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ABSTRACT
Depending on their sizes, dust grains store more or less charges, catalyse more or less chemical reactions, intercept more or
less photons and stick more or less efficiently to form embryos of planets. Hence, the need for an accurate treatment of dust
coagulation and fragmentation in numerical modelling. However, existing algorithms for solving the coagulation equation are
overdiffusive in the conditions of 3D simulations. We address this challenge by developing a high-order solver based on the
discontinuous Galerkin method. This algorithm conserves mass to machine precision and allows to compute accurately the
growth of dust grains over several orders of magnitude in size with a very limited number of dust bins.

Key words: methods: numerical – dust, extinction.

1 IN T RO D U C T I O N

Solid particles pervade the interstellar medium at all scales. Although
they represent a small amount of its total mass, they deeply influence
its evolution by setting the local chemical, thermal, and charge
balances. Dust plays also a key role in the formation of planets,
since solid bodies grow over 30 orders of magnitude in mass to form
cores of planets. Spatially resolved observations of young stellar
objects strongly suggest that at least some planets have to form in
less that one million of years (e.g. ALMA Partnership et al. 2015;
Avenhaus et al. 2018; Pinte et al. 2020). Key is to understand how
dust growth can be so efficient. However, planet formation is an
out-of-equilibrium non-linear multiscales and multiphysics process.
For example, dust grains differentiate from the gas as they settle
vertically and drift radially in the disc (i.e Testi et al. 2014, and
references therein). This creates instabilities which concentrate the
solids even more, affecting the collisional rate of the grains, and thus,
their growth or fragmentation. Since dust dynamics strongly depends
on the grain size, growth operates a strong feed-back on the spatial
distribution of the particles.

Hence, 3D dust/gas simulations that include growth and fragmen-
tation are compulsory to understand dust evolution during the early
stages of planet formation (e.g. Safronov 1972; Hayashi & Nakagawa
1975; Weidenschilling 1980; Ohtsuki, Nakagawa & Nakazawa 1990;
Wetherill 1990; Tanaka, Inaba & Nakazawa 1996; Dominik et al.
2007; Ormel, Spaans & Tielens 2007; Birnstiel, Dullemond &
Brauer 2010). The simplest way to formalize the evolution of a local
mass distribution of dust grains is by the mean of the deterministic
mean-field Smoluchowski equation, which assumes binary collisions
(Smoluchowski 1916). This equation does not have generic analytic
solutions. Integrated non-linearities challenge numerical solvers to
obtain accurate solutions (see Fig. 1). As such, this equation has
been thoroughly studied since a century (e.g. Müller 1928; Schumann

� E-mail: maxime.lombart@ens-lyon.fr (ML); guillaume.laibe@ens-lyon.fr
(GL)

Figure 1 An illustration of the growth overdiffusion problem: numerical
schemes of order 0 overestimate the formation of large grains at low
resolution. The plot has been realized with the scheme presented in Kovetz
& Olund (1969) for the case of a constant kernel K = 1 with N = 15
logarithmically spaced dust bins.

1940; Chandrasekhar 1943; Melzak 1953; McLeod 1962a; Golovin
1963; Berry 1967; Scott 1968; Trubnikov 1971; Hidy & Brock 1972;
Drake 1972; Gillespie 1975b; Silk & White 1978; Silk & Takahashi
1979; Gelbard, Tambour & Seinfeld 1980; Aldous 1999; Friedlander
et al. 2000; Ramkrishna 2000; Filbet & Laurencot 2004; Jacobson
2005; Pruppacher & Klett 2010), and applied extensively to several
fields such aerosols science, chemistry, meteorology, biology, and
astrophysics.

It has been shown that classical solvers require a sufficient
resolution in mass to avoid artificial formation of aggregates of
large masses (Soong 1974; Berry & Reinhardt 1974; Trautmann
& Wanner 1999; Khain & Pinsky 2018). This artificial diffusion may
become particularly important when the mass interval considered
is large (Fig. 1). Typically, for planet formation, a few hundreds
of mass bins are required to compute dust growth from interstellar
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sizes to pebbles. Usually, this fact is of no importance given current
computational capacities. However, 3D hydrodynamical simulations
can hardly handle more than (a few) ten(s) of mass bins in practice.
Compromises have therefore been performed either by simplifying
their growth or their dynamics. However, 1D–2 D hydrodynamical
codes integrating the Smoluchowski equation (e.g. Birnstiel et al.
2010) provide different results compared to 3D hydrodynamical
codes with monodisperse growth models (e.g. Gonzalez, Laibe
& Maddison 2017), showing the necessity of a comprehensive
approach. This implies to develop a solver which solves accurately
the Smoluchowski equation with a limited number of bins, tractable
by 3D hydrodynamical codes.

Reaching high accuracy with a low number of bins while conserv-
ing mass of a finite interval of mass is a characteristic property of
finite volume high-order solvers, which stem therefore as a natural
way to address the growth overdiffusion problem. In this study, we
present a high-order solver for the Smoluchowski equation based on
the Discontinous Galerkin method, following the pioneering work of
Liu, Gröpler & Warnecke (2019). Important properties of the Smolu-
chowski equation discussed in the astrophysical context are presented
in Section 2. The novel Discontinous Galerkin numerical scheme is
presented in Section 3. The performances of the solver regarding the
overdiffusion problem are studied in Section 4. Applicability of the
algorithm to young stellar objects or in other astrophysical contexts
are discussed in Section 5.

2 SM O L U C H OW S K I EQUAT I O N

2.1 Short summary

The Smoluchowski equation describes mass conservation for a dis-
tribution aggregates where mass transfers are allowed. This equation
exists under a discrete form (monomers forming polymers) or a
continuous limit form when mass quantization becomes negligible
(Müller 1928). The Smoluchowski equation is a non-linear integro-
differential hyperbolic equation that depend on a collision function
called the growth kernel (or kernel) which quantifies the collision rate
between two grains. Explicit solutions exist only for the so-called
constant (Smoluchowski 1916; Schumann 1940; Scott 1968), addi-
tive (Golovin 1963; Scott 1968) and multiplicative kernels (McLeod
1962a; Scott 1968), implying numerical resolution for physical
problems. Among the known solutions, self-similar solutions are
particularly important since they provide asymptotic behaviour of
the mass distribution at large times (Schumann 1940; Friedlander
& Wang 1966; Wang 1966; Menon & Pego 2004; Niethammer,
Throm & Velázquez 2016; Laurençot 2018). A generic feature of
these solutions is the exponentially fast decay of the solution at large
masses. Gelation, that is, formation of aggregates of infinite mass
form in a finite time for kernels sustaining explosive growth (Leyvraz
& Tschudi 1981). In astrophysics, collisions occurs essentially
through ballistic impacts modulated by focusing due to long-range
interactions (Safronov 1972; Dullemond & Dominik 2005). Kernels
are non-explosive and mass remains rigorously conserved during the
grow process.

2.2 Conservative form

Mass conservation for a distribution of growing grains has been orig-
inally formalized by Smoluchowski (1916). Growth is modelled via
binary collisions between spheres having known mean probabilities.
The by-products of collisions are called aggregates or polymers. In
Smoluchowski (1916), aggregates are assumed to also have spherical

Figure 2. Illustration of the Smoluchowski equation equation (1). Polymers
of mass mi are represented in orange. The green and blue polymers have
masses lower than mi. Creation (respectively, growth) of polymers of mass
mi increases (respectively, decreases) its number density.

shapes. Spatial correlations are neglected. The smallest colliding
elements are referred as monomers. For physical systems involving
aggregates made of large numbers of monomers, it is often convenient
to assume continuous mass distributions. The population density of
grains within an elementary mass range dm is characterized by its
number density n(m). The continuous Smoluchowski equation is
given by

∂n(m, t)

∂t
= 1

2

∫ m

0
K(m − m′, m′)n(m − m′, t)n(m′, t)dm′

−n(m, t)
∫ ∞

0
K(m,m′)n(m′, t)dm′, (1)

where t denotes time and m and m
′

the masses of two colliding
polymers. The averaged probabilities of collision are encoded inside
the coagulation kernel K(m, m

′
), which is a symmetric function

of m and m
′

for binary collisions (see Section 2.3). Fig. 2 shows
the physical meaning of the non-linear integrodifferential equation
equation (1). The number of grains encompassed within a given
interval of masses varies since (i) binary collisions of aggregates of
appropriate masses can increase this population (first term of the
right-hand side of equation 1), but (ii) those grains may themselves
collide with other grains to form larger aggregates (second term of
the right-hand side of equation 1). This equation can be put under
a convenient dimensionless form by introducing (Scott 1968; Drake
1972){

x ≡ m/m0, y ≡ m′/m0, K(x, y) = K(m,m′)/K0,

τ = (K0N0)t, f (x, τ ) = m0 n(m, t)/N0.
(2)

N0 is the initial total number density of particles, m0 is the initial
mean mass of the particles, and K0 is a normalizing constant with
dimensions [length]3/time. We adopt the variables x and τ for
sake of clarity and homogeneity with the existing literature (e.g.
Friedlander et al. 2000; Jacobson 2005, and references therein). x
denotes therefore masses. Equation (1) transforms into

∂f (x, τ )

∂τ
= 1

2

∫ x

0
K(y, x − y)f (y, τ )f (x − y, τ )dy

− f (x, τ )
∫ ∞

0
K(y, x)f (y, τ )dy. (3)

Equation (3) is physically ill-posed, since the probability to form
aggregates of mass larger than the initial mass of the system may be
non-zero. Recently, Tanaka et al. (1996) have shown that equation (3)
can be equivalently written under the conservative form{

∂g(x,τ )
∂τ

+ ∂Fcoag[g](x,τ )
∂x

= 0
Fcoag[g](x, τ ) = ∫ x

0

∫ ∞
x−u

K(u, v)g(u, τ ) g(v,τ )
v

dudv,
(4)
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Table 1. Functional form of the different coagulation kernels K considered
in this study.

