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ABSTRACT

Context. A 1D description of stellar dynamics is at the basis of stellar evolution modeling. Designed to investigate open problems in
stellar evolution, the MUltidimensional Stellar Implicit Code expands a realistic 1D profile of a star’s internal structure to examine
the interior dynamics of a specific star through either 2D or 3D hydrodynamic simulations.
Aims. Extending our recent studies of 2D stellar convection to 3D stellar convection, we aim to compare 3D hydrodynamic simulations
to identically set-up 2D simulations, for a realistic pre-main sequence star.
Methods. We compare statistical quantities related to convective flows including: average velocity, vorticity, local enstrophy, and
penetration depth beneath a convection zone. These statistics were produced during stationary, steady-state compressible convection
in the star’s convection zone.
Results. Our simulations confirm the common result that 2D simulations of stellar convection have a higher magnitude of velocity
on average than 3D simulations. Boundary conditions and the extent of the spherical shell can affect the magnitude and variability
of convective velocities. The difference between 2D and 3D velocities is dependent on these background points; in our simulations
this can have an effect as large as the difference resulting from the dimensionality of the simulation. Nevertheless, radial velocities
near the convective boundary are comparable in our 2D and 3D simulations. The average local enstrophy of the flow is lower for 2D
simulations than for 3D simulations, indicating a different shape and structuring of 3D stellar convection. We performed a statistical
analysis of the depth of convective penetration below the convection zone using the model proposed in our recent study (Pratt et al.
2017, A&A, 604, A125). That statistical model was developed based on 2D simulations, which allowed us to examine longer times
and higher radial resolution than are possible in 3D. Here, we analyze the convective penetration in 3D simulations, and compare the
results to identically set-up 2D simulations. In 3D simulations, the penetration depth is as large as the penetration depth calculated
from 2D simulations.

Key words. methods: numerical – convection – stars: interiors – stars: low-mass – stars: evolution – stars: solar-type

1. Introduction

Studies of stellar convection have long reported that 2D fluid
simulations result in higher velocities than 3D simulations
(Muthsam et al. 1995; Meakin & Arnett 2007; Arnett & Meakin
2011). Still, 2D modeling of convection remains a useful tool in
the 321D link, the effort to improve 1D stellar evolution mod-
eling using 2D and 3D stellar hydrodynamics simulations. Two-
dimensional simulations allow the simultaneous exploration of
longer times and higher radial resolutions1 than 3D simula-
tions. The MUltidimensional Stellar Implicit Code (MUSIC) is
a stellar hydrodynamics code that has been designed to work in
concert with 1D stellar evolution calculations. MUSIC has been
extensively tested for 2D stellar convection in spherical shells
of different radial extents and for different boundary conditions
(Pratt et al. 2016), benchmarked against other codes for funda-
mental hydrodynamic test problems (Goffrey et al. 2017), and
tested for accuracy for low Mach number flows (Viallet et al.
1 Higher radial resolution allows the stratification and temperature gra-
dients of the star to be reproduced in a way that is more accurate to the
1D stellar structure.

2016). The aim of the present work is to quantify differences
between 2D and 3D stellar convection, in order to extend our
recent studies (Pratt et al. 2016, 2017) to 3D. This work pro-
vides a detailed comparison based on robust statistics, helpful for
designing and interpreting future studies that use the MUSIC code
or other implicit large-eddy simulations of global stellar convec-
tion. A detailed comparison of dimensionality is also useful in
establishing the 321D link.

Two-dimensional turbulent flows are known to be funda-
mentally different from 3D turbulent flows, because an inverse
energy cascade operates in 2D turbulence (e.g., Kraichnan 1971;
Batchelor 1969). This inverse cascade means that small-scale
hydrodynamic motions can feed back on the largest scales of
the flow. As a consequence, studies of turbulent convection,
including “box-in-a-star” simulations of fingering convection
(e.g. Garaud & Brummell 2015), have found that substantial dif-
ferences can arise between simulations performed in 2D and 3D.
However, for simulations on the scale of a stellar convection
zone, both 2D and 3D simulations are typically dominated by
large-scale coherent structures like plumes and convection rolls
(e.g., see visualizations in Alvan et al. 2015; Pratt et al. 2017;
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Käpylä et al. 2020; Strugarek et al. 2016). The smaller scales
relevant to turbulence may be damped by a dissipation that is
significantly larger than is realistic in stars, modeled as in a large-
eddy simulation (LES), or simply not included in the simulation
because they are smaller than the grid scale as in an implicit
large-eddy simulation (ILES) (as discussed by Garnier et al.
2009; Grinstein et al. 2007). The differences that exist between
2D and 3D turbulent flows have an unknown impact on the
large-scale convection in this setting. To determine the impact
of dimensionality on large-scale stellar convection, the convec-
tive dynamics in 2D and 3D must be compared directly.

