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A B S T R A C T 

Evolving the size distribution of solid aggregates challenges simulations of young stellar objects. Among other difficulties, 
generic formulae for stability conditions of explicit solvers provide severe constraints when integrating the coagulation equation 

for astrophysical objects. Recent numerical experiments have reported that these generic conditions may be much too stringent. 
By analysing the coagulation equation in the Laplace space, we explain why this is indeed the case and provide a no v el stability 

condition that a v oids time o v ersampling. 
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 I N T RO D U C T I O N  

he coagulation equation – also called the Smoluchowski equation –
s one of the fundamental equations of physics, since it describes mass
onservation for a distribution of interacting particles (Banasiak,
amb & Laurencot 2019 ). It plays a central role in the formation of
lanets, since solid bodies, originating from the interstellar medium,
ave to grow over 30 orders of magnitude in mass to form cores of
lanets (Chiang & Youdin 2010 ). As they grow, grains undergo a
omplex interplay between coagulation and dynamics since dust/gas
nteraction depends strongly on the size of the dust grains (Testi
t al. 2014 ), hence the necessity of performing three-dimensional
imulations of young stellar objects that integrate the coagulation
quation in a self-consistent manner (Haworth et al. 2016 ). Ho we ver,
his task was long thought to be computationally prohibitive, since
o hydrodynamical code could handle the large number of dust bins
equired to solve for the coagulation equation without overdiffusion.
ecently, Lombart & Laibe ( 2021 ) showed that o v erdif fusi vity at

mall bin numbers could be o v ercome by the means of a discon-
inuous Galerkine algorithm of high spatial order (Liu, Gr ̈opler &

arnecke 2019 ). Still, to maintain practical performance, the coagu-
ation solver should not be called too often per hydrodynamical time-
tep (Dr ążkowska, Windmark & Dullemond 2014 ; Dr ążkowska et al.
019 ). Stability condition for explicit schemes has been studied since
he very beginning of the numerical study of the coagulation equation
Filbet & Laurencot 2004 ; Dullemond & Dominik 2005 ; Gabriel &
ine 2010 ; Forestier-Coste & Mancini 2012 ; Liu et al. 2019 ). Time-
tepping is set by the so-called Courant–Friedrichs–Lewy condition
or the CFL condition; Courant, Friedrichs & Lewy 1928 ), which
s thought to become drastically small for planet formation, making
he solver of no practical use. An alternate solution consists of using
mplicit solvers, an approach successfully used for fragmentation
 E-mail: glaibe@ens-lyon.fr 
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Mahoney & Ramkrishna 2002 ; Jacobson 2005 ; Sandu 2006 ; Brauer,
ullemond & Henning 2008 ; Birnstiel, Dullemond & Brauer 2010 ),
ut at the cost of heavy linear algebra operations that increase with
he order of the scheme. 

Remarkably, Liu et al. ( 2019 ) noticed that his numerical solver
as numerically stable for a time-step that is orders of magnitude

arger than the one given by the generic CFL condition (Section 2).
Only for � t ≤ 0.005 do we observe a stable solution without using
 reconstruction step. This is a significant restriction. With the use
f the scaling limiter presented abo v e, we observ e that no ne gativ e
alues are generated by the scheme and therefore the solution remains
table, even when raising the time-step to � t = 1.’ The real CFL
ondition should therefore be less draconian than the one generically
sed. Finding it is the goal of this study. 
The generic CFL criterion for hyperbolic equations has been

ro v en not only to ensure stability, but also to strict positivity of
he mass distribution (Filbet & Laurencot 2004 ). In a discontinuous
alerkine solver, positivity is instead enforced with a slope limiter,

ssociated with an Strong Stability Preserving (SSP) integrator.
nlocking this positivity constrain ensures that numerical stability is

ctually set by the shortest physical time in which mass transfers
hrough the dust distribution. A high-order scheme then ensures
ccurac y ev en when inte gration is performed with large time-steps.
ince the coagulation flux is expressed as a double inte gral o v er the
ass distribution, this time should result from integral considerations
 v er the mass distribution, an information encoded in the Laplace
ransform of the Smoluchowski equation. Looking at the physical
ime-scales that appear when decomposing the mass distribution into
ecaying exponentials reveals an alternate and less stringent CFL
ondition than the ones previously used (Section 3). We validate
hese findings by testing this condition back in the mass space
ith the solver of Lombart & Laibe ( 2021 ). In this study, we

ocus on constant and additive kernels, since they can be associated
ith analytical solutions that are the most rele v ant for planet
ormation. 
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Figure 1. Analytical solution for the mass density distribution g and the 
coagulation flux F for K = 1 and f ( x , 0) = e −x at t = 1. The maximum of g 
does not correspond to the maximum of F . 

2

T
d
c
n

w  

c  

f

w

F

i  

C

F
m
t  

|
δ  

g
i
l
t  

t
s
t
d

Figure 2. Numerical integration of the Smoluchowski equation with a 
discontinuous Galerkine scheme of order 2. Solutions are displayed in log–
log scale for the main plot and lin–log scale when zooming-in close to 
the maximum. Grey squares correspond to the generic stability condition 
equation (4) (initially, � t � 1 × 10 −6 ). Green, orange, and red circles 
correspond to � t � 0.8 � t CFL , � t � 1.5 � t CFL , and � t � 3 � t CFL , respectively, 
where �t CFL = M 

−1 
0 from equation (10). No oscillations develop when the 

no v el CFL condition is satisfied (green), and numerical integration remains 
stable. Blue dashed line: analytical solution. 
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 S M O L U C H OW S K I  EQUATION  

he Smoluchowski equation is a mean-field, non-linear, integro- 
ifferential equation that models mass conservation along a binary 
ollisional process (Smoluchowski 1916 ). The evolution of the 
umber density of particles per unit mass f is given by 