Kernel K(x, y)

Size-independent 1
Sum x + y
Product xy
Ballistic π (x1/3 + y1/3)2�v

where g(x, τ ) ≡ xf(x, τ ) is the mass density of polymers per unit
mass, and Fcoag[g](x, τ ) is the flux of mass density across the mass
x triggered by coagulation (Filbet & Laurencot 2004). Under this
conservative form, the infinite upper bound of the second integral
in Fcoag can simply be replaced by xmax − u. This prevents the
formation of aggregates of masses larger than xmax by settling the
passing-through mass flux to be rigorously zero.

2.3 Kernels

Physically, the coagulation kernel is defined according to

K(m,m′) ≡ β(m,m′, �v)�v(m, m′)σ (m,m′), (5)

where �v is the mean relative velocity between two aggregates of
masses m and m

′
, σ is the mean effective cross-section of collision,

and β denotes the mean sticking probability of the grains. The
coagulation kernel encodes the microphysics of collisions inside
β, σ , and �v, those parameters depending a priori on the sizes of
the colliding grains, or the kinetic and thermodynamical parameters
of an eventual surrounding flow. A kernel of particular importance
for physical problems is the Ballistic kernel (Table 1). In this case,
σ corresponds simply to the geometric cross-section of the grains
(focusing effects due to electrostatic or gravitational forces being
neglected), and β and �v are treated as constants (which may be
a relevant approximation at least over moderate ranges of masses).
Coagulation kernel can also be seen as mathematical objects useful
to study the properties of the Smoluchowski equation under various
conditions or to derive explicit analytic solutions. The expression of
the four kernels discussed in this work is given in Table 1.

2.4 Analytic solutions

Explicit analytic solutions exist in the case of simple kernels and
specific initial conditions. We review these solutions hereafter since
they will be used in Section 4 to benchmark the numerical algorithms.

2.4.1 Constant kernel

For the constant kernel K(x, y) = 1 and the initial condition f(x, 0) =
exp (− x), the solution of equation (3) is (Müller 1928; Schumann
1940; Melzak 1957; Rajagopal 1959; Scott 1968; Silk & Takahashi
1979){

f1(τ ) ≡ 4
(2+τ )2 , f2(τ ) ≡ τ

2+τ
,

f (x, τ ) = f1(τ ) exp(−{1 − f2(τ )}x).
(6)

Physically, a constant kernel K = 1 implies that the frequency of
collisions between two aggregates is independent of their size.

2.4.2 Additive kernel

The solution for the additive kernel K(x, y) = x + y with the initial
condition f0(x, 0) = exp (− x) has been derived by Golovin (1963).

Scott (1968) extended the derivation for a general initial condition.
For an initial condition under the form f(x, 0) = exp (− x), the solution
of equation (3) is{

T ≡ 1 − exp(−τ ),
f (x, τ ) = (1−T ) exp(−x{1+T })

xT 1/2 I1(2xT 1/2),
(7)

where I1 is the modified Bessel function of first kind. Physically,
the additive kernel implies that the frequency of collisions increases
according to the size of the grains. Large aggregates form faster
compared to case of a constant kernel, leading to broader dust
distributions at large masses. The asymptotic tail presents therefore
a smoother decay compared to the case K = 1.

2.4.3 Multiplicative kernel

Originally, McLeod (1962b) derived a solution for the multiplicative
kernel K(x, y) = xy with the initial condition f0(x, 0) = x−1exp (−
x) only for a small interval of time. The general solution for this
problem was later found by Ernst, Ziff & Hendriks (1984)⎧⎨
⎩ T ≡

{
1 + τ if τ ≤ 1
2τ 1/2 otherwise

,

f (x, τ ) = exp(−T x)I1(2xτ1/2)
x2τ1/2 .

(8)

The multiplicative kernel is a typical kernel to study the occurrence
of gelation, since at τ = 1, aggregates with infinite masses form and
mass conservation is mathematically no longer satisfied. Physically,
the multiplicative kernel means an explosive increase of the colli-
sional frequencies with respect to grain sizes. Massive grains form
faster compared to the case of the additive kernel. In the same time,
the mass density of small grains decreases quickly.

2.5 Numerical methods

No known analytic solutions exist for the Smoluchowski coagulation
equation with physical kernels, implying numerical resolution. Var-
ious numerical schemes have been developed for this purpose. Two
classes of algorithms have been developed. A first class of solvers
consists of Monte Carlo simulations (e.g. Gillespie 1975a; Liffman
1992; Smith & Matsoukas 1998; Lee & Matsoukas 2000; Debry,
Sportisse & Jourdain 2003; Sheng & Shen 2006; Ormel et al. 2007;
Zsom & Dullemond 2008). Although convenient, these methods have
two principal drawbacks. First, a large number of particles is required
to ensure appropriate accuracy of the number density distribution f.
Secondly, the scheme is not deterministic and simulations can be
reproduced only in a statistical sense, which is not satisfying when
interfacing with hydrodynamics. A second class of solvers consist
of deterministic algorithms. These methods have been summarized
in Kostoglou & Karabelas (1994), Kumar & Ramkrishna (1996),
Ramkrishna (2000), Pruppacher & Klett (2010), and Khain & Pinsky
(2018). A short but comprehensive summary is given hereafter.

2.5.1 Method of moments

The method of moments seems to be the first numerical method
proposed to solve the Smoluchowski equation (Hulburt & Katz
1964). A system of ordinary differential equations (ODEs) is written
over the kth moments Mk ≡ ∫ ∞

0 xkf (x, τ )dx of the number density
function. Approximations either for the reconstruction of f (Hulburt
& Katz 1964) or for the derivation of fractional moments (Estrada
& Cuzzi 2008) are then required to close this system of ODEs.
The standard moment method requires an analytical integration of
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the kernel. To avoid this difficulty, quadrature moment methods,
where integrals are approximated by Gaussian quadrature methods,
have been developed. Solutions of moments can be used directly to
derive the total number of particles M0, the total mass M1 or other
physical quantity such as dust opacities (Marchisio, Vigil & Fox
2003; Estrada & Cuzzi 2008). Number densities f are reconstructed
using polynomials (Pruppacher & Klett 1980; Piskunov & Golubev
2002).

2.5.2 Point-based methods

The number density function f is sampled over a mass grid. The
main difficulty lies in representing the continuous distribution f as
accurately as possible using the values of f at the sampling points.
Different algorithms have been developed using this approach:

2.5.3 Interpolation method

This method was developed by Berry (1967) and Berry & Reinhardt
(1974). The continuous Smoluchowski equation is written in terms
of g(x, τ ) ≡ xf(x, τ ), the mass density function. The mass interval is
discretized using a logarithmic grid. A system of ODEs is derived
with respect to the variable g evaluated on the grid points. Gain
and loss terms are evaluated separately, and integrals are calculated
by using high-order Lagrangian interpolations. Middleton & Brock
(1976) and Suck & Brock (1979) improved this method by using
Simpson’s rules for the integrals and cubic splines interpolations.

2.5.4 Method of orthogonal collocation

The method of weighted residuals (Finlayson 1972) is a general
method for obtaining numerical solutions to differential equations.
The unknown solution is tested over a set of weight functions and
is adapted to give the best approximated solution to the differential
equation. The Smoluchowski equation is multiplied by the weight
function φ and integrated over all the mass domain to form the
residual

R ≡
∫ ∞

0

(
∂f (x, τ )

∂τ
−

∫ x

0
K(x − y, y)f (x − y, τ )f (x, τ )dy

+
∫ ∞

0
K(x, y)f (x, τ )f (y, τ )dy

)
φ(x)dx = 0. (9)

The number density f is approximated by polynomials. The collo-
cation method corresponds to the case where φ(x) = δ(x − x0).
The coagulation equation is evaluated at the collocation points x0.
This gives a set of ODEs equal to the degree of freedom of the
polynomials used. Integrals are usually performed using Gaussian
quadrature rules (Eyre, Wright & Reutert 1988).