Direct comparisons of 2D and 3D convection have been
made for Rayleigh–Bénard convection (Schmalzl et al. 2004;
van der Poel et al. 2013; Goluskin & van der Poel 2016). Unlike
stellar convection, Rayleigh–Bénard convection is defined by
a convecting fluid constrained between two solid plates that
produce a temperature gradient, and is studied in a controlled
laboratory setting. Rayleigh–Bénard convection simulations
are performed as direct numerical simulations that solve the
Boussinesq convection equations; therefore, the small scales of
turbulence are expected to be sufficiently resolved, at least in so
far as they impact the large-scale properties of the convection,
including the thickness of the boundary layers at the solid plates.
Observed differences between 2D and 3D Rayleigh–Bénard
convection are dependent on Prandtl number (Schmalzl et al.
2004; van der Poel et al. 2013; Goluskin & van der Poel 2016).
The explanation for this dependence is that the Prandtl num-
ber affects the dominant shapes of plumes. When the Prandtl
number is high, the shape of plumes is closely comparable in
2D and 3D. Thus for Prandtl numbers greater than one, sim-
ulations in 2D and 3D produce similar Nusselt and Reynolds
numbers, and these numbers converge with increasing Prandtl
numbers. Two- and three-dimensional simulations also produce
similar thermal profiles with depth in this large Prandtl num-
ber regime. In contrast, in the low Prandtl number regime that
is expected in the stellar interior, 2D and 3D convection results
diverge. These studies have found that the Reynolds number is
larger for 2D simulations than for 3D simulations. Furthermore,
the Nusselt number is similar for 2D and 3D simulations, inde-
pendent of the Prandtl number, as long as the Rayleigh number
is sufficiently high (e.g., Ra ∼ 108 in van der Poel et al. 2013).
These intriguing results point to a need for better understanding
of the dimensional properties of stellar convection, a physically
more complicated and less controlled setting than in Rayleigh–
Bénard convection.

Direct comparisons of 2D and 3D convection have also been
made for atmospheric convection. Atmospheric convection mod-
els are solved using LES simulations that most commonly solve
the equations for anelastic convection, although Boussinesq,
or compressible equations have also been used. LES simula-
tions model the effect of small-scale turbulence using a sub-grid
scale model, and, in the case of atmospheric convection, com-
monly include microphysics relevant to clouds. Several studies
of dimensionality have been made for atmospheric convection
(Moeng et al. 1996, 2004; Phillips & Donner 2006; Petch et al.
2008). In those studies, higher vertical velocities in 3D simula-
tions have been reported than in 2D simulations. This ordering is
opposite to the commonly found results for stars (Muthsam et al.
1995; Meakin & Arnett 2007; Arnett & Meakin 2011). These
atmospheric convection studies also report a smaller depth of
entrainment and a lower level of mixing in 2D simulations. They
find that differences between 2D and 3D simulations are sen-
sitive to boundary conditions such as convection over land or
water. In addition, when a 2D LES is calibrated to data, includ-

ing tuning of the sub-grid scale method, results are encour-
agingly similar to 3D simulations of atmospheric convection
(Moeng et al. 1996, 2004)2.

Stellar convection differs from these two other convection
settings in key ways. For stellar convection, the simulation vol-
ume is spherical and the size of convective flow structures may
be independent of a simulation’s aspect ratio. The fluid is inter-
nally heated and radiates energy, and the convection interacts
with stratified density and temperature gradients that extend over
a significant portion of the stellar radius. This stratification indi-
cates that for most stars the fundamental parameters will cover
a range in the low Prandtl number, high Rayleigh number, high
Reynolds number, and high Nusselt number regimes; however,
these fundamental parameters vary significantly throughout the
stellar radius, and can vary differently for different types of stars.
The treatment of boundaries on a convecting layer in a star is
also considerably different from either Rayleigh–Bénard convec-
tion or atmospheric convection; a stellar convection zone is typ-
ically bordered by layers of convectively stable stellar material,
so that characterizing convective overshooting and penetration is
important to a full description of stellar convection. In addition,
the different physical models of Boussinesq convection, anelas-
tic convection, or fully compressible convection may produce
different results when comparing 2D and 3D simulations. Each
of these points mean that although previous studies may inform
our expectations, they cannot be used to directly predict the dif-
ferent properties of 2D and 3D compressible stellar convection.
It is useful to perform additional comparisons targeted toward
global simulations performed as ILES of compressible stellar
convection.

This work is structured as follows: in Sect. 2, we briefly sum-
marize the young Sun model that has been completely described
in Pratt et al. (2016), and discuss the numerical framework of
our simulations. In Sect. 3, we discuss statistical results related
to the flow field to allow us to compare 2D and 3D stellar
dynamics. This section expands on the common result that 2D
velocities are higher than 3D velocities (Muthsam et al. 1995;
Meakin & Arnett 2007; Arnett & Meakin 2011). In Sect. 4, we
present calculations of the penetration depth and a 1D diffu-
sion coefficient enhanced by convective mixing, as proposed by
Pratt et al. (2017). We compare this enhanced diffusion coef-
ficient for 2D and 3D simulations. In Sect. 5, we discuss the
implications of these results for multi-dimensional explorations
related to the 321D link, and for further studies of convective
penetration in stars.

2. Simulations

In this work, we use the numerical set-up for stellar convec-
tion described and examined in Pratt et al. (2016); we refer to
that earlier work for the full details of the star beyond the brief
summary here. We perform 2D and 3D ILES of a prototyp-
ical low-mass pre-main sequence star, called the young Sun,
using the MUSIC code. The young Sun we examine weighs one
solar mass and has homogeneous chemical composition, consis-
tent with models of the Sun at an early evolutionary state. The
radial profiles of density and temperature for the young Sun are

2 It is relevant to the stellar 321D-link for stellar evolution to observe
that the field of atmospheric modeling also pursues more accurate 1D
models of convection. In climate modeling these are called convec-
tion parameterizations or superparameterizations (Randall et al. 2003;
Tao et al. 2009; Majda & Grooms 2014; Piriou et al. 2007).
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Table 1. Parameters for compressible hydrodynamic simulations of the young Sun.

