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ABSTRACT

We present an analysis of the spatial clustering of 695 Lyα-emitting galaxies (LAEs) in the MUSE-Wide survey. All objects have
spectroscopically confirmed redshifts in the range 3.3 < z < 6. We employed the K-estimator, an alternative clustering statistic,
adapted and optimized for our sample. We also explore the standard two-point correlation function approach, which is however
less suited for a pencil-beam survey such as ours. The results from both approaches are consistent. We parametrize the clustering
properties in two ways, (i) following the standard approach of modelling the clustering signal with a power law (PL), and (ii) adopting
a halo occupation distribution (HOD) model of the two-halo term. Using the K-estimator and applying HOD modelling, we infer a
large-scale bias of bHOD = 2.80+0.38

−0.38 at a median redshift of the number of galaxy pairs 〈zpair〉 ' 3.82, while the best-fit power-law
analysis gives bPL = 3.03+1.51

−0.52 (r0 = 3.60+3.10
−0.90 comoving h−1 Mpc and γ = 1.30+0.36

−0.45). The implied typical dark matter halo (DMH) mass
is log(MDMH/[h−1 M�]) = 11.34+0.23

−0.27 (adopting b = bHOD and assuming σ8 = 0.8). We study possible dependencies of the clustering
signal on object properties by bisecting the sample into disjoint subsets, considering Lyα luminosity, UV absolute magnitude, Lyα
equivalent width, and redshift as variables. We find no evidence for a strong dependence on the latter three variables but detect a
suggestive trend of more luminous Lyα emitters clustering more strongly (thus residing in more massive DMHs) than their lower Lyα
luminosity counterparts. We also compare our results to mock LAE catalogs based on a semi-analytic model of galaxy formation and
find a stronger clustering signal than in our observed sample, driven by spikes in the simulated z-distributions. By adopting a galaxy-
conserving model we estimate that the Lyα-bright galaxies in the MUSE-Wide survey will typically evolve into galaxies hosted by
halos of log(MDMH/[h−1 M�]) ≈ 13.5 at redshift zero, suggesting that we observe the ancestors of present-day galaxy groups.
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1. Introduction

The distribution of galaxies in the Universe forms a well defined
network known as the cosmic web. This structure was formed
when gravitational instabilities produced by primordial density
fluctuations grew until they reached a critical density. Their col-
lapse formed gravitationally bound dark matter halos (DMHs).
These halos grow hierarchically through accretion and mergers
with other halos. Their gravitational interaction with baryonic
matter caused gas to fall into the growing potential wells, making
the gas cool by radiation and collapse to form stars and galaxies.

The evolution of the baryonic matter distribution follows
the underlying dark matter (DM) but, especially in the early
stages of galaxy formation, the details of this relation and how
it evolved over time are still unclear. Galaxy clustering analy-
ses aim to constrain the masses of the typical DMHs by which

? On sabbatical leave from IA-UNAM-E at AIP.

these galaxies are hosted and are therefore a crucial element
towards understanding the formation and evolution of galaxies
(Coil 2012).

A common way to quantify galaxy clustering is through cor-
relation functions (e.g. Gawiser et al. 2007; Zehavi et al. 2011;
Ouchi et al. 2017), which express the probability of finding a
tuple (usually a pair) of galaxies at a certain separation (e.g.
Peebles 1980). The clustering strength (large-scale bias) and the
typical DMH masses can be inferred from measured correlation
functions in various ways. A widespread traditional approach
is to approximate the two-point correlation function (2pcf) as
a power law (Davis & Peebles 1983), while more recent meth-
ods such as halo occupation distribution (HOD) modelling (e.g.
Zheng & Weinberg 2007) distinguish between the different con-
tribution of the correlation function. In these models, pairs of
galaxies either belong to the same DMH or to different DMHs.

These procedures have often been applied to galaxy sur-
veys. At low redshifts, the major surveys cover large areas of the
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sky, in particular SDSS (e.g. Strauss et al. 2002; Ahumada et al.
2020) along with its successors, 2MASS (Skrutskie et al. 2006),
or the 2dF Galaxy Redshift survey (Colless et al. 2012). These
samples at similar luminosities revealed a modest evolution of
the clustering strength between z = 1 and z = 0 together with
significant clustering dependencies on various galaxy properties,
such as luminosity, color, morphology, galaxy type, etc. (e.g.
Norberg et al. 2002; Zehavi et al. 2002, 2011; Li et al. 2006).

At high redshifts (z > 2), galaxy samples are more limited,
however. Gathering a statistically relevant number of objects and
covering representative volumes of the sky is a difficult task.
Photometric selection techniques are often preferred because
spectroscopic observations of many faint objects are obser-
vationally too expensive. The two most common techniques
involve exploiting the drop in the continuum bluewards of 912 Å
(Steidel & Hamilton 1992) to search for Lyman-break galaxies
(LBGs) and the use of narrow-band (NB) filters to target, for
instance, the Lyα emission line of young, star-forming galaxies
(Lyα emitters, LAEs).

While each selection method provides us with its own some-
what biased view of the distribution of galaxies, LAEs are par-
ticularly interesting with regard to probing the lower range of
stellar masses (108−109 M�), highlighting a subset of galaxies of
copiously forming stars (star formation rates of 1−10 M� yr−1).
By combining the clustering analysis of LAEs with cosmologi-
cal simulations, we can connect LAEs to their descendants in the
local Universe.

Statistically substantial LAE samples (>102 objects) based
on narrow-band surveys were presented by Cowie & Hu (1998),
Rhoads et al. (2000), Ouchi et al. (2003, 2017), Gawiser et al.
(2007), Sobral et al. (2017) and others. Generally, the NB selec-
tion method only provides LAE candidates implying that sam-
ples are contaminated by interlopers, which can be a problem
for clustering studies. Obviously, since all objects selected by
a given NB filter are assumed to be at the same redshift,
their clustering can only be explored through the analysis of
transverse angular correlations (Ouchi et al. 2003, 2010, 2017;
Gawiser et al. 2007; Khostovan et al. 2019). In order to study
the full three-dimensional (3D) spatial clustering behaviour of
galaxies and its evolution over cosmic time, large-scale spec-
troscopic surveys of high-redshift galaxies with individually
measured redshifts are required (Le Fèvre et al. 2005, 2015;
Lilly et al. 2007; Newman et al. 2013; Guzzo et al. 2014). It has
been found that the clustering strength of high-redshift galaxies
is significantly higher at similar luminosities than at intermediate
and low redshifts (Durkalec et al. 2014), possibly also depend-
ing on luminosity and stellar mass (e.g. Ouchi et al. 2003, 2017;
Durkalec et al. 2018).

Ideally, it would be optimal to perform spectroscopy of all
existing objects over a large area of the sky, with a wide redshift
coverage. While such surveys are still beyond our current means,
panoramic integral field units (IFUs) are currently opening up an
avenue for exploring this approach, at least over modest areas.
In particular, the Multi Unit Spectroscopic Explorer (MUSE,
Bacon et al. 2010) on the ESO-VLT has already produced sig-
nificant samples of high-redshift galaxies with unprecedented
source densities of several tens or even hundreds of objects per
arcmin2 (Inami et al. 2017; Urrutia et al. 2019). In this paper
we explore the potential of using ≈700 LAEs selected from the
MUSE-Wide survey (Herenz et al. 2017; Urrutia et al. 2019) for
clustering studies. Our sample differs from previous studies of
LAE clustering based on narrow-band imaging, but also from
generic spectroscopic surveys requiring the preselection of tar-
gets from broad-band photometry.

In a pilot study, Diener et al. (2017) used 238 LAEs from
the first 24 MUSE-Wide fields to demonstrate that MUSE-
selected LAEs do indeed reveal a significant clustering signal,
even though the uncertainties were still large. Here, we extend
this work with a larger (threefold) sample and a refined set of
analysis methods and tools. The paper is structured as follows.
First, we briefly describe the data used for this work and charac-
terize the sample. In Sect. 3, we explain our methods for measur-
ing and analysing the clustering properties of our LAE sample.
In Sect. 4, we present the results of our measurements, includ-
ing a study of clustering dependencies with different galaxy
parameters. In Sect. 5, we discuss our results and compare our
findings to predictions from a semi-analytic galaxy formation
model. In Sect. 6, we present our conclusions. The appendix
of the paper is mainly dedicated to a discussion of the LAE
clustering results, using the traditional two-point correlation
function.

Throughout the paper, all distances are measured in comov-
ing coordinates and given in units of h−1 Mpc, where h =
H0/100 = 0.70 km s−1 Mpc−1. We use a ΛCDM cosmology and
adopt ΩM = 0.3, ΩΛ = 0.7, σ8 = 0.8 and H0 = 70 km s−1 Mpc−1

(Hinshaw et al. 2013). All uncertainties represent a 1σ (68.3%)
confidence interval unless otherwise stated.

2. Data

2.1. The MUSE-Wide Survey

MUSE-Wide is an untargeted 3D spectroscopic survey
(Herenz et al. 2017; Urrutia et al. 2019) executed by the MUSE
consortium as one of the Guaranteed Time Observations (GTO)
programs. The survey covers parts of the CANDELS/GOODS-
S and CANDELS/COSMOS fields and also includes eight
MUSE pointings in the so-called HUDF09 parallel fields (see
Urrutia et al. 2019 for details). The spectroscopic data provided
by MUSE complement the rich multiwavelength data available
in these fields, from which physical properties such as star for-
mation rates or stellar masses can be derived. The full survey
comprises 100 MUSE fields of 1 arcmin2 each (although there
is some overlap between adjacent fields), with a depth of 1 h
exposure time, each split into 4 × 900 s with 90 deg rotation
between the exposures. Most fields were observed in dark time,
with a seeing better than 1.0′′. The spectra cover the range of
4750−9350 Å, implying a Lyα redshift range of 2.9 . z . 6.7.

The data reduction process we used is detailed in
Urrutia et al. (2019). Emission line sources were detected and
their line fluxes were measured with the Line Source Detec-
tion and Cataloguing (LSDCat, Herenz & Wisotzki 2017) soft-
ware. LSDCat cross-correlates a reduced and flux-calibrated
data cube with a 3D source template to find emission line sources
above a given significance threshold. The resulting emission line
flux limit of the survey is typically around ∼10−17 erg s−1 cm−2

for LAEs, but with considerable spread between fields and
also depending on the spatial extent of the Lyα emission
(Herenz et al. 2019).

After the automatic detection of emission lines, a source
catalog for each field was produced through visual inspection
using the QtClassify tool (Kerutt 2017). After an initial redshift
guess of each object from LSDCat, refined redshifts of the LAEs
were measured by fitting an asymmetric Gaussian profile to the
Lyα emission line. Lyα fluxes were measured using the LSDCat
measure functionality, adopting a 3D aperture of three Kron-
like radii (Kron 1980); together with the redshifts, this also pro-
vides the Lyα luminosities.
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Fig. 1. Spatial distribution of 695 LAEs covering part of the
CANDELS/GOODS-S region and the HUDF parallel fields on the
left. The individual LAEs span a total of 68 fields from the MUSE-
Wide survey and are color-coded by their Lyα spectroscopic redshift,
3.3 < z < 6. The 5 h−1 Mpc bar for the mean redshift of the sample
z≈ 4.23 indicates the actual transverse extent of the footprint.

Since our sample is based on emission lines without prior
broadband selection, it includes galaxies with very faint continua
but high equivalent widths – which can sometimes go undetected
in deep Hubble Space Telescope (HST) data (Maseda et al.
2018). We identified the UV counterparts for our sample and
measure their continuum flux densities and absolute UV magni-
tudes in various HST bands, as described in detail by Kerutt et al.
(in prep.). Our Lyα equivalent widths are based on combining the
Lyα fluxes measured by LSDCat and continuum flux measure-
ments from the HST counterparts. In cases where no continuum
counterpart was detected, an upper limit to the continuum flux
density was used to calculate lower limits to the absolute magni-
tudes and equivalent widths.

2.2. LAE sample

In this paper, we focus on 68 fields of the MUSE-Wide sur-
vey located in the CANDELS/GOODS-S region, along with the
HUDF09 parallel fields. Some of these fields are not yet included
in the currently publicly available MUSE-Wide data; these will
be part of the planned final data release. We chose to not take into
account the nine central fields in the MUSE-Deep area because
of their different depth and selection function, in line with our
aim to approach (as much as possible) a homogeneous sample
and minimize systematic effects. Furthermore, we also discard
the 23 MUSE-Wide fields in the COSMOS region from this anal-
ysis because of their on average somewhat lower data quality. We
kept the eight MUSE-Wide pointings in the HUDF09 fields (see
Fig. 1) since they give additional power to constrain the clus-
tering signal at larger separations. In Appendix A, we demon-
strate that including the UDF09 parallels fields has no significant
impact on our clustering results despite a minor decrease in the
uncertainties.

While MUSE is formally capable of detecting LAES with
2.91 < z < 6.65, we limit the redshift range for this investi-
gation to 3.3 < z < 6, as the details of the selection function
at redshifts close to the limits are still a matter of investiga-
tion. Thus, we arrive at a final number of 695 LAEs, distributed
over 62.53 arcmin2 (accounting for small field-to-field overlaps),
implying an LAE density of slightly more than 11 objects per
arcmin2. The sample has a mean redshift of z≈ 4.23, the median

Fig. 2. KDE-filtered redshift distribution of the 695 LAEs of our sam-
ple, taken from 68 fields of the MUSE-Wide survey. The sample spans a
redshift range of 3.3 < z < 6. The kernel is chosen to be a Gaussian with
standard deviation σz = 0.005. The expected z-distribution of an unclus-
tered population following the Lyα luminosity function of Herenz et al.
(2019) and the selection function of the MUSE-Wide survey is over-
plotted in red.

redshift is 4.12. The transverse extent of the footprint at z is
∼20 h−1 Mpc.

