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ABSTRACT

Evolving the size distribution of solid aggregates challenges simulations of young stellar objects. Among other difficulties,
generic formulae for stability conditions of explicit solvers provide severe constraints when integrating the coagulation equation
for astrophysical objects. Recent numerical experiments have reported that these generic conditions may be much too stringent.
By analysing the coagulation equation in the Laplace space, we explain why this is indeed the case and provide a novel stability

condition that avoids time oversampling.
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1 INTRODUCTION

The coagulation equation — also called the Smoluchowski equation —
is one of the fundamental equations of physics, since it describes mass
conservation for a distribution of interacting particles (Banasiak,
Lamb & Laurencot 2019). It plays a central role in the formation of
planets, since solid bodies, originating from the interstellar medium,
have to grow over 30 orders of magnitude in mass to form cores of
planets (Chiang & Youdin 2010). As they grow, grains undergo a
complex interplay between coagulation and dynamics since dust/gas
interaction depends strongly on the size of the dust grains (Testi
et al. 2014), hence the necessity of performing three-dimensional
simulations of young stellar objects that integrate the coagulation
equation in a self-consistent manner (Haworth et al. 2016). However,
this task was long thought to be computationally prohibitive, since
no hydrodynamical code could handle the large number of dust bins
required to solve for the coagulation equation without overdiffusion.
Recently, Lombart & Laibe (2021) showed that overdiffusivity at
small bin numbers could be overcome by the means of a discon-
tinuous Galerkine algorithm of high spatial order (Liu, Gropler &
Warnecke 2019). Still, to maintain practical performance, the coagu-
lation solver should not be called too often per hydrodynamical time-
step (Drazkowska, Windmark & Dullemond 2014; Drazkowska et al.
2019). Stability condition for explicit schemes has been studied since
the very beginning of the numerical study of the coagulation equation
(Filbet & Laurencot 2004; Dullemond & Dominik 2005; Gabriel &
Tine 2010; Forestier-Coste & Mancini 2012; Liu et al. 2019). Time-
stepping is set by the so-called Courant—Friedrichs—Lewy condition
(or the CFL condition; Courant, Friedrichs & Lewy 1928), which
is thought to become drastically small for planet formation, making
the solver of no practical use. An alternate solution consists of using
implicit solvers, an approach successfully used for fragmentation
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(Mahoney & Ramkrishna 2002; Jacobson 2005; Sandu 2006; Brauer,
Dullemond & Henning 2008; Birnstiel, Dullemond & Brauer 2010),
but at the cost of heavy linear algebra operations that increase with
the order of the scheme.

Remarkably, Liu et al. (2019) noticed that his numerical solver
was numerically stable for a time-step that is orders of magnitude
larger than the one given by the generic CFL condition (Section 2).
‘Only for Ar < 0.005 do we observe a stable solution without using
a reconstruction step. This is a significant restriction. With the use
of the scaling limiter presented above, we observe that no negative
values are generated by the scheme and therefore the solution remains
stable, even when raising the time-step to Ar = 1.” The real CFL
condition should therefore be less draconian than the one generically
used. Finding it is the goal of this study.

The generic CFL criterion for hyperbolic equations has been
proven not only to ensure stability, but also to strict positivity of
the mass distribution (Filbet & Laurencot 2004). In a discontinuous
Galerkine solver, positivity is instead enforced with a slope limiter,
associated with an Strong Stability Preserving (SSP) integrator.
Unlocking this positivity constrain ensures that numerical stability is
actually set by the shortest physical time in which mass transfers
through the dust distribution. A high-order scheme then ensures
accuracy even when integration is performed with large time-steps.
Since the coagulation flux is expressed as a double integral over the
mass distribution, this time should result from integral considerations
over the mass distribution, an information encoded in the Laplace
transform of the Smoluchowski equation. Looking at the physical
time-scales that appear when decomposing the mass distribution into
decaying exponentials reveals an alternate and less stringent CFL
condition than the ones previously used (Section 3). We validate
these findings by testing this condition back in the mass space
with the solver of Lombart & Laibe (2021). In this study, we
focus on constant and additive kernels, since they can be associated
with analytical solutions that are the most relevant for planet
formation.
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Figure 1. Analytical solution for the mass density distribution g and the
coagulation flux F for K = 1 and f(x, 0) = e at t = 1. The maximum of g
does not correspond to the maximum of F.