Dimensions Ri/R Ro/R ∆r/R φ (◦) ∆θ (◦) τconv(106 s) Time span (τconv)

wide3D 3D 0.21 1.00 28 × 10−4 140 0.55 0.70 ± 0.04 4.09
deep3D 3D 0.10 1.00 28 × 10−4 30 0.55 0.77 ± 0.03 4.05
short3Da 3D 0.31 0.67 28 × 10−4 140 0.55 4.47 ± 1.67 3.36
short3Db 3D 0.31 0.67 28 × 10−4 140 1.10 5.71 ± 1.71 8.30
wide2D 2D 0.21 1.00 28 × 10−4 0 0.55 0.79 ± 0.07 104
deep2D 2D 0.10 1.00 28 × 10−4 0 0.55 0.94 ± 0.13 284
short2Da 2D 0.31 0.67 28 × 10−4 0 0.55 2.20 ± 0.29 121
short2Db 2D 0.31 0.67 28 × 10−4 0 1.10 2.57 ± 0.32 174

Notes. The inner Ri and outer Ro radius of the spherical shell, and the radial grid spacing ∆r in the convection zone are given in units of the total
radius of the young Sun R. The angular extent of the simulation in the 3rd direction is φ, and the grid spacing in both angular directions is ∆θ. The
average global convective turnover time τconv is provided, and the total time span for each simulation is given in units of the convective turnover
time.

typical for a pre-main sequence star that is no longer accret-
ing and is gradually contracting. A central radiative zone exists
below the large convection zone; the young Sun is convectively
unstable over 1.2× 1011 cm of the total radius of 2.13× 1011 cm.
This large convective envelope allows us to study deep stel-
lar convection, far from the physically complicated near-surface
layers. Our simulations of the young Sun in this work only take
convection into account; the possibility of studying additional
physical effects such as rotation, a tachocline, chemical mixing,
and magnetic fields are omitted from the current study, which
focuses on expanding our convection results from 2D stellar con-
vection to 3D. We study the dynamics of convection in this real-
istic stratification for a star; a study of wave dynamics is beyond
the scope of this work.

The MUSIC code solves the inviscid compressible hydro-
dynamic equations for density ρ, momentum ρu, and internal
energy ρe:

∂

∂t
ρ = −∇ · (ρu), (1)

∂

∂t
ρu = −∇ · (ρuu) − ∇p + ρg, (2)

∂

∂t
ρe = −∇ · (ρeu) + p∇ · u + ∇ · (χ∇T ), (3)

using a finite volume method, a MUSCL method (Thornber et al.
2008) of interpolation, and a van Leer flux limiter (as described
in Van Leer 1974; Roe 1986; LeVeque et al. 2006). For 2D simu-
lations, the finite volume method assumes azimuthal symmetry.
Time integration in the MUSIC code is fully implicit, and uses
a Jacobian free Newton-Krylov (JFNK) solver (Knoll & Keyes
2004) with physics-based preconditioning (Viallet et al. 2016).
The MUSIC code uses an adaptive time step, which is constrained
identically for 2D and 3D simulations.
MUSIC simulations are designed to contribute to the 321D

link (Arnett 2014; Arnett & Meakin 2009); one aspect of this is
the use of an equation of state and realistic opacities that are
standardly used in 1D stellar evolution calculations. Opacities
are interpolated from the OPAL (Iglesias & Rogers 1996) and
Ferguson et al. (2005) tables, which cover a temperature range
suitable for the description of the entire structure of a low-mass
star like the young Sun. The compressible hydrodynamic equa-
tions (1)–(3) are closed by determining the gas pressure p(ρ, e)
and temperature T (ρ, e) from a tabulated equation of state for a
solar composition mixture. This equation of state accounts for
partial ionization of atomic species by solving the Saha equa-

tion, and neglects partial degeneracy of electrons; it is suitable
for the description of a solar model at a young age. The ini-
tial state for MUSIC simulations is produced using data extracted
from a 1D model calculated from the Lyon stellar evolution code
(Baraffe & El Eid 1991; Baraffe et al. 1997, 1998), which uses
the same opacities and equation of state as MUSIC. In Eq. (2), g
is the gravitational acceleration, a spherically symmetric vector
consistent with that used in the Lyon stellar evolution code, and
not evolved by our simulations.

2.1. Spherical-shell geometry and boundary conditions

The compressible hydrodynamic equations (1)–(3) are solved
in a spherical shell using spherical coordinates: radius r, and
angular variables θ and φ (in 3D). Our simulations of compress-
ible hydrodynamic convection are summarized in Table 1. In
this table, the inner and outer radius of the spherical shell for
each simulation is noted, and the radial and angular grid spac-
ings are specified. The 2D r – θ simulation volume and grid
is identical for each pair of simulations considered. This is an
important detail for an implicit large-eddy simulation; grid spac-
ing is directly related to the effective numerical viscosity, and
the fluid properties in the convection zones should be compa-
rable. Our simulations have sufficient radial resolution to pro-
duce a characteristic radial profile for velocity in 2D; this has
been compared with 2D simulations that use up to 2624 radial
grid points. Convergence toward a velocity profile is observed
as resolution is increased. The 3D simulation wide3D has a grid
of r × θ × φ = 320 × 256 × 256. This grid size is selected for
this study, so that in 3D a sufficiently long total simulation time
can be produced for the comparison of statistical quantities with
2D simulations. Each 3D simulation has been relaxed efficiently
into a 3D steady-state flow beginning from a realistic velocity
perturbation extracted from the accompanying 2D simulation.
All data presented here is produced during steady-state convec-
tion, a period where the time-averaged value of the total kinetic
energy is well defined and not changing in time.