The spatial distribution of our LAEs is shown in Fig. 1,
and the distribution over redshifts is presented in Fig. 2. For
the latter, we replaced the usual histogram counts-per-bin by a
quasi-continuous kernel density estimator (KDE) to better rep-
resent the underlying probability distribution and avoid binning
artefacts. Superimposed on the KDE-filtered z distribution, we
also show the distribution expected for an unclustered popula-
tion of objects following the Lyα luminosity function (LF) of
Herenz et al. (2019) and also factoring in the selection function
of the MUSE-Wide survey. The curve has been normalized to
the footprint size of our 68 fields.

While the formal average accuracy of our redshifts is ∆z '
0.0007 or ±41 km s−1 (limited by the accuracy of fitting the
line), it is well-known that Lyα peak redshifts are typically off-
set by up to several hundreds of km s−1 from systemic ones
(e.g. Hashimoto et al. 2015; Muzahid et al. 2020; Schmidt et al.
2021), which would introduce a systematic error in the redshift-
derived 3D positions of the LAEs along the line-of-sight (LOS)
of the order of ∼3 Mpc. We mitigate this systematic uncertainty
by applying a correction to the Lyα redshifts following the two
recipes described in Verhamme et al. (2018): When the Lyα line
presents two peaks with the red peak larger than the blue peak,
we apply Eq. (1) from Verhamme et al. (2018). When only a sin-
gle peak is visible, we employ the correction given by Eq. (2)
in Verhamme et al. (2018). We show in Appendix B that our
method of measuring the clustering properties is not sensitive
to the details of this correction.

The range of Lyα luminosities (LLyα) of our galaxies is
40.91< log(LLyα/[erg s−1])< 43.33, with a median Lyα luminos-
ity of 〈log(LLyα/[erg s−1])〉 = 42.36, the range of UV abso-
lute magnitudes is −22.4< MUV <−16.8, with a median of
〈MUV〉 = −18.4, and the range of rest frame equivalent widths is
10.2<EWLyα < 794.9 Å, with a median of 〈EWLyα〉 = 118.3 Å.

2.3. LAE subsets

In order to explore the dependence of the clustering amplitude on
physical properties of LAEs, we divide the original sample into
subsamples based on different available properties. In each case
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Table 1. Properties of the LAE samples.

LAE sample name Ngal 〈z〉 log〈LLyα/[erg s−1]〉 〈EWLyα〉/[Å] 〈MUV〉

Full sample 695 4.12 42.39 118.3 −18.4
Redshift< 4.12 348 3.63 42.31 109.9 −18.4
Redshift> 4.12 347 4.79 42.39 111.8 −18.4
logLLyα < 42.36 349 4.03 42.14 110.0 −17.9
logLLyα > 42.36 346 4.30 42.57 113.7 −19.0
EWLyα < 87.9 254 4.03 42.37 53.6 −19.5
EWLyα > 87.9 255 4.05 42.45 167.3 −18.3
MUV < −18.8 256 4.07 42.57 61.8 −19.6
MUV > −18.8 253 3.92 42.19 168.6 −17.6

Notes. Physical properties marked with 〈〉 represent median values for the galaxies (not pairs) in the sample.

we split the full sample at the median value of the LAE prop-
erty under question to have (nearly) the same number of objects
in each of the two subsets. The subsamples are summarized in
Table 1 and defined in greater detail in the following.

A first split in redshift around 〈z〉 = 4.12 leads to a low-z sub-
set of 348 LAEs with median redshift 〈zlow〉 = 3.56 and a high-z
subset of 347 LAEs with 〈zhigh〉 = 4.59, respectively. The median
Lyα luminosities and equivalent widths of the two redshift sub-
samples are nearly the same (differences of 0.08 dex and 2 Å,
respectively). There is no difference between the median MUV.

In order to explore possible clustering dependencies on Lyα
luminosity, we generate two subsamples divided by Lyα lumi-
nosities. We split the full sample at 〈log(LLyα/[erg s−1])〉 =
42.36. The low- and high-LLyα subsamples hold 349 and 346
LAEs, respectively. Their median redshifts are 〈zlow L〉 = 4.03
and 〈zhigh L〉 = 4.30. The median log(LLyα) of the subsamples
differs by 0.43 dex.

While at z ' 3 most of our LAEs have a photometric
HST counterpart, at z > 5 only around 50% of the objects are
detectable in the available HST images (Kerutt et al., in prep.).
Hence, for those objects we can only adopt MUV and EWLyα
lower limits, which would skew the EWLyα and MUV distribu-
tions for the higher redshift subset. Therefore we decided to
eliminate the LAEs without HST counterparts when splitting by
EWLyα or MUV. This reduces our sample size from 695 to 509
LAEs.

We then split the HST-detected sample by equivalent width
at 〈EWLyα〉 = 87.9 Å. The low- and high-EWLyα subsample con-
sists of 254 and 255 LAEs, respectively. The median redshifts
and luminosities of these samples are very similar (see Table 1).

Finally, we divided the HST-detected LAE sample by abso-
lute magnitude at 〈MUV〉 = −18.8, leading to low- and high-MUV
subsets (bright and faint, respectively) of 256 and 253 LAEs. The
〈MUV〉 values differ between these two subsamples by 1.59 dex,
while the 〈log(LLyα)〉 values differ by only 0.32 dex.

3. Methods

3.1. K-estimator

3.1.1. Basic principles

The specifics of MUSE as a survey instrument present a serious
challenge for the commonly used two-point correlation func-
tion (2pcf) to measure galaxy clustering. By design, MUSE
surveys span a wide redshift range but cover only small (spa-
tial) regions in the sky. The MUSE-Wide footprint has already
the largest transverse footprint of all MUSE surveys, but its

nature is still that of a pencil-beam survey. While transverse
scales in the MUSE-Wide survey span up to ∼20 h−1 Mpc, radial
scales exceed the 1000 h−1 Mpc. The limitations of the trans-
verse extent impede the application of the ‘jackknife’ technique
to compute realistic uncertainties (see Sect. 3.1.3), while meth-
ods such as bootstrapping fail in the 2pcf. Besides, given our
spatial ranges, exploiting the redshift coverage rather than the
spatial extent is strongly preferred. We thus explore possible
alternatives to the 2pcf. In Diener et al. (2017) we applied the
so-called K-estimator, introduced by Adelberger et al. (2005) to
analyse the clustering of Lyman Break Galaxies, in a subset of
our pencil-beam survey. Here, we build on our previous work
by extending it to a larger dataset, but also paying attention to
optimization aspects and comparing the method with the 2pcf.

The K-estimator focuses on radial clustering along the line
of sight (LOS) by counting pair separations in redshift space at
fixed transverse distances. In contrast to the 2pcf, no random
sample is needed because the K-estimator computes the ratio
between small and small+large scales. This quantity is directly
related to the underlying correlation function. We adopt the fol-
lowing notation: Considering two galaxies with indices i and j,
their transverse distance is Ri j (equivalent to rp in the 2pcf),
and their LOS redshift-space separation is Zi j (equivalent to π
in the 2pcf). We then count the number N of pairs within a given
Ri j bin, for two different ranges of Zi j, |a1| < Zi j < |a2| and
|a2| < Zi j < |a3|. The K-estimator is defined as the ratio of the
numbers of galaxy pairs Na1,a2 (Ri j) and Na2,a3 (Ri j) between these
two consecutive cylindrical shells, namely:

Ka1,a2
a2,a3

(Ri j) =
Na1,a2 (Ri j)

Na1,a2 (Ri j) + Na2,a3 (Ri j)
, (1)

as a function of transverse separation Ri j. We set a1 = 0 h−1 Mpc
so that the K-estimator quantifies the excess of galaxy pairs in
the range 0 < Zi j < a2 with respect to the larger LOS range of
0 < Zi j < a3. In other words, the K-estimator can be expressed
as K(Ri j) = N0,a2 (Ri j)/N0,a3 (Ri j). This concept is schematically
illustrated in Fig. 3. Here, (a2−0) and (a3−a2) are the lengths of
the two cylinders within which the numbers of pairs are counted.

The transverse distance Ri j between LAE pairs is taken in
bins of Ri j, corresponding to different cylindrical shells in Fig. 3.
These shells are defined by their radii Ri j and their lengths a2, a3
in the Z direction. For illustration purposes, we display Ri j in
Fig. 3 using a linear scaling (Ri j2 − Ri j1 = Ri j3 − Ri j2 etc.),
although in practice we adopt a logarithmic spacing of subse-
quent transverse separations. We note that in this figure each Ri j
and Zi j combination corresponds to a galaxy pair and not just a
single galaxy.
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Ka1,a2
a2,a3 is related to the 2pcf through the mean value of the

correlation function ξ (see Adelberger et al. 2005)

〈Ka1,a2
a2,a3

(Ri j)〉 ' (a2 − a1) ·
pairs∑
i> j

[1 + ξa1,a2 ]

×

(a2 − a1) ·
pairs∑
i> j

[1 + ξa1,a2 ]

+(a3 − a2) ·
pairs∑
i> j

[1 + ξa2,a3 ]


−1

, (2)

where ξa1,a2 is

ξa1,a2 =
1

a2 − a1

∫ a2

a1

dZi j · ξ(Ri j,Zi j), (3)

and corresponds to the mean correlation function that would be
theoretically measured in the blue region in Fig. 3. The same
is applied for ξa2,a3 in the red region of Fig. 3. The function
ξ(Ri j,Zi j) can be represented by a power law through the Lim-
ber Equation (Limber 1953) in spatial coordinates ξ(Ri j,Zi j) =(√

R2
i j + Z2

i j/r0

)−γ
or modelled with a halo occupation distribu-

tion model.
The understanding of this estimator is quite intuitive. If

galaxies were randomly distributed in space (ξ(r) = 0), the
expected number of galaxy pairs at each LOS separation would
be equal. Thus, from Eq. (2) and with a1 = 0, K0,a2

a2,a3 is simply
the ratio of volumes between the two cylindrical shell segments,
(a2 − 0)/(a2 − 0 + a3 − a2) = a2/a3. Hence if a3 = 2a2, the
expectation value for an unclustered galaxy population would be
K = 0.5; if for a specific sample the value of K is significantly
above 0.5, we have detected a clustering signal. We note, how-
ever, that while this criterion (applied by both Adelberger et al.
2005; Diener et al. 2017) seems natural, there is no a priori rea-
son to keep the restriction to a3 = 2a2. In fact, allowing for
a3/a2 > 2 provides the analysis with a more solid statistical
baseline against which the clustering signal can be evaluated
(addressed in Sect. 3.1.2).

Adelberger et al. (2005) applied Eq. (2) and the Limber
equation to estimate the correlation length, r0, while keeping the
power law slope γ of the correlation function fixed. They first
measured the K-estimator in a single Ri j bin Rcut < 5 h−1 Mpc
which captures the Ri j scale for which the clustering signal is
largest. They then applied Eqs. (2) and (3) to predict the expec-
tation values 〈K〉 for different assumed values of r0, selecting the
correlation length for which the predicted value of K was closest
to the measured value as their best estimate. The same procedure
was adopted by Diener et al. (2017) in their analysis of a MUSE-
Wide subset of LAEs. We refer to this approach in the following
as the ‘one-bin fit’ method.

In addition to this simple approach to estimate r0 at fixed
γ, we also implemented a more elaborate procedure to fit the
K-estimator with a power law correlation function with both γ
and r0 as free parameters. For this purpose, we integrate ξ(r) over
both Zi j ranges as in Eq. (3), for each Ri j bin and for each combi-
nation of a grid in (r0, γ). Plugging the values of these integrals
into Eq. (2) to calculate 〈K〉 for each Ri j bin, we obtain a global
χ2 value for each grid point by summing over the squared devi-
ations between predicted and observed values of K relative to
the statistical error bars (obtained by bootstrapping as explained

Fig. 3. Illustration of the K-estimator. We show three nested cylinders
representing three bins of transverse separations. The number of galaxy
pairs inside each blue cylindrical shell from a1 = 0 to ±a2 is N0,a2 ,
the number of pairs in each red cylindrical shell between a3 − a2 and
−a2 − (−a3) is Na2 ,a3 . The K-estimator for each shell is then the ratio of
pair counts between the inner (blue) segment to the total (blue plus red)
segment. For illustration purposes we depict linear Ri j bins, although in
practice we use a logarithmic binning scheme.

in Sect. 3.1.3). Our best-fit parameters are then finally taken as
the (r0, γ) grid point with the smallest χ2. For the estimation of
confidence intervals, we face the complication that the K val-
ues in subsequent Ri j bins are correlated because each galaxy
contributes to multiple pairs at various separations. We explain
in Sect. 3.1.3 how we obtained realistic uncertainties for the fit
parameters.

3.1.2. Optimizing the K-estimator

The parameters a2 and a3 in the definition of the K-estimator can
in principle be chosen freely. We now explore for which values
we obtain the best sensitivity for the clustering signal and the
highest signal-to-noise ratio (S/N). We compute the S/N from the
error bars of the correlation lengths. This procedure is similar to
finding the optimal πmax saturation value in the case of the 2pcf,
where πmax is increased until most of the correlated pairs are
included, while even larger values of πmax only add noise to the
measurement.

We performed a grid search with the full sample over the
different combinations of Ka1,a2

a2,a3 , but setting a1 = 0 throughout.
Here, we vary a2 within 5−25 h−1 Mpc in steps of 2 h−1 Mpc and
a3 within 5−50 h−1 Mpc in steps of 5 h−1 Mpc, with the addi-
tional restriction a3 ≥ a2. We adopt 15 logarithmic bins in the
range 0.6 < Ri j < 12.8 h−1 Mpc, discarding Ri j bins with fewer
than 16 galaxy pairs. We use the one-bin fit described above with
a fixed canonical γ value of γ = 1.8 (Adelberger et al. 2005;
Durkalec et al. 2014; Ouchi et al. 2017) to calculate the correla-
tion length, r0, and the S/N for each combination (a2, a3).

