eccentricity, α = 0.1, i.e. larger than the ‘A’ reference case), and
simulation 5C (smaller cavity, lower final disc eccentricity, H/R =
0.1, i.e. larger than the ‘A’ reference case). In the Shakura & Sunyaev
(1973) prescription, the viscosity is ν ∝ α(H/R)2, so the behaviour of
simulations 5N, 5E, and 5C can be mainly attributed to the resulting
differences in the disc viscosity. However, as previously mentioned in
Section 4, the width of these resonances scales as (H/R)2/3 (Meyer-
Vernet & Sicardy 1987; Teyssandier & Ogilvie 2016), so the disc
thickness may also play a role in determining the evolution of the
binary eccentricity. This last result needs to be supported by further
studies. Simulations ‘Z’, which use α = 0.01 – i.e. doubled with
respect to the ‘A’ reference case – do not appear to show significant
differences from our reference case.

5 N ON-AXI SYMMETRI C STRUCTURES IN
PROTOSTELLAR D ISCS

Recent high-spatial resolution observations from near-infrared to mm
and cm wavelengths have revealed spiral arms (Garufi et al. 2017;
Dong, Najita & Brittain 2018), cavities and gaps in the gas (van der
Marel et al. 2016; Huang et al. 2018), and cavities and gaps in the
dust (van der Marel et al. 2016; Francis & van der Marel 2020).

A small selection of the discs with cavities display large crescent-
shaped dust asymmetries (e.g. van der Marel et al. 2013; Casassus
et al. 2015; Tang et al. 2017b). Despite the gas distribution being
directly observable using molecular lines, highest resolution images
from the SPHERE instrument on the VLT, ALMA, and other
observational facilities are sensitive to the dust thermal emission,
which may differ from the gas distribution. In particular, low-contrast
overdensities in the gas density structure act as pressure traps for
dust grains (provided that they co-move with the flow), leading to
perturbations in the dust density structure larger than those in the
gas.

Three possible formation mechanisms can be invoked for these
structures.

The first mechanism is a vortex co-moving with the gas (referred
to as the ‘Vortex scenario’). For this to operate, the RWI must
be triggered (Lovelace et al. 1999; Li et al. 2000; Lovelace &
Romanova 2014). The RWI manifests whenever a strong gradient
in the vortensity profile is present, provided the disc viscosity is
sufficiently low (αss � 10−4). This promotes the whirling motion of
adjacent shearing layers, similar to the Kelvin–Helmholtz instability.
So-called ‘dead zones’ in the disc have also been shown to cause
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density gradients affecting the vortensity in such a way that RWI
is triggered (Regály et al. 2012; Ruge et al. 2016). Numerical
simulations have shown that the presence of a planet affects the
vortensity gradient, causing some gas to accumulate outside its orbit,
and carving a steep gap; for sufficiently low viscosities, the vortensity
gradient is steep enough to enable the formation of a vortex.

A second formation mechanism for these dust asymmetries is the
orbiting overdense lump discussed earlier in this work (Section 4.3).
It involves the presence of a (sub)stellar companion orbiting the
primary star (secondary to primary mass ratio M2/M1 � 0.2),
producing a poorly understood instability: The cavity size grows
significantly and an overdense feature orbiting at the edge of the
cavity with Keplerian motion (i.e. co-moving with the gas) forms.
No whirling motion is observed in this scenario (Ragusa et al. 2017;
Calcino et al. 2019).

Both the overdense lumps and vortices are expected to trap dust
particles with growing efficiency when the gas–dust coupling is
marginal (Birnstiel, Dullemond & Pinilla 2013, van der Marel et al.
2020) – i.e. when the particle Stokes number approaches St ∼ 1.
Indeed, both features are pressure maxima co-moving with the flow,
which trap dust. However, in the vortex scenario, the growing dust-
to-gas ratio within the pressure maximum is expected to destroy the
vortex (Johansen, Andersen & Brandenburg 2004; Fu et al. 2014),
even though 3D simulations fail to reproduce this effect (Lyra, Raettig
& Klahr 2018).

