
HAL Id: insu-03711475
https://insu.hal.science/insu-03711475v1

Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Channels for streaming instability in dusty discs
Etienne Jaupart, Guillaume Laibe

To cite this version:
Etienne Jaupart, Guillaume Laibe. Channels for streaming instability in dusty discs. Monthly Notices
of the Royal Astronomical Society, 2020, 492, pp.4591-4598. �10.1093/mnras/staa057�. �insu-03711475�

https://insu.hal.science/insu-03711475v1
https://hal.archives-ouvertes.fr


MNRAS 492, 4591–4598 (2020) doi:10.1093/mnras/staa057
Advance Access publication 2020 January 9

Channels for streaming instability in dusty discs

Etienne Jaupart‹ and Guillaume Laibe
Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France

Accepted 2020 January 7. Received 2020 January 6; in original form 2019 November 5

ABSTRACT
Streaming instability is a privileged channel to bridge the gap between collisional growth
of dust grains and planetesimal formation triggered by gravity. This instability is thought to
develop through its secular mode, which is long-time growing and may not develop easily in
real discs. We address this point by revisiting its perturbation analysis. A third-order expansion
with respect to the Stokes number reveals important features overlooked so far. The secular
mode can be stable. Epicycles can be unstable, more resistant to viscosity, and are identified
by Green’s function analysis as promising channels for planetesimals formation.

Key words: instabilities – planets and satellites: formation – protoplanetary discs.

1 IN T RO D U C T I O N

Spatially resolved observations have revealed the presence of
substructures in discs around young stars (e.g. van der Marel et al.
2013; ALMA Partnership 2015; Benisty et al. 2015; Andrews et al.
2018; Avenhaus et al. 2018). Whether these structures are created
by planets or not is still a matter of ardent discussions. Recent
direct imaging of massive planets inside the disc around PDS
70 (Keppler et al. 2018; Christiaens et al. 2019; Keppler et al.
2019), or analysis of gas kinematics (Pinte et al. 2018; Teague
et al. 2018; Pinte et al. 2019) suggest that at least some of these
structures are indeed created by young planets. This raises the
question of forming these objects in less than a typical million
years. This leaves a critically short time for the solid material
arising from the dusty interstellar medium to grow over ∼30 orders
of magnitude in mass (Chiang & Youdin 2010; Testi et al. 2014).
Hit and stick collisions form millimetre pebbles relatively easily,
but becomes inefficient to overcome the metre-size barrier (e.g.
Blum & Wurm 2008). It has therefore been proposed that dust
particles should concentrate through hydrodynamical processes in
dust-rich clouds, up to the stage where gravity takes over and forms
planetesimals. Proceeding to this concentration is best explained by
the so-called streaming instability, which has been discovered by
Youdin & Goodman (2005) following an idea of Goodman & Pindor
(2000). In thin cold discs, dust and gas exchange angular momentum
through drag and drift radially with respect to each other. However,
interactions between these two streams can destabilize the flows for
small perturbations. Gas is then expelled in the vertical direction,
leading to a local enrichment in dust (Youdin & Goodman 2005;
Youdin & Johansen 2007; Jacquet, Balbus & Latter 2011). This
behaviour is generic to a more general class of instability called
resonant drag instabilities (e.g. Hopkins & Squire 2018; Squire &
Hopkins 2018; Zhuravlev V. V. 2019). Numerical simulations have
shown that when reaching the non-linear stage, streaming instability
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gives rise to very high local solid concentration (e.g. Johansen et al.
2007; Johansen & Youdin 2007; Balsara et al. 2009; Johansen,
Youdin & Mac Low 2009; Bai & Stone 2010a,b,c; Tilley et al.
2010; Johansen, Youdin & Lithwick 2012; Kowalik et al. 2013;
Lyra & Kuchner 2013) and as such is one of the corner stones of
planet formation (e.g. Dra̧żkowska & Dullemond 2014; Yang &
Johansen 2014; Simon et al. 2016; Carrera et al. 2017; Schäfer,
Yang & Johansen 2017; Schoonenberg & Ormel 2017).