The results are shown in Fig. 4. The left panel reveals that the
S/N is highest for small a2 and large a3 values, while it decreases
towards a2 ≈ a3. Parameter combinations with a2 = a3/2 as
adopted in the two previous studies that used the K-estimator
(Adelberger et al. 2005; Diener et al. 2017) are represented by
the colored circles; it is evident that these combinations are far
from optimal with regard to bringing out the clustering signal
with maximal significance.

The right panel of Fig. 4 shows that in the upper left range
of the diagram where the S/N is highest, the best-fit value of
r0 is also insensitive to the specific parameter combination. On
the other hand, larger values of a2 and smaller values of a3
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Fig. 4. Results of our grid study to optimize the K-estimator. Left: S/N obtained for each evaluated combination of (a2, a3), displayed as a color
map. The green area indicates the ‘forbidden’ range where a3 < a2. The contours trace S/N increments of 2, slightly smoothed for display purposes.
Right: same parameters but for the correlation length r0, except that the contours again follow the values of the S/N. The blue-red colored circles
represent grid points with a3 = 2a2 for which the blue-red cylinders in Fig. 3 are equally long. The blue cross indicated our adopted parameter
combination for the clustering analysis, as it provides the highest S/N and reaches saturation at r0.

degrade the S/N. Comparable a2 and a3 values (tiny red and
large blue cylinders in Fig. 3) result in Na2,a3 (Ri j) << Na1,a2 (Ri j),
with Na2,a3 (Ri j) strongly varying with the exact value of a3. This
translates into large uncertainties when computing r0 from the
K-estimator (see Eq. (1)). These errors are however not reflected
in the right panel of Fig. 4 but are clearly visible in the low S/N
on its left panel. The largest r0 values therefore correspond to
the most uncertain values but agree well within their uncertain-
ties with the r0 value accepted by us. We adopt the combina-
tion a2 = 7 h−1 Mpc and a3 = 35 h−1 Mpc, marked with a blue
cross in both plots, for the rest of this paper as the grid point giv-
ing the highest S/N and a r0 within the saturation values. Thus,
in the following, we always refer to the specific estimator K0,7

7,35
which quantifies the ratio of the number of galaxy pairs with
LOS separations between −7 < Zi j/h−1 Mpc < 7 and between
−35 < Zi j/h−1 Mpc < 35 at given transverse distance Ri j. The
expectation value of this estimator for an unclustered population
is (a2 − a1)/(a3 − a1) = 0.2.

3.1.3. Error estimation

The individual data points from clustering statistics are corre-
lated. One galaxy can contribute to galaxy pairs in more than
one Ri j bin. In order to account for this correlation one would
use the jackknife resampling technique and compute a covari-
ance matrix (see e.g. Krumpe et al. 2010). However, that method
requires a division of the sky area into several independent
regions, each of which must be large enough to cover the full
range of scales under consideration. Due to the small sky area
of our survey, this approach is not feasible here. Poisson uncer-
tainties, even if commonly used, might underestimate the real
uncertainties. We therefore consider several alternatives to derive
meaningful uncertainties in Appendix C and choose the most
conservative approach.

Thus, we apply the bootstrapping technique detailed in
Ling et al. (1986) (and similar as in Durkalec et al. 2014) to
determine the statistical uncertainties of our data points. We cre-
ate pseudo-data samples by randomly drawing 695 LAEs from
our parent sample, allowing for repetitions. We generate 500
different pseudo-samples and compute the K-estimator in all of
them. The standard deviations of K in each Ri j bin are adopted

as error bars. We verify the robustness of our error approach in
Appendix C.

With the bootstrapped uncertainties and the uncorrelated χ2

statistics, the uncertainties of the clustering parameters can be
derived. However, we suspect that naively applying an uncorre-
lated χ2 analysis with the standard confidence threshold can also
lead to an underestimation of the clustering uncertainties. There-
fore, we test this hypothesis by investigating the behavior of the
error bars when the bin size is modified. While we would gen-
erally expect a decrease in the individual uncertainties when the
bin size is increased, here we expect an increase in the error bars
if the bin size is decreased.

We compute new bootstrapping error bars for five different
Ri j bin sizes (half size, double size, three times larger, four times
larger and five times larger than the current binning). The error
bar sizes do not vary significantly when the Ri j bin size is modi-
fied, contrary to the expectation of the standard χ2 method.

We therefore recalibrate the χ2 analysis to determine real-
istic 68.3% and 95.5% confidence levels in the following way:
with each of our bootstrapped samples delivering a best-fit min-
imal value of χ2

min,i corresponding to (r0,i, γi), we assume that
the posterior distribution of these χ2

min,i approximately describes
the true confidence regions. We compute the χ2

i values using the
corresponding (r0,i, γi) combinations and our real data. We sort
these χ2

i into ascending order and adopt the 68.3% and 95.5%
parameter ranges with respect to the sorted bootstrapped χ2

i val-
ues as marginalized single-parameter error bars. This posterior
distribution is also used to provide combined confidence regions
on both r0 and γ. Throughout the paper, we refer to this fitting
approach as a ‘PL-fit’.

3.2. Two-point correlation function

The 2pcf is undoubtedly the most frequently used statistic to
investigate galaxy clustering. Although we argued above that it is
less suited than the K-estimator for a pencil-beam survey such as
MUSE-Wide, we include a 2pcf analysis of our sample for com-
parison in Appendix D. We note that this is in fact the first time
that such an analysis has been performed on a 100% spectro-
scopically confirmed sample of LAEs. However, the challenge
of estimating realistic uncertainties in the case of the 2pcf is
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even more problematic (due to the survey design) than for the
K-estimator. We present in Appendix D an in depth presentation
and discussion of the 2pcf on our LAE sample. In summary, we
show that the results from the K-estimator and 2pcf agree within
their uncertainties.

3.3. Bias and typical Dark Matter Halo masses from
power-law fits

The clustering strength is characterized by the large-scale bias
factor b, which relates the distribution of galaxies to that of the
underlying dark matter density. The bias factor has often been
derived from the characteristic correlation length r0 and the PL
slope γ by fitting a PL to the clustering signal (e.g. Peebles
1980). Given b, we can also derive typical host DMH masses.
Within the concept of linear bias, the evolution of b with redshift
is given by the ratio of the density variance of galaxies σ8,gal(z)
over that of dark matter σ8,DM(z):

b(z) =
σ8,gal(z)
σ8,DM(z)

· (4)

For a power-law 2pcf the relation between ξ(r) and the den-
sity variance σ8,gal(z) (Peebles 1980; Miyaji et al. 2007) is given
by

ξ(r, z) =

(
r
r0

)−γ
σ8,gal(z)2 = ξ(r8, z) × J2, (5)

where ξ(r8, z) is the correlation function evaluated in spheres of
comoving radius r8 = 8 h−1 Mpc and J2 = 72/[(3− γ)(4− γ)(6−
γ)2γ]. Simultaneously, for the DM case:

σ8,DM(z) = σ8
D(z)
D(0)

(6)

with D(z) as the linear growth factor.
Inserting Eqs. (5) and (6) into Eq. (4) we obtain the bias fac-

tor as a function of the growth factor

b(z) =

[
r8

r0(z)

]−γ/2 J1/2
2

σ8D(z)/D(0)
· (7)

Following the bias evolution model described in Sheth et al.
(2001), we can compute the large-scale Eulerian bias factor bEul
and compare it to the bias given by Eq. (7) in order to estimate
DMH masses. To calculate bEul, we consider linear overdensities
in a sphere which collapses in an Einstein-de Sitter Universe at
δcr = 1.69. The linear root mean square fluctuations correspond
to the mass at the epoch of observation ν = δcr/σ8,DM(MDMH, z).
The theory behind the σ8,DM(MDMH, z) calculation is developed
in Van Den Bosch (2002).

3.4. Halo occupation distribution modelling

It is known that bias factors and DMH masses inferred from PL
fits suffer from systematic errors (e.g. Jenkins et al. 1998 and
references therein). A PL correlation function treats scales in
the linear and non-linear regime alike and does not differenti-
ate between pairs of objects belonging to the same DMH and
pairs residing in different halos. Even for fits performed only
in the linear regime, the correlation function still deviates from
the PL shape. A more appropriate treatment is achieved through

HOD modelling that explicitly combines the separate contribu-
tions from the one- and the two-halo terms.

The HOD model we use here is an improved version of the
model set presented by Miyaji et al. (2011), Krumpe et al. (2012,
2015, 2018). To maintain consistency with these studies, we use
the bias-halo mass relation from Tinker et al. (2005), the halo
mass function of Sheth et al. (2001), the dark matter halo profile
of Navarro et al. (1997), and the concentration parameter from
Zheng et al. (2007). We use the weakly redshift-dependent col-
lapse overdensity δcr (Navarro et al. 1997; Van Den Bosch et al.
2013). We further include the effects of halo-halo collisions
and scale-dependent bias by Tinker et al. (2005) as well as red-
shift space distortions using linear theory (Kaiser infall, Kaiser
1987; Van Den Bosch et al. 2013) to the two-halo term only (see
Appendix E).

The mean occupation function is a simplified version of the
five parameter model by Zheng et al. (2007), where we fix the
halo mass at which the satellite occupation becomes zero to
M0 = 0 and the smoothing scale of the central halo occupation
lower mass cutoff to σlog M = 0.

In this simplification, the mean occupation distribution of the
central galaxies can be expressed by

〈Nc(Mh)〉 =

{
1 (Mh ≥ Mmin)
0 (Mh < Mmin)

(8)

and that of the satellite galaxies 〈Ns(M)〉 as

〈Ns(Mh)〉 = 〈Nc(Mh)〉 ·
(

Mh

M1

)α
, (9)

where Mmin is the mass scale of the central galaxy mean occu-
pation, M1 is the mass scale of a DMH that hosts (on average)
one additional satellite galaxy, and α is the high-mass slope of
the satellite galaxy mean occupation function.

We apply the model to obtain the ξ(r) based on HOD mod-
elling and convert the calculated ξ(r) to the K-estimator using
Eq. (2). The minimum transverse separation of our observed
K-estimator is ∼0.6 h−1 Mpc, where the one-halo term contri-
bution to ξ(r) is typically a few to several percent. This is too
low for obtaining robust constraints on the one-halo term to
perform a full HOD modelling. We therefore restrict our anal-
ysis to an estimate of the bias parameter by fitting the expected
K-estimator based on only the two-halo term to the observations.
We hold α = 1 and log M1/Mmin = 1 fixed and vary only Mmin
to find the best-fit model and calculate the bias parameter. This
probes the typical DMH mass for the sum of central and satellite
galaxy halo occupations, N(Mh) = Nc(Mh) + Ns(Mh), without
being able to distinguish between these two.

The details of the HOD models (e.g. M1 and α) do not affect
the typical DMH mass estimations since we only fit the two-
halo term. Some HOD modelling applications in the literature
also use number density constraints (e.g. Eq. (18) of Miyaji et al.
2011). This is, however, only relevant if the one-halo term con-
tributes significantly, which is not the case here. Thus, we do
not need to employ any number density constraints. The HOD
model is evaluated at the median redshift of N(z)2 where N(z) is
the redshift distribution of the sampled galaxies. For our dataset,
zpair = 3.82.

As above for the PL-fit parameters (Sect. 3.1.3), we esti-
mate the uncertainties of the inferred bias factor by fitting the
500 bootstrapped samples with the two-halo term HOD mod-
elling and obtain the 500 best bias factors from the bootstrapped
samples. Those best 500 HOD models are then compared to the
observed K-estimator data points to compute the bootstrapped
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Fig. 5. Measured values of the K-estimator as a function of transverse distance (points with error bars) compared to the expected behaviour for a
population strictly following a power-law correlation function. Left: five curves represent different power-law indices as given in the legend, for a
fixed value of r0 = 3.6 h−1 Mpc. Right: same details for five different correlation lengths at fixed γ = 1.3. The central (thick solid) curves always
indicate the minimum χ2 best-fit values. The horizontal straight line shows the no-clustering expectation value of K. The error bars are calculated
with the bootstrapping technique described in Sect. 3.1.3.

χ2 values. We sort the bootstrapped χ2
min values in ascending

order and use these to recalibrate the 68.3% (1σ) confidence
interval.

4. Results

4.1. K-estimator

Adopting the optimized K-estimator K0,7
7,35 (see Sect. 3.1.2), we

measure the clustering of our LAE sample in 15 logarithmic bins
of transverse separations Ri j between 0.6 and 12.8 h−1 Mpc, with
error bars calculated by bootstrapping the sample as explained
in Sect. 3.1.3.

Figure 5 shows the results for the full LAE sample. It is evi-
dent that the values of K are significantly above the no-clustering
expectation value of 0.2.

We can verify that our clustering results are not affected
by the accuracy of our redshifts (see Appendix B), also taking
into account our statistical corrections for the expected offset
between Lyα-based and systemic redshifts (see Sect. 2.2). We
emphasize that the K-estimator is insensitive to these redshift
errors because of the broad (±7 h−1 Mpc) window over which
the numerator in Eq. (1) is evaluated.