A third mechanism to explain the origin of dust asymmetries has
been discussed by Ataiee et al. (2013), the ‘traffic jam’ scenario (also
discussed in this paper, Section 4.3). In this scenario, the presence
of a planet increases the eccentricity of gas orbits; the clustering
of eccentric orbits and the slowdown that the gas experiences when
approaching their apocentre cause the formation of an overdensity
that is slowly precessing (not orbiting) at the same rate as the peri-
centre longitude of the gas orbits. This mechanism does not produce
overdensities with high enough contrast ratios to be responsible
for the formation of azimuthal overdense features in discs – our
simulations show that this is the case even with cavities as eccentric
as those produced by (sub)stellar companions.

Features produced by this mechanism are long lasting, as long as
the disc maintains an eccentricity gradient. However, they move with
the frequency of the cavity longitude of pericentre – in contrast to
the two scenarios we previously described, where the feature spans
the cavity edge with Keplerian frequency. Finally, eccentric features
are not expected to trap dust grains, as they are actually ‘traffic jams’
due to the dust particle streamlines clustering at the apocentre of
the orbit rather than particles being trapped in the overdensity. As
a consequence, the reasoning applied to the two previous scenarios
where low-amplitude gas perturbations could produce high-contrast
dust overdensities cannot be applied in this case.

5.1 Observational implications

The most immediate observational consequence this work suggests
is that co-planar discs surrounding binaries with sufficiently high
mass ratios (q ≥ 0.05) are expected to be significantly eccentric. As
soon as the disc reaches the 1:2 resonance (R = 1.59 abin) the disc
eccentricity grows rapidly and the cavity size grows. This pushes
material outwards producing an orbiting overdense lump. In real
discs, this condition is met in two cases: after the cloud core collapse,
when the newly formed binary starts depleting the cavity area, and
when secondary accretion events take place.

Our simulations suggest that a high-contrast orbiting overdense
lump (Keplerian orbit, contrast ratio δφ � 10) will last for a limited

number of orbits (∼1000 orbits), leaving in its place an eccentric
‘traffic jam’ (moving at the cavity pericentre precession rate, contrast
ratio δφ ≈ 3–4). If the cavity is eccentric, the traffic jam feature is
always present, possibly leading to the formation of two distinct
azimuthal structures: one orbiting at the cavity edge, and the other
fixed at the cavity apocentre.

Figs 11 and 12 show that a low-contrast gas overdensity (δφ ∼ 1.5–
2) is expected to survive at longer time-scales – this is consistent with
previous results in the literature where low-contrast overdensities
have been observed orbiting at the cavity edge after t ∼ 6000 torb

(Miranda et al. 2017). Overdense lumps co-moving with the flow (i.e.
orbiting at the edge of the cavity) are effective in trapping dust grains
starting from very small azimuthal contrast ratios (δφ � 1; Birnstiel
et al. 2013; Van der Marel et al., in preparation); this implies that
high contrasts in the dust distribution, as those observed by ALMA,
can be achieved starting from low-contrast overdensities in the gas –
such as those weak orbiting features that survive at late time-scales
in our simulations.

There are a few ways to distinguish orbiting lumps and traffic
jams observationally. First, as discussed above, since eccentric traffic
jams cannot trap dust grains, the dust contrast ratio in these features
is not expected to exceed the contrast in the gas. This implies that
detecting azimuthal overdensities in the dust thermal emission with
δφ > 3–4 excludes traffic jams as a possible scenario originating
the feature. Secondly, the co-moving overdense lump is expected to
trap dust; therefore, detecting dust trapping (different contrasts δφ

at different wavebands) can also help distinguishing the scenarios.
Finally, repeated observations can be also used. Since the overdensity
explored in this work is co-moving, its orbital motion can be detected
(e.g. Tuthill et al. 2002). The traffic jam scenario produces a fixed
feature that moves on a much longer time-scale (hundreds of binary
orbits).

