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ABSTRACT
We present a fix to the overdamping problem found by Laibe & Price when simulating
strongly coupled dust–gas mixtures using two different sets of particles using smoothed
particle hydrodynamics. Our solution is to compute the drag at the barycentre between
gas and dust particle pairs when computing the drag force by reconstructing the velocity
field, similar to the procedure in Godunov-type solvers. This fixes the overdamping problem
at negligible computational cost, but with additional memory required to store velocity
derivatives. We employ slope limiters to avoid spurious oscillations at shocks, finding the
van Leer Monotonized Central limiter most effective.
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1 IN T RO D U C T I O N

In Laibe & Price (2012a), (2012b) (hereafter LP12a,b) we found
three problems when using Lagrangian particles to simulate the
dust component of dust–gas mixtures: (i) artificial trapping of
dust particles below the gas resolution, (ii) overdamping of waves
and slow convergence at high drag, requiring prohibitive spatial
resolution, (iii) time-stepping, requiring time-steps shorter than the
stopping time, or an implicit scheme (e.g. Monaghan 1997, 2020;
Bai & Stone 2010; Miniati 2010; Lorén-Aguilar & Bate 2014;
Yang & Johansen 2016; Stoyanovskaya et al. 2018)

In our 2012 study, using smoothed particle hydrodynamics (SPH;
Monaghan 1992), we found our numerical solutions for linear waves
to be overdamped compared to the analytic solution when the drag
between dust and gas was high, i.e. for small grains. Miniati (2010)
similarly found only first-order accuracy in the stiff regime when
simulating dust as particles and gas on a grid (see also Yang &
Johansen 2016). This is the ‘overdamping problem’.

In Laibe & Price (2014a,b), we solved this problem by re-writing
the dust/gas equations to describe a single fluid mixture (i.e. as
a single set of SPH particles with an evolving dust fraction). This
approach avoids the overdamping problem but the mixture approach
is only suitable for small grains. Stoyanovskaya et al. (2018) showed
that overdamping could be avoided even with dust and gas as
particles by interpolating the dust and gas velocities to a common
spatial position. Our approach is based on a similar idea.

In this paper, we show that the overdamping problem in SPH
can be solved by applying ideas from finite volume codes, namely
reconstruction of the velocity field between pairs of gas and dust
particles.

� E-mail: daniel.price@monash.edu

2 M E T H O D S

2.1 Continuum equations

Consider a gas and dust mixture represented by two different types
of particles. The momentum and energy equations are

∂vg

∂t
+ (vg · ∇)vg = −∇Pg

ρg
+ K

ρg
(vd − vg), (1)

∂vd

∂t
+ (vd · ∇)vd = − K

ρd
(vd − vg), (2)

∂ug

∂t
+ (vg · ∇)ug = −Pg

ρg
(∇ · vg) + K

ρg
(vd − vg)2. (3)

2.2 SPH equations

Our SPH algorithm follows LP12a,b in everything except the
discrete form of the drag terms. We replace these with
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(
v∗

ai · r̂ai

)
(vai · r̂ai) Dai(h), (6)

where the index a refers to gas particles while i refers to dust
particles, ν is the number of dimensions, vai ≡ va − vi , rai ≡
ra − r i , Dai(h) ≡ D(|rai |, max[ha, hi]) is a double-humped kernel
(LP12a), and the stopping time is defined via

tai
s ≡ ρaρi

K(ρa + ρi)
, (7)

where density is only computed using neighbours of the same type
(i.e. gas density on gas particles and dust density on dust particles).
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3930 D. J. Price and G. Laibe

Here we assume K constant, but in general ts may be set according
to a physical drag law e.g. Epstein drag. The only difference in our
formulation of the drag terms compared to LP12a is that we use
a reconstructed velocity for the interaction between particle pairs
denoted v∗, rather than the velocity at the position of the particle
itself. This improves the estimate of the local differential velocity.

2.3 Reconstruction

We reconstruct the velocity for each particle pair (a, i) using

v∗
a = va + (

r∗ − ra

)β ∂va

∂rβ
a

, (8)

v∗
i = vi + (

r∗ − r i

)β ∂vi

∂rβ
i

, (9)

where to avoid confusion with particle labels we use α, β, and γ

to refer to tensor indices, with repeated tensor indices implying
summation. At the barycentre between the particles a and i – i.e. at
r∗ = ra + μai rai = r i − μia rai , these relations combine to

v∗
ai · r̂ai = vai · r̂ai − μai |rai | (Sai + Sia) , (10)

where Sai ≡ r̂α
ai r̂

β
ai

∂vα
a

∂r
β
a

and μai = ma/(ma + mi). Velocity gradients

are computed using an exact linear derivative operator (e.g. Price
2012), i.e. by solving the 3 × 3 matrix equation

Rβγ

∂vα

∂rγ
= −

∑
b

mbv
α
ab∇βWab (ha) , (11)

where

Rβγ =
∑

b

mb(rb − ra)β∇γ Wab(ha). (12)

The summations on the right-hand side of equations (11) and (12)
are computed during the density summation, with the summation
index over particles of the same type. We found no difference using
the exact linear operator versus the usual SPH derivative.