A somewhat puzzling feature, at least at first sight, is the
broad hump in the K(Ri j) profile around 4 . Ri j/h−1 Mpc . 7,
suggesting a slight excess in the clustering strength for such sep-
arations (or alternatively, a dent at 2 . Ri j/h−1 Mpc . 4). We test
the possibility that this feature might be introduced as an arte-
fact of the sample footprint shape by dividing the sample into an
‘eastern’ and a ‘western’ half. Since we find the hump (or dent)
in both subsets, as is also the case when splitting the sample by
LAE properties (see Sect. 5), we rule out a systematic effect due
to the footprint. Recalling the fact that the data points in Fig. 5
are strongly correlated, we underline that the significance of the
feature is actually below 2σ, and we consider it to most likely
be due to a statistical fluctuation in the spatial distribution of the
sample. The only robust test of this explanation would require
an independent but statistically equivalent comparison sample,
which we do not have at our disposal. However, we removed the
data points of the hump or dent and tested the possible effect
of this feature on our fits to the K-estimator. We find the same
clustering parameters (within 1σ) as in the next section. For the
purpose of this paper we treat the hump or dent as an insignifi-

cant statistical fluctuation that is not related to a true clustering
excess of the MUSE-Wide LAEs.

We also checked that our clustering signal is insensitive to
including or excluding the objects from the 8 HUDF09 paral-
lel fields (∆b = 0.03; see Appendix A), again confirming the
robustness of the K-estimator on the survey footprint.

4.2. Power law fits

First, we applied the single-bin fit method to our clustering sig-
nal to compare our results to earlier studies, which also com-
puted the K-estimator and evaluated its strength by using the
single-bin fit approach. We derived the best-matching correla-
tion length r0 at fixed γ = 1.8, as described in Sect. 3.1.1. The
calculated value of K0,7

7,35 for Ri j,max < 5 h−1 Mpc corresponds
to r0 = 2.10 ± 0.20 h−1 Mpc. The outcome of this single-bin fit
depends somewhat on the adopted Ri j,max: lowering the limit to
3 h−1 Mpc results in r0 = 1.90+0.30

−0.20 h−1 Mpc, whereas increasing
Ri j,max to 7 h−1 Mpc delivers r0 = 2.60+0.20

−0.10 h−1 Mpc. In principle,
this dependence should be included in the error bar on r0. We
also vary the fixed value of γ between 1.0 and 2.0 and find that
r0 does not change by more than 1σ. Our single-bin fit results
agree with those in Diener et al. (2017) but give much tighter
constraints on r0.

Motivated by these results we proceed to estimate both
parameters simultaneously. Since in the single-bin approach the
choice of Ri j,max does affect the fit result, we now switch to fitting
the K-estimator over the full measured range of transverse sepa-
rations using all bins in 0.6 < Ri j/h−1 Mpc < 12.8 (see Sect. 3.1).

To obtain a visual impression of how K0,7
7,35(Ri j) depends

on γ and r0 separately, we overplot the expected curves for
five different values of each quantity into Fig. 5, always keep-
ing the other parameter fixed. It can be seen that K reacts in
different ways to changes in the two parameters. Increasing
r0 leads to an elevated K at all Ri j scales, whereas increas-
ing γ results in changes of K mainly at small transverse sep-
arations. Because the shape of K0,7

7,35(Ri j) changes differently
for r0 and γ, it is in principle possible to fit both parameters
simultaneously. We perform an uncorrelated χ2 analysis over a
grid of r0 and γ to find the best-fit parameters as described in
Sect. 3.1.1.
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Fig. 6. Simultaneous fit to r0 and slope γ. The black (dark grey) contour
represents the 68.3% (95.5%) confidence. The red cross stands for the
lowest χ2 value at (r0 = 3.65, γ = 1.25). The points show the 500 best-fit
values from the 500 bootstrapped samples. The blue rectangle indicates
the 16% and 84% percentiles from the marginalized single-parameter
posterior distributions of the bootstrapped samples. The green (red)
error bar represents the correlation length from the one-parameter PL
(single-bin) fit with fixed γ = 1.8. For a better visualization, we show a
zoom onto the region containing these fits.

Following the procedure laid out in Sect. 3.1.3 we compute
confidence contours for r0 and γ by fitting the 500 bootstrapped
samples in the same way. The marginalized single-parameter
(1D) 16%−84% confidence regions are γ = 1.30+0.36

−0.45 and r0 =

3.70+3.10
−0.92. These and the corresponding 2-dimensional 68.3% and

95.5% confidence contours are displayed in Fig. 6, along with
the 500 best-fit parameter sets from the bootstrapped pseudo-
data samples. For a visual comparison we also plot the estima-
tions from the single-bin fit. We further include the results from a
one-parameter PL-fit with fixed γ = 1.8 for an easier comparison
with the literature in Sect. 5.2.

The best-fit correlation length of 2.1 h−1 Mpc obtained by
the single-bin fit (at fixed γ = 1.8) is lower than suggested
by the one- and two-parameter fits and it is not compatible
with its 68.3% probability contour. This was expected because
the single-bin fit was not optimized for r0, S/N and Ri j range.
We also observe a large similarity between the medians of
the marginalized single-parameter posterior distributions (r0 =
3.60+3.10

−0.90 h−1 Mpc, γ = 1.300.36
0.45) and the combination of parame-

ters that provide the lowest χ2 value (r0 = 3.65, γ = 1.25). It is
also evident from Fig. 6 that the fit is quite degenerate between
r0 and γ in the sense that parameter combinations with higher γ
and lower r0 are only slightly less likely than the best-fit combi-
nation. Different Ri j scales are affected when modifying γ or r0
(see Fig. 5). This results in similarly good PL-fits when combina-
tions of low γ and high r0 or high γ and low r0 are applied. Tak-
ing into account the sensitivity of the single-bin fit to the value
of Ri j,max, the three results are in fact very similar. We therefore
adopt the PL fitting approach also for our subsequent investiga-
tion of the dependence of clustering on LAE physical properties.
This eases the comparison to the literature, where mainly PL fits
are performed. The values and errors of the best-fit parameters
from the different fit approaches are summarized in Table 2.

The confidence contours of our fit are essentially open
towards large r0 and low γ. In fact, our bootstrap sample contains
a sizeable proportion of instances with best-fit combinations in
the lower right corner of Fig. 6 (11.8% with r0 > 10 h−1 Mpc).
Upon investigation of these ‘solutions’, we find that they
correspond to almost constant K-estimator values with respect
to Ri j, driven by the tentative hump around 5 h−1 Mpc. What-

Fig. 7. Dependence of the HOD fits to the K-estimator on the large-scale
bias factor. The dotted, solid, and dashed red curves show three different
bias factors b = 2.3, 2.8, 3.3, respectively. The thicker solid red curve
shows the b that provides the lowest χ2 value. The K values and their
respective error bars are the same as in Fig. 5.

ever the actual origin of these extreme points, it seems clear that
from the K-estimator alone without further priors we can only
constrain plausible combinations of r0 and γ at one end of the
distribution.

While it appears that the best-fit power-law index for our
LAEs tends to be substantially shallower than the results from
other studies based on NB imaging that use the fiducial γ value
of γ = 1.8 (e.g. Ouchi et al. 2010, 2017), we note that they are
generally compatible at the 1−2σ level. The same is true for the
values obtained from our own sample using the 2pcf method (see
Appendix D).

4.3. Halo occupation distribution fit

We can then match the HOD model (Sect. 3.4) to our mea-
sured K-estimator. Similarly to Fig. 5 we first visualize the basic
behaviour of the HOD model for different large-scale bias fac-
tors (shown in Fig. 7). Higher values of b increase the expec-
tation values of K at most separation scales, but most strongly
for small Ri j. Following the procedure described in Sect. 3.4 we
recalibrate the confidence contours and obtain a best-fit large-
scale bias of bHOD = 2.80+0.38

−0.38. The corresponding typical DMH
mass is log(MDMH/[h−1 M�]) = 11.34+0.23

−0.27.
The best-fit HOD model behaves in several aspects similarly

to the best-fit PL correlation function. Even if PL fits do not have
a physical basis, the PL model seems to perform slightly better in
terms of matching the observed K values and reaching a slightly
lower χ2 value, but these differences are not significant. The bias
values derived from the two fits are also fully consistent as dis-
cussed in Sect. 5.3.

We investigate the effects of the redshift space distortions
(RSD) in Appendix E, where we show that the RSD do not have
a significant effect on the HOD fit for K-estimator.

5. Discussion

5.1. Comparison to Diener et al. (2017)

We first compare our results with those of our pilot study
(Diener et al. 2017, D17) which employed the non-optimized
K-estimator K0,25

25,50 for a subset of 24 fields of our current sample.
In order to visualize the statistical gain of our new investigation,
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Table 2. Clustering parameters from the different fit approaches to the K-estimator in our full sample.

Fit method γ r0 [h−1 Mpc] bPL bHOD log(MDMH/[h−1 M�])

HOD fit – – – 2.80+0.38
−0.38 11.34+0.23

−0.27
Two-parameter PL-fit 1.30+0.36

−0.45 3.60+3.10
−0.90 3.03+1.51

−0.52 – –
One-parameter PL-fit Fixed 1.8 2.60+0.72

−0.67 2.02+0.22
−0.24 – –

Single-bin fit Fixed 1.8 2.10+0.20
−0.20 1.66+0.14

−0.14 – –

Notes. The typical DMH masses for the full sample are derived only from our HOD results. The uncertainties in the bias factors reflect the
statistical error on r0 only.

Fig. 8. Measured values of the K-estimator of our sample of 68 MUSE-
Wide fields (blue filled circles) compared to the subset of 24 fields
considered in Diener et al. (2017, D17; open red circles). The error
bars are again calculated with the bootstrapping technique described
in Sect. 3.1.3. The blue dotted curve represents our two-parameter best
PL-fit. The red dotted curve uses the best single-bin fit results of D17
(r0 = 2.9+1.0

−1.1 cMpc for a fixed γ = 1.8) applied to our PL-method (two-
parameter PL-fit).

we applied our improved K0,7
7,35 estimator to the 196 LAEs at

3.3 < z < 6 in the same 24 fields. The outcome of this com-
parison is shown in Fig. 8.

While the two datasets show excellent agreement given the
uncertainties, as expected the error bars are much smaller in our
new sample. The clustering signal of the 24 fields appears a bit
higher, but the differences are at most 1σ. The smaller footprint
of the 24 fields dataset limits the range of transverse separations
.6 h−1 Mpc. The clustering curves from the two samples are fit-
ted with a PL correlation function, based on the results from D17
for the 24 fields and on our best PL-fit for the 68 fields. Figure 8
also shows that the power-law fits to the 68 fields follow the data
points much better than in the 24 fields since we performed a
simultaneous fit of r0 and γ. Following the same procedure as
in Sect. 3.1.3 for the 24 fields, we find r0 = 2.85+0.73

−0.76 h−1 Mpc
and γ = 1.62+1.18

−0.82. These results are very close to the numbers
obtained in D17 (r0 = 2.9+1.0

−1.1 cMpc for a fixed γ = 1.8), but our
improved procedure substantially decreased the error bars for the
same data.

5.2. Comparison with the literature

Most previously published works on the clustering of high-
redshift galaxies are restricted to the estimation of r0 at fixed
power-law index γ, with the latter typically assumed to be 1.8
or thereabouts. While our best-fit value for γ based on the

K-estimator is considerably lower, Fig. 6 shows that γ values
around 1.8 are still consistent with our data. To make a fair com-
parison, in Sect. 4.2 we recompute the best-fitting power law
with γ fixed to 1.8; thus only allowing r0 to vary.

Furthermore, the clustering strength and thus the correla-
tion length are predicted to evolve with cosmic time and, thus,
the (average) redshifts of the samples must also be taken into
account in any comparison.

We first considered clustering measurements of LAEs
selected by NB surveys. Here, all objects are assumed to have the
same redshift defined by the NB filter. Early studies (Ouchi et al.
2003; Gawiser et al. 2007; Shioya et al. 2009) focused on small
samples of LAEs (up to 160 objects) at z = 3.1−4.86 to compute
angular correlations. The correlation lengths at fixed γ = 1.8
(except Shioya et al. 2009, who calculated γ = 1.90 ± 0.22)
are consistent with our recomputed PL-fits, in particular when
considering the involved uncertainties. The correlation lengths
are in the range of r0 ≈ 2.5−4.5 h−1 Mpc, higher values corre-
sponding to higher redshift samples. More recent studies based
on NB surveys (Ouchi et al. 2010, 2017; Bielby et al. 2001)
at higher redshifts (z≈ 3−6.6) hold much larger samples (up
to 2000 objects), where they find slightly higher correlation
lengths, r0 = 3−5 h−1 Mpc. Given the similarity between these
and lower redshift samples, our derived correlation lengths are
also in fair agreement with most recent LAE clustering studies.

We then considered clustering measurements of
high-redshift galaxies selected based on photometric redshifts
or magnitude and colour-colour criteria (mainly Lyman-break
galaxies). Durkalec et al. (2014, 2018) computed the real-space
2pcf on samples of more than 3000 objects at 2 < z < 5
distributed over more than 0.8 deg2. The sample is more suited
for clustering studies than our MUSE-Wide survey because their
large spatial coverage diminishes the effect of cosmic variance
and allows the computation of the traditional 2pcf method.
Thanks to the characteristics of the survey they perform a two-
parameter PL-fit and derive a correlation slope of γ = 1.80+0.02

−0.06
and a correlation length of r0 = 3.95+0.48

−0.54 h−1 Mpc at z ∼ 2.5.
At z ∼ 3.5 they obtain lower slopes γ = 1.60+0.12

−0.13 and higher
lengths r0 = 4.35 ± 0.60. Our results not only agree with their
clustering parameters but also point toward a lower slope for
higher redshift galaxies. Moustakas & Somerville (2002) also
reported a redshift dependence of γ; in addition, the authors
parameterized analytically the correlation slope as a function of
redshift.

Figure 9 compiles the comparison of correlation lengths
from the literature and those derived in this work with differ-
ent fit approaches. We also plot the correlation lengths for our
redshift subsamples (see Sect. 5.4).