To compare the statistics of convection, and particularly of
convective penetration in a large convection zone, to those in a
smaller convection zone with the same local stratification, we
produced two variations of simulations described in Table 1:
(1) the wide and deep simulations simulate the full convec-
tion zone of the young Sun, and (2) the short-a and short-b
simulations simulate a truncated convection zone. The simula-
tions in a truncated convection zone are conceptually similar
to early “box-in-a-star” studies of convective penetration that
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include a limited local region around the convective boundary
(e.g., Brummell et al. 2002, and references therein).

In Pratt et al. (2016), we studied the placement of bound-
aries and the choice of boundary conditions; these choices were
found to affect the physical outcome of our hydrodynamic sim-
ulation. To further understand these differences, in this work,
we performed simulations with two variations on sets of bound-
ary conditions that each maintain the original radial profiles of
density and temperature of the 1D stellar evolution model. For
the wide and deep simulations, which include the full stellar
radius, the surface radiates energy with the local surface temper-
ature. In this case, the energy flux varies as σT 4

s , where σ is the
Stefan-Boltzmann constant and Ts(θ, t) is the temperature along
the surface. This boundary condition can only be effectively used
when the near-surface layers are included in the simulation vol-
ume and the temperature gradient near the surface is sufficiently
resolved; otherwise it results in artificially high cooling rates. For
the short-a and short-b simulations, which do not include the
full stellar radius, we hold the energy flux and luminosity con-
stant on the outer radial boundary, at values established from the
1D stellar evolution calculation. For an examination of how these
boundary conditions affect the dynamics, we refer to Pratt et al.
(2016).

Aside from this surface boundary condition, the conditions
set at other boundaries are the same across all simulations. Each
simulation volume begins at 20◦ from the north pole, and ends
20◦ before the south pole. In the 3D simulations, the additional
angular extent in φ is given in Table 1. We impose periodicity on
all physical quantities at the boundaries in θ and φ. In velocity,
we impose non-penetrative and stress-free boundary conditions
in the radial directions. The energy flux and luminosity are held
constant at the inner radial boundary, at the value of the energy
flux at that radius in the 1D stellar evolution calculation. On the
inner radial boundary of the spherical shell, we impose a con-
stant radial derivative on the density. At the outer radial bound-
ary, we apply a hydrostatic equilibrium boundary condition on
the density that maintains hydrostatic equilibrium by assuming
constant internal energy and constant radial acceleration due to
gravity in the boundary cells (Grimm-Strele et al. 2015). These
boundary conditions allow us to closely match the stratification
of density at the boundaries of our simulation to the structure of
the young Sun (see Pratt et al. 2016).

2.2. Fundamental parameters

It was established in direct numerical simulations (DNS)
of Rayleigh–Bénard convection (Schmalzl et al. 2004;
van der Poel et al. 2013; Goluskin & van der Poel 2016) that
the value of the Prandtl number affects a comparison of 2D
and 3D dynamics. In DNS of convective overshooting in a box,
Brummell et al. (2002) found that the Peclet number plays a
significant role. To establish these dependencies, these DNS
studies perform a range of simulations for carefully controlled,
different values of the fundamental parameters. Unlike such
studies of DNS, the present work examines global ILES of a
single stellar structure. We do not seek to reproduce the results
of these earlier works using global simulations using the ILES
simulation framework; such a study would be an enormous
undertaking in the context of the realistic stellar structure models
that we are studying.

We also do not seek to compare directly with the results of
earlier DNS studies. Because the grid spacing is large in global
ILES simulations, the effective values of the Prandtl number and
Peclet number produced are inevitably more moderate than the

values possible for a DNS simulation of comparable computa-
tional size. In any ILES simulation framework, the values of the
viscosity and thermal diffusivity are not explicitly specified. In
spherical stellar simulations, they vary throughout the radius of
a star, dependent both on grid structure and properties of the
stellar model. An estimation of these parameters in our simu-
lations would be crude in comparison to a DNS. Moreover, in
the young Sun, the velocities and their length scales at a given
radius have a wide variation linked to the particular structure of
this star. The largest velocity convection rolls in the young Sun
can be associated with multiple characteristic length scales at a
given depth, contributing toward a more general ambiguity. This
observation is in agreement with the ideas of nonlocal convec-
tion in a large convection zone. Thus an interpretation of our
results with respect to the fundamental parameters of the flow is
not simple, and is not pursued further here. We note that these
properties likely do not hold for all stellar structures.

3. Results: average dynamics

The stratification of temperature and density in the young Sun
change on a thermal time scale that is much longer than any
of the simulations considered in this work. The radial profiles
of these quantities are initially identical in our 2D and 3D
simulations and do not deviate significantly from their initial
values during our simulations. Therefore, we compare quanti-
ties derived from the velocity dynamics, considered over sev-
eral convective turnover times during stationary steady-state
convection.