2.4 Slope limiters

The danger with reconstruction is the reintroduction of spurious
oscillations when the solution is discontinuous. To prevent this,
the factor (Sai + Sia) may be replaced by a slope limiter, i.e. a
function 2f(Sai, Sia) that preserves monotonicity (van Leer 1974).
We explored a range of limiters (e.g. Sweby 1984) including, from
the most to the least dissipative, minmod

f (a, b) =

⎧⎪⎪⎨
⎪⎪⎩

min(|a|, |b|) a > 0, b > 0

− min(|a|, |b|) a < 0, b < 0

0 otherwise,

(13)

van Leer (van Leer 1977)

f (a, b) =
{

2ab
a+b

ab > 0

0 otherwise,
(14)

van Leer Monotonized Central (MC) (van Leer 1977)

f (a, b) =
{

sgn(a) min
(∣∣ 1

2 (a + b)|, 2|a|, 2|b∣∣) ab > 0

0 otherwise,
(15)

and Superbee (Sweby 1984; Roe 1986)

f (a, b) =
{

sgn(a) max [min(|b|, 2|a|), min(2|b|, |a|)] ab > 0

0 otherwise.

(16)

2.5 Slope limiters and entropy

Slope limiters are usually employed in the context of Total Variation
Diminishing (TVD) schemes (Harten 1983), but application of
the TVD concept beyond one dimension (1D) or to unstruc-
tured/meshfree methods is less clear (e.g. Chiapolino, Saurel &
Nkonga 2017). A physical interpretation can be seen from our
equation (6). For the drag term to provide a positive definite
contribution to the entropy, vai · r̂ai and v∗

ai · r̂ai must have the
same sign, such that du/dt|drag is positive. Pairwise positivity is not
strictly necessary so long as the sum over all neighbours is positive.
We tried setting v∗

ai · r̂ai = vai · r̂ai if the signs differ, but found
this to be more dissipative than using slope limiters (see Fig. 3).
We found the van Leer MC limiter to provide the best compromise
between monotonicity and dissipation.

3 R ESULTS

We test our improved algorithm in 1D using the NDSPMHD code
(Price 2012) and in 3D using PHANTOM (Price et al. 2018). We
use explicit global time-stepping with a leapfrog integrator, the
M6 quintic kernel for the SPH terms with the double hump M6

employed for the drag terms (LP12a). The results are not sensitive
to the choice of kernel, provided a double hump kernel is used for
the drag. The time-step was set to 0.9 times the minimum stopping
time (we found that setting �t = ts exactly as in LP12a could result
in instability with reconstruction). We use the van Leer MC limiter
unless otherwise specified.

3.1 DUSTYWAVE

Fig. 1 shows the results of the DUSTYWAVE described in Laibe &
Price (2011), performed using 2 × nx particles with a fixed drag
coefficient K = 1000, ρg = ρd = 1 and cs = 1 (giving ts = 5 × 10−4)
and a perturbation amplitude of 10−6. We use an adiabatic equation
of state P = (γ − 1)ρu with γ = 5/3 in the gas. In the absence
of reconstruction, overdamping occurs when h � csts, i.e. for nx �
1024 (left-hand column), as found by LP12a. Adding reconstruction
captures the true solution to within a few per cent for nx � 64 (middle
column), while the slope limiter does not visibly degrade it (right-
hand column).

Fig. 2 shows the results in 3D using PHANTOM. We follow the
procedure used in Price et al. (2018), placing the particles using
dense sphere packing and cropping the grid in the y and z directions
at 12 particle spacings (for efficiency), giving 2 × 128 × 12 × 12
particles. The results in 3D are indistinguishable from those shown
in Fig. 1, showing our method also works in 3D.