Most literature values are in agreement with our findings,
both with the r0 from the two-parameter PL-fit and from the one-
parameter PL-fit with fixed γ = 1.8 (r0 = 2.60+0.72

−0.67 h−1 Mpc).
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Fig. 9. Comparison of the derived correlation lengths to the literature.
The r0 values calculated in this study are represented with purple stars.
Green symbols correspond to studies of samples based on Lyα selected
galaxies. The samples from Durkalec et al. (2014) at z ∼ 2.5 and z ∼ 3.5
(dark and light yellow) are based on continuum-selected high-z galax-
ies. The horizontal colored bars indicate the redshift ranges of the cor-
responding studies (spectroscopic surveys). The redshift range of the
z-subsamples of this paper are not plotted for a better visibility. Values
for r0 are plotted at the median redshift of the samples. The r0 from
Ouchi et al. (2003) and Bielby et al. (2001) have been shifted by +0.1
along the x-axis for visual purposes. Our one-parameter PL-fit with
fixed γ = 1.8 by +0.2. The upper limit of the r0 from Shioya et al.
(2009) corresponds to r0 = 10.1 Mpc.

Not surprisingly, given the r0 dependence on Ri j,max, the value
from the single-bin fit is lower than in most studies (including
our robust PL-fit approach results).

A more appropriate but not so traditional comparison of the
clustering strength is the bias factor, derived from γ and r0 (for
PL-based correlation functions) or from HOD models. At z ∼ 3
Bielby et al. (2001) reported a bias factor of bPL = 2.13 ± 0.22
and DMH masses of MDMH = 1011±0.3 h−1 M�, whilst at the
same redshift, Durkalec et al. (2014) reported a somewhat larger
bias value of bHOD = 2.82 ± 0.27 and typical DMH masses of
log(MDMH/h−1 M�) = 11.75 ± 0.23. As for Ouchi et al. (2017),
they obtained a bias value of bHOD = 3.9+0.7

−1.0 and typical DMH
masses of log(MDMH/h−1 M�) = 11.1+0.2

−0.4 at z = 5.7, whilst
Ouchi et al. (2010) derived bias values in the range b = 3−6
and typical DMH masses of MDMH = 1011±1 h−1 M� at z = 6.6.
Our results fall between the values derived from studies at z = 3
and z = 5.7.

Each study, however, probes different luminosity and EW
ranges, an effect that may have an impact on the interpretation
of the clustering results from the literature. Despite these dif-
ferences, it is interesting to note the general agreement in the
clustering parameters from the different studies at similar z. Con-
sequently, the hosting DMH mass of galaxies are also very simi-
lar. We present our testing of the sample, aimed at characterizing
such dependencies, in the next section.

5.3. PL vs. HOD fits

The various fit methods performed on the K-estimator allow
us to compare the derived PL-fit results to those from HOD
modelling. We tested the performance of the different PL-fit
approaches and we developed an improved fit method.

The clustering signal provided by the K-estimator was
never robustly fitted in previous studies (Adelberger et al. 2005;
Diener et al. 2017). The correlation length r0 was obtained by

Fig. 10. Best PL and HOD fits to the K-estimator. The dashed green
curve shows the PL-fit (same as the solid curves in Fig. 5) while the
dotted red curve represents the HOD fit (same as the thick curve in
Fig. 7). The measurements of K0,7

7,35 are the same as in Figs. 5 and 7.

measuring the K-estimator in a single Ri j bin (Rcut < 5 cMpc)
and comparing the result to the expectation values 〈K〉 provided
by Eq. (2) for different correlation lengths. In the process, a
PL correlation function of fixed slope was assumed but never
directly fit to the K-estimator. Instead, the correlation length that
yields the closest match between 〈K〉 and Kmeasured was chosen
as the best correlation length. However, in Sect. 4.2, the result
varies significantly depending on the chosen Rcut. Due to the
simplicity of this approach and its dependence on Rcut, we fit
the measured K-estimator as a function of Ri j with the model
predictions (Eq. (2)), providing a more reliable and accurate fit
to the full Ri j range covered by the K-estimator.

Taking the K-estimator one step further, we also make use
of HOD models. As explained in Sect. 3.4, PL-based correlation
functions do not distinguish between the one- and two-halo term
regimes. PLs are just an approximation, whereas HOD mod-
els treat galaxies residing in one DMH and in different DMHs
differently, being a more advanced and physically meaningful
approach.

We measure the clustering only at Ri j > 0.6 h−1 Mpc so
we do not cover the one-halo term of the correlation function.
Hence, we fit the two-halo term of ξ(r) from the HOD model to
our K values in order to obtain the large-scale bias of our sample.

In Fig. 10 we show both PL and HOD best-fits to the
K-estimator from the χ2 analysis described in Sect. 3.1. The per-
formance of the curves is comparable and there are only tiny
variations in the shape of the curves. Nonetheless, the PL-fit
achieves the lowest χ2, indicating a modest better performance.

Even though the curves are nearly identical at intermediate
separations (1 < Ri j/h−1 Mpc < 2.5), at smaller and larger sep-
arations, the curves deviate from each other. The largest differ-
ence occurs at small separations (Ri j < 1 h−1 Mpc), where the PL
flattens but the HOD fit continues to increase. Less remarkable
is the difference at large separations (Ri j > 2.5 h−1 Mpc), where
the PL-fit is somewhat higher than the HOD fit. In both cases,
the differences are well within the uncertainties, and in the main
range used to calibrate the bias factor (Ri j > 1 h−1 Mpc), the
variations between the fits are minute.

We show the comparison between the large-scale bias
parameters calculated from the PL and HOD fits listed in
Tables 2 and 3 in Fig. 11. The derived bias factors from the
PL fits are slightly higher than the HOD values, while the HOD
uncertainties are, on average, smaller (≈25%) than those from
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Table 3. Derived clustering parameters from the subsamples.

LAE subsample r0 [h−1 Mpc] bPL bHOD log(MDMH/[h−1 M�])

Redshift< 4.12 4.02+1.17
−1.06 3.18+0.55

−0.55 2.80+0.36
−0.37 11.39+0.23

−0.29
Redshift> 4.12 3.53+1.16

−1.04 3.66+0.71
−0.72 3.27+0.56

−0.59 11.07+0.31
−0.41

logLLyα < 42.36 2.78+1.09
−1.02 2.74+0.63

−0.68 2.58+0.54
−0.59 10.88+0.39

−0.62
logLLyα > 42.36 4.08+1.60

−1.40 3.66+0.84
−0.85 3.71+0.93

−0.91 11.57+0.38
−0.54

EWLyα < 87.9 2.89+1.98
−1.74 2.81+1.08

−1.23 2.54+0.65
−0.73 10.84+0.47

−0.83
EWLyα > 87.9 4.14+1.84

−1.57 3.53+0.91
−0.91 3.43+0.90

−0.90 11.44+0.41
−0.62

MUV < −18.8 6.30+2.97
−2.26 4.47+1.22

−1.08 3.66+0.85
−0.82 11.63+0.36

−0.48
MUV > −18.8 3.35+1.84

−1.59 3.11+0.98
−1.03 2.85+0.67

−0.71 11.06+0.41
−0.64

Notes. Power-law derived bias values (bPL use a fixed slope of γ = 1.3; see discussion in Sect. 5.4). The typical DMH masses are derived from our
HOD results. The uncertainties in the bias factors and DMH masses reflect the statistical error on r0 only.

Fig. 11. Comparison between the bias parameters derived from the PL
and HOD fits listed in Tables 2 and 3. We highlight the bias factor from
the full sample of LAEs with a red square. The dotted blue line shows
a 1:1 correspondence.

the PL fits. Using samples of AGN and a cross-correlation func-
tion approach, Krumpe et al. (2012) also compared PL and HOD
clustering fits. They found higher bias factors and smaller uncer-
tainties from the HOD fits because they included part of the one-
halo term in the PL fit. As we have explained, strong variations
between samples in the one-halo term cause a decrease in the
bias factors derived from the PL fits. However, we do not include
the one-halo term in any of our fits so we are not subjected to
these variations.

5.4. Clustering dependence on physical properties

We searched for clustering dependencies on LAE physical
properties. We computed the K-estimator in the subsamples
described in Sect. 2.3, but the lower number of objects in the sub-
sets does not allow for a two-parameter PL-fit. We therefore take
the prior from our full sample and assume that our subsamples
present the same correlation slope as the parent sample (γ = 1.3).
We then performed the one-parameter PL-fit with fixed γ = 1.3.
We also conducted HOD fits in the same way as we did for the
full sample.

5.4.1. Redshift

Taking advantage of the large redshift range provided by MUSE,
we investigate whether LAEs occupy denser regions of the

Universe at earlier epochs by measuring their clustering strength
with the K-estimator.

At the cost of enlarging the error bars (and as explained in
Sect. 2), we split our sample in two bins around the median red-
shift, 〈z〉 = 4.12. We computed the K-estimator in both subsam-
ples, with the results given in the top left panel of Fig. 12.

The two curves are essentially indistinguishable within the
error bars. Both follow the same trend and have similar shapes.
Analogously to Sect. 4.2, we fit a PL correlation function ξ(r) =
(r/r0)−γ with fixed slope γ = 1.3. For the low redshift subsample,
we obtain blow = 3.18+0.55

−0.55. The resulting value for the high-
redshift bin is bhigh = 3.66+0.71

−0.72. The best-fit parameters are listed
in Table 3 along with the bias factors obtained from the HOD fit
and their corresponding DMH masses.

The difference between the best-fit parameters (lower than
1σ) of the subsamples do not allow us to corroborate or contra-
dict the general statement “LAEs reside in more massive DMHs
at higher redshifts”. However, other studies found higher bias
factors of LAEs at higher redshifts (e.g. Ouchi et al. 2010). Even
if the study of samples at fixed luminosities is needed, this has
been interpreted as evidence for downsizing, with galaxies resid-
ing in the largest DMHs going through their ‘LAE phase’ early
in the Universe, while Milky Way progenitors appear as LAEs at
later times, around z ∼ 3.

We confirm that our findings are not strongly affected by the
selected redshift cut of the sample. Varying the cut by 10% in z,
from z = 4.12 to z = 4.53, changes the number of LAEs in each
subsample by ∼15% (118 objects) and results in an increase in
b within 1σ, which is equivalent when considering the uncer-
tainties; whereas, the z and LLyα values are not independent.
Therefore, the different luminosity distributions in the different
redshift subsamples may bias the detection of a clustering depen-
dence on redshift. To assure that the investigation of the clus-
tering dependence on z is not driven by the different LLyα
distributions, we apply a ‘matching’ technique similar to
Coil et al. (2009) and Krumpe et al. (2015). To do so, we com-
pare individual bins between the two luminosity distributions of
the z-subsamples. In each bin, we check which subsample con-
tains more objects. We then select the one with the higher num-
ber and randomly remove objects until we match the number
counts of the other subsample in that bin.

Once the two luminosity distributions are equivalent, we run
the K-estimator in both subsamples with now matched LLyα dis-
tributions but still different redshift distributions. We find fully
consistent results when making a comparison with our orig-
inal subsample definition. The clustering difference between
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Fig. 12. Clustering dependencies on object properties. Top left: clustering variation in two different redshift subsamples. The blue dots show the
clustering in the lower redshift bin while the red points show the higher redshift subsample. The dotted curves represent the best HOD fits. Top
right: same details but for two different Lyα luminosity subsamples. Bottom left: same details but for EWLyα. Bottom right: same details but for UV
absolute magnitude. The black line represents the K expectation value for an unclustered sample of galaxies and the 1σ error bars are determined
from the bootstrapping approach explained in Sect. 3.1.3.

the ‘matched’ and ‘unmatched’ subsamples varies within 1σ.
Therefore, we discard the possibility of a possible clustering
dependence on z driven by LLyα as well as a strong clustering
dependence on z.

5.4.2. Lyα luminosity

To learn about the DMHs where LAEs of different Lyα lumi-
nosities reside, we studied the clustering dependence on Lyα
luminosity. We used two subsamples divided by the median
Lyα luminosity of the full sample as explained in Sect. 2. The
K-estimator was then computed for both. Details of the individ-
ual subsamples are given in Table 1 and the clustering correla-
tions are illustrated in the top right panel of Fig. 12.

Although the statistical uncertainties are substantial, the top
right panel of Fig. 12 suggests a trend in the sense that LAEs
with higher Lyα luminosities appear to be more strongly clus-
tered. This trend is also seen in the correlation lengths and bias
factors, see Table 3. We verify that our results are not signifi-
cantly altered by the chosen Lyα luminosity cut of the sample.
Shifting the Lyα luminosity from log(LLyα/[erg s−1]) = 42.36
to log(LLyα/[erg s−1]) = 43.21 (120 objects shifted) does not
change the results; we still find a tentative 2σ clustering depen-
dence on Lyα luminosity. Furthermore, we have also investi-
gated that the possible clustering evolution trend with LLyα is not
caused by the different redshift distributions of the subsamples.

As already mentioned LLyα and z are not independent. Thus,
we also create matched distributions to exclude that depen-
dence is driven by z and not LLyα. In order to discard this
possibility, we match the z-distributions of both subsamples
such that the low- and high-LLyα subsamples have exactly the
same z-distribution. We compute the K-estimator for the sub-
samples with the matched z-distributions and find a more pro-
nounced trend than that of the top right panel of Fig. 12. For
both matched subsamples, the K values vary within ∼7% of
the original subsamples. This translates into a difference lower
than 1σ between the ‘matched’ bias factors and those listed
in Table 3. However, the ‘matched’ bias factors between the
low and high LLyα subsamples differ by almost 2σ, suggest-
ing a tentative weak clustering dependence in the way that
more luminous LAEs cluster more strongly than less luminous
LAEs.