3.1. Comparison of velocities

Studies of stellar convection have previously found that 2D fluid
simulations result in higher velocities than 3D simulations, and
we confirm that result. Figure 1 shows time-averaged profiles of
the root mean square (RMS) of the radial velocity for the four
pairs of 2D and 3D simulations that we performed for this study.
The profiles of RMS radial velocities are averaged in the hor-
izontal directions for the “mean” aspect of the RMS, and then
averaged in time. The shaded areas indicate one standard devia-
tion above and below the time-averaged line to supply informa-
tion on the variation of these RMS velocities. In the deep and
wide simulations the variation in 2D and 3D radial velocities
is comparable, with slightly more variation in 2D. The varia-
tion in 3D radial velocities is significantly larger than in 2D for
the short-a and short-b simulations, which are performed in
a truncated convection zone with constant energy flux imposed
on the outer radial boundary. Thus, in the radial velocity field,
boundary conditions and the choice of spherical shell have a
demonstrable effect on the differences between 2D and 3D flow
variation.

The RMS radial velocities have similarly shaped profiles for
each pair of 2D and 3D simulations, characterized by larger
values in the middle of the convection zone. The short-b simu-
lations have lower velocities than the short-a simulations, con-
sistent with expectations that the lower grid resolution in the
angular directions of the short-b simulations creates higher
numerical dissipation. A comparison between the wide sim-
ulations and the short-a simulations shows that the short
simulations have slightly less than half of the RMS radial veloc-
ity. Truncating the simulation volume in the upper convection
zone and fixing the energy flux at that boundary results in lower
RMS velocities than in simulations that reach to the surface.
For the young Sun, a range of tests (Pratt et al. 2016) show that
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Fig. 1. Root mean square radial velocity (a) in simulations wide2D and wide3D, (b) in simulations deep2D and deep3D, (c) in simulations
short2Da and short3Da, (d) in simulations short2Db and short3Db. Shaded areas indicate one standard deviation above and below the time-
averaged line. The heavy vertical line indicates the bottom of the convection zone determined by the Schwarzschild criterion.

both the truncation of the convection zone, the removal of outer
layers that have a different stratification, and the use of a different
boundary condition, contribute to this difference. This supports
the view that both full-star simulations and realistic boundary
conditions are important steps toward achieving more realistic
stellar flows.

The velocities at the convective boundary are of particu-
lar interest for models of convective penetration. In the narrow
region above and directly surrounding the convective bound-
ary, between approximately 0.3 ≤ r/R ≤ 0.45, the RMS radial
velocities are nearly identical between each pair of 2D and 3D
simulations, and they have a similar shaped drop toward the
radiative zone. The velocities immediately above the radiative
zone are less for the short simulations than the wide or deep
simulations. Full-star simulations and realistic boundary condi-
tions are therefore particularly important to achieving realistic
simulations of convective plumes overshooting in the deep stel-
lar interior.

The RMS of the velocities in the θ direction, and the RMS
of the full velocity vector both follow a similar trend where 2D
velocities are larger than 3D velocities. The RMS of the veloc-
ity vector averaged over the convection zone is 30% larger in
2D for the wide simulations, 18% larger in 2D for the deep
simulations, 84% larger in 2D for the short-a simulations, and
109% larger in 2D for the short-b simulations. Thus truncating
the convection zone and using a fixed energy flux, as is done in
the short-a/short-b simulations, exaggerates the differences
between 2D and 3D simulations in the young Sun. We also find
that the velocity ratio of average vr,RMS/vθ,RMS is lower in each
of our 2D simulations than in 3D simulations. In a broad sense,
the ratio of radial-to-angular velocity implies that the flow has a
different geometrical structure.

We can compare the results in Fig. 1 with Fig. 6 and Fig. 12
of Meakin & Arnett (2007). That work compares velocities from
2D and 3D simulations of a star with convectively stable oxygen
shell burning, and a star with a convecting core. The grid size
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Fig. 2. Typical snapshot of radial velocity in simula-
tion wide2D (left), and in a 2D cut of simulation wide3D
(right). Color scales are identical. Red indicates an out-
flow, while gray indicates an inflow.

for their simulations is 400 × 100 × 100, which is similar to our
simulations, although the resolution of the flows in these phys-
ically different stars is difficult to compare.3 In their 2D simu-
lations, the peak velocities are approximately two to five times
larger than in their 3D simulations, a result close to our short-a
and short-b results. This reinforces the idea that differences
between 2D and 3D convection depend on boundary conditions,
resolution4, the size and structure of the convection zone, and
possibly also the presence and structure of neighboring stable
layers. These differences thus need to be studied for different
global stellar models; such a study is underway to analyze the
effect of nearby stable layers on convection in the current Sun as
an additional point of comparison (Vlaykov, in prep.).

Flow visualizations provide additional information about the
structure of the velocity field. A typical snapshot of the radial
velocities in simulations wide2D and wide3D, with identical
color scales, is shown in Fig. 2. Both 2D and 3D simulations
have similar size small-scale convective structures in the near-
surface layers of the simulation. This layer of small-scale near-
surface convection also has a similar radial width in 2D and 3D.
Beneath the near-surface layers, larger scale radial flows develop
in both simulations. The size of these large-scale convective
flows is comparable in 2D and 3D. In the 3D simulation, these
large-scale radial velocity structures exhibit more “roughness”,

3 The convective velocities produced in the simulations of
Meakin & Arnett (2007) are larger than the velocities in the large
convection zone of our young Sun, possibly linked to a different
nonlinear stratification in temperature and density for these stars, and
a different interaction between the convection and stratification. This
points to the need for clear physical definitions of resolution in ILES so
that results can be compared.
4 The resolution may be linked to variation of fundamental parameters
of the flow; those dependencies have been examined in studies of DNS,
and are not explored directly in this work.

or small-scale irregularities of the flow. The radiative zones of
these 2D and 3D simulations look indistinguishable.