So far, the instability has been mostly thought to develop through
its secular mode. However, this mode has been found to grow slowly,
raising concerns regarding the ability of the instability to occur in
real discs. In particular, streaming instability is not thought to resist
viscous damping even in moderately viscous discs (α � 10−5 −
10−4, Youdin & Goodman 2005), except maybe in local pressure
maxima (Auffinger & Laibe 2018). Streaming instability may also
be quenched when the dust distribution is not monodisperse (Krapp
et al. 2019). Hence, the necessity of looking for possible alternative
channels. One possibility is the so-called settling instability that
may develop faster (Squire & Hopkins 2018). Another possibility
has actually been suggested in the original article of Youdin &
Goodman (2005). They note that epicycles can become unstable
but did not quantify the conditions under which this occurs. Since
alternative unstable modes have not attracted much interest so far,
we investigate the possible existence of complementary channels
to concentrate dust. Such a mode should have a growth rate that
competes with the secular mode, resists viscous damping, and
be favourably excited in real discs. To identify it, we revisit the
perturbation analysis by obtaining an excellent approximation of
the dispersion relation that factorizes the epicycles and the secular
mode. This study is hence organized as follows: the linear set of
equations governing the evolution of a small local perturbation
inside the dusty disc is presented in Section 2. The analytic study
of the unstable modes is performed and stability conditions are
derived in Section 3. In Section 4, we discuss the resilience against
viscous damping and characterize the development of the streaming
instability in real discs by the mean of Green’s function analysis.
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2 EQUAT I O N S O F M OT I O N

2.1 Mass and momentum conservation

We consider a non-magnetic non-self-graviting vertically isother-
mal inviscid and unstratified disc orbiting a point-like central star.
Dust grains are modelled by compact homogeneous spheres. Dust
is treated as a continuous pressureless and inviscid phase (Saffman
1962). We neglect grain growth and fragmentation. Dust and gas
exchange momentum via a drag term, whose characteristic time is
called the stopping time tstop. Mass and momentum conservation for
gas and dust are given in the usual cylindrical coordinates by

∂ρg

∂t
+ ∇ · (ρgV g

) = 0, (1)

∂ρp

∂t
+ ∇ · (ρpV p

) = 0, (2)

∂V g

∂t
+ (

V g · ∇)
V g = −�2

Kr − 1

ρg
∇P + ρp

ρg

V p − V g

tstop
, (3)

∂V p

∂t
+ (

V p · ∇)
V p = −�2

Kr − V p − V g

tstop
, (4)

where ρg and ρp denote the gas and the dust densities, V g and V p

denote the gas and dust velocities, �K is the orbital frequency at a
given distance r, and P is the pressure of the gas. The notations
of Youdin & Goodman (2005) are adopted for sake of clarity.
This system of equations can be either closed with an equation
of state or an incompressibility condition for the gas (Boussinesq
approximation).

We follow Youdin & Goodman (2005) and Jacquet et al. (2011)
by adopting a single fluid description of the dust/gas for performing
the linear stability analysis. We introduce the total density ρ =
ρg + ρp and the centre-of-mass velocity ρV = ρgV g + ρpV p.
The differential dynamics of the mixture is then unambiguously
described in terms of the drift velocity �V = V p − V g and the
mass fractions fp, g = ρp, g/ρ (e.g. Laibe & Price 2014; Lebreuilly,
Commerçon & Laibe 2019). Similarly to Youdin & Goodman
(2005), we close the system of equations with an incompressibility
condition for practical tractability. Finally, we write the equations
of motion in the frame rotating at frequency �K,0 ≡ �K(r0) where
r0 is an arbitrary radius of interest. Under these assumptions,
equations (1)–(4) reduce to

∂ρ

∂t
+ ∇ · (ρV ) = 0, (5)

∇ · (V − fp�V
) = 0, (6)

dV
dt

= −2�K,0 × V + (
�2

K,0 − �2
K

)
r

− ∇P

ρ
+ F

(
ρ, fp, �V

)
, (7)

d�V
dt

= − �V
fgtstop

+ ∇ P
fgρ

− (�V · ∇) V + G
(
fp,�V

)
, (8)

where

d

dt
= ∂

∂t
+ (V · ∇) , (9)

F
(
ρ, fp, �V

) = − 1

ρ
∇ · (fp

(
1 − fp

)
ρ�V ⊗ �V

)
, (10)

G
(
fp, �V

) = fp (�V · ∇)
(
fp�V

)
− fg (�V · ∇)

(
fg�V

)
. (11)

The incompressibility condition (6) reduces to dρ = dρp, relating
directly the dust overconcentration sought for to a local increase of
the total density. This implies that gas cannot accumulate locally.