The calculated bias factor for fainter LAEs is blow =
2.58+0.54

−0.59, while for luminous LAEs is bhigh = 3.71+0.93
−0.91. This

trend is consistent with the statement that more luminous
(in Lyα) galaxies reside in more massive DMHs (Ouchi et al.
2003). While a more statistically significant result will require
larger LAE samples, the trend we see is in agreement with
Ouchi et al. (2003) and Khostovan et al. (2019), who found
stronger clustering strengths for Lyα brighter LAEs in sam-
ples of 41.85 ≤ log(LLyα/[erg s−1]) ≤ 42.65 at z ≈ 4.86 and
42 ≤ log(LLyα/[erg s−1]) ≤ 43.6 at 2.5 < z < 6, respectively.

A136, page 13 of 22



A&A 653, A136 (2021)

5.4.3. Lyα equivalent width

We investigate the clustering dependence on the rest-frame Lyα
EW to explore the possibility of LAEs residing in different
DMHs depending on the EW of the Lyα emission line. We
use the two subsamples described in Table 1. The EW cut is
made at the median EWLyα of the sample of galaxies with HST
counterparts as explained in Sect. 2. The K-estimator results are
presented in the bottom left panel of Fig. 12 and the best-fit
parameters from the PL- and HOD-based correlation functions
are given in Table 3.

There are hardly any differences between the curves shown
in the bottom left panel of Fig. 12. The low EWLyα subsam-
ple presents a linear bias factor of blow = 2.54+0.65

−0.73, while the
resulting value for the high EWLyα bin is bhigh = 3.43+0.90

−0.90. Even
though LAEs with higher EWLyα seem to reach higher K val-
ues on average, the difference is smaller than 1σ. Similar results
were found by Ouchi et al. (2003).

We certify that the derived correlation lengths are not
affected by the selected EWLyα cut of the sample. Shifting the
cut by 25% in EWLyα, from EWLyα = 87.9 to EWLyα = 110 Å,
changes the subsample number counts in 50 objects and results
in a variation in r0 within 1σ, equal within the error bars.

5.4.4. UV absolute magnitude

The UV absolute magnitude is related to the star formation rate
which in turn is expected to scale with stellar and also the DMH
mass. It is therefore interesting to explore the clustering depen-
dence on UV absolute magnitude by dividing our full sample
at the median MUV into two subsamples. The characteristics of
both bins are listed in Table 1. We compute the K-estimator in
both subsamples and we illustrate the clustering correlations in
the bottom right panel of Fig. 12. The clustering parameters are
listed in Table 3.

We find large-scale bias factors in the bright- and faint-MUV
subsamples (low and high MUV, respectively) of blow = 4.47+1.22

−1.08
and bhigh = 3.11+0.98

−1.03. Given the large uncertainties, we cannot
claim the detection of a clustering dependence on MUV, even
if the bottom right panel of Fig. 12 seems to indicate a stronger
clustering signal for more luminous LAEs than for fainter LAEs.
While Durkalec et al. (2018) found that high-z galaxies with
MUV < −20.2 cluster more strongly than those with MUV <
−19.0 (∆b = 0.43), Ouchi et al. (2003) found no notable differ-
ence between their MUV subsamples. Since Ouchi et al. (2003)
recognize different clustering strengths as a function of Lyα
luminosity, they claim that such dependence might dominate
over a MUV clustering dependence.

We checked that the derived correlation parameters are not
significantly affected by the chosen MUV cut of the sample. Shift-
ing the MUV cut, from MUV = −18.8 to MUV = −19.18 changes
the number of counts in the subsamples by 62 objects while
the correlation lengths vary within 1σ, consistent within the
uncertainties.

5.5. Cosmological simulations

We go on to compare our results with cosmological simulations
to test whether our detected clustering signal is predicted by state
of the art LAE models at high redshift and to gain some insight
into the expected cosmic variance.

While a plethora of cosmological simulations are now avail-
able to describe the formation and evolution of galaxies at
high redshift, the complex nature of the Lyα line emission and

propagation in the gas requires careful numerical modelling
in order to make predictions for the LAE population. Various
approaches based on different numerical techniques and model
assumptions (i.e. cosmology, baryonic physics, etc.) have incor-
porated Lyα radiation transfer effects over simple geometries
in semi-analytic models (e.g. Garel et al. 2012, 2015; Orsi et al.
2012; Gurung-López et al. 2018) or in post-processing of
hydrodynamical simulations (e.g. Forero-Romero et al. 2011;
Dayal & Libeskind 2012; Yajima et al. 2012). Even though there
is no radiative transfer (RT) model that perfectly reproduces
the Lyα emission lines and, therefore, no cosmological sim-
ulation that succeeds in fully replicating LAE observations,
here we compare our results with the GALICS semi-analytic
model which includes Lyα radiation transfer in expanding shells
(Garel et al. 2015).

The underlying dark matter simulation used in this model
is run with GADGET (Springel et al. 2005) and features a box
of 3 × 106 Mpc3 with a DMH mass resolution of 109 M�. As
shown in Garel et al. (2015), this model can reproduce the UV
and Lyα luminosity functions at 3 < z < 7 down to Lyα fluxes
of 4 × 10−17 erg s−1 cm−2. Following the procedure described
in Garel et al. (2016), we generate 100 mock light cones of
17× 17 arcmin2 size to obtain physical parameters such as Lyα
fluxes or 3D positions.

In order to resemble the real data, the selection function, spa-
tial geometry, and redshift range of the 68 MUSE-Wide fields
have been applied before computing the K-estimator for the
100 simulated samples. The selection function was shifted
+0.28 dex in flux to recover the same total number of detections.
The results given by the K-estimator in the 100 simulated samples
are shown in Fig. 13, along with its average and uncertainties.

We find that the clustering in the simulated samples is much
stronger than the clustering in the MUSE-Wide survey. Simu-
lated samples present much larger K-values than in the observed
data. The two-parameter PL-fit results in very large uncertainties
in r0 (consistent with our observed r0) but also points to lower γ
values. From the one-parameter PL-fit (fixed γ = 1.8), we obtain
r0 = 5.80+1.23

−1.10 h−1 Mpc and derive a bias factor of b = 4.13+0.78
−0.71.

These are only ≈1.9σ away from our one-parameter best-fit
results. However, from the HOD fit we compute b = 4.80+0.32

−0.32
and log(MDMH/[h−1 M�]) = 12.16+0.11

−0.11. Considering the MDMH
values, this differs by 3.2σ from our observations. We note that
since the scope of this paper is not to give an extended compar-
ison to simulations, we have restricted our comparison to one
LAE model only, and we obviously cannot draw any general
conclusion regarding a potential tension between the predicted
and observed clustering of LAEs. Thus, we leave more detailed
comparisons to future work. We briefly discuss aspects that may
plausibly explain the mismatch below.

We first note that the mock light cones show prominent red-
shift spikes that are not present in the real data (see Fig. 14),
a noticeable problem that was also discussed in Diener et al.
(2017). The super structures seem to dominate the clustering sig-
nal and be responsible for most of the disagreement between
our measurements and the simulation. The origin of this dis-
crepancy is unclear and could be due to several reasons that
need to be addressed in future simulation work, such as inac-
curacies in the Lyα RT modelling, the assumed cosmology, the
baryonic physics modelling affecting the halo-galaxy relation,
cosmic variance, intrinsic Lyα luminosities, or poorly controlled
LAE selection in the mocks.

In particular, a potential cause could arise from the fact that
Lyα luminosities in GALICS are angle-averaged, whereas the
Lyα escape fraction is supposedly highly anisotropic in real
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Fig. 13. Comparison between the clustering signal in our real survey in
blue (same as in Fig. 5) and in the 100 simulated samples. Each sam-
ple is drawn from a different light-cone realization. The values of the
K-estimator for each of the 100 simulated catalogues is represented in
gray. The standard deviation of the 100 K-estimator values and their
average values are shown in red.

galaxies, such that observed Lyα luminosities strongly vary from
one sight line to another (Smith et al. 2019). Since the luminos-
ity function of our LAEs is steep, this has the same effect as
photometric scattering. Uncertainties in the selection function of
GALICS and of observations due to field to field variation are
poorly controlled and have a similar effect. This results in the
selection of more luminous galaxies at higher redshifts, which
can boost the clustering signal.

Moreover, potential deviations on the Lyα luminosity-halo
mass relation in GALICS (e.g. star formation not sufficiently
quenched in massive halos, such that LLyα = 1042 erg s−1 LAEs
might reside in too massive halos) would also enhance the clus-
tering. Besides, a duty cycle (e.g. Ouchi et al. 2010) further
powers this mismatch because in GALICS most star forming
galaxies emit Lyα. Alternative modelling could lead to Lyα-
bright phases that only last a limited period of time, which could
plausibly attenuate the strong spikes seen in the redshift distri-
bution.

Since these simulations do not closely reproduce the clus-
tering present in the real data, it is not possible to use them
for improving the error estimates on the measurements over the
approaches we considered in Appendix C. Nevertheless, simu-
lations can provide information on the individual contribution
of the statistical uncertainty and the uncertainty due to cos-
mic variance. For the statistical uncertainty, we performed 500
K-estimator measurements on the same bootstrap-resampled
light-cone (see Sect. 3.1.3 where we apply the same method to
our real data). The uncertainty of the cosmic variance can be
estimated by computing the standard deviation of the 100 dif-
ferent light-cone realizations. In comparing the individual data
points, we find that the uncertainty due to the cosmic variance
(red error bars in Fig. 13) is on average ∼35% larger than the
error from the statistical approach only (similar to the blue error
bars in Fig. 13 but for one light-cone). We have verified that
similar results can be found if we resample different light cones.
Therefore, our quadratically combined uncertainties (statistical
and cosmic variance) in the observed clustering may ultimately
be ∼70% higher.

Finally, we used the light cones to check the effects of our
special survey geometry. Even if we do not expect a strong effect
on the K-estimator since we are measuring a contrast of galaxy

Fig. 14. Redshift distribution from four simulated catalogues chosen
randomly from the full set of light cones in red. The redshift distribution
of the real LAEs from the 68 fields of the MUSE-Wide survey is shown
in blue.

pairs in two consecutive shells along LOS separations (see also
Appendix A), we compared the clustering of the 100 simulated
catalogues in a 68 fields special geometry with the clustering
present in the full area of the simulation without any forced
geometry (just a simple square of 17× 17 arcmin2). We find that
the signals agree very well.

5.6. The fate of LAEs over cosmic time

Applying an HOD modelling to the K-estimator determines
a typical dark matter halo mass of log(MDMH/[h−1 M�]) =
11.34+0.23

−0.27 for our LAEs. It is expected that these high redshift
DMHs significantly grow all the way down to z = 0. We here
explore the evolution of those DMHs from 〈zpair〉 ' 3.82 to z = 0
to find the typical descendants of our LAE sample.

Considering the galaxy-conserving evolution model of Fry
(1996), which assumes the absence of mergers and that the
motion of galaxies are driven by gravity only, the large-scale bias
factor evolves as:

b(z) = 1 + (b0 − 1)/D(z), (10)

where b0 is the bias at z = 0 and D(z) is the linear growth factor
(e.g. Hamilton 2001).

Using this model, we infer that the halos of LAEs with a
median redshift of the number of pairs 〈zpair〉 ' 3.82 evolve
into halos with b0 ≈ 1.4 by z = 0, which translates into typical
DMH masses of log(MDMH/[h−1 M�]) ∼ 13.5. This is ≈15 times
more massive than the Milky Way. Based on Ouchi et al. (2010)
calculations, in a more realistic Press-Schechter formalism (e.g.
Lacey & Cole 1993), the bias evolution curve is slightly lower,
meaning a bias closer to b0 ≈ 1.2 rather than b0 = 1.4.

Similar results are also derived from simulations. The infor-
mation stored in the DM halo merger trees used in GALICS
(Garel et al. 2016) allowed a similar study. They found median
descendant halo masses of MDMH/[h−1 M�] ≈ 2 × 1012 for z = 3
LAEs, corresponding to the upper limit estimate of the Milky-
Way halo mass. For z = 6 LAEs they found median descendant
halo masses of MDMH/[h−1 M�] ≈ 5 × 1013, corresponding to
group or cluster galaxy halos. These assessments are thoroughly
in agreement with our estimations and reinforce the notion that
our LAEs actually contain a diverse population of objects (as
expected, since MUSE-Wide is a Lyα-flux limited survey over a
wide z range).
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Our work and the various studies presented in the literature
cover wide z and Lyα luminosity ranges. If there are indeed clus-
tering dependencies with one or both parameters, this would lead
to different typical DMH masses, depending on the details of the
sample selection. It is thus necessary to discuss the descendants
with respect to different redshift and luminosity progenitors. The
combination of clustering measurements of NB-selected LAEs
and the galaxy-conserving model considered in this work, leads
us to the conclusion that z = 5.7−6.6 LAEs will evolve into
DMH with bias values of b0 = 1.5−2 at z = 0 (Ouchi et al.
2010). This is in agreement with our findings. These higher val-
ues, in comparison to those of Gawiser et al. (2007) at z = 3.1,
indicate that descendants of LAEs at different redshifts differ.
While most LAEs at 4 < z < 7 are probably the large galaxies
of today, LAEs at z = 3 are more likely to be the ancestors of
Milky Way type galaxies.

Khostovan et al. (2019) considered narrowband-selected
LAEs with typical LLyα ∼ 1042−43 erg s−1 and intermediate-
band-selected LAEs with typical LLyα ∼ 1043−43.6 erg s−1 at
2.5 < z < 6. Assuming halo mass accretion models, they
found that the former evolved into galaxies residing in halos
of typically log(MDMH/[h−1 M�]) = 12−13 (Milky Way-
like) while the later evolved into galaxies residing in halos of
log(MDMH/[h−1 M�]) > 13 (cluster-like) in the local Universe.