3.2. Comparison of vorticity

To further probe the different structuring in 2D and 3D flows,
we examine the vorticity. A visualization of a typical snapshot
of vorticity magnitude in simulations wide2D and wide3D, with
identical color scales, is shown in Fig. 3. The vorticity of the
smaller scale convective flows in the near-surface layers, near the
outer radius of the simulations, appears to be similar in 2D and
3D. In the middle and lower layers of the convection zone, the
2D simulation has much larger, smoother, more coherent struc-
tures in vorticity than the 3D simulation. The salient features
of these visualizations are consistent with those produced in the
recent work of Zingale et al. (2015).

In addition, we examine time-averaged radial profiles of the
local enstrophy, obtained from averaging the squared vorticity in
the angular directions. In Fig. 4, the local enstrophy is compared
for our four pairs of simulations. The local enstrophy is clearly
larger in the lower and middle convection zones of our 3D sim-
ulations than in our 2D simulations. This different structuring of
the flow may lead to larger local shear and have consequences
for mixing properties at the lower boundary of the convection
zone. In the near-surface layers of the wide and deep simula-
tions, the local enstrophy of the 2D and 3D simulations is simi-
lar. The near-surface layers are not present in the short-a and
short-b simulations. Nevertheless, in these truncated simula-
tions, the local enstrophy shows a much larger variation in 3D
than in 2D.

4. Results: statistics of convective penetration

We recently proposed a new model for determining the width of
the penetration layer, based on a statistical analysis of the depth
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Fig. 3. Typical snapshot of vorticity magnitude in sim-
ulation wide2D (left), and in a 2D cut of simulation
wide3D (right). Color scales are identical. Lighter color
indicates higher vorticity magnitude.

reached by all convective plumes that penetrate below the large
convection zone in 2D simulations of the young Sun (Pratt et al.
2017). Our model rests on the observation that the statistics
of penetration lengths, calculated for each angular grid cell at
each time step in our simulation data, produce a strongly non-
Gaussian probability distribution, in which the tails of the distri-
bution are of primary physical importance (see Fig. 5). Because
the statistics are non-Gaussian, the use of an average quantity
removes critical information about the intermittency of convec-
tive penetration; such averaging in both angle and time has been
frequently used in early works on this topic. Examples of the
structure of the penetration layer are illustrated in Fig. 6. More-
over, in Pratt et al. (2017) we found that when different theoret-
ical measures (vertical kinetic energy flux or vertical heat flux)
are used to calculate the point where descending plumes cease,
the full probability distributions of penetration depth are sim-
ilar in form, but the averages can be different. In that work,
we proposed that instead of an average, the maximum depth of
plume penetration calculated at a single time should be used
to define the width of the penetration layer. Through numeri-
cal simulations, we verify that this definition of the penetration
layer allows us to accurately pinpoint the depth where penetrat-
ing plumes excite waves. The maximum depth of penetration
suggests the application of extreme value theory (Castillo et al.
2005; Charras-Garrido & Lezaud 2013; Gomes & Guillou 2015)
to determine a form for the diffusion coefficient, enhanced by
large-scale convective mixing, to model penetration. The form
of this enhanced diffusion coefficient is:

D(r) = D0PeB
1/2

(
1 − exp

(
− exp

(
−

(rB − r)/R − µ
λ

)))
. (4)

Here, PeB is a characteristic Péclet number for the bot-
tom of the convection zone, rB is the radial position of
the convective boundary, and the constants λ and µ are the

scale parameter and location parameter of the generalized
extreme value distribution (GEVD), which best fits the pen-
etration depth statistics. Our enhanced diffusion coefficient
was analyzed and applied for stellar evolution calculations
(Baraffe et al. 2017; Jørgensen & Weiss 2018; Dietrich & Wicht
2018; Augustson & Mathis 2018). We refer the reader to
Pratt et al. (2017) for a complete examination of these statistics
and discussion of the development of this model. The data that
inspired this enhanced diffusion coefficient were from 2D simu-
lations of the young Sun performed at a range of radial resolu-
tions, and which covered the longer periods of time necessary to
produce well-resolved probability density functions to analyze
intermittent events. Here, we examine the statistics of convec-
tive penetration for 3D simulations, and compare the results to
the identically set up 2D simulations studied in this work.

Figure 7 shows the cumulative distribution functions of max-
imal penetration length for our four pairs of simulations (points),
along with the best fit of this data (lines). The cumulative distri-
bution function F is equal to the probability P of obtaining a
value less than or equal to the argument, stated mathematically:
F(x = A) = P(x ≤ A); all of the information of the probabil-
ity density function is contained in the cumulative distribution
function. The cumulative distribution function thus describes
the accumulative effect of the most vigorous plumes reaching a
given depth and characterizes the process of enhanced mixing in
this region. To precisely determine the fit to the GEVD for each
of our simulations, we use the package evd (Stephenson 2002;
Penalva et al. 2013) publicly available for R (The R Project for
Statistical Computing5). The parameters determined by this fit
are summarized in Table 2. In Fig. 7, the natural log of the neg-
ative natural log of F is shown; for the simplest kind of GEVD,

5 The R Project for Statistical Computing: https://cran.
r-project.org/
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Fig. 4. Average radial profile of local enstrophy (a) in simulations wide2D and wide3D, (b) in simulations deep2D and deep3D, (c) in simulations
short2Da and short3Da, (d) in simulations short2Db and short3Db. Shaded areas indicate one standard deviation above and below the time-
averaged line. The heavy vertical line indicates the bottom of the convection zone determined by the Schwarzschild criterion.
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Fig. 5. Probability density functions of penetration depth ro determined
by the first zero of the vertical kinetic energy flux, for the simulation
pairs wide and deep. The heavy vertical line indicates the bottom of
the convection zone determined by the Schwarzschild criterion.

the Gumbel distribution, this would produce a linear relationship
with the maximal penetration length.