Despite high-contrast overdensities not lasting for times longer
than t � 1000 torb, for binaries opening cavities as large as acav �
100 au, thousands of binary orbits correspond to time-scales of t �
105 yr, which is �10 per cent of typical protoplanetary disc lifetimes
(Haisch, Lada & Lada 2001; Harris et al. 2012; Kraus et al. 2012).
Since these features have been observed to form when the cavity
is carved, we expect young systems to be more likely to show gas
overdensities with δφ � 4.

Secondary accretion events, fly-bys, or other later perturbations
of the systems could still in principle explain the presence of high-
contrast orbiting overdense lumps also in the gas component of older
systems.

The initial conditions in real physical systems are far from a steady
state (Bate 2018). It is thus important to understand the evolution of
the disc, not just when it has reached the quasi-steady state.

Vortices differ from orbiting overdense lumps for the fact they
might form also in systems where no cavity is present. However,
they are expected to share most of the characterizing features of
orbiting overdense lumps – they also co-move with the flow and
trap dust grains, causing high-contrast dust overdensities. When a
cavity is present, being able to detect the whirling motion of vortices
through kinematic maps appears to be the only strategy to distinguish
them from orbiting overdense lumps. Nevertheless, no molecular line
observations with the required spatial resolution for this purpose are
available yet.

6 SU M M A RY A N D C O N C L U S I O N

We performed a suite of 3D SPH simulations of binaries surrounded
by circumbinary discs. Our results suggest that most circumbinary
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discs with sufficiently high mass ratios, q ≥ 0.05, develop an eccentric
cavity, consistently with previous results in the literature (Farris et al.
2014; D’Orazio et al. 2016; Miranda et al. 2017; Muñoz & Lithwick
2020). The formation of eccentric cavities occurs over a wide range
of disc+binary initial conditions, even though we always start with
a circular binary and a circular disc.

Our results suggest the following:

(i) The growth of the disc eccentricity appears to be driven by
an unstable positive feedback mechanism involving the eccentric
Lindblad resonance m = 3, l = 2, or circular m = 1, l = 1 – which
were previously suggested to be responsible for the growth of the
disc and binary eccentricity (D’Angelo et al. 2006; MacFadyen
& Milosavljević 2008). However, the action of a non-resonant
mechanism for disc eccentricity growth cannot be fully excluded.

(ii) Despite resonances being able to explain the evolution of the
disc eccentricity, resonant binary–disc interaction theory alone, as we
know it, seems not to be sufficient to explain the formation of cavities
as large as acav = 3.5 abin when the binary eccentricity is as low as e
� 0.01. Resonances at those radii are not strong enough to overcome
the viscous diffusion of the disc. The binary eccentricity required
for that purpose is much higher than the one binaries develop in this
work (see Fig. 17). We speculate that ELRs increase their intrinsic
strength with increasing disc eccentricity (in addition to the already
well-known and discussed dependence on the binary eccentricity).
We also speculate that a non-resonant mechanism might be active
carving the cavity [see also point (iv) and (v) in this section, and
Section 4.2 for more details].

(iii) The maximum value of disc eccentricity that our simulations
reach is set by the orbit-crossing limit (see Fig. 16). This limit is
not related to the maximum value of eccentricity, but rather the
steepness of the eccentricity profile. If the eccentricity gradient
(de/da) is too large, the eccentric orbits of fluid elements intersect,
resulting in shocks that prevent further growth of the eccentricity.
In our simulations, discs around binaries with mass ratios q > 0.2
undergo orbit intersection, reaching the same maximum value of disc
eccentricity. For lower binary mass ratios, viscosity acts to damp the
disc eccentricity. When this effect balances the pumping action of
resonances, the eccentricity stops growing. Thus, for binary mass
ratios q ≤ 0.2, since the intrinsic strength of resonances grows with
the mass ratio, for a fixed value of disc viscosity, the higher the
binary mass ratio is, the higher the maximum eccentricity. This could
potentially lead to constraints on the disc viscosity for systems where
the binary mass ratio and disc scale height can be measured.