2.2 Local perturbations in a shearing box

2.2.1 Steady state solutions

We use a Cartesian shearing-box approximation (x̂, ŷ, ẑ) (Goldre-
ich & Lynden-Bell 1965) and limit the study to local perturbations.
Under this approximation, gas pressure can be decomposed into a
background component, which consists of a small constant pressure
force ge and an additional perturbation. Denoting H the pressure
scale height of the gas, we have

ge ≡ − 1

ρ

∂P

∂r

∣∣∣∣
r0

∼
(

H

r0

)2

�2
K,0 r0 > 0, (12)

since the disc is warmer and denser close to the star. The steady-
state solution of equations (5)–(8) has been found by Nakagawa,
Sekiya & Hayashi (1986)

V 0 =
(

−3

2
�K,0x − ge

2�K,0

)
ŷ, (13)

�V 0 = − getstop

1 + S2
t

x̂ + fgge�K,0t
2
stop

2
(
1 + S2

t

) ŷ. (14)

To ease the forthcoming derivations, we adopt a definition of the
Stokes number St ≡ fg�Ktstop that slightly differs from the usual
notation by a factor fg. Equations (13)–(14) express that the motion
is overall sub-Keplerian and that grains drift inwards towards high
pressure regions, pushing gas outwards by angular momentum
conservation. The drift velocity is the largest for Stokes numbers of
order unity.

2.2.2 Dimensionless quantities

The natural time-scale of the problem is the orbital time-scale
τ0 ≡ �−1

K,0. The physical length λe of the steady state described
in Section 2.2.1 is therefore λe ≡ ge/�2

K,0 ∼ (H/r0) H � H . λe

gives the order of magnitude of the relative distance over which
dust grains with St ∼ 1 and gas drift relatively to each other in a
time τ 0. Hence, we introduce the dimensionless time τ , positions
(χ , ζ ), and velocity U defined by

t ≡ τ0τ, (15)

(x, z) ≡ λe(χ, ζ ) , (16)

V ≡ λe

τ0
U, (17)

such as

U0 = −
(

3

2
χ + 1

2

)
ŷ, (18)

�U0 = −
(

St

fg

(
1 + S2

t

) x̂ − S2
t

2fg

(
1 + S2

t

) ŷ

)
. (19)

MNRAS 492, 4591–4598 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/4591/5698814 by IN
IST-C

N
R

S IN
EE IN

SB user on 07 July 2023



Streaming instability: unstable epicycles 4593

2.2.3 Linear stability analysis

We perform a linear perturbation analysis of equations (18) and
(19), assuming a perturbation of the form

U = U0 + u(τ, χ, ζ ), (20)

�U = �U0 + �u(τ, χ, ζ ), (21)

ρ

ρ0
= 1 + δ(τ, χ, ζ ), (22)

P − P0

ρ0geλe
= −χ + h(τ, χ, ζ ), (23)

where P0 denotes the pressure of the gas at the centre of the box.
Following Youdin & Goodman (2005) and Jacquet et al. (2011), the
perturbation f is decomposed under axisymmetric Fourier modes of
the form

f (τ, χ, ζ ) = f̃ ei(κxχ+κzζ−ωτ ). (24)

κx should satisfy |κx| � (H/r0)2 to ensure consistency with the
shearing-box approximation, and κz should satisfy |κz| � (H/r0),
to neglect the stratification of the disc. In practice, these conditions
are not restrictive. The resulting set of equation in dimensionless
form is

−iωδ̃ + iκ · ũ = 0, (25)

κ · ũ − fpκ · �ũ + κx

St

1 + S2
t
δ̃ = 0, (26)

−iωũ − 2ũy x̂ + 1

2
ũx ŷ + δ̃ x̂ + iκ h̃ + F̃′ = 0, (27)

−iω�ũ − 2�ũy x̂ + 1

2
�ũx ŷ − i

κ

fg
h̃

+ �ũ + δ̃�U0

St
− iκx

St

fg

(
1 + S2

t

) ũ + G̃′ = 0, (28)

where

F̃′ = ifg

{(
fpκ · �ũ − κx

St

1 + S2
t
δ̃

)
�U0 − fpκxSt

fg

(
1 + S2

t

)�ũ

}
,

(29)

G̃′ = −iκx

St

fg

(
1 + S2

t

) {(
2fp − 1

)
�ũ − fg�U0δ̃

}
. (30)

Equations (25)–(30) define a linear system of eight equations
on the eight physical quantities δ̃, ũ, h̃, and �ũ expressed
in the above-defined dimensionless quantities (Youdin & Good-
man 2005). A lengthy dispersion relation is obtained by set-
ting to zero the polynomial determinant P8 of the system (see
Appendix A).