Since our LAEs are in the redshift range of 3.3 < z <
6 and present typical Lyα luminosities in the range 40.9 <
log(LLyα/[erg s−1]) < 43.3, the derived descendant masses
(log(MDMH/[h−1 M�]) ∼ 13.5) are thoroughly in agreement with
the cluster-like descendants found by Ouchi et al. (2010) and
Khostovan et al. (2019). These results, along with those from
literature, reveal that LAEs cover a wide range of present-day
descendants, depending on their luminosity and redshift, from
Milky Way-type galaxies all the way to clusters of galaxies.

6. Conclusions

In this work, we examine the galaxy clustering properties of a
sample of 695 LAEs from the MUSE-Wide survey in the redshift
range of 3.3 < z < 6. We applied an optimized version of the
K-estimator and supported our results with the traditional two-
point correlation function, measuring, for the first time, the spa-
tial clustering as a function of distance in a spectroscopic sample
of Lyα-selected galaxies.

Due to the characteristics of the survey (special geom-
etry, large redshift range and limited angular coverage), we
focus on the more appropriate clustering method, namely, the
K-estimator. We then relied on the radial clustering and quan-
tified the clustering signal following different approaches. We
first obtained r0 = 3.60+3.10

−0.90 h−1 Mpc and γ = 1.30+0.36
−0.45 by fitting

the clustering signal with a power-law-based correlation func-
tion. We derived a bias parameter of b = 3.03+1.51

−0.52 and compared
it to that derived from the second fit approach, b = 2.80+0.38

−0.38, by
scaling a halo occupation distribution model to the measured sig-
nal. The large-scale bias corresponds to typical dark matter halo
masses of log(MDMH/[h−1 M�]) = 11.34+0.23

−0.27. In order to support
the less known K-estimator method, we also computed the tra-
ditional 2pcf, whose results are consistent with those obtained
with the K-estimator.

The results are also in general agreement with the last avail-
able measurements at similar redshifts, with bias factors slightly
higher than those in the literature. Nevertheless, most of the pre-
vious studies have been carried out in surveys with somewhat
different flux limits than that of the MUSE-Wide survey. This

could play an important role since we may probe disparate stel-
lar masses. The chosen cosmology and the redshift evolution
of these parameters through different epochs also contribute to
those slight differences.

We also explore possible clustering dependencies on physi-
cal properties. We exclude the possibility of a strong clustering
dependence on Lyα equivalent width, UV absolute magnitude,
and redshift. However, we see a tentative weak trend when we
split the sample at the median Lyα luminosity that is, more lumi-
nous LAEs cluster more strongly than less luminous LAEs.

We compare the clustering in the MUSE-Wide survey with
the clustering in 100 light cones from a GADGET dark mat-
ter only cosmological simulation coupled to the GALICS semi-
analytical modelling of LAEs. We find that even though the sim-
ulation mimics the flux and luminosity of the LAEs, it is far from
successfully reproducing the observed clustering. Simulated data
show a stronger clustering than measured in our sample. In order
to better imitate the clustering of LAEs, determine the reliable
2pcf scales, compute more realistic uncertainties for our meth-
ods, and constrain a physically robust model for LAEs, future
simulation studies need to address this challenge.

Assuming galaxy-conserving evolution models, we
inferred that our DMHs should evolve into halos of
log(MDMH/[h−1 M�]) ∼ 13.5 in the local Universe. Since
these models assume that the motion of galaxies is driven
entirely by gravity, and that mergers do not occur, our evolved
DMH masses would be slightly higher in a (more realistic)
Press-Schechter formalism. We deduce that the LAEs observed
at 3.3 < z < 6 with 40.9 < log(LLyα/[erg s−1]) < 43.3 have
mainly evolved into halos hosting galaxies or groups that are
≈15 times more massive than the halo hosting the Milky Way.

A radial extension of the MUSE-Wide survey would bene-
fit the development of LAE clustering studies. Larger areas of
the sky would be covered (i.e. larger clustering scales), a larger
sample of LAEs would be detected, and the higher S/N would
further decrease the uncertainties in the measurements. This will
be the case for HETDEX (Hill et al. 2008), which will provide a
higher S/N and a much broader coverage of the sky, contributing
to improving the understanding of the cosmology behind LAEs.
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Appendix A: Effect of the HUDF parallel fields on
the K-estimator

Fig. A.1. K0,7
7,35 estimator for the LAEs in 60 and 68 fields of the MUSE-

Wide survey in red and blue, respectively. The black straight line shows
the expected K value of an unclustered sample. All error bars are Pois-
sonian. The red dots have been shifted along the x-axis for visual pur-
poses.

In this work, we focus on 68 fields of the MUSE-Wide survey,
including part of the CANDELS/GOODS-S region and the eight
parallel HUDF fields. In order to assess a homogeneous sam-
ple, cover a larger area of the sky, and maximize the number
of detected galaxies, we include the eight HUDF parallel fields.
In this section we explore the possible effects on the cluster-
ing measurements of including the parallel fields. We study the
clustering in the 68 fields (same as throughout the paper) and
that present in the 60 fields (without including the eight par-
allel HUDF fields). The characteristics of the first sample are
described in Sect. 2 while the second sample covers a total of
54.74 arcmin2 and has 581 LAEs.

The K-estimator is then run in both samples and shown in
Fig. A.1. We demonstrate the insignificant effect on our main
results due to the inclusion or exclusion of the parallel fields.
The two curves are indistinguishable within the approximated
Poissonian uncertainties

√
Na1,a2/(Na1,a2 + Na2,a3) (see Sect. 4.2

in Adelberger et al. 2005) but due to the lower number of LAEs
in the 60 fields the uncertainties are somewhat larger (8%) than
those of the 68 fields.

The minimal effect on the clustering signal, the larger area
of the sky covered, which makes it more representative in terms
of cosmic variance, and the larger number of LAEs in the sam-
ple, which reduce the uncertainties, lead us to include the eight
parallel HUDF fields in our analysis of the main sample.

Appendix B: Effect of Lyα derived redshifts on the
K-estimator

Inferring the redshift of galaxies from their Lyα lines intro-
duces an offset (i.e. a few hundreds of km/s) with respect to
their systemic redshift (Hashimoto et al. 2015). This offset trans-
lates into small uncertainties in the derived positions of the
galaxies (i.e. ∼3 Mpc) that would affect the clustering measure-
ments when scrutinized through traditional methods (see e.g.
Gurung-López et al. 2021). The K-estimator compares galaxy
pair counts in two consecutive shells along LOS separations.
Thus, the offset introduced in the separations affects both shells
equally, being simultaneously compensated. However, since we

Fig. B.1. K0,7
7,35 estimator for the LAEs in the MUSE-Wide survey. The

green triangles represent the K-estimator values of the sample of LAEs
with redshift estimations from QtClassify, the red squares show the K
values when the redshifts are obtained from the Lyα line fit with asym-
metric Gaussians and the blue circles show the same previous redshifts
but including the correction for the offset between the Lyα and the sys-
temic redshift (same as in all plots in the main paper where the K-
estimator results are shown). The black straight line shows the expected
K value of an unclustered sample. All sets of data points are plotted
along with Poisson errors. The blue circle and red square values have
been shifted along the x-axis for visual purposes.

are working with much larger scales than ∼3 Mpc, even from a
theoretical point of view, the K-estimator is not expected to be
sensitive to these redshift offsets.

We prove this in Fig. B.1, considering the same sample of
LAEs, but obtaining the redshift of the galaxies in different man-
ners. We first use the redshift estimates from QtClassify (see
Sect. 2) and then we use more precise redshifts obtained by
fitting asymmetric Gaussian profiles to the Lyα emission lines.
Finally, from those precise redshifts we correct the redshift fol-
lowing Verhamme et al. (2018) as described in Sect. 2.2. We run
the K-estimator for these three samples, which only differ by
their source redshift estimates. In Fig. B.1, we show the minimal
impact of the redshift uncertainties in our results, showing that
the three different redshift samples provide negligible variations
in the K-estimator values.

The K-estimator on the sample with redshift estimations pro-
vides large-scale bias factors of b = 3.00+1.73

−0.56 from PL fits,
while using the sample with the corrected redshifts (main paper)
b = 3.03+1.51

−0.52.

Appendix C: Error estimates in the K-estimator

When computing the clustering signal with the K-estimator, we
have to recognize that the individual data points are correlated.
Various galaxy pairs can be part of more than one Ri j bin and
the same galaxy may be counted in more than one galaxy pair.
The extent of how bin i correlates with bin j is usually expressed
with the covariance matrix. However, the small area covered by
our survey does not allow us to calculate a covariance matrix.
Therefore, we investigated several error approaches for our K-
estimator measurements.

We applied the bootstrapping technique described in
Ling et al. (1986), which creates pseudo-data sets by sampling
N sources with replacement from the real sample of N galaxies.
In other words, we randomly draw objects from the real sam-
ple, allowing multiple selections of the same object, to gener-
ate a pseudo-sample with the same number of objects N as the
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Fig. C.1. K0,7
7,35 estimator of the LAEs in the 68 fields of the MUSE-

Wide survey with the different error approaches. Approximated Poisson
errors (i.e.

√
Na1,a2/(Na1,a2+Na2,a3)) are shown in red, while the blue and

green uncertainties are obtained from the bootstrapping and the random
sample generation methods, respectively. Both sort of error bars have
been shifted in the Ri j direction for illustration purposes. As usual, the
black line represents an unclustered sample of galaxies.

real sample. We repeat the process 500 times, obtaining a large
set of pseudo-samples, which vary moderately from the original
data. We compute the K-estimator in the 500 pseudo-samples,
Nboots = 500. The scatter from all the measurements is adapted
for our uncertainty estimations.

We also considered a second technique, in which we gen-
erate random samples. Ideally, 500 different realizations from
cosmological simulations should be applied but we showed in
Sect. 5.5 that the simulated data cannot directly be compared to
our clustering measurements.

Therefore, we use the selection and luminosity functions of
the survey (Herenz et al. 2019) to obtain the real z-distribution of
our LAEs (see Sect. 2 and red curve in Fig. 2). Randomly clus-
tered samples with the same number of objects as the real sample
are created from the real redshift distribution. Each new galaxy
is located at a random position within the MUSE-Wide survey
footprint, with a specific redshift provided by the combination
of LF and SF. Following this procedure, we generate 500 differ-
ent random samples and compute K0,a2

a2,a3 in each of the samples.
For each bin, the uncertainty has been obtained as the standard
deviation from the resulting Ka1,a2

a2,a3 of the different 500 random
samples.

We show the two main uncertainty approaches for the K-
estimator in Fig. C.1. We also include the approximated Poisson
errors

√
Na1,a2/(Na1,a2 + Na2,a3) calculated by the error propaga-

tion of Eq. 1.
While the random errors are 20% smaller than Poisson

errors, we find that the uncertainties from bootstrapping are
moderately larger (∼35%) than the Poissonian ones. In order to
remain conservative (and even if all uncertainties are compara-
ble), we decided to compute the error bars in our K-estimator
analyses following the classical bootstrapping approach. Hence,
uncertainties due to cosmic variance are not represented yet in
our error estimates of the real data. In other words, repeating the
same LAE clustering studies in different regions of the sky can
lead to clustering signals outside our expected uncertainty range.
The cosmic variance contribution to the total error budget was
explored in Sect. 5.5. Including this contribution results in ∼70%
larger uncertainties. However, this additional uncertainty does

not impact our results when comparing the subsamples because
they are obtained in the same sky field.

Appendix D: Two-point correlation function
analysis

D.1. 2pcf method

Overall, 2pcf is the most commonly used statistical approach to
explore the clustering in a sample of objects. Traditionally, those
samples cover a broad spatial coverage that accounts for cosmic
variance and allows the computation of a covariance matrix to
estimate clustering uncertainties. With the MUSE-Wide survey,
we are facing the opposite scenario: small spatial coverage and
a wide redshift range.

In reconstructing the 2pcf, we follow standard recipes
(Landy & Szalay 1993). To recall, ξ(r) quantifies the excess
probability P over a random Poisson distribution of finding a
pair of galaxies separated by a distance r (Peebles 1980)

dP = n[1 + ξ(r)]dV, (D.1)

where dV is the infinitesimal volume occupied by the pair and n
is the average number density of galaxies.

Galaxy distances along the light of sight (LOS) cannot be
measured directly. Instead the redshift information of the galax-
ies is used, which is affected by their peculiar velocities. In order
to eliminate this effect, the so-called redshift space distortions
(RSD), we compute the correlation function in a 2D grid. We
measure the separation of pairs in the perpendicular distance to
the LOS direction, rp, and parallel to the LOS direction, π. We
then count pairs of LAEs within given separations and compare
them to those in a random sample of galaxies by means of the
Landy-Szalay estimator (Landy & Szalay 1993)

ξ(rp, π) =
DD(rp, π) − 2DR(rp, π) + RR(rp, π)

RR(rp, π)
, (D.2)

where DD, RR and DR are the normalized data-data, random-
random and data-random pairs. In other words, expressing
the actual number of pairs as npair,DD(rp, π), npair,DR(rp, π) and
npair,RR(rp, π):

DD = npair,DD(rp, π)/[ND(ND − 1)]

DR =
1
2

npair,DR(rp, π)/(NDND)

RR = npair,RR(rp, π)/[NR(NR − 1)]. (D.3)

ND and NR are the total number of galaxies in the real and ran-
dom sample, respectively.