2.5.5 Pair interaction methods

Numerical integration of the Smoluchowski equation consists of
summing contributions of pairwise collisions between all grid points
of different masses. For non-regular mass samplings, aggregates do
usually not have masses corresponding to an existing grid point. To
ensure mass conservation, the mass of the aggregate is distributed
over the two relevant adjacent grid points (Fig. 3). The first pair-
interaction solver has been developed by Kovetz & Olund (1969).
In this algorithm, a system of ODEs is obtained over the quantities
N (xi) = ∫ bi

ai
f (x)dx where xi denotes the mass of individual particles

of the ith point, and ai ≡ (xi + 1 − xi)/2 and bi ≡ (xi − xi − 1)/2. In

Figure 3. Illustration of the pair interaction methods. A particle of mass
xn + l = xn + xl forms from collision between particles of masses xl and
xn. The resulting mass xn + l is distributed on to adjacent bins, generating
numerical overdiffusion towards large masses.

practice, logarithmic grids are used to cover wide ranges of masses.
In the context of planet formation, widely used solvers follow this
approach (e.g. Brauer, Dullemond & Henning 2008; Birnstiel et al.
2010). The principal drawback of this method is that redistribution
of mass towards large grains tend to overpredict the number of large
aggregates, triggering artificial formation of large bodies (Fig. 1). A
large number of grid points is therefore required to avoid an artificial
broadening of number density of particles f (Berry & Reinhardt 1974;
Soong 1974; Khain & Pinsky 2018). Moreover, a sufficient number
of grid points is also needed to avoid difficulties related to collisions
that form aggregates of masses larger than the largest mass point.
Jacobson (2005) extended the Kovetz & Olund (1969) algorithm by
distributing the mass between grid points and writing the scheme
in a semi-implicit form. This solver ensures mass conservation
to machine precision. Bott (1998), Simmel, Trautmann & Tetzlaff
(2002), and Wang, Xue & Grabowski (2007) developed also binary-
pairs interaction methods. Mass is advected towards adjacent grid
points by a mass flux expressed with a high-order scheme. These
methods do not introduce a significant numerical broadening. Other
methods have been developed by Hounslow, Ryall & Marshall (1988)
and Lister, Smit & Hounslow (1995) where four binary interaction
mechanisms of gain and loss of particles are considered to deal
correctly the rate of change of particle and mass.

2.5.6 Finite element methods

In these methods, the continuous mass distribution is discretized over
a finite number of mass elements (intervals, cells, and bins).

2.5.7 Moments with finite elements

The first finite-element scheme for coagulation was developed by
Bleck (1970) by discretizing mass distributions over logarithmic
bins. f is approximated by its moment of order zero over each bin to
obtain a system of ODEs. Overdiffusion for large grains is observed
with this piecewise constant approximation. A change of variable x
→ x−3 is operated to reduce diffusivity at large masses. The method
of Soong (1974) follows Bleck (1970). The Smoluchowski equation
is written in terms of mass density distributions g and approximated
by piecewise exponential functions. This allows to reduce drastically
the diffusive effect at large masses. Gelbard et al. (1980) and
Landgrebe & Pratsinis (1990) proposed a similar method, where
the Smoluchowski equation is decomposed over bins of indices j
in terms of Qj = ∫

Ij
xf (x, τ )dx. A precise account of gain and

loss of particles in terms of fluxes of Q is performed. Trautmann &
Wanner (1999) extend the work of Gelbard et al. (1980), also finding
numerical diffusion when using piecewise constant approximation,
and addressing it by using piecewise exponential approximations.
Another moment method that involves polynomial approximations
for the first two moments M0 and M1 of f has been proposed by
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Enukashvily (1980), Kumar & Ramkrishna (1996), and Tzivion,
Reisin & Levin (1999).

2.5.8 Discontinuous Galerkin method

The discontinuous Galerkin (DG) method is a weighted residual
method where the weight φ(x) consists of orthogonal polynomials
(Lagrange polynomials, Legendre polynomials, and cubic splines).
The numerical solution of the Smoluchowski equation is decomposed
on each bin over this basis and a system of ODEs is obtained
for the coefficients (e.g. Pilinis 1990; Erasmus, Eyre & Everson
1994; Mahoney & Ramkrishna 2002, see Section 3). Generally, the
integrals are performed by Gaussian quadrature rules (Gelbard &
Seinfeld 1978; Rigopoulos & Jones 2003; Sandu 2006).

2.5.9 Finite-element schemes in the conservative form

The conservative form equation (4) has been exploited for numerical
simulations only lately. Filbet & Laurencot (2004) derived a finite-
volume scheme of order zero where volume integrals over flux
divergences are replaced by flux terms at the interfaces by the
mean of the divergence theorem. This scheme conserves mass
exactly and has been further extended by Filbet (2008), Bourgade
& Filbet (2008), and Forestier-Coste & Mancini (2012). The mass
interval can be sampled uniformly or non-uniformly. Finite-volume
schemes of higher orders solving for the conservative form have
been investigated recently (Gabriel & Tine 2010; Liu et al. 2019).
Gabriel & Tine (2010) used a weighted essentially non-oscillatory
(WENO) reconstruction (Jiang & Peng 2000) to approximate the
coagulation flux at interfaces. Liu et al. (2019) developed a numerical
scheme based on the DG method. This method provides the further
advantage to choose the order of the scheme in a flexible manner.
Integrals are calculated using Gaussian Quadrature rules, which
implies subsampling of the mass intervals.

2.6 Requirements from hydrodynamical simulations

Densities must remain strictly positive and total mass conserved
rigorously to ensure the stability of hydrodynamical simulations.
These two properties are genuinely ensured by finite-volume methods
based on the conservative form equation (4). The double-integral
formulation allows to simply quench the formation of aggregates with
unphysical masses, by setting for the integral bound the maximum
mass allowed. These constrains may not always be satisfied with
simple integral formulations.

On the other hand, observational constrains on young stellar
objects are essentially provided by high-contrast spectropolarimetry
at infrared wavelengths (SPHERE/VLT, GPI, and Subaru/HiCIAO)
and millimetre interferometry (ALMA). These observations probe
(sub)micron-to-millimetre-in-size dust distributions in discs, which
corresponds to 4 orders of magnitude in size, that is, 12 orders of
magnitude in mass for compact grains. With current computational
capacities, 3D dust/gas simulations of dusty discs can handle ∼10–
20 dust species simultaneously (e.g. PHANTOM, Price et al. 2018
or RAMSES, Lebreuilly, Commerçon & Laibe 2020). The global
accuracy of second-order hydrodynamical solvers is of order ∼10−3.
We aim therefore to design a versatile algorithm for coagulation of
accuracy ∼10−3 with ∼15 dust bins distributed over 12 orders of
magnitude in mass that allows tractable simulations. We therefore
face the issue of overdiffusion associated to piecewise constant
reconstructions with few mass bins, and high-order schemes appear

as a natural way to overcome this difficulty. It is much preferable for
hydrodynamics to handle a fix grid of sizes, to avoid interpolations
when updating forces. We seek therefore for a growth algorithm that
works efficiently with a fixed grid.

Additionally, we seek for an algorithm which allows for con-
vergence analysis in 3D hydrodynamical simulations. As explained
above, multiplying the number of dust bins provides prohibitive
computational costs. Instead, the order of the scheme may be varied,
should it be parametrized in a flexible manner. This requirement tends
to favour DG schemes with respect to WENO schemes, although
they provide in theory equivalent accuracies. Compared to regular
Galerkin schemes, DG solvers decompose the solution over several
mass bins. This helps to better capture the exponential decay of the
solution at large masses and avoid overdiffusion biases. For these
reasons, we have chosen to focus on the DG method to solve for
the Smoluchowski equation in astrophysical contexts, an approach
recently pioneered by Liu et al. (2019).

Monofluid dust/gas hydrodynamical solvers provide a natural
architecture to include a coagulation equation. Indeed, relative drifts
between grains of different sizes are genuinely computed, eventually
in the terminal velocity approximation (e.g. Laibe & Price 2014;
Hutchison, Price & Laibe 2018; Lebreuilly, Commerçon & Laibe
2019). Monofluid formalism also ensures exact conservation of
momentum, that is, no thrust due to mass transfers propel the mixture.
Subgrid fluctuations should be prescribed by an accurate model that
describes local turbulence or Brownian motion.

3 D I S C O N T I N U O U S G A L E R K I N A L G O R I T H M

3.1 Discontinuous Galerkin method

The DG method is presented for the general scalar hyperbolic
conservative equation{

∂g(x,τ )
∂τ

+ ∂F [g](x,τ )
∂x

= 0,

(x, τ ) ∈ R+,
(10)

where g is a density of a conservative quantity and F[g] the associated
flux.