3 UNSTA BLE MODES

3.1 Reduced system: linear expansion in St

Since the expression of P8 is cumbersome, Youdin & Goodman
(2005) and Jacquet et al. (2011) study alternatively a simplified
set of equations by expanding equations (25)–(30) to the first
order with respect to the Stokes number. The key idea brought
by Youdin & Goodman (2005) and Jacquet et al. (2011) is to use
the so-called terminal velocity approximation. Values at steady

state are used for the differential velocity between gas and dust
for both the mean flow and the perturbation, assuming St � 1 and
performing the related Taylor expansion of the system. The resulting
system is

−iωδ̃ + iκ · ũ = 0, (31)

iκ · ũ − iκxSt

(
fp

fg
− 1

)
δ̃ + fpκ

2 St

fg
h̃ = 0, (32)

−iωũ − 2ũy x̂ + 1

2
ũx ŷ + δ̃ x̂ + iκ h̃ = 0, (33)

�ũ = iSt
h̃κ

fg
+ St

fg
δ̃ x̂. (34)

One obtains the dispersion relation PJac(ω) = 0, with

PJac(ω) ≡ Stεω
4 + iω3 + St (iκx − ε) ω2 − i cos2 θ ω

+ iκx cos2 θ (ε − 1) St, (35)

where cos θ ≡ κz/‖κ‖ and ε ≡ fp/fg. Roots of equation (35) contains
the secular mode ωs of the streaming instability

ωs = κx

(
fp − fg

)
fg

St + o(St), (36)

where the leftover o(St) of the right-hand side of equation (36)
contributes at this order to the imaginary part as


 (ωs) = 
 (o (St)) =
(

κ2
x

f 2
g

(fp − fg)2

cos2 θ
ε

)
S3

t = O
(
S3

t

)
. (37)

Hence, Youdin & Goodman (2005) and Jacquet et al. (2011)
infer a secular mode that is always unstable. The growth of
the secular mode is interpreted by the mean of this reduced
systems, by an interplay between drift towards pressure maxima,
geostrophic balance, and gas incompressibility. Youdin & Goodman
(2005) also mention that epicycles are unstable as well when
κz � κx.

Similarly to Debras et al. (2020) – Appendix B – we apply
the argument theorem on the polynomial Pjac to be more quan-
titative. We find that when |κx | < Stκ

2
z ε, Pjac has two unstable

roots, one corresponding to an approximated secular mode and
the second one being a modified epicycle. This result on the
reduced system is exact (we verified it numerically). However,
this criterion is incorrect for describing the complete system of
perturbed equations. Actually, numerical calculation of the roots
of P8 shows that under the criterion derived above and for ε

< 1, only the epicycle is unstable. Indeed, the reduced model
is of order St and provides residuals of order S3

t . This strongly
suggests that an expansion of order S3

t is required to extract
quantitatively the physics of the unstable modes of the streaming
instability.

3.2 Reduced system: third-order expansion in St

3.2.1 Dispersion relation

We perform an expansion of the system equations (25)–(30) to the
order S3

t and obtain an approximated dispersion relation P (3)
8 . The

detailed expression of P (3)
8 is lengthy and is given in Appendix B.

The key idea is to rearrange the terms via the Euclidian division
that enforces a functional form that factorizes the epicycles and the
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4594 E. Jaupart and G. Laibe

secular mode

P (3)
8 (ω)

κ2
≡ (

ω − {
cos θ + α1St + α2S

2
t + α3S

3
t

})
× (

ω − {− cos θ + α1St − α2S
2
t + α3S

3
t

})
×
(

i
S3

t

fg
ω4 − 2 + fg

fg
S2

t ω
3 + β2ω

2 + β1ω + β0

)

+ S4
t R(3)(ω). (38)

The residual R(3) is a polynomial of degree 5 such that S4
t R(3)(ω) is

of order S4
t when ω � 1, and has therefore negligible contribution

per construction. The coefficients α1, 2, 3 and β0, 1, 2 are given in
Appendix C. The conditions of validity for the aforesaid expansion
are cos2 θ � S2

t , κ2
x St � 1 and κzSt � 1.