3.1.1 Choice of slope limiter

Fig. 3 shows the kinetic energy as a function of time in the 1D
DUSTYWAVE problem at a resolution of nx = 128. The solution
with reconstruction but no slope limiter (solid black line) is
indistinguishable from the analytic damping rate (Laibe & Price
2011). By contrast, the solution with no reconstruction (magenta
line) is damped in less than one wave period. All limiters apart from
Superbee (not shown) give intermediate results between these two
extremes. Superbee, defined as the least dissipative limiter to satisfy
the TVD property (Sweby 1984), was found to increase rather than
decrease the kinetic energy and produce a clipped wavefront. This
numerical ‘oversteepening’ is a known problem with Superbee (e.g.
Klee et al. 2017). The van Leer MC limiter gives the closest match
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Dust–gas mixtures in SPH 3931

Figure 1. Dust and gas velocities in the DUSTYWAVE test after 10 wave periods, using K = 1000 with 2 × nx particles without reconstruction and with and
without the slope limiter (see labels). Reconstruction avoids the need to resolve h ∼ tscs (resolved at nx = 1024 particles). Exact solution shown in red.

to the analytic damping rate while still remaining effective at shocks
(see below). More dissipative limiters, all bring back some degree
of overdamping. No limiter apart from our entropy fix was found to
guarantee positive entropy.

3.1.2 Convergence

Fig. 4 shows the L1 error (1/N
∑|vx − vx, exact|) as a function of the

number of particles per wavelength for the 1D DUSTYWAVE problem.
Without reconstruction, convergence is flat at low resolution (nx ≤
256) because the wave is almost completely damped, becoming
second order only after the h < csts criterion is satisfied (nx �
1000). With reconstruction and the slope limiter, we find second-
order convergence for nx � 32, once the wave is sufficiently resolved
for gradients to be accurate.

3.2 DUSTYSHOCK

Fig. 5 shows the results of the DUSTYSHOCK test from LP12a at
three different numerical resolutions (bottom to top). Lehmann &
Wardle (2018) also proposed a dusty shock test, but their test is
for the intermediate regime where the drag is moderate. Here, we
are interested in the strong drag regime, where the stopping time is
negligible.

We set up the problem as usual with gas with x < 0 set up with
(ρ, P, vx) = (1.0, 1.0, 0.0) and gas with x > =0 set up with (ρ, P,
vx) = (0.125, 0.1, 0.0). We performed the test in both 1 and 3 D, but
only show results from the 3 D calculation since, as for the wave
test, they are very similar to those obtained in 1 D. In 3 D, we set the
particle spacing using nx × ny × nz gas particles for x ∈ [ − 0.5, 0.0],
and nx/2 × ny/2 × nz/2 gas particles in x ∈ [0.0, 0.5] to resolve the
8:1 density contrast without introducing highly anisotropic initial
particle distributions. As for the wave test, we crop the domain in
the y and z directions to match the particle spacing, using ny = 24
and nz = 24. We initialise the dust as copies of the gas particles,
assuming a dust-to-gas ratio of unity. We apply artificial viscosity
as usual using the modified version of the Cullen & Dehnen 2010
switch (see Price et al. 2018 for details).

Fig. 5 shows results using the default approach (left-hand col-
umn), which at low resolution (bottom left-hand panel) produces
a solution appropriate for a smaller drag coefficient. Applying
reconstruction with no slope limiter (middle column) the numerical
solution is much closer to the exact solution (red line), resolves
shock discontinuities to within ∼3 h, but produces an unphysical
oscillation ahead of the shock front. The right-hand column shows
that the slope limiter eliminates such oscillations.The remaining
defects in the solution (e.g. at x = −0.02) can be seen to disappear
as the numerical resolution is increased (right-hand column, bottom
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3932 D. J. Price and G. Laibe

Figure 2. As in Fig. 1, but in 3D with PHANTOM using nx × 12 × 12 gas particles (solid) and nx × 12 × 12 dust particles (open) initially placed using dense
sphere packing. Exact solution from Laibe & Price (2011) shown in red.

Figure 3. Kinetic energy as a function of time in the 1D DUSTYWAVE

problem, comparing different slope limiters. From top to bottom results
employ reconstruction with no limiter, the van Leer MC, van Leer and
minmod limiters, our ‘entropy fix’ (Section 2.5), and no reconstruction.

Figure 4. Convergence on the DUSTYWAVE problem, showing L1 error as
a function of the number of particles per wavelength in 1D. Solid line uses
reconstruction and the van Leer MC limiter, dashed line no reconstruction.
Dotted line shows slope of −2 expected for second order. Arrow indicates
the no-longer-necessary h � csts criterion required by LP12a.
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Dust–gas mixtures in SPH 3933

Figure 5. Results of the DUSTYSHOCK problem performed in 3 D with PHANTOM, performed at three different numerical resolutions (bottom to top) with
no reconstruction (left-hand column), with reconstruction but no slope limiter (middle) and using reconstruction with the van Leer MC limiter (right-hand
column). Exact solution in red, points show velocity on gas (solid) and dust (open circles) particles.

to top), with the corresponding L1 error reducing from 1.4 × 10−2

at nx = 128 to 6.6 × 10−3 using nx = 256 and 4.0 × 10−3 using
nx = 512.