Let partition the domain of interest [xmin, xmax] ∈ R in N subin-
tervals (alternatively, cells or bins), not necessarily of equal sizes.
Each cell is defined by Ij = (xj − 1/2, xj + 1/2], j ∈ [[1, N]]. The size
of the jth cell is defined as hj = xj + 1/2 − xj − 1/2. The cell is centred
around the position xj = (xj + 1/2 + xj − 1/2)/2. We define Vk the space
of polynomials of degree k in each cell Ij

Vk = {v : v|Ij ∈ P k(Ij ), j ∈ [[1, N ]]}. (11)

We denote gj ∈ Vk the approximate solution of g in the bin Ij. The
terminology DG comes from the fact that in Vk , the functions are
allowed to have jumps at the interfaces xj + 1/2. One obtains a weak
formulation of equation (10) by multiplying by a test function φ ∈
Vk , integrating over Ij and finally integrating by parts (Cockburn &
Shu 1989)∫

Ij

∂gj

∂t
φdx −

∫
Ij

F [g](x, t)
∂φ

∂x
dx + F [g](xj+1/2, t)φ(xj+1/2)

−F [g](xj−1/2, t)φ(xj−1/2) = 0. (12)

Equation (12) allows to fix unequivocally the degrees of freedom of
the function gj. The residual of equation (10) on bin Ij is defined as

Rj ≡
∫

Ij

∂gj

∂t
φdx −

∫
Ij

F [g](x, t)
∂φ

∂x
dx

+F [g](xj+1/2, t)φ(xj+1/2) − F [g](xj−1/2, t)φ(xj−1/2). (13)
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Growth with discontinuous Galerkin schemes 4303

Figure 4. Sketch of the DG method. In each cell, the solution is approximated
by high-order polynomials k to increase accuracy.

DG schemes consist of choosing a local orthogonal polynomials
basis on Ij to replace the test function and to approximate the solution.
Residuals Rj are therefore null in the sense of orthogonalization on
the basis. In practice, Legendre polynomials are used (Cockburn
& Shu 1989). We denote hereafter the ith Legendre polynomial by
φi(ξ ), where ξ ∈ [−1, 1]. Polynomial functions φi(ξ ) are orthogonal
in L2([−1, 1]) with respect to the inner product with weight unity.
Fig. 4 shows a sketch of the DG method. In each cell, the function
g is approximated by Legendre polynomials. The accuracy of the
approximation increases with respect to the order of the polynomials.
The approximation of g in cell Ij writes

∀x ∈ Ij , g(x) ≈ gj (x, t) =
k∑

i=0

gi
j (t)φi(ξj (x)),

gj (x, t) = gT
j (t) · φ(ξj (x)), with gj =

⎡
⎢⎣

g0
j

...
gk

j

⎤
⎥⎦and φ =

⎡
⎢⎣

φ0

...
φk

⎤
⎥⎦,

(14)

where gi
j is the component of gj on the Legendre polynomials basis.

The function ξj (x) ≡ 2
hj

(x − xj ) is used to map the interval Ij on to
the interval [−1, 1]. Normalizing the Legendre basis gives∫ 1

−1
φ(ξ )φT (ξ )dξ = diδik with di ≡ 2

2i + 1
, (15)

where di is the coefficient of normalization. By combining equa-
tions (12), (14), and (15) one obtains

dgj (t)

dt
= L[g] with

L[g] ≡ 2

hj

⎡
⎢⎣

1/d0

. . .
1/di

⎤
⎥⎦(∫

Ij

F [g](x, t)∂xφ(ξj (x))dx

− [F [g](xj+1/2, t)φ(ξj (xj+1/2))

− F [g](xj−1/2, t)φ(ξj (xj−1/2))]

)
, (16)

where L is the operator that results from applying the DG procedure
to equation (10) with a Legendre polynomials basis. With the
procedure described above, the original system of partial differential
equation (12) is transformed into a system of ODE (16) on to the
coefficients gi

j (t). The initial condition gj(x, 0) is generated by the
piecewise L2 projection of an initial mass density distribution g0(x)
on each bin, i.e.

∀j ∈ [[1, N ]],
∫

Ij

(gj (x, 0) − g0(x))φT (ξj (x))dx = 0. (17)

Orthogonality of Legendre polynomials ensures∫
Ij

gjφ
T dx = hj

2

∫ 1

−1
φ(ξ )φT (ξ )dξ gj (t)

= hj

2
diag[d0, ..., dk]gj (t). (18)

Then, the components of gj are given by

∀j ∈ [[1, N ]],∀i ∈ [[0, k]],

gi
j (0) = 2

hjdi

∫ 1

−1
g0

(
hj

2
ξj + xj

)
φi(ξj )dξj . (19)

Hence, the DG method consists in solving the following Cauchy
problem⎧⎪⎨
⎪⎩

∀j ∈ [[1, N ]],∀i ∈ [[0, k]],
dgj (t)

dt
= L[g],

gi
j (0) = 2

hj di

∫ 1
−1 g0

(
hj

2 ξj + xj

)
φi(ξj )dξj ,

(20)

where L is detailed in equation (16).

3.2 Evaluation of the flux

3.2.1 Regularized flux

The continuous Smoluchowski coagulation equation (3) is defined
over an unbounded interval of masses x ∈ R+. Before applying the
DG procedure, equation (3) is restrained to a physical mass interval.
Moreover, growth from a gaseous reservoir is excluded, meaning
that x > 0. The mass interval is therefore reduced to the interval
[xmin > 0, xmax < +∞] (Filbet & Laurencot 2004; Liu et al. 2019).
The coagulation flux can be truncated according to two procedures
(Filbet & Laurencot 2004). On the one hand

F c
coag[g](x, τ ) =

∫ x

xmin

∫ xmax−u+xmin

x−u+xmin

K(u, v)g(u, τ )

× g(v, τ )

v
dvdu, (21)

where F c
coag is the conservative flux, meaning that no particle of mass

larger than xmax is allowed to form. On the other hand

F nc
coag[g](x, τ ) =

∫ x

xmin

∫ xmax

x−u+xmin

K(u, v)g(u, τ )
g(v, τ )

v
dvdu, (22)

where F nc
coag is the non-conservative flux which allows formation of

particles of mass x > xmax. F c
coag is useful in realistic simulations of

growth, whereas F nc
coag should be used to compare numerical solution

to analytic solutions of equation (1).

3.2.2 Method for evaluating the flux

A crucial difference between this scheme and usual DG solvers
is that the coagulation flux F nc

coag is non-local. The evaluation of
the numerical flux F nc

coag[g] at the interface xj + 1/2 depends on the
evaluation of gj in all cells. Mathematically, F nc

coag is a double integral
of a product of polynomials. Then, the flux is a continuous function
of mass x. At the interface xj + 1/2, the numerical flux reduces to
F nc

coag[g] = F nc
coag[g](xj+1/2, t). In usual DG solvers, the numerical

flux is a discontinuous function and must be reconstructed at the
interfaces (e.g Cockburn & Shu 1989; Zhang & Shu 2010).

The principal difficulty lies in carefully evaluating the flux at
interfaces. This relies on handling the numerical integration of
the polynomials gj in every relevant cell. Liu et al. (2019) use a
Gaussian quadrature method with a Legendre polynomials basis to
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4304 M. Lombart and G. Laibe

approximate the flux. The lower bound of the inner integral x − u
does usually not correspond to a grid point. To accurately perform
the Gauss quadrature, some grid elements must be subdivided,
increasing drastically the cost of the numerical procedure, especially
for high-order polynomials. To avoid prohibitive computational costs
due to cell oversampling, we take advantage of the polynomial
approximation by calculating integrals analytically. This requires
integrable kernels, which is the case for the four kernels presented in
this study. This approach maintains a reasonable computational cost
by not multiplying the number of sampling points. This also avoid
to add errors due to the numerical integration and to approximate
kernels by piecewise constant functions.

3.2.3 Mathematical procedure

To integrate analytically the numerical flux, let define the function g̃

that approximates the function g over the entire mass interval

∀x ∈ [xmin, xmax],

g̃(x, τ ) ≡
N∑

l=1

k∑
i=0

gi
l (τ )φi(ξl(x))[θ (x − xl−1/2) − θ (x − xl+1/2)].

(23)

We assume that the kernel function is explicitly integrable and
can be written as K(u, v) = K1(u)K2(v), which is effectively the
case for the three simple kernels and the ballistic kernel (see
Section 2.3). For instance, the additive kernel writes Kkadd(u, v) =
u + v = K1

1(u)K1
2(v) + K2

1(u)K2
2(v), where K1

1(u) = u, K1
2(v) = 1,

K2
1(u) = 1 and K2

2(v) = v. The numerical flux is split in two terms.
The numerical flux writes

F nc
coag[g̃](x, t) =

N∑
l′=1

k∑
i′=0

N∑
l=1

k∑
i=0

gi′
l′ (t)g

i
l (t)∫ x

xmin

∫ xmax

x−u+xmin

K(u, v)

v

φi′ (ξl′ (u))[θ (u − xl′−1/2) − θ (u − xl′+1/2)]

φi(ξl(v))[θ (v − xl−1/2) − θ (v − xl+1/2)]dvdu. (24)

In the DG equation (12), the numerical flux is evaluated on grid points
xj + 1/2 and xj − 1/2 with j ∈ [[1, N]]. k is the order of the Legendre
polynomials to approximate the solution. Therefore, F nc

coag depends
on j and k. The flux is sampled over a 2D array (N, k + 1) in order
to use vectorial operations to reduce the computational time. The
numerical flux is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F nc
coag[g̃](x, t) =
N∑

l′=1

k∑
i′=0

N∑
l=1

k∑
i=0

gi′
l′ (t)g

i
l (t)T (x, xmin, xmax, i

′, i, l′, l),

T (x, xmin, xmax, i
′, i, l′, l) =∫ x

xmin

K1(u)φi′ (ξl′ (u))[θ (u − xl′−1/2) − θ (u − xl′+1/2)]∫ xmax

x−u+xmin

K2(v)

v
φi(ξl(v))

[θ (v − xl−1/2) − θ (v − xl+1/2)]dvdu.