We note that performing the same technique while restraining the
expansion to the first order in St gives an approximate dispersion
relation under the form

i
P (1)

8 (ω)

κ2 ≡ (1 − 3iωSt) PJac(ω) + S2
t R(1)(ω) = 0, (39)

with

R(1)(ω) ≡ 3
{

iεω5 − (iε + κx) ω3 + cos2 θ (1 − ε) ω
}

. (40)

Equation (39) demonstrates that the expansion of Section 3.1 is
actually a first-order expansion in St, although it was not mentioned
explicitly in previous studies. Equation (39) shows that for a set
of parameters that maximizes the growth rate, ωs is of order St

and the model presented in Section 3.1 is accurate. This is actually
the choice of parameters chosen by Youdin & Goodman (2005),
certainly adopted to highlight the efficiency of the instability. This
choice of parameter may explain why stability of the secular mode
has been overlooked so far. When ωs is not of order St, equation (39)
shows that a linear expansion fails to describe quantitatively the
evolution of the perturbations.

3.2.2 Secular mode

Equation (38) provides directly the expression ωs of the frequency
of the secular mode at third order with respect to St as

ωs = κx

(
fp − fg

)
fg

St + ω(3)
s S3

t + O
(
S4

t

)
, (41)

with


(ω(3)
s ) = κ2

x

f 2
g

(
(fp − fg)2

cos2 θ
ε + 3fp

(
fp − fg

))
. (42)

The imaginary part of ω(3)
s is now consistently expressed up to the

order S3
t . This correction differs from the one obtained by a linear

expansion equation (37) by its last term. The extra contribution
originates from the terms (�U · ∇) u that corresponds to the
differential advection of the perturbations by the gas and the dust. In
a linear approximation, the contribution of the backreaction to the
mean flow is negligible at order St (Nakagawa et al. 1986). However,
this correction becomes important at order S3

t . Equation (42) shows
effects of backreaction on to the drift are significant in the regime
where the streaming instability develops and must be accounted for.
When κx � κz, equation (42) reduces to the analysis of Youdin &
Goodman (2005) and Jacquet et al. (2011).

Equation (42) shows that this correction is critical to understand
the development of the secular mode of the streaming instability.

Figure 1. Imaginary part of the secular mode of the streaming instability
calculated numerically from the full set of hydrodynamical equations P8

for dust fractions of fp = 0.01, 0.1, 0.3, 0.4 (from light to dark blue lines,
respectively). The secular mode of the streaming instability is always stable
when fp < fg and |κx | ≤ √

2|κz|. Dots indicate the corresponding values

predicted by the third-order expansionP (3)
8 . The agreement is almost perfect.

Here, the Stokes number is fixed to St = 0.01 and κz = 1.

Indeed, the secular mode can be stable when the conditions

fp < fg and (43)

|κx | ≤
√

2|κz| (44)

are satisfied. If not, the secular mode becomes unstable when

|κx | > |κz|
√

2fg + fp

fg − fp
≥

√
2|κz|, (45)

with equality when fp = 0. If fp > fg, the secular mode is always
unstable as evidenced by Youdin & Goodman (2005).

Fig. 1 illustrates this property by showing the imaginary part
of ωs obtained from a direct numerical resolution of the roots of
the full dispersion relation P8. The roots obtained by the third-
order expansion P (3)

8 are displayed as well, both of them showing
almost perfect agreement. We fix St = 0.01 to show that substantial
corrections to the linear model can be obtained even for small grains.
We then set κz = 1 and vary the dust fraction according from fp =
0.01 to fp = 0.4. When the criterion |κx | ≤ √

2|κz| is satisfied, the
imaginary part of ωs is always negative and the secular mode is
stable, as expected. For |κx | >

√
2|κz|, it becomes unstable when

the condition of equation (45) is satisfied. The related critical values
of |κx| increase with fp as predicted by equation (45).

3.2.3 Unstable epicycles

Equation (38) shows that epicycles can be unstable as well since


 (ωe) = ε

2
St

{|κx |ε
cos θ

St − κ2
x

(
1 + 3ε + (ε − 1)2

cos2 θ

)
S2

t − sin2 θ

×
(
1 + |κx |(ε + 2)

2 cos θ
St + (

ε(2ε + 3) sin2 θ − (ε + 1)2
)
S2

t

)}
.