∂f 

∂t 
= 

1 

2 

∫ x 

0 
K ( y , x − y ) f ( y ) f ( x − y ) d y 

− f ( x ) 
∫ ∞ 

0 
K ( y, x ) f ( y ) d y, (1) 

here the kernel K ( x , y ) is a symmetric function that gives the
ollisional rate between particles of masses x and y . The conserv ati ve
orm of equation (1) is 

∂g 

∂t 
+ 

∂F [ g ] 

∂x 
= 0 , (2) 

here g ≡ xf is the mass density distribution per unit mass, and 

 ( x ) = 

∫ x 

0 

∫ ∞ 

x−u 

K ( u, v ) g ( u ) 
g ( v ) 

v 
d u d v (3) 

s the coagulation flux (Tanaka, Inaba & Nakazawa 1996 ). The usual
FL condition for conserv ati ve equations of the form Eq. 2 is 

�t 

�x 
max 

g 

∣∣∣∣∂F 

∂g 

∣∣∣∣ � 1 . (4) 

or the Smoluchowski equation, the condition given by equation (4) 
ay be stringent when considering local individual contribution to 

he flux of each mass bin. Fig. 1 shows indeed that the quantity
 ∂F / ∂g | −1 can become extremely small, since small increments 
g may become very small at the location of the maximum of
 , while δF remains finite. A physical stability condition should 
nstead consider the cumulated contributions of every bins to the 
ocal flux, accounting for the contribution of the mass distribution 
hat generates the flux in the mass space. A natural tool to handle
hese effects consists of determining a stability condition for the time- 
tep in the dual Laplace space. We therefore introduce the Laplace 
ransform 

ˆ f ( p, t ) ≡ ∫ ∞ 

0 e −px f ( x, t ) d x of the number density 
istribution. 
 PHYSI CAL  TIME-STEPPING  

.1 Constant kernel 

e first consider the constant kernel K = 1. Taking the Laplace
ransform of equation (1) gives 

 t 
ˆ f + M 0 ( t ) ˆ f − 1 

2 
ˆ f 2 = 0 , (5) 

here, for the unit kernel, M 0 ( t ) = (1 + t /2) −1 (M ̈uller 1928 ). We
rst note that 

 ≤ ˆ f ( p, t ) ≤ ˆ f ( 0 , t ) = M 0 ( t ) . (6) 

quation (6) shows that the non-linear contribution lightens the linear 
erm in equation (5). Discretizing equation (5) with a forward Euler
cheme and performing a linear stability analysis of the form 

ˆ f n =
ˆ 
 

n 
0 + εn gives 

εn + 1 − εn 

�t 
+ M 

n 
0 ε

n = 

ˆ f n 0 ε
n , (7) 

.e. 

n + 1 = εn 
[
1 − �t 

(
M 

n 
0 − ˆ f n 0 

)]
. (8) 

tability of the scheme is obtained at any time from the sufficient

ondition �t ≤ min 
(
M 

n 
0 − ˆ f n 0 

)−1 
. A stringent majorant for � t is 

herefore 

t ≤ 1 /M 

n 
0 . (9) 

 stability condition for an explicit scheme is therefore set by the
ypical time-scale M 

−1 
0 of the linear term, as one would expect from

he evolution of the moments of the equation (Banasiak et al. 2019 ).
enerally, the no v el stability condition should be weighted by a

afety coefficient C 

cst 

t ≤ C 

cst 

M 

n 
0 

= O 

(
M 

−1 
0 

)
. (10) 
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his basal Von Neumann analysis is checked by integrating equa-
ion (5) within the Laplace space with a forward Euler scheme
Fig. B1 ). Numerical results are compared to an analytical solution
f equation (5) (integrating only with respect to time in this particular
ase) 

ˆ 
 ( p, t ) = 

2 

2 + t 
, (11) 

nd C 

cst = 1. Numerical results are in excellent agreement with the
heoretical analysis. The real test consists of testing the condition
quation (10) in the mass space. We therefore solve the Smolu-
howski equation with the algorithm of Lombart & Laibe ( 2021 ).
e use nine orders of magnitude in mass and n = 15 log-spaced

ins to mimic the challenging integration conditions encountered in
ractice. We find numerical stability for the same exact condition
Fig. 2 ). For � t ≤ � t CFL , the numerical integration follows the
nalytical solution with an unexpected accuracy even close to
arginal stability, confirming the observation of Liu et al. ( 2019 ).
hen � t ≥ � t CFL , numerical solution breaks strongly at small
asses. In practice, the constant C 

cst should be chosen to provide the
esired trade-off between computational efficiency and numerical
ccurac y. We v erified the criterion on distributions with other values
f M 0 . 

.2 Additi v e k ernel 

et us now consider the additive kernel K = x + y . For this kernel,
 1 is constant and d M 0 / d t = −M 1 M 0 (Golovin 1963 ); hence, 

 0 ( t ) = M 

i 
0 e 

−M 1 t . (12) 

he Laplace transform of equation (1) is 

 t 
ˆ f = 

[
M 0 ( t ) − ˆ f 

]
∂ p ˆ f − M 1 ˆ f . (13) 

ontrary to the constant case, the contribution of the term
M 0 ( t ) − ˆ f 

]
∂ p ˆ f reinforces the contribution of the term −M 1 ˆ f 

nd contributes to numerical stability. The strategy of analysis now
onsists in looking at the