(25)

A priori, the boundaries for the intervals of integration can be
arbitrarily large. We therefore rescale these intervals to avoid any
numerical issues related to large numbers when calculating the terms
T in the variables ξl′ and ξ l. To avoid critical typos, the term T is
derived with MATHEMATICA by starting with the inner integral on

ξ l and then the integral on ξl′ . Further details about the derivation
of the algorithm are given in Supporting Information on GitHub
(see Data Availability Section 6) for reproducibility. These integrals
do not commute. The high-order solver is written in FORTRAN.
Reducing the number of integrals is key to avoid numerical issues
with differences of large numbers. For this purpose, the expression of
T is split in several terms provided on GitHub (see Data Availability
Section 6). For robustness, all these integrals are calculated with
MATHEMATICA. The MATHEMATICA function FortranForm is used
to translate integral expressions to FORTRAN. For large expressions,
it is necessary to split them with the function MonomialList. The
scheme to evaluate T(x, xmin, xmax, i

′
, i, l

′
, l) in FORTRAN is given on

GitHub (see Data Availability Section 6).
A 4D array with element T(x, xmin, xmax, i

′
, i, l

′
, l) and a 4D array

with element gi′
l′ (t)g

i
l (t) are computed. The element (j, k) of the

2D array corresponding to the flux is obtained by multiplying these
two 4D arrays and summing over of all elements. F nc

coag[g̃] is then
evaluated in xj − 1/2 and xj + 1/2 for all j.

3.3 Evaluation of the integral of the flux

Let denote Fnc
coag the term of equation (12) corresponding to the

integral of the numerical flux. Fnc
coag writes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fnc
coag[g̃, j , k](t) =
N∑

l′=1

k∑
i′=0

N∑
l=1

k∑
i=0

gi′
l′ (t) gi

l (t)T
(
xmin, xmax, j , k, i ′, i, l′, l

)
T

(
xmin, xmax, j , k, i ′, i, l′, l

) ≡∫
Ij

∫ x

xmin

∫ xmax

x−u+xmin

K(u, v)

v
∂xφk(ξj (x))

φi′ (ξl′ (u))[θ (u − xl′−1/2) − θ (u − xl′+1/2)]

φi(ξl(v))[θ (v − xl−1/2) − θ (v − xl+1/2)]dv du dx.

(26)

Fnc
coag[g̃] is evaluated similarly to the flux. A triple integral is derived

with MATHEMATICA with the changes of variables

ξl ≡ 2

hl

(v − xl), ξl′ ≡ 2

hl′
(u − xl′ ), ξj ≡ 2

hj

(x − xj ). (27)

To derive tractable equations for the integrals involving Heaviside
distributions, we start to compute integrals over the variable ξ l,
then calculating the integral over ξl′ and finally, over x. The
details of the calculations and the scheme in FORTRAN to evaluate
T (xmin, xmax, j , k, i ′, i, l′, l) are given in Supporting Information on
GitHub (see Data Availability Section 6) for completeness. Fnc

coag is
computed as a product of 4D arrays similarly to F nc

coag. Accuracy on
T and T depends only the quality of the polynomial approximation
of g by g̃, since the integrals corresponding to F nc

coag[g̃] and Fnc
coag[g̃]

are calculated analytically.

3.4 Slope limiter

For most of astrophysical kernels, the solution of the Smoluchowski
coagulation equation has been mathematically shown to decays with
an exponential tail in at large masses (Schumann 1940; Menon &
Pego 2004). This part is challenging to approximate with polynomi-
als, and numerical estimates gj of g in the bin Ij can lead to negative
values, which is not acceptable physically.

To preserve the positivity of solution, the requirement gj(x, t)
≥ 0 for x ∈ Ij needs to be enforced. The idea is to use a scaling
limiter which controls the maximum/minimum of the reconstructed
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Growth with discontinuous Galerkin schemes 4305

Figure 5. Test case, constant kernel: the numerical solution gj(x, τ ) is plotted for N = 20 bins and k = 0, 1, 2, and 3 from τ = 0 to 30 000, and compared to the
analytic solution g(x, τ ). Vertical grey lines delimit the bins. The accuracy improves for larger values of k. Order 3 approximates the bump where the major part
of the mass is concentrated with accuracy of order ∼0.1 per cent.

polynomials (Liu & Osher 1996; Zhang & Shu 2010; Liu et al. 2019).
This is achieved by a reconstruction step based on cell averaging.
Let us consider the polynomials gj(x) of order k that approximates
g(x) on Ij. Let denote m and M two positive reals Mj ≡ max

x∈Ij
gj (x),

mj ≡ min
x∈Ij

gj (x) and define the scaled polynomials

pj (x) ≡ γj (gj (x) − gj ) + gj ,

γj = min

{∣∣∣∣∣ M − gj

Mj − gj

∣∣∣∣∣ ,
∣∣∣∣∣ m − gj

mj − gj

∣∣∣∣∣ , 1

}
. (28)

where gj refers to the cell average of g in Ij

gj ≡ 1

hj

∫
Ij

gj (x, t)dx. (29)

For all j, we assume gj ∈ [m,M]. pj(x) is a polynomial of order k such
as pj = gj . Liu & Osher (1996) proved that ∀x ∈ Ij, pj(x) ∈ [m, M].
This scaling limiter allows to build a maximum-principle-satisfying

DG scheme, in the sense that the numerical solution never goes out
of the range [m, M]. The main difficulty is to ensure the property
gj ∈ [m,M] during the evolution without loosing high accuracy.

In the DG scheme given by equation (16), polynomials gj(x) are
replaced by the scaled polynomials pj(x) such as

pj (x) = γj

(
gj (x) − gj

) + gj

=
k∑

i=0

γjg
i
j (t)φ1,i(ξj (x)) +

k∑
i=0

gi
j (t)φ2,i(ξj (x)) (30)

with

φ1,i(ξj (x)) ≡
(

φi(ξj (x)) − 1

2

∫
Ij

φi(ξj (x))dx

)
,

φ2,i(ξj (x)) ≡ 1

2

∫
Ij

φi(ξj (x))dx. (31)
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4306 M. Lombart and G. Laibe

Figure 6 Test case, constant kernel: evolution of the numerical absolute error
eM1,N on the moment M1, N for N = 20 bins. The divergence at long times
is explained by accumulation of errors due to numerical diffusion for even
orders k = 0 and 2. Total mass is conserved at machine precision until τ =
104.

Replacing gj by pj in equation (25) gives four terms for the function T:
T11[φ1,i′φ1,i], T12[φ1,i′φ2,i], T21[φ2,i′φ1,i] and T22[φ2,i′φ2,i]. For each
term, a corresponding coefficient gl′,i′ (t)gl,i(t) is associated, namely
γl′gl′,i′ (t)gl,i(t), γl′gl′,i′ (t)gl,i(t), γlgl′,i′ (t)gl,i(t), and gl′,i′ (t)gl,i(t)
(no γ in the last term). F nc

coag is evaluated by summing over those
four terms. The same procedure is applied for Fnc

coag. Therefore, the
positivity of g̃ is ensured in each cell.

3.5 High-order time-stepping

3.5.1 CFL condition

Forward Euler discretization of equation (12) gives

gn+1
j = gn

j − �t

�xj

[
F nc

coag[gj ](xj+1/2, t) − F nc
coag[gj ](xj−1/2, t)

]
,

(32)

for the nth time-step. The Courant–Friedrichs–Lewy condition (CFL)
of the scheme is chosen to guarantee the positivity of the cell average
gn+1

j > 0 (Filbet & Laurencot 2004), that is,

�t <
�xjg

n
j

|F nc
coag[gj ](xj+1/2, t) − F nc

coag[gj ](xj−1/2, t)| . (33)

This CFL condition associated with the slope limiter (see Section 3.4)
ensures the positivity of the global scheme. The CFL condition is
initially dominated by small grains and softens as grains grow.

3.5.2 Strong stability preserving Runge–Kutta method

In equation (4), the spatial derivative ∂xFcoag[g] is approximated by
the non-linearly stable operator −L[g] given in equation (16). For
hyperbolic conservation laws, non-linear stability is characterized by
the total variation diminishing (TVD) seminorm

TV (g) ≡
∑

j

|gj+1 − gj |. (34)

The spatial discretiZation −L[g] has the property that the total
variation of the numerical solution does not increase for a forward

Figure 7. Test case, constant kernel: numerical solution gj(x, τ ) evaluated
with the geometric mean x̂j over each bin Ij. At the location of the maximum,
orders k = 1, 2, and 3 achieve an absolute error of ∼0.1 − 1 per cent, to be
compared with 30 per cent obtained with k = 0. Accuracy in the exponential
tail is improved by a factor 100 with k = 3 compared to k = 0.