(iv) Our analysis of disc eccentricity and cavity semimajor axis
(cavity size) evidenced that these two quantities show an interesting
linear correlation, which appear to be the same for all the simulations
we examined (Fig. 13). We believe that this result is very important,
as it constitutes a starting point for future developments of this work.

(v) The pericentre radius of the cavity remains approximately
constant throughout the entire length of the simulation, suggesting
that the tidal torque sets the pericentre radius of the cavity non-
resonantly and, as a consequence, the cavity semimajor axis grows
due to the growth of the disc eccentricity. In the light of point iv),
this points in the direction of a non-resonant truncation mechanism
being responsible for carving the cavity.

Our simulations confirm some evolutionary features previously
observed:

(i) When the disc becomes eccentric, the material flows on
nested elliptic orbits with decreasing eccentricity profile and aligned
pericentres. The disc precesses rigidly, meaning that the elliptical

orbits all precess together at the same rate, conserving the alignment
of the pericentres (MacFadyen & Milosavljević 2008; Teyssandier
& Ogilvie 2016; Miranda et al. 2017; Ragusa et al. 2018; Muñoz &
Lithwick 2020). Eccentric cavities all show a ‘traffic jam’ overdense
feature due to the clustering of nested eccentric orbits at the
apocentre.

(ii) Simulations with mass ratio q > 0.2 show the formation of an
azimuthal overdense feature with δφ � 10 – known in the BH binary
community as ‘overdense lump’ and as ‘horseshoe’ feature in the
protoplanetary one (Shi et al. 2012; Farris et al. 2014; Miranda et al.
2017; Ragusa et al. 2017) – that orbits with Keplerian frequency at
the edge of the cavity, produced by the strong tidal streams (Shi et al.
2012; D’Orazio et al. 2013) thrown by the binary.
Our results add to this picture that the fast growth of the cavity size
appears to be one of the key ingredients for the formation of a high
(δφ � 10)-contrast ratio overdense co-moving feature. As soon as
the cavity stops growing, the overdensity also stops growing.

(iii) As soon as a quasi-steady-state configuration is reached (after
≈1000 binary orbits), the disc progressively evolves towards a
configuration with a slowly precessing ‘eccentric traffic jam’ feature
at the apocentre of the cavity δφ ≈ 3–4 and a lower contrast orbiting
overdense lump (δφ ≈ 1.5–2) that co-moves with the flow. This
result is consistent with what was previously found by Miranda et al.
(2017), who, for circular binaries, found that an orbiting overdense
lump with δφ ∼ 2–3 is still present after 6000 binary orbits.

We draw the following conclusions for observations of protoplan-
etary discs. Both high-contrast and low-contrast gas structures can
lead to the formation of high-contrast ratio features in the dust density
field provided they co-move with the flow (Birnstiel et al. 2013). This
implies that our simulations with q > 0.2 are all in principle consistent
with hosting high-contrast dust density structures for at least 2000
binary orbits, if dust was included in our simulations. For typical
systems, such time-scale represents a significant fraction of their
lifetime, we discuss this in Section 5.1. The contrast of this feature
depends more on how much material is pushed outwards when the
cavity becomes eccentric rather than the value of the binary mass
ratio, so that q > 0.2 should not be considered as a threshold for a
high-contrast orbiting overdense lump to form.

Reliable initial conditions of real physical systems are still very
poorly constrained. Given the relatively long time-scales involved,
the chances of observing a system while it is still relaxing towards
a steady configuration are high, particularly in young protostellar
systems.

High-resolution kinematic data in protoplanetary discs can be used
to test our theoretical results.

Future theoretical developments of this project involve a better
investigation of the strength of ELRs in eccentric discs, and a strategy
to understand the evolution of discs surrounding high-mass ratio
binaries on longer time-scales.
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