2 SMOLUCHOWSKI EQUATION

The Smoluchowski equation is a mean-field, non-linear, integro-
differential equation that models mass conservation along a binary
collisional process (Smoluchowski 1916). The evolution of the
number density of particles per unit mass f'is given by

Bf_l i _ .
E_Z/OK(y,x L) f(x—y)dy

—f(x)/ K (.2 f () dy, )
0

where the kernel K(x, y) is a symmetric function that gives the
collisional rate between particles of masses x and y. The conservative
form of equation (1) is

d oF
dg lgl _ 0. @)
at ax
where g = xfis the mass density distribution per unit mass, and
T g )
F(x)= K (u,v)gu) dudv 3)
0 X—u v

is the coagulation flux (Tanaka, Inaba & Nakazawa 1996). The usual
CFL condition for conservative equations of the form Eq. 2 is

< )

For the Smoluchowski equation, the condition given by equation (4)
may be stringent when considering local individual contribution to
the flux of each mass bin. Fig. 1 shows indeed that the quantity
|[0F/dg|~' can become extremely small, since small increments
8g may become very small at the location of the maximum of
g, while 6F remains finite. A physical stability condition should
instead consider the cumulated contributions of every bins to the
local flux, accounting for the contribution of the mass distribution
that generates the flux in the mass space. A natural tool to handle
these effects consists of determining a stability condition for the time-
step in the dual Laplace space. We therefore introduce the Laplace
transform £ (p,1) = [; e " f (x,1)dx of the number density
distribution.
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Figure 2. Numerical integration of the Smoluchowski equation with a
discontinuous Galerkine scheme of order 2. Solutions are displayed in log—
log scale for the main plot and lin—log scale when zooming-in close to
the maximum. Grey squares correspond to the generic stability condition
equation (4) (initially, Ar >~ 1 x 107%). Green, orange, and red circles
correspond to At~ 0.8 Atcpr, At~ 1.5AtcpL, and At~ 3 Atcp, respectively,
where AfcpL = M, ! from equation (10). No oscillations develop when the
novel CFL condition is satisfied (green), and numerical integration remains
stable. Blue dashed line: analytical solution.

3 PHYSICAL TIME-STEPPING

3.1 Constant kernel

We first consider the constant kernel K = 1. Taking the Laplace
transform of equation (1) gives

~ n 1 .
W f+Mo(t)f — Efz =0, Q)

where, for the unit kernel, My(1) = (1 + #/2)~! (Miiller 1928). We
first note that

0<F(p,t) < F0,0)=My(). )

Equation (6) shows that the non-linear contribution lightens the linear
term in equation (5). Discretizing equation (5) with a forward Euler
scheme and performing a linear stability analysis of the form f =
i+ € gives

n+l n

€ .
+ Mje" = fie”, 7

—€
At

ie.
et =e"[1—Ar (M — f)]- ®)

Stability of the scheme is obtained at any time from the sufficient

. . Ay —1 . . .
condition At < min (Mg - fg) . A stringent majorant for Af is
therefore

At < 1/M;. (C)

A stability condition for an explicit scheme is therefore set by the
typical time-scale M, ! of the linear term, as one would expect from
the evolution of the moments of the equation (Banasiak et al. 2019).
Generally, the novel stability condition should be weighted by a
safety coefficient C***

cst

s =0 (M), (10)

0
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This basal Von Neumann analysis is checked by integrating equa-
tion (5) within the Laplace space with a forward Euler scheme
(Fig. B1). Numerical results are compared to an analytical solution
of equation (5) (integrating only with respect to time in this particular
case)

N 2
fp,t)= PP 1n

and C*' = 1. Numerical results are in excellent agreement with the
theoretical analysis. The real test consists of testing the condition
equation (10) in the mass space. We therefore solve the Smolu-
chowski equation with the algorithm of Lombart & Laibe (2021).
We use nine orders of magnitude in mass and n = 15 log-spaced
bins to mimic the challenging integration conditions encountered in
practice. We find numerical stability for the same exact condition
(Fig. 2). For Ar < AftcpL, the numerical integration follows the
analytical solution with an unexpected accuracy even close to
marginal stability, confirming the observation of Liu et al. (2019).
When Afr > Atcp, numerical solution breaks strongly at small
masses. In practice, the constant C**' should be chosen to provide the
desired trade-off between computational efficiency and numerical
accuracy. We verified the criterion on distributions with other values
of M().