We employed nx = 11, 255 particles in 1D to obtain reasonable
results on this problem in LP12a.

4 D ISCUSSION

In this paper, we have shown how the overdamping problem can
be fixed by evaluating the drag at the barycentre of each dust–gas
particle pair. The slow convergence observed by LP12a is caused
by the particle separation (of the order of the resolution length, h)
being too large to correctly resolve the drag length-scale l ∼ csts.
This is why the issue is absent when simulating the dust and gas as
a single fluid mixture (Laibe & Price 2014a,b). A similar idea of
interpolating the velocities to a common spatial position was also
employed by Stoyanovskaya et al. (2018) as part of their implicit
scheme, where it was also shown to solve the overdamping problem.
We used explicit time-stepping and employed slope limiters to avoid
introducing unphysical oscillations at shock fronts. Fung & Muley
(2019) similarly found reconstruction of the velocity field necessary
for accurate drag in their semi-analytic hybrid (dust as particles, gas
on the grid) scheme.

Solving the overdamping problem does not make the other
problems go away. Time-stepping is relatively easy to solve, with
numerous implicit methods already proposed both in the context
of SPH (Monaghan 1997, 2020; Laibe & Price 2012b; Lorén-
Aguilar & Bate 2014, 2015; Stoyanovskaya et al. 2018) and
in Eulerian particle–gas codes (e.g. Bai & Stone 2010; Miniati
2010; Yang & Johansen 2016; Fung & Muley 2019). Our work
makes these worth implementing, since overdamping remains with
implicit time integration (see figs 6–9 of Lorén-Aguilar & Bate
2014). That is, although these schemes make calculation of small
grain species efficient, in the absence of our fix they remain
inaccurate at high drag. Lorén-Aguilar & Bate 2014 showed that the
overdamping was not as severe when the dust-to-gas ratio is low,
which suggests a modified criterion h < csts/ε. With reconstruction
or interpolation, no spatial resolution criterion is necessary, as found
by Stoyanovskaya et al. (2018).

The artificial trapping problem is harder to solve. A single fluid
model with no approximations (Laibe & Price 2014a) can accurately
capture waves and shocks for both small and large grains with no
artificial trapping (Laibe & Price 2014b; Benı́tez-Llambay, Krapp &
Pessah 2019). However, a single fluid model fails to capture large
grains with significant inertia because the dust velocity field is
assumed to be single valued everywhere, meaning that dust particles
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3934 D. J. Price and G. Laibe

cannot stream or interpenetrate (Laibe & Price 2014b). The domain
of validity is, thus, reduced in any case to the regime of small
grains, where the terminal velocity approximation greatly simplifies
matters (Laibe & Price 2014a; Price & Laibe 2015; Ballabio et al.
2018). The single fluid method has been extended to multiple
grain species (Hutchison, Price & Laibe 2018; Benı́tez-Llambay
et al. 2019; Lebreuilly, Commerçon & Laibe 2019). But for large
grains, one is forced to use particles. Our approach to avoid artificial
trapping to date has been to overresolve the gas compared to the
dust (e.g. Mentiplay, Price & Pinte 2019). This works but is not fail-
safe. Artificial trapping also occurs with tracer particles in Eulerian
simulations (e.g. Price & Federrath 2010), where Cadiou, Dubois &
Pichon (2019) proposed the ‘Monte Carlo tracer particle’ method as
a solution. Whether or not similar ideas could be applied to dust–gas
mixtures would be worth investigating.

An obvious extension of our method is to apply the same
principles to shock capturing in SPH, by using reconstruction
in the artificial viscosity terms. We have published preliminary
experiments in a conference proceedings (Price 2019). Rosswog
(2019) has also recently proposed a similar method, using both first
and second derivatives in the reconstruction.

The main caveat, which would also apply to shock capturing, is
that the entropy increase is not guaranteed to be positive definite.
While we found the errors to be small, it would be desirable to
guarantee positivity while eliminating overdamping.

5 C O N C L U S I O N S

We have shown how the overdamping problem, when simulating
dust–gas mixtures with separate sets of particles in SPH, can
be solved by ‘reconstructing’ the velocity field between pairs of
dust and gas particles using an approach similar to that employed
in finite-volume schemes. A slope limiter is needed to avoid
oscillations at shocks. The advantange of the new method is that the
overdamping problem can be solved with minor changes to existing
dust–gas SPH codes at negligible computational expense. The
disadvantages are that performing reconstruction requires storage of
nine velocity derivatives per particle and does not always guarantee
positive entropy despite our use of slope limiters. Our algorithm is
implemented in the public PHANTOM code (Price et al. 2018).
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