Based on the arguments in Pratt et al. (2017), the location
parameter µ of the GEVD can be used as an approximation
to a simple overshooting length, so that `ov = µ. The loca-
tion parameter µ is larger for each 3D simulation than for each
2D simulation, although that difference varies between simula-
tion pairs. It is difficult to interpret these differences in a broad
sense. For example, the location parameter for the wide2D simu-
lation is much smaller than the wide3D simulation; however, the
shape parameters for these simulations indicate that their distri-
butions also have different curvatures as measured by the shape
parameter, so that close comparison of the parameters is difficult.
Because the 3D fit is based on a much shorter period of time
than the 2D fit (∼4τconv rather than >100τconv), it is not clear
whether these kinds of differences between 2D and 3D results
are statistically significant. For each pair of simulations, the data
fill a short range of values of the maximal penetration length
∆rmax/R, and these ranges largely overlap. The fitting shows that
each simulation is fit best with a negative shape parameter, cor-
responding to a Weibel distribution in extreme value theory. In
Pratt et al. (2017), we noted that the Weibel distribution of the
data appears to converge toward a Gumbel distribution at high
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Fig. 6. Angular structure of the penetra-
tion layer at an arbitrary time in simulation
(a) deep2D and (b) deep3D. The penetration
depth in this illustration is determined by the
first zero of the vertical kinetic energy flux.
The boundary between the convection zone
and the stable radiative zone, calculated from
the Schwarzschild criterion, is indicated by a
solid black line. The vertical axis is in units
of the pressure scale height hp at this bound-
ary. A dashed black line indicates the aver-
age penetration depth at this time. For the 3D
simulation, this 2D representation is of a typ-
ical selection in φ.

radial resolution. The highest resolution simulations that are fea-
sible in 2D are however not feasible in 3D.

The result that 3D simulations produce a penetration length
that is as large as 2D simulations is significant. Early stellar sim-
ulation efforts (e.g. Muthsam et al. 1995) have reported that 2D
simulations have a larger penetration depth than 3D, while in
atmospheric convection 2D penetration (in this context termed
convective entrainment) has been found to be smaller than in
3D (e.g., Petch et al. 2008). Although radial velocities vr in 2D
are generally larger than in 3D throughout most of the convec-
tion zone, we find that immediately surrounding the convective
boundary they have similar average magnitudes. This presents
us with an ambiguity in using the standard analytical model
(as discussed by, e.g., Schmitt et al. 1984; Zahn 1991, 2002;
Brummell et al. 2002; Brandenburg 2016; Käpylä et al. 2017) to
predict an ordering of the penetration depth. This standard model
relates the extent of penetration to the exit velocity of the plumes
from the convective region and their filling factor f , defined as
the fraction of horizontal area occupied by plumes at the edge
of the unstable zone. The formula is `ov ∼ f 1/2v3/2

r,B , where vr,B

is the radial velocity at the convective boundary6. Indeed, the
filling factor has been found to be a more significant predic-
tor for penetration depth than the exit velocity (Brummell et al.
2002). The filling factor is a quantity that is naturally depen-
dent on the geometry of plumes, and expected to be different
in 2D and 3D. Different shapes of convective structures have
been observed in 2D and 3D for plumes in low-to-moderate
Prandtl number Rayleigh–Bénard convection (van der Poel et al.
2013). Another possibility is that interaction between upflows
and downflows could be different between 2D and 3D simula-

6 Total heat flux and thermal diffusivity also play a role in this analyti-
cal model (see Zahn 1991, for details).

tions (e.g., Rogers et al. 2006; Rempel 2004). The small-scale
features and higher vorticity found in our 3D simulations, evi-
dent in Figs. 2 and 3, support both of these ideas. A closer look
at the different flow structures in our visualizations (see Fig. 8)
shows strong visual similarities between the size of large-scale
structures in radial velocity and velocity magnitudes, and strong
differences between the vorticities; these differences are difficult
to quantify. Several works have suggested that the filling factor
and plume geometry should be smaller in 3D than in 2D (e.g.,
see the discussion in Rogers et al. 2006), but no conclusive study
of the filling factor and plume shape using the same simulation
framework has been performed. A full quantitative analysis of
plume shape, filling factor, and interaction, which is beyond the
scope of the present study, would be necessary to develop our
result on convective penetration further.