We then calculate the projected correlation function ω(rp) by
integrating ξ(rp, π) along the π-direction (Davis & Peebles 1983)

ωp(rp) ≈ 2
∫ πmax

0
ξ(rp, π)dπ, (D.4)

where ωp is the projected 2pcf and πmax is the maximum allowed
LOS distance between pairs of galaxies to be considered as a
pair. Also, πmax is chosen such that it accounts for most corre-
lated pairs and the amplitude of ωp(rp) is able to converge. Very
large values would mainly increase the noise since there are not
many correlated pairs at large LOS distances. In contrast, very
low values would not include most correlated pairs and would
effectively underestimate ωp(rp).
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Fig. D.1. Best PL and HOD fits to the projected 2pcf ωp(rp) for πmax =
60 h−1 Mpc. The dashed green curve shows the PL-fit while the dotted
red curve represents the HOD fit. The error bars are determined from
the random approach explained in Appendix D.2.

We compute π within 10−300 h−1 Mpc in steps of
10 h−1 Mpc and rp in the range of 0.375 < rp/h−1 Mpc < 13.155
in 9 logarithmic bins. We then calculate the projected correlation
function ωp(rp) for each π value and fit the analytical solution:

ωp(rp) = rp

(
r0

rp

)γ
Γ(1/2) Γ((γ − 1)/2)

Γ(γ/2)
, (D.5)

where Γ(x) is the Gamma function. The fittings are performed in
the range 0.584 < rp/h−1Mpc < 13.155 (two-halo term only) for
each of the ωp(rp) curves.

We measure the correlation length of the curves using
Eq. D.5 with a fixed slope of γ = 1.8. In order to be conserva-
tive, we use πmax = 60 h−1 Mpc. Similar πmax values are obtained
with the simulation described in Sect. 5.5. Literature πmax values
in similar LAE clustering studies used less conservative values
(15−20 h−1 Mpc; Durkalec et al. 2014, 2018).

Besides the πmax determination, the measurement of the 2pcf
also demands the modelling of a random sample of galaxies with
the same geometry, selection effects and observational condi-
tions as the real sample. Hence, we constructed a random sample
from the real z-distribution of the sample (red curve in Fig. 2)
obtained from the SF and the LF of the MUSE-Wide survey
(Herenz et al. 2019). The number of random objects is chosen
to be 100 times the number of galaxies in the real sample. This
makes the variance of DR and RR in Eq. D.2 negligible. We ver-
ified that increasing the number of random galaxies or using
different random samples have an insignificant effect on our
estimates. Each random galaxy is then located at a random posi-
tion of the sky within the MUSE-Wide survey footprint, with a
redshift taken from the real z-distribution. Given that our πmax is
much smaller than the radial comoving distance corresponding
to our sample redshift range, over which the random sample is
constructed, the effects for the integral constraint are negligible
for our ωp(rp).

D.2. Error estimates

The bootstrapping approach applied in the K-estimator method
allows for replacement and galaxy repetitions. This produces an
overlap of galaxies, which introduces an unrealistic clustering
excess in the 2pcf. While this does not affect the K-estimator
because it measures a contrast of galaxy pairs between two LOS
regions and overlaps of galaxies cancel out in both areas, the

Fig. D.2. Analogous to Fig. 6, here showing the contours from the 2pcf
method in black-gray. For a direct comparison to the K-estimator, its
contours have been represented in blue, as well as the r0 computed from
both methods when fixing the slope of the PL to the standard value,
shown with dots. Please note that we consider the contours of the 2pcf
to be likely underestimated (see text for further details).

2pcf is severely affected. We therefore do not consider the boot-
strapping approach as a possible error determination technique
for the 2pcf.

We consider an alternative approach by generating random
samples. Analogous to the error estimates in the K-estimator,
100 different light cones from cosmological simulations should
be used instead; however, it was shown in Sect. 5.5 that the simu-
lated data should not be directly compared to our measurements.
Thus, we created random samples from the real redshift distri-
bution of our LAEs. The random samples have the same number
of objects as the MUSE-Wide survey. The real redshift distribu-
tion is calculated from the luminosity and the selection function
of the sample (Herenz et al. 2019) as described in Sect. 2. We
denote the newly created random sample by R′ to distinguish
from the random sample R in Eq. D.2. The 2pcf in the random
samples is calculated by replacing D by R′ in Eq. D.2 for 100
different newly generated random samples R′ (i.e. Nran = 100).
The scatter of the 100 runs is used as our uncertainty estimation.

This approach is compared to Poissonian
errors calculated by error propagation in Eq. D.2,√

(δDD/RR)2 + 4 · (δDR/RR)2 + ((2DR − DD) · δRR/RR2)2). We
find that the Poissonian uncertainties underestimate the true
clustering errors compared to the random-sample approach
(uncertainties from the random error approach are ∼65% larger
than Poisson errors). However, even the uncertainties from the
random error approach should be understood only as a first
guess. The combination of the 2pcf and the special design of
our MUSE-Wide survey leave this as the only option to estimate
the extent of the uncertainties on the 2pcf.

D.3. Results

We present the projected correlation function ωp(rp) for πmax =

60 h−1 Mpc over the range of 0.375 < rp/h−1 Mpc < 13.155 in
Fig. D.1. The error bars in ωp(rp) have been computed following
the random-sample approach described in Appendix D.2.

Despite the small area covered by the MUSE-Wide survey,
the ωp(rp) curve shows a clear clustering signal. The large num-
ber of galaxies in the MUSE-Wide survey allow us to fit the
clustering signal with a PL-based correlation function, where
both correlation length and slope are constrained simultaneously.
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Table D.1. Best-fit clustering parameters from 2pcf measurements.

r0 [h−1 Mpc] γ bPL bHOD log(MDMH/[h−1 M�])

2.24+0.25
−0.35 1.85+0.25

−0.25 1.66+0.36
−0.42 2.05+0.14

−0.14 10.51+0.16
−0.17

Notes. The correlation length and slope, the linear bias factor assuming a PL correlation function, the linear bias factor and typical dark matter
halo masses from the HOD model are indicated. The uncertainties in the bias factors and DMH masses reflect the statistical error on r0 only.

Thus, we set r0 and γ as the free parameters to be determined
from the fit.

We then use Eq. D.5 to fit ωp(rp) in the two-halo term,
0.584 < rp/h−1 Mpc < 13.155. We also use this rp range to
fit the curve with the HOD model described in Sect. 3.4, same as
for the K-estimator. The measured best-fit parameters are listed
in Table D.1 and shown in Fig. D.1. The probability contours
from the r0-γ grid of the PL-fit are shown in Fig. D.2, along with
those from the K-estimator to allow a direct comparison (see
Appendix D.4 for a discussion of the different clustering meth-
ods and results).

With the PL-fit, we find r0 = 2.24+0.25
−0.35 h−1 Mpc with a cor-

relation slope γ = 1.85 ± 0.25. These parameters correspond to
b = 1.66+0.36

−0.42. These results are in agreement with the derived
correlation lengths from the one-bin fit (fixed γ = 1.8) and
from the PL-fit (free r0 and γ) to the K-estimator (contours in
Fig. D.2). However, for the 2pcf case, γ is much closer to the
canonical value than the K-estimator. When considering HOD
fits, we obtain b = 2.05 ± 0.14, somewhat lower (1.3σ) than the
b = 2.80 ± 0.38 obtained with the K-estimator. The differences
in the derived linear bias factors from PL and HOD fits are dis-
cussed in detail in Sect. 5.3.

In order to better constrain the correlation parameters, we fix
the correlation slope and determine only the correlation length.
Following this procedure (and in an effort to remain consistent
with the literature), we fix the slope to γ = 1.8 and derive from
the one-parameter fit r0 = 1.85±0.15 h−1 Mpc. This value agrees
at a one sigma level with the one derived from the K-estimator
(r0 = 2.60+0.72

−0.67 h−1 Mpc; fixed γ = 1.8).

D.4. K-estimator vs 2pcf

The various clustering methods studied in this paper allow us
to compare not only their respective results but also their suc-
cess as methods themselves in these sort of surveys. While the
2pcf is well known, the K-estimator is still relatively unexplored.
However, for galaxy surveys that cover small areas of the sky,
but span wide redshift ranges the K-estimator seems to be a
more suitable clustering method than the commonly used 2pcf.
Both methods have important similarities but also present criti-
cal differences. First of all, the concept of measuring clustering
itself differs. While the 2pcf measures the spatial clustering by
comparing pairs of galaxies to those in random samples, the K-
estimator compares the contrast of galaxy pairs in two consecu-
tive shells along LOS distances, without introducing any random
sample and focusing on redshift clustering rather than on spatial
clustering. Secondly, choosing the most suitable K-estimator or
the upper integration limit πmax in the 2pcf share some concepts.
The πmax value where the 2pcf saturates collects the maximum
number of galaxy pairs and tries to discard noise from distant
uncorrelated pairs. The a2 and a3 values of the K-estimator boost
the clustering signal by finding the two shells along LOS separa-
tions where the highest contrast of galaxy pairs is encountered.
Therefore, πmax just represents an upper integration limit in LOS

distances and a2 and a3 are the length of the shells with the high-
est difference in pair counts. Typically, a3 should be below the
upper integration limit πmax. Finally, both methods quantify the
clustering of a sample of galaxies by counting galaxy pairs in 3D
space.

Although the two methods present a clustering signal over
equal transverse distances, Ri j and rp, and the ai values are
within the πmax limit, the fitting parameters are somewhat dis-
tinct. This was expected because, first, the 2pcf in this type of
surveys has issues. Its performance is affected by the small spa-
tial coverage of the data and the survey geometry. We do not see
a clear saturation point of the ω(rp) curves for the different πmax
values and, in addition, error estimations, such as the jackknife
method, fail. Hence, we believe that we are exploring the limit
of the method. Secondly, the fits for both methods are carried out
in different ways (see Sect. 3.1 and Appendix D.3). While we fit
ωp(rp) with its analytical solution (Eq. D.5), the K-estimator is
either compared to the expectation value of Ka1,a2

a2,a3 (Eq. 2) through
the one-fit approach or fitted with a PL with the PL-fit approach.
If we allow r0 and γ to freely vary in the fit for both methods, the
correlation lengths, bias factors and DMH masses obtained from
the K-estimator and the 2pcf are r0 = 3.60+3.10

−0.90 h−1 Mpc, γ =

1.30+0.36
−0.45 bHOD = 2.80+0.38

−0.38, log(MDMH/[h−1 M�]) = 11.34+0.23
−0.27

and r0 = 2.24+0.25
−0.35 h−1 Mpc, γ = 1.85 ± 0.25, bHOD = 2.05+0.14

−0.14
and log(MDMH/[h−1 M�]) = 10.51+0.16

−0.17, respectively. Even if the
HOD fits from the K-estimator are higher (1.3σ) than those com-
puted with the 2pcf, the 68.3% confidence intervals of the PL-fits
agree.

A noteworthy addition to our discussion is the uncertainty
dissimilarities between the methods, where the difference in the
probability contour sizes of Fig. D.2 come from. It is impor-
tant to notice that the uncertainties in the K-estimator were
obtained through the bootstrapping approach. However, boot-
strapping causes overlaps of galaxies to which the K-estimator is
insensitive, but in the 2pcf case, this causes a significant boost in
the clustering signal. Thus, we have to consider the random sam-
ple approach as the only way to give some educated guess on the
2pcf uncertainties, even if it most likely still underestimates the
real uncertainties. Therefore, the 2pcf contour shown in Fig. D.2
is also most likely underestimated.

For the 2pcf we had to apply the standard (uncorrelated)
χ2 analysis with likely underestimated uncertainties, while for
the K-estimator we were able to renormalize the χ2 analy-
sis and used conservative uncertainty estimates as described in
Sect. 3.1.3. Despite these fundamental differences the clustering
results derived from both methods still agree within their com-
bined 2σ uncertainties.

The K-estimator is a more suitable clustering statistic than
the 2pcf in these kind of surveys for the following reasons:
(i) The K-estimator exploits the large redshift coverage rather
than the spatial extent (more than 1000 h−1 Mpc along the LOS
direction vs only 20 h−1 Mpc over transverse separations); (ii) it
does not require a random sample so integral constraint issues
do not take place; (iii) we can use bootstrapping uncertainties
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when the jackknife technique is not an option; and (iv) with the
K-estimator we provide a straightforward recipe to obtain rough
a2 and a3 values (unlike πmax in the 2pcf).

Appendix E: Effect of redshift space distortions on
our measurements

Both PL and HOD fit approaches show a high performance on
the K-estimator. Nevertheless, none of them account for the red-
shift space distortions present in the observations of the high-
redshift Universe. Galaxy structures are observed to be ‘falling
into’ large-scale overdensities, which varies the projected veloc-
ity along the LOS direction from that linked to its cosmologi-
cal redshift. As explained in Sect. 3.4, we include the effects of
the redshift distortion in the HOD model using the linear the-
ory to the two-halo term only. Therefore, the large-scale stream-
ing motion towards overdense regions (i.e. Kaiser infall, Kaiser
1987) is corrected in the linear regime.

In order to account for these effects, we implement the HOD
correlation function in redshift space, ξ(s), accounting thus for
RSD. We represent the HOD fit to the K-estimator both from the
spatial space, ξ(r), (same as in Sect. 4) and the redshift space,
ξ(s), in Fig. E.1.

The HOD fit from the redshift space correlation function
(i.e. with RSD) is slightly higher than that from the real space

Fig. E.1. Best HOD fits to the K-estimator from ξ(r) (same as the thick
curve in Fig. 7) and ξ(s). The dotted red curve represents the HOD that
takes into account the effect of the RSD, while the dashed red curve
shows the HOD fit without RSD. The black line represents an unclus-
tered sample of galaxies.

correlation function (i.e. without RSD) at small separations
(Ri j < 1 h−1 Mpc), showing the minimal RSD effect on the
K-estimator. This small rise translates into an increase in the
derived bias factor, from b = 2.80+0.38

−0.38 to b = 2.84+0.33
−0.34, indis-

tinguishable within the 1σ error bars.
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