(46)

The epicycle becomes therefore unstable under the necessary but
unrestrictive condition sin 2θ � 1. A reasonable approximation for
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Streaming instability: unstable epicycles 4595

Figure 2. Imaginary part of the unstable epicycle of the streaming insta-
bility calculated numerically from the full set of hydrodynamical equations
P8 for dust fractions of fp = 0.1, 0.3, 0.4 (from light to dark blue lines,
respectively) for varying Stokes numbers. The growth rates vary as S2

t ,
as expected. Dots indicate the corresponding values predicted by the third-
order expansionP (3)

8 and shows almost perfect agreement. The vertical solid
grey lines indicate the analytic stability criterion given by equation (47). We
choose κx = 0.9 and κz = 30 for the secular mode to be stable.

instability is derived by expanding equation (46) to the third order
in sin θ . One obtains

|κx |εSt ≥ sin2 θ + κ2
x

(
1 + (ε + 1)2

)
S2

t . (47)

To first order in Stokes, this criterion reduces to |κx | ≤ Stκ
2
z ε, as

found in Section 3.1. Equation (46) shows that the unstable epicycle
growth scales as S2

t . Fig. 2 shows the imaginary part of the unstable
epicycle obtained numerically from the complete dispersion relation
P8. The agreement with the analytic expansion is almost perfect. In
particular, the analytic stability criterion given by equation (47) is
well satisfied. Remarkably, the growth of the epicycle can occur in
a few 103 of orbital periods for fp � 0.2 and St � 0.01, a relevant
time-scale for planetesimal formation (see Fig. 3).

3.2.4 Epicycles versus secular mode

An indicator of the relative efficiency of the two unstable modes
can be obtained by the following procedure. For each mode and a
given value of fp and St, one maximizes the growth rate with respect
to κx and κz. The ratio of the values obtained for the two modes are
then compared, keeping in mind that maxima are not reached for the
same values of κx and κz a priori. For consistency with the shearing-
box approximation and the expansion of Section 3.2, κx and κz are
chosen in the range

[
0.1; S−1

t

]
. Fig. 3 shows that the growth rate

of the epicycle can be as large as the one of the secular mode,
for a wide range of dust fractions and Stokes numbers relevant for
planetesimal formation.

To interpret this result, one first finds approximations for the
values of κx and κz that maximizes the growth rate of the epicycle

|κz| � S−1
t , (48)

|κx | � ε

2
(
2 + (ε + 1)2

) |κz|, if fp < fg,

|κx | � ε

2
(
1 + (ε + 1)2

) |κz|, if fp ≥ fg. (49)

Figure 3. The maximum growth rate of the unstable epicycle, varying κx

and κz within the range
[

0.1; S−1
t

]
. Typical growth times of ∼103 orbital

periods are obtained for fp � 0.2 and St � 0.01. Dashed black contours:
ratio between the maximum growth rates of the epicycle versus the secular
mode. These do not correspond to the same κx and κz a priori. The epicycle
mode can grow as fast as the secular mode.

The above dependency in S−1
t for κx was originally commented

by Youdin & Goodman (2005) – their short-wavelength limit – but
without mathematical justification. Similarly, for the secular mode,
one obtains κx ∼ S

−1/2
t as Youdin & Goodman (2005). In particular,

one can explain the ridge observed in Fig. 3 for the contour line
corresponding to 100, i.e. similar growth rate for the two modes.
On one hand, the secular mode becomes stable for fp = fg = 0.5.
On the other hand, the secular mode approaches the marginal limit
of equality in equation (45) for St � 3 10−2 and fp � 0.5. Indeed,
κx ∼ S

−1/2
t and κz is bounded by the value 0.1. Importantly, the

corrections of order 3 introduced in Section 3.2 are necessary to
interpret the appearance of this ridge. Finally, the phase velocity
of the fastest growing epicycle matches the radial drift velocity of
the background in the limit fp � 1 as found by Squire & Hopkins
(2018).

4 R ELEVANCE FOR PLANETESI MAL
F O R M AT I O N

4.1 Viscous damping

As a rule of thumb, one can estimate the resilience of the unstable
modes with respect to viscous damping by comparing the viscous
time-scale and the typical time over which the instability develops.
In dimensionless quantities, this condition yields 
(ω)τ ν � 1,
where

τν = 4π2

κ2

1

α

g2
e

�2
K,0c

2
s

∼ 4π2

κ2

1

α

(
H

r0

)
. (50)

Instability resists viscosity when 
(ω) � α κ2

4π2

(
r0
H

)
. For typical

discs with α = 5 × 10−4 and H/r0 = 0.1, one gets 
(ω) �
10−4κ2. For the secular mode, the validity of this condition has
been discussed in several studies (e.g. Youdin & Goodman 2005;
Auffinger & Laibe 2018). For α � 10−5 − 10−4, the growth of the
secular mode is damped.