Euler integration

gn+1 = gn + �tL[g], �t ≤ �tFE, (35)

when �tFE the CFL condition determined in equation (33), that is,
TV(gn + 1) ≤ TV(gn). TVD property can be generalized to high-order
time discretization with a strong stability preserving (SSP) scheme
(Shu & Osher 1988; Gottlieb, Shu & Tadmor 2001; Zhang & Shu
2010; Liu et al. 2019). The method is SSP if the following condition
holds

TV(gn+1) ≤ TV(gn), (36)

and the time-step satisfies

�tSSP ≤ c�tFE, (37)

where c is a positive coefficient. Stability arguments are based on
convex decomposition of high-order methods in term of the first-
order Euler elements. This ensures that SSP preserves high-order
accuracy in time for any convex functional (e.g. TV). In practice,
errors are dominated by mass discretization. We use an SSP Runge-
Kutta (SSPRK) third-order method (Gottlieb, Ketcheson & Shu
2009; Zhang & Shu 2010; Liu et al. 2019) which writes, with c = 1,

g(1)
j = gn

j + �tSSP L[gn
j ],

g(2)
j = 3

4
gn

j + 1

4

(
g(1)

j + �tSSP L
[
g

(1)
j

])
,

gn+1
j = 1

3
gn

j + 2

3

(
g(2)

j + �tSSP L
[
g

(2)
j

])
. (38)

This SSPRK third-order method ensures that gj ∈ [m, M] for
(m,M) ∈ R+ at all times. Hence, under a suitable CFL condi-
tion, SSP high-order time discretization preserves the property
gj ∈ [m,M] of the DG scheme and the linear scaling presented
in Section 3.4 satisfies a maximum principle.

3.6 Algorithm flowchart

Associating SSPRK with a DG scheme provides overall an high-
order scheme that maintains overall a uniform high-order accuracy
of the solution (Zhang & Shu 2010; Liu et al. 2019). We use the
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Growth with discontinuous Galerkin schemes 4307

SSPRK of third order given by equation (38). Splitting the algorithm
into the following steps ensures positivity:

(i) Initialization: from the initial data g0(x),

(a) generate ∀j ∈ [[1, N ]], gj (x, 0) ∈ Vk by piecewise L2

projection and get the components on Legendre basis equa-
tion (19),

(b) define [m, M] for which gj (x, 0) ∈ [m, M],
(c) replace gj by pj.

(ii) Evolution: use the scheme equation (38) to compute ∀j ∈
[[1, N ]],∀i ∈ [[1, k]], (gi

j )n+1.
(iii) Reconstruction: use equation (30) to reconstruct pj(x, t).

4 NUMERICAL TESTS

The high-order solver presented in Section 3 is benchmarked against
the analytical solutions presented in Section 2.4, similarly to Liu
et al. (2019). Accuracy tests are performed with a small number of
bins, consistently with hydrodynamical requirements.

4.1 Error measurements

Numerical simulations are carried out to (i) investigate the exper-
imental order of convergence (EOC, Kumar, Kumar & Warnecke
2014; Liu et al. 2019) , and (ii) determine the efficiency of the
algorithm. Relative errors are measured using a continuous norm
and a discrete norm. The L1 norm is a natural choice for equations
of conservation. The continuous L1 norm can be approximated by
using a high-order Gaussian quadrature rule

‖f ‖1 ≡
∫ xmax

xmin

|f (x)|dx

=
N∑

j=1

∫
Ij

|f (x)|dx ≈
N∑

j=1

hj

2

R∑
α=1

ωα|f
(
xα

j

) |, (39)

where N is the number of bins, hj is the size of bin Ij, ωα are the
weights, and xα

j are the corresponding Gauss points in cell Ij. We use
R = 16 for sufficient accuracy. The numerical error ec, N is measured
with the continuous L1 norm as

ec,N (τ ) ≡
N∑

j=1

hj

2

R∑
α=1

ωα

∣∣gj

(
xα

j , τ
) − g

(
xα

j , τ
)∣∣ , (40)

where g and gj are the analytic and the numerical solutions of the
Smoluchowski equation. Equation (40) is computed with MATHE-
MATICA using 16 digits for sufficient precision. The discrete L1

norm is defined by evaluating gj and g at the geometric mean
x̂j ≡ √

xj−1/2xj+1/2 of the bin Ij. The numerical error measured with
this discrete L1 norm is

ed,N (τ ) ≡
N∑

j=1

hj |gj (x̂j , τ ) − g(x̂j , τ )|. (41)

We follow Liu et al. (2019) to calculate the EOC

EOC ≡
ln

(
eN (τ )
e2N (τ )

)
ln(2)

, (42)

where eN is the error evaluated for N cells and e2N for 2N cells. For
the calculation of the EOC, the numerical errors are calculated at
time τ = 0.01 for the order of convergence of the DG scheme not
to be altered by time-stepping errors. The moments of the numerical

Figure 8. Test case, constant kernel: the continuous L1 error ec, N and the
discrete L1 error ed, N are plotted as functions of the number of bins per
decade. With ec, N, the experimental order of convergence is EOC = k + 1.
With ed, N, EOC = k + 1 for polynomials of odd orders and EOC = k + 2 for
polynomials of even orders. The DG scheme achieves on ed, N an accuracy of
0.1 per cent with more than 10 bins per decade for k = 0 and 1, with ∼9 bins
per decade for k = 2 and with ∼5 bins per decade for k = 3. An accuracy
of 1 per cent is achieved with ∼9 bins per decade for k = 0 and 1, with ∼5
bins/decade for k = 2 and ∼2 bins per decade for k = 3.

solution are defined according to

Mp,N (τ ) =
∫ xmax

xmin

xp−1g̃(x, τ )dx

=
N∑

j=1

∫
Ij

xp−1gj (x, τ )dx

=
N∑

j=1

k∑
i=0

gi
j (τ )

∫
Ij

xp−1φi(ξj (x))dx. (43)

The total mass of the system writes

M1,N (τ ) =
N∑

j=1

k∑
i=0

gi
j (τ )

hj

2

∫ 1

−1
φi(ξj )dξj︸ ︷︷ ︸
=δ00=2

=
N∑

j=1

hjg
0
j (τ ). (44)

Absolute errors on moments are given by

eMp,N
(τ ) ≡ |Mp,N (τ ) − Mp(τ )|

Mp(τ )
, (45)
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4308 M. Lombart and G. Laibe

Figure 9. Test case, constant kernel: numerical errors ec, N with the L1

continuous norm, ed, N with the discrete L1 norm. All these errors are
calculated for N = 20. Errors remain bounded at large times.

where Mp(τ ) is the moment of order p at time τ for the exact solution.
In usual convergence tests, errors are normalized with respect to the
number of degrees of freedom of the algorithm. This is not the case
here, since we compare absolute gains for the purpose interfacing it
with an hydrodynamical solver.

4.2 Practical implementation of the tests

Numerical tests are performed by comparing numerical solutions
the constant, additive and multiplicative kernels to the solutions
given in equations (6)–(8). Solutions are integrated over the intervals
x ∈ [10−3, 106] for the constant and the additive kernels, and x
∈ [10−3, 103] for the multiplicative kernel. Tests are performed
with FORTRAN, errors are calculated with MATHEMATICA at machine
precision. Quadruple precision is required for the additive kernel
with k = 2, and for all kernels with k = 3. The results are shown for
Legendre polynomials of order k = 0, 1, 2, and 3. Above order
3, numerical errors due to arithmatics of large numbers are not
negligible anymore. A safety coefficient of 1/2 is applied on the
CFL condition, that is, the coagulation time-step used in practice is
dτcoag = 1/2 dτCFL. Initial conditions are set to satisfy the analytic
solution at initial time τ = 0. The analytical and numerical solutions
are compared when particles of large masses are formed at final
times τ that depend on the kernels. Simulations are performed by

Figure 10. Test case, constant kernel: comparison with the scheme of Liu
et al. (2019). Similar accuracies are reached, but being ∼4 times more
effective due to numerical integration.

dividing τ into constant dumps of value dτ (300 for the constant
and the additive kernels, 10 000 for the multiplicative kernel). Each
dump is subdivided in several coagulation steps satisfying the CFL
condition. The analytical derivation of the coagulation flux allows
the algorithm to be efficient, that is, to reach desired accuracy with
a low computational time. To quantify efficiency, the computational
time is compared to the one obtained with the scheme of Liu et al.
(2019) with a number of Gauss points Q = k + 1 on a simulation in
double precision with N = 20 bins, k = 1 for the additive kernel
and k = 2 for the constant and multiplicative kernels. The Liu
scheme is implemented by following the description of Liu et al.
(2019) step-by-step, without additional optimizations. Simulations
are performed in sequential on an Intel Core i7 2.8GHz. We use
the GFORTRAN v9.2.0 compiler. Such a comparison is delicate to
perform and interpret, since it is implementation-dependent. Should
the number of Gauss points in the Liu algorithm be increased to better
approximate the integral terms calculated here analytically, this may
result in an increase of computational time by several orders of
magnitudes, giving the false impression that the Liu algorithm is not
performant. Hence the choice Q = k + 1. Qualitatively, our scheme
is more effective by a factor of several unities for same precision
and without requiring sub-binning, except for the additive kernel for
which the Liu scheme exhibits serendipitous superconvergence (Liu
et al. 2019).