3.2 Additive kernel

Let us now consider the additive kernel K = x + y. For this kernel,
M, is constant and dM,/dt = —M, M, (Golovin 1963); hence,

My (t) = Mie™ ™, (12)

The Laplace transform of equation (1) is

Wf=[Mot)— flo,f — M f. (13)

Contrary to the constant case, the contribution of the term
(Mo (1) — f] d,f reinforces the contribution of the term —M, f
and contributes to numerical stability. The strategy of analysis now
consists in looking at the characteristics of the problem, to show the
existence of a real number C > 0 that does not depend on p, such
that —C < 9, In f < 0. As such, f decreases slower than a decaying
exponential for which the stability condition is known. Equation (13)
becomes

(8, F,0,F,—1)- (1, f = Mo (t), —M; f) = 0. (14)

Equation (14) is solved by a method of characteristics by setting t =

Wr,s),p=p(r,s),u =u(r,s)= f @ p)andu(t(0,s), p(0,s) =
fo (s), following Banasiak et al. (2019). One has

ot =1, £(0,5) =0, (15)
oop=u—My(r), p(,s)=s, (16)
du = —Mu, u(0,5)= fo(s). 17)

Equation (15) gives #(r, s) = r and equation (17) gives u (r,s) =
f o0 (s)e~™1" Integrating equation (12), solving for equation (16)
gives

(fo(s) — M)

p(r,s)=s+ M,

(1—er). (18)

Consider now z(r, p), the implicit solution of equation (18) where r
and p are seen as two independent variables, i.e.

(oG p) = Mi) ( _ anry.
M,

p=z(r,p)+ (19)
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Then, f(t(r,s), p(r,s)) =u(t,s =z(t, p)), and f(, p) is ex-
pressed in the implicit form f (¢, p) = fo (z (¢, p)) e~M1". Deriving
with respect to time gives

foz. p)’

where we have denoted for convenience f| o(p) =10, Fo (p). Differ-
entiating equation (18) with respect to r gives

0z _ (Mj— fo) e

o Inf=—M +dz(@t p) (20)

— = = . 21
or 1Ml—{-f{)(l—ef"”l’) @b
The identity f{) (p)=— fooo xe P* f (x)dx ensures that

M- f
0< <m0 Jo 22)

Ml + f()
and that for any p,
0=81Inf=-M1+T(p), (23)
where T(p) > 0 is given by

P xe P fy(x)dx [ (1 —e ") fo(x)dx

T(p) = fo 0 fo ( ) (24)

Jo e P fo(ydx [0 (1 —e P xfy (x)dx’

Therefore, the physical solution decays more slowly than an envelope
with exponential decay and is associated with the stability condition

Cadd
Ar < 25)

M, (1 +supT [fo])
P

In Appendix A, we prove that 7(p) < 1, allowing us to write the
condition of equation (25)

C add

At <

_ -1
Som = oM. (26)

A refined criterion can be obtained when T | fo} is actually a
decreasing function of p. In this case, T (p) < T (0) = M?/Mi M.,
which would provide the refined stability condition

Cadd

Mo\’

M, (1 + m)
We obtain excellent agreement for the conditions given by equa-
tions (25)—(27) in the Laplace space (Fig. B1), against a numerical
solution obtained at high resolution. Fig. 3 shows very good appli-
cability of this condition in the real space (varying M, gives similar
results). This validates the findings of Liu et al. (2019). For example,
a factor of ~10 in processing time is gained with the novel condition.
The term sup, T [ fo] of equation (25) is the mathematical con-
sequence of the fact that the contribution of [Mo (1) — f ] 9, f
reinforces the one of —M; f in equation (13). Finding this correction
to be of order unity is physically consistent with fluxes of mass
of similar intensities generated by the two terms of the right-hand
side of equation (1). We note that the CFL condition comes from
the limit p — 0, which corresponds to the limit case of a constant
mass distribution that is non-integrable over the mass space. Mass
fluxes are indeed expected to be more intense for this distribution,
since an additive kernel favours growth over the largest grains. We
conjecture that this CFL condition can, alternatively, be obtained
from the evolution of the moments of equation (1). The method
presented here can be applied to other relevant coagulation kernels.