More generally, the secular mode grows when κx � κz, implying
that the threshold for viscous damping is set by the value of
κx. Moreover, the growth rate of the secular mode varies as
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4596 E. Jaupart and G. Laibe

Figure 4. The maximum growth rate of the unstable epicycle normalized
to κ2. For a value α larger than 5 times the value indicated by the blue colour
bar, the instability is damped by viscous dissipation. As an example, above
the dashed black contour labelled 10−4, the epicycle is unstable and resists
the viscous damping associated with a value of α = 5 × 10−4. Hence,
epicycles can be more resilient against viscosity compared to the secular
mode. Here, the aspect ratio is H/r0 = 0.1.

∼ εκ2
x S3

t / cos2 θ (equation 42, see also Youdin & Goodman 2005;
Jacquet et al. 2011). Large growth rates could be achieved with large
values of κx. However, those modes are damped by viscosity. One
finds that no secular mode can develop for St � 0.01. For values of
St increasing from 0.01 to 0.1, only secular modes with reasonably
small values of κx can develop and the associated time-scales go
from ∼106 to ∼103 orbital periods. This regime becomes therefore
relevant for planetesimal formation for St � 0.1.

Fig. 4 shows similar analysis for the unstable epicycle in a disc
where α = 5 × 10−4 and H/r0 = 0.1. From Section 3.2, one knows
that epicycles become unstable for κz � κx. For this mode, the
threshold for viscous damping is thus set by the value of κz. On
the other hand, equation (46) shows that the growth rate of the
epicycle varies as ∼ ε2κxS

2
t . Reasonably small values of κz and

κx can therefore allow the instability to develop without being
damped. This happens for St � 0.1 and gives time-scales of ∼103

orbital periods, which compares with the ones obtained for the
secular mode. For both modes, much shorter growth time can be
achieved for larger Stokes numbers (see Fig. 3). For classical T-
Tauri star discs, streaming instability may therefore concentrate
efficiently (sub)millimetre-in-size grains, relieving the constrain
of the fragmentation barrier. As a final remark, Auffinger &
Laibe (2018) have shown that around a pressure bump, streaming
instability may favour epicycles with respect to the secular mode
(in this case, for large amplitudes of the bump) and resists viscous
damping. In this situation as well, epicycles cannot be neglected.

4.2 Green’s function analysis

In real discs, power spectrum is expected to peak at the orbital
frequency and to cascade down by turbulence to larger frequencies.
Hence, power is essentially injected at frequencies close to one of
the epicycles. To understand how a dusty disc responds to a local
perturbation, we study the evolution of a perturbation (equations 25–
30) to a monochromatic source, switched on at τ = 0, of the form

S8(τ, χ, ζ ) = �(τ )S̃8ei(κxχ+κzζ−ωfτ ). (51)

ωf denotes the real driving frequency of the source, �(τ ) the Heav-
iside step function, S8(τ, χ, ζ ) the vector expression of the source,
and S̃8 its Fourier decomposition. Both have eight components
corresponding to the eight perturbed quantities (δ, u, �u, h). With
these notations, the system of perturbed equations writes

(�7∂τ + M8(κx, κz)) P = S8(τ, χ, ζ ), (52)

where �7 = Diag(1, 1, 1, 1, 1, 1, 1, 0) and the matrix of perturba-
tions M8(κx, κz) are 8 × 8 matrices, and P = (δ, u, �u, h) is
a vector with eight components. Using a Laplace-transform and
applying the residue theorem (e.g. Morse & Feshbach 1953), one
obtains

P̃(τ ) = �(τ )

(
[−iωf�7 + M8(κx, κz)]

−1 S̃8e−iωfτ

+
6∑

n=1

adj {−iωn�7 + M8(κx, κz)} S̃8

−i∂ωP8(ωR,n + isn)

e(snτ−iωR,nτ)

i(ωf − ωR,n) + sn

)
,

(53)

where P(τ, χ, ζ ) = P̃(τ )ei(κxχ+κzζ ) is the response of the disc to
the excitation, S8(τ, χ, ζ ), ωn = ωR,n + isn is the nth zero of the
dispersion relation P8(ω) = 0, and adj denotes the matrix adjugate.
The form of equation (53) is generic. Similar responses have been
extensively studied in the literature (e.g. Huerre & Monkewitz 1990;
Lingwood 1997).