4.3 Constant kernel

4.3.1 Positivity and mass conservation

Fig. 5 shows the numerical solutions obtained for N = 20 bins,
varying the order of the polynomials k. The analytical and numerical
solutions are compared at time τ = 30 000. As expected, the
solution remains positive, as a result from combining the slope
limiter (see Section 3.4) and the SSP Runge–Kutta time-stepping
(see Section 3.5.2). The piecewise linear solution (k = 1) appears
curved due to the logarithmic scale of the x-axis. Fig. 6 shows the
numerical absolute error eM1,N on the moment M1, N for N = 20 bins
from τ = 0 to 30 000. The total mass remains conserved to machine
precision until τ = 104.
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Growth with discontinuous Galerkin schemes 4309

Figure 11. Test case, additive kernel: the numerical solution gj(x, τ ) is plotted for N = 20 bins and k = 0, 1, 2, and 3 from τ = 0 to 3, and compared to the
analytic solution g(x, τ ). Vertical grey lines delimit the bins. The accuracy improves for larger values of k. Order 3 approximates the bump where the major part
of the mass is concentrated with accuracy of order ∼0.1 per cent.

4.3.2 Accuracy of the numerical solution

As expected, the accuracy of the numerical solution improves with
the order of the scheme. Fig. 7 shows the numerical solution obtained
at τ = 30 000 (note the 16 orders of magnitude in mass on the
y- axis in log). The major part of the total mass of the system is
located around the maximum of the curve. Fig. 7 shows that around
this maximum, schemes of order k = 1, 2, and 3 provide errors
of order ∼0.1 − 1 per cent when k = 0 generates errors of order
∼30 per cent. Fig. 7 also shows that numerical diffusion is drastically
reduced in the exponential tail as the order of the scheme increases,
since a gain of a factor ∼100 is obtained with order 3 compared to
order 0.

4.3.3 Convergence analysis

Numerical errors introduced in Section 4.1 are shown on Fig. 8 at τ =
0.01. ec, N and ed, N are plotted as a functions of the number of bins
per decade Nbin/dec, to infer the EOC independently from the global

mass interval. With the continuous L1 norm, the EOC is of order
k + 1 on a geometric grid, similarly to Liu et al. (2019). With the
discrete L1 norm, the EOC is of order k + 2 for odd polynomials, and
k + 1 for even polynomials. We recover second order of convergence
(EOC=2) for the finite-volume scheme with k = 0 that was predicted
by Filbet & Laurencot (2004). Fig. 8 shows that the expected accuracy
of order ∼0.1 per cent on ed, N is achieved with more than 10 bins
per decade for orders 0 and 1, with ∼9 bins per decade for order
2 and with ∼5 bins per decade for order 3. Accuracy of order
∼1 per cent is achieved with ∼9 bins per decade for orders 0 and 1,
with ∼5 bins per decade for order 2, and with ∼2 bins per decade for
order 3.

4.3.4 Stability in time

Time evolution of the numerical errors ec, N and ed, N are shown in
Fig. 9. The results are shown for N = 20 bins for k = 0, 1, 2, and 3
at time τ = 30 000, when particles of large masses have formed. We
verify that ec, N and ed, N remain bounded.
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4310 M. Lombart and G. Laibe

Figure 12. Test case, additive kernel: evolution of the numerical absolute
error eM1,N on the moment M1, N for N = 20 bins. The divergence at long
times is explained by accumulation of errors due to numerical diffusion for
orders k = 0, 2, and 3. Total mass is conserved at machine precision until τ =
1.

Figure 13. Test case, additive kernel: at the location of the maximum, orders
k = 1, 2, and 3 achieve an absolute error of ∼0.1 − 1 per cent, to be compared
with 10 per cent obtained with k = 0. Accuracy in the exponential tail is
improved by a factor 10 000 by k = 3 compared to k = 0.

4.3.5 Computational efficiency

Fig. 10 shows that similar accuracies are obtained with this scheme
and the scheme described in Liu et al. (2019). Computational time
is compared on a simulation with N = 20 bins, k = 2, and a final
time τ = 30 000 after ∼103 time-steps. The computational time
for the Liu et al. (2019) scheme is around 16 s (real time). The
computational time for this scheme is around 4 s (real time). An
improvement of factor 4 is therefore achieved for the computational
time by estimating integrals analytically.

4.4 Additive kernel

4.4.1 Positivity and mass conservation

Fig. 11 shows numerical solutions obtained for N = 20 bins and
k = 0, 1, 2, and 3 at time τ = 3. The numerical solutions remains
positive as grains grow. Fig. 12 shows the evolution of the numerical

Figure 14. Test case, additive kernel: similar to Fig. 8. The DG scheme
achieves on ed, N an accuracy of order 0.1 per cent with more than 10 bins per
decade for k = 0 and 1, with ∼5 bins per decade for k = 2 and 3. An accuracy
of order 1 per cent is achieved with ∼9 bins per decade for k = 0 and 1, with
∼5 bins per decade for k = 2 and with ∼2 bins per decade for k = 3.

absolute error eM1,N on the first moment M1, N. The total mass remains
conserved to machine precision until τ = 1.

4.4.2 Accuracy of the numerical solution

Fig. 13 shows numerical solutions obtained at τ = 3 on a logarithmic
scale. Fig. 13 reveals a strong numerical diffusion for order 0. Numer-
ical errors are indeed integrated and diffused extremely efficiently
towards large masses by the additive kernel. In this case, the mass
density for large-masses particles is overestimated by several orders
of magnitude. High-order schemes reduce this numerical diffusion
as expected. Fig. 13 shows that around the maximum, schemes of
order k = 1, 2, and 3 provide errors of order ∼0.1 − 1 per cent when
k = 0 generates errors of order ∼10 per cent. Numerical diffusion is
reduced in the exponential tail as the order of the scheme increases,
up to reaching a gain of a factor ∼10 000 with order 3 compared to
order 0.

4.4.3 Convergence analysis

Numerical errors are shown on Fig. 14 at τ = 0.01. Accuracy of
order ∼0.1 per cent on ed, N errors are achieved with more than 10
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Growth with discontinuous Galerkin schemes 4311

Figure 15. Test case, additive kernel: numerical errors ec, N with the L1

continuous norm, ed, N with the discrete L1 norm. All these errors are
calculated for N = 20. Errors remain bounded at large times for orders
k = 1, 2, and 3.

bins per decade for order 0 and 1, with ∼9 bins per decade for orders
2 and 3. Accuracy of order ∼1 per cent is achieved with ∼9 bins per
decade for orders 0 and 1, with ∼5 bins per decade for order 2 and
∼2 bins per decade for order 3.

4.4.4 Stability in time

Evolution of the numerical errors ec, N and ed, N are shown in Fig. 15.
The results are shown for N = 20 bins for k = 0, 1, 2, and 3 at
τ = 3, when particles with large masses have formed. At order
0, ec, N (respectively, ed, N) increases significantly after τ ≈ 5 ×
10−1 (respectively, τ ≈ 10−1). On the contrary, ec, N and ed, N remain
bounded for longer times at orders 1, 2, and 3.

4.4.5 Computational efficiency

Computational time is compared to Liu et al. (2019) on a simulation
with N = 20 bins, k = 1 and a final time τ = 3. Fig. 10 shows similar
accuracy for both schemes. The computational time for the Liu et al.
(2019) scheme is around 3 s (real time) for a number of Gauss
quadrature points Q = 2. The computational time for this scheme is 1
s, providing an improvement by a factor 3. Fig. 16 also shows that for
the additive kernel, the Liu scheme with Q = 2 is counterintuitively
more accurate than for Q = 16 and the DG scheme. This result

Figure 16. Test case, additive kernel: comparison with the scheme of Liu
et al. (2019). Unexpected accuracy occurs for integral estimates with Q =
2 Gauss points due to serendipitous error compensations. Our algorithm is
∼3 times more effective due to analytical integration compared to the Lui
scheme with Q = 2.

can be explained by a serendipitous compensation of errors when
approximating the integrals with a Gauss quadrature of low order.

4.5 Multiplicative kernel

4.5.1 Positivity and mass conservation

Fig. 17 shows the numerical solutions obtained for N = 20 bins and
k = 0, 1, 2, and 3 after τ = 100. The numerical solutions remain
positive as grain grow. Fig. 18 shows the evolution of eM1,N . Total
mass remains conserved to machine precision until τ < 1. At τ =
1, gelation occurs, particles with infinite mass are formed (McLeod
1962b; Ernst et al. 1984; Filbet & Laurencot 2004) and total mass is
no longer conserved anymore.

4.5.2 Accuracy of the numerical solution

Fig. 19 shows the numerical solution for the multiplicative kernel at
τ = 100. Accuracy of order ∼0.1 per cent is obtained at all orders,
even k = 0. Physically, growth is effective enough for advection in
the mass space to be more efficient than numerical diffusion.