At < 27
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Figure 3. Numerical integration of the Smoluchowski equation with a
discontinuous Galerkine scheme of order 2. Solutions are displayed in log—
log scale for the main plot and lin—log scale when zooming-in close to
the maximum. Grey squares correspond to the generic stability condition
equation (4) (initially, Ar >~ 2 x 10~%). Green and red circles correspond
to At =~ 0.9AfcrL and At >~ 1.5AtcFL, respectively, where Atcp, = 2/3
from equation (27). No oscillations develop when the novel CFL condition is
satisfied (green), and numerical integration remains stable. Blue dashed line:
analytical solution.

4 CONCLUSION

In this study, we revisit the derivation of the stability condition for
explicit numerical solvers of the Smoluchowski equation. Generic
formulae are too stringent since they also ensure positivity. En-
forcing positivity by some alternate way (e.g. with a slope limiter
associated with an SSP integrator) allows to improve stability
condition by several orders of magnitude. Novel conditions that
involve moments of the mass distribution — Atcp, ~ My ! for
the constant kernel and Atrcp ~ M| ' for the additive kernel —
are obtained by analysing dual problems in the Laplace space,
to account for the non-locality of the coagulation equation and
its different responses to different dust distributions. Numerical
simulations are in excellent agreement with the theory and validate
our novel CFL condition, confirming the observations of Liu et al.
(2019).
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APPENDIX A: BOUNDING OF T
Following Yang & Tian (2017), let denote

Jooxe ™ fy(x)dx [5T (1 —e ) fo(x)dx
Jooe foodr [T (1 —e ) xfy(x)dx

Ti=h/I h=l3/14

T(p)=

Deriving T} with respect to p and symmetrizing x <>y gives

dT e oo 00 2
Bpp TP < —{( | e _pr(x)d.x) ( | e zf(x)d.x) ( / e‘”xf(x)dx) }
{ / / dxdy e P F (1) f (1) / / dxdye ”e””f(x)f(y)xy}
{ / / drdy e Pe P f () f (y >( / / drdye e "”f(x)f(y)xy}

—7/ / dxdye e ™ f (x)f (y) (x — y)* < 0.
2 Jo Jo

Hence, Ti[f]is a decreasing function for any f. As such,

Ty [fol(p) = T [ fo1(0) = Mo

Similarly, deriving 7> with respect to p gives

Lpr T = {(/OOO (1 —e”’“)Xf(x)dx) </Oooxe””‘f(x)dx)
e i) ([ -
0 0
2{/ / drdv 01 (y)xy(l—e*"”)e”’y‘/ / dxdy f (¥)f () x%e " (1_e—p.v)}
0 0 0 0

/ / drdy £ (0 f () (=) [xe 7" (1—e ) —ye (1 —e )]
0 0

>0

Hence, T>[f] is strictly increasing function for any f,

T [fol (p) < T [ fol (00) = ﬁ"
1

Finally, T(p) = T1(p)T>(p) < 1.

APPENDIX B: STABILITY CONDITION IN THE LAPLACE SPACE

Fig. B1 shows the validity of the stability conditions obtained for the numerical integration of f (Laplace space) in Section 3.
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Figure B1. Left: Numerical solution of equation (5) obtained with a first-order Euler scheme. Small grey, large green, and large red circles correspond to At =
1073 Atcrr, At = 1AtcrL, and At = 1.25A1crL, respectively, where Afcp is given by equation (25) (C**' = 1). At varies with time. Black solid line: analytical
solution. Right: Numerical solution of equation (13) obtained with a first-order upwind scheme, under the condition f (0, r) = 1 with 20 grid points. Grey, large
green, and large red circles correspond to At 2~ 0.09Afcrr, At >~ 0.83Atcpr, and At >~ 1.07 Atcrr, respectively, where Atcpr, = 2/3 from equation (27) (Crdd =
1). Black solid line: analytical solution (a better sampling in mass makes the numerical solution closer to the analytical solution).

This paper has been typeset from a TEX/ITEX file prepared by the author.
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