From equation (53), the perturbation can be decomposed in
two parts: an oscillatory part with frequency ωf (the first term
of the right-hand side of equation 53) and a superposition of the
six characteristic waves of the disc that may grow or be damped.
Would all waves be damped, the asymptotic response at large times
would reduce to the single usual oscillatory part of frequency ωf.
The interesting part for planetesimal formation is the transient
regime described by the second term of the right-hand side of
equation (53), which is dominated by growing modes. Streaming
instability requires care, since two unstable modes with similar
growth rates coexist (Section 4.1).

The source term S8 excites the waves with different amplitudes.
Equation (53) shows that these amplitudes result from cumulative
effects due to different factors. A first factor of spatial origin
is the decomposition of the source term on to the eigenvectors
of adj {−iωn�7 + M8(κx, κz)}. In real discs, source terms are
stochastic and should not favour any eigenmode in average. We
expect therefore a similar mean contribution of this factor for both
the epicycles and the secular mode. A second factor of temporal
origin is the product (i(ωf − ωR,n) + sn)∂ωP8(ωR,n + isn), which
combines the distance of the driving frequency to the frequency
of the unstable modes, and the ability of the disc to respond at
the waves frequencies. Importantly, power is preferentially injected
at frequencies ωf close to the epicyclic frequencies. We therefore
study the response to excitations such as ωf ∼ ωR,e ∼ 1.

We use the analytic expression for P (3)
8 derived in Section 3.2 to

estimate the relative values of the factors ∂ωP8(ωe,s) that weigh the
driven amplitudes ae and as of the epicycles and the secular modes,
respectively. The driving term S8 has been decomposed on to spatial
Fourier mode in equation (51) and the driving frequency ωf can be
associated with several values of κ , themselves associated with
various epicycles and secular modes. For both modes, we obtain
the relation ∂ωP8(ωe,s) ∼ κ2

(
cos2 θ + O (St)

)
. Hence, the scalings

∂ωP8(ωe) ∼ κ2 for unstable epicycles and ∂ωP8(ωs) ∼ κ2St for the
secular mode. Unstable epicycles should additionally satisfy se ∼

MNRAS 492, 4591–4598 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/4591/5698814 by IN
IST-C

N
R

S IN
EE IN

SB user on 07 July 2023



Streaming instability: unstable epicycles 4597

S2
t and sin θ � St (Section 3.2). One gets

i(ωf − ωR,e) + se � se ∼ S2
t . (54)

On the other hand, the secular mode satisfies

i(ωf − ωR,s) + ss � i ωf ∼ 1. (55)

Combining all these contributions gives a ratio

ae

as
∼ S−2

t

S−1
t

κ2
s

κ2
e

, (56)

for the relative amplitudes of the epicycles and the secular mode.
From Section 4.1, the values of κ2

s and κ2
e that ensure for the modes to

resist viscous damping and to develop time-scales relevant for plan-
etesimal formation are such that κ2

s /κ
2
e ∼ 1. Hence, equation (56)

reduces to
ae

as
∼ S−1

t � 1. (57)

We therefore expect that for pebbles with St � 1, streaming
instability develops in discs essentially through the channel of its
unstable epicycles. At later times, the secular mode will assist
the growth, but non-linear effects may already be not negligible
anymore.

5 C O N C L U S I O N

In this study, we revisit the linear growth of the streaming instability
in dusty discs. The dispersion relation that characterizes linear
perturbations is analysed by the mean of a self-consistent expansion
at third order with respect to the Stokes number. We provide an
approximate dispersion relation that factorizes the two epicycles and
the secular mode. Important terms that were neglected previously
are subsequently integrated. The analytic approximation agrees al-
most perfectly with numerical results on the full system. Moreover,
we use Green’s function analysis to investigate the response of a
disc to realistic excitations. From these derivations, we find that

(i) Contrary to what is often mentioned in the literature, the
secular mode can be stable. We derive an accurate analytic criterion
for its stability (equation 45).

(ii) Epicycles can also be unstable, whether the secular mode is
stable or not. We derive its growth rates and its associated stability
condition (equation 47).

(iii) Epicyclic modes can grow as fast as the secular modes.
They can however be more resilient against viscous damping and
be excited most efficiently in real discs (equation 57).

Streaming instability is known to be a privileged mechanism for
planetesimal formation, but from the findings of this study, it may
preferentially develop through the unexpected channel of unstable
epicycles.
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APPENDIX A : D ETERMINANT OF THE LINEAR SYSTEM P8
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t
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A P P E N D I X B: TH I R D - O R D E R PO LY N O M I A L
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APPENDIX C : C OEFFICIENTS OF THE EUCLI DI AN FAC TO RI ZATI ON
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