4.5.3 Convergence analysis

Numerical errors are shown on Fig. 20 at τ = 0.01. Accuracy of
order ∼0.1 per cent on ed, N errors are achieved with ∼15 bins per
decade for orders 0 and 1, with ∼7 bins per decade for order 2, and
with ∼4 bins per decade for order 3. Accuracy of order ∼1 per cent
is achieved with ∼7 bins per decade for orders 0 and 1, with ∼2 bins
per decade for order 2, and with ∼1 bins per decade for order 3.

4.5.4 Stability in time

The evolution of the numerical errors ec, N and ed, N are shown in
Fig. 21. The results are shown for N = 20 bins fo k = 0, 1, 2, and 3
at time τ = 100, when particles with large masses have formed. We
observe that ec, N and ed, N remain bounded, even after the occurrence
of gelation at τ = 1.
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4312 M. Lombart and G. Laibe

Figure 17. Test case, multiplicative kernel: numerical solution gj(x, τ ) is plotted for N = 20 bins for k = 0, 1, 2, and 3 from τ = 0 to 100 and compared to the
analytic solution g(x, τ ). Vertical grey lines delimit the bins. Accuracy of order ∼0.1 per cent is achieved at all orders.

4.5.5 Computational efficiency

Fig. 22 shows similar accuracies for the Liu et al. (2019) scheme
and our implementation. With k = 2, the computational time for the
Liu et al. (2019) scheme is around 8 min for a number of Gauss
quadrature points Q = 3. The computational time is for this scheme
1 min and 40 s, providing an improvement by a factor 5.

5 D ISCUSSION

The DG scheme presented in Section 3 involves polynomials of high-
order, implying issues with differences of large real numbers. Order
k = 3 appears as a maximum limit for the order of the scheme in
its current form in practice. So far, the ratio betwen 106 coagulation
time-steps and one hydrodynamical time-step with PHANTOM using
106 smoothed particle hydrodynamics particles is of order ∼10–
100. We are confident the we can reach a one-to-one ratio by (i)
taking advantage of more ingenious time-stepping (e.g. Carrillo

& Goudon 2004; Goudon, Lagoutière & Tine 2013, (ii) adopt a
more relevant choice for the basis (e.g. Soong 1974), and (iii) use
GPU parallelization, since calls to the coagulation solver by the
hydrodynamical code are independent. These strategies to further
gain accuracy and computational efficiency will be tested in a next
future.

The most relevant kernel for astrophysics is the ballistic kernel
(Section 2.3). Large-scale values of �v are provided by 2D piecewise
constant functions from hydrodynamic codes. In discs, the �v

function encompasses radial drift, vertical settling, and turbulence
at large scales. The ballistic kernel splits in three terms

Kb(u, v) = π(u2/3 + 2u1/3v1/3 + v2/3)�v(u, v)

= Kb,1(u, v) + Kb,2(u, v) + Kb,3(u, v), (46)

Kb,1(u, v) ≡ πu2/3�v(u, v), Kb,2(u, v) ≡ π2u1/3v1/3�v(u, v), and
Kb,3(u, v) ≡ πv2/3�v(u, v). The numerical flux is also split in
three terms that are evaluated analytically. Models of differential
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Growth with discontinuous Galerkin schemes 4313

Figure 18. Test case, multiplicative kernel: evolution of the numerical
absolute error eM1,N on the moment M1, N for N = 20 bins. Mass is conserved
anymore when gelation occurs at τ = 1.

Figure 19. Test case, multiplicative kernel: accuracy of order ∼0.1 per cent
is achieved at any order. Growth is so efficient than is overtakes numerical
diffusion.

velocities are also used to model subgrid small-scale values of �v

(Brownian motion, dusty turbulence at small scales). Shall these
kernels not be integrable, we will estimate them with an appropriate
interpolation.

Figure 20. Test case, multiplicative kernel: the continuous L1 error ec, N and
the discrete L1 error ed, N are plotted as functions of the number of bins per
decade. With ec, N, the experimental order of convergence is EOC = k + 1.
With ed, N, EOC = k + 1 for polynomials of odd orders and EOC = k + 2 for
polynomials of even orders. The DG scheme achieves on ed, N an accuracy
of 0.1 per cent with ∼15 bins per decade for k = 0 and 1, with ∼7 bins per
decade for k = 2 and with ∼4 bins per decade for k = 3 . An accuracy of
1 per cent is achieved with ∼7 bins per decade for k = 0 and 1, with ∼2 bins
per decade for k = 2 and with ∼1 bins per decade for k = 3.

Moreover, the algorithm presented above solves for the Smolu-
chowski equation with pure growth. Although fragmentation plays a
key role in regulating the number of small grains and preventing the
formation of large bodies, it has not being included in the solver yet.
The algorithm presented in Section 3 has been designed to incorpo-
rate fragmentation genuinely by adding the extra fragmentation flux
(Paul & Kumar 2018)

Ffrag[g](x, τ ) ≡
∫ ∞

0

∫ ∞

x

∫ x

0

w

yz
b(w, y, z)K(y, z)g(y, τ )

× g(z, τ )dwdydz, (47)

similarly, for example, to Birnstiel et al. (2010). The kernel K
provides the fragmentation rate between two particles of masses x
and y. The function b is the breakage rate related to the formation of a
particle of mass x from particles of mass y and w. Known functional
forms of the fragmentation kernel should authorize direct analytic
integrations, similarly to the derivations performed in Section 3.2. For
peculiar regimes, fragmentation kernels can alternatively be interpo-
lated. Astrophysical mass distributions are expected to be dominated

MNRAS 501, 4298–4316 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4298/6006886 by C
N

R
S user on 14 April 2023



4314 M. Lombart and G. Laibe

Figure 21. Test case, multiplicative kernel: numerical errors ec, N with the
L1 continuous norm, ed, N with the discrete L1 norm. All these errors are
calculated for N = 20. Errors remain bounded at large times.

by large grains. Hence, the CFL condition for fragmentation should
be similar to the one for growth (Vericel & Gonzalez 2020). If so,
numerical integration will be performed explicitly. If not, implicit
time-stepping can be implemented in a manageable way since the
number of dust bins has been kept minimal with analytic integrations
(i.e. linear algebra with ∼15 × 15 matrices).

Equation (1) restrains dust interactions to binary collisions be-
tween aggregates of spherical shapes. Multiple collisions are not
expected to play a critical role in astrophysics, since dust volume
densities are extremely low. On the other hand, dust aggregates are
expected to be porous or have fractal structures. In particular, small
bodies that have not been recompacted by collisions are expected
to be fluffy. Equation (1) also reduces probability distributions of
velocities to their mean values. This approximation may quench
grain growth occurring through rare collisional events, for example,
between large bodies having low relative velocities (Windmark et al.
2012; Garaud et al. 2013). Finally, growth is in essence stochastic,
but fluctuations of the solution cannot be computed with equation (1).
This is not critical, those being hardly constrained by observations.
Although the solver presented in Section 3 cannot be used directly to
treat the additional physical processes described above, the method
could be adapted to do so. Lastly, extending equation (1) to multiple
compositions, without or with change of states has been done in

Figure 22. Test case, multiplicative kernel: comparison between the numer-
ical solutions provided by this scheme and the scheme of Liu et al. (2019).
Similar accuracies are reached, but being ∼5 times more effective due to
analytical integration.

other communities. This comes to the cost of multiplying the number
of variables by the number of materials considered. The algorithm
presented in Section 3 is a first step towards reducing the number of
dust bins to allow for solving for multiple compositions in 3D. This
would have strong implications for planet formation, for example,
by handling snow lines consistently and providing constrains for
meteoritic data.

6 C O N C L U SIO N

We have presented an high-order algorithm that solves accurately
the coagulation equation with a limited number of dust bins (∼15).
Specifically:

(i) mass is conserved to machine precision for astrophysical
kernels,

(ii) positivity is guaranteed by combining an appropriate slope-
limiter to a TVD time-stepping,

(iii) creating aggregates of masses larger that the mass of the
reservoir is mathematically excluded by a control of the growth flux,

(iv) errors of order 0.1 − 1 per cent are achieved by high-order
discretization in time and space that can be modulated for con-
vergence purpose. They shall not dominate the error budget over
hydrodynamics,

(v) combining a low number of bins and analytic integrations
allows manageable costs in memory and time,

(vi) additional physics should be implementable in a versatile way.

The next step consists of performing 3D hydrodynamical simu-
lations of star and planet formation with accurate dust growth. The
design of the algorithm allows to implement additional processes
such as fragmentation in a genuine way. This solver encourages the
reduction of CO2 emissions related to computational astrophysics.
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Lebreuilly U., Commerçon B., Laibe G., 2020, A&A, 641, A112
Lee K., Matsoukas T., 2000, Powder Technol., 110, 82
Leyvraz F., Tschudi H. R., 1981, J. Phys. A Math. Gen., 14, 3389
Liffman K., 1992, J. Comput. Phys., 100, 116
Lister J. D., Smit D. J., Hounslow M. J., 1995, AIChE J., 41, 591
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