5. Summary and implications

This work focuses on extending the results of Pratt et al. (2016,
2017) to 3D. We find that 2D convective velocities are on aver-
age larger than 3D velocities, and this ordering holds for both
angular and radial velocity components. The greater amplitudes
in velocity produced by 2D simulations are not a clear disad-
vantage for studies of stellar convection. Atmospheric convec-
tion simulations must reach the correct parameter regimes to
predict weather in the atmosphere. Rayleigh–Bénard convec-
tion simulations are directly comparable with the results of lab-
oratory experiments. In contrast to these settings, global sim-
ulations of stellar convection currently do not reach Prandtl
numbers, Peclet numbers, Rayleigh numbers, and Reynolds
numbers accurate to the interior of stars. Two-dimensional
implicit large-eddy simulations explore somewhat less dissipa-
tive flows than those produced by 3D simulations. At the same
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Fig. 7. Cumulative distribution function F of maximal penetration length, ∆rmax defined from the vertical kinetic energy flux (a) in simulations
wide2D and wide3D, (b) in simulations deep2D and deep3D (c) in simulations short2Da and short3Da, (d) in simulations short3Db and
short3Db. Triangular points indicate simulation data, while lines show the best for of the GEVD.

time, 2D simulations can be produced at higher radial resolu-
tion than 3D simulations, and cover a longer period of time
than 3D simulations. Thus, 2D modeling provides a signifi-
cant advantage for areas of stellar physics that require higher
resolution in a narrow layer of the star, and are dependent
on intermittent processes; convective overshooting and convec-
tive penetration are topics that benefit from the study of 2D
simulations.

In their comprehensive review, Kupka & Muthsam (2017)
note that “2D LES cannot replace 3D LES, if the turbulent nature
of the flow and the detailed geometrical structure of the flow are
important or if high quantitative accuracy is needed.” In contrast
to a typical LES method where the effect of the small scales is
modeled, in the ILES method turbulence and fingering convec-
tion are not modeled, and are not adequately resolved for either
2D or 3D simulations. ILES are routinely used for global simula-
tions of stellar convection, with the fundamental assumption that
the small scales relevant to turbulence do not play an important
role; ILES are examined in this work. Large-scale convective
flows clearly dominate the dynamics of our ILES simulations.
This is demonstrated by the radial velocities visualized in Fig. 2,
where the size of the large-scale convective flow structures is
similar between our 2D and 3D simulations. This indicates that

Table 2. Parameters for the generalized extreme value distribution of
maximal convective penetration length ∆rmax calculated from the verti-
cal kinetic energy flux.

Location parameter µ Scale parameter λ Shape parameter κ

wide3D 0.12 0.042 −0.17
wide2D 0.011 0.035 −0.0002
deep3D 0.24 0.059 −0.62
deep2D 0.21 0.10 −0.56
short3Da 0.097 0.021 −0.74
short2Da 0.011 0.0042 −0.18
short3Db 0.021 0.0026 −0.15
short2Db 0.012 0.0042 −0.18

Notes. Parameters µ and λ are given in nondimensional units using R,
the stellar radius, so that the values can be used directly for the diffusion
coefficient in Eq. (4). The shape parameter κ is nondimensional in the
GEVD.

the differences between the small-scale dynamics resolved in our
2D and 3D global simulations of the young Sun have little effect
on the large-scale convective flows. Thus, the first of these con-
ditions – concern about accurately modeling turbulence – cannot
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Fig. 8. Typical snapshots zoomed in on
the same small area of simulation deep2D
(left), and in a 2D cut of simulation
deep3D (right). Horizontal distance spans
approximately 80 × 109 cm, while verti-
cal distance spans approximately 60 ×
109 cm. Color scales are identical. Top:
radial velocity. Middle: velocity magni-
tude. Bottom: vorticity magnitude.
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be addressed using global simulations of stars studied using an
ILES method, regardless of dimensionality. Our results support
the idea that the second concern of Kupka & Muthsam (2017),
regarding the detailed geometrical structure, may have serious
implications for convective penetration in stars studied with an
ILES method.

The ratio of averaged vr,RMS/vθ,RMS is generally lower in 2D
simulations than in 3D simulations, indicating that in a broad
sense, a different geometry is present in the flow on average. In
comparing average radial profiles of velocity and its radial vari-
ations, we find that near the lower convective boundary of the
young Sun, 2D and 3D simulations produce similar radial veloc-
ity amplitudes. This may contribute to the penetration depths that
we calculate, which are as large in 3D as in 2D. One might pre-
dict differences in penetration depth, related to a different shape
of convective plumes in 3D. Different shapes are suggested by
our visualizations of vorticity, and supported by the generally
higher local enstrophy found in our 3D simulations. This agrees
with the study of van der Poel et al. (2013) that found the shape
and structuring of Rayleigh–Bénard convection to be different in
2D and 3D simulations at a low Prandtl number.

The difference in geometrical structure may indeed present
a disadvantage for 2D ILES of global stellar convection. How-
ever, we also find that the effect of using different resolutions,
different boundary conditions, or different simulation volumes
(related to the extent of the convection zone) has an effect on the
velocity and vorticity amplitudes that can be as large or larger
than the difference between 2D and 3D results for this type of
simulation. Thus, simple differences in simulation set-up result
in a different amount of convective penetration: the deep sim-
ulations and the short-b simulations have penetration depths
that differ by an order of magnitude (see the horizontal axes of
panels b and d in Fig. 7), although the stratification around the
bottom of the convection zone in these simulations is identical.
The sensitivity of convection to the details of the set-up is not
surprising, considering the care that is routinely taken for direct
numerical simulations of Rayleigh–Bénard convection, a much
more controlled environment. This point should be a source of
caution for global simulations of stellar convection, since the res-
olution, aspect ratio, and boundary conditions on the convection
zone may create larger or smaller differences between 2D and
3D simulations. Direct testing of boundary conditions and res-
olution is likely to be necessary for each numerical model and
each physical model of a star to establish the magnitude of dif-
ferences between 2D and 3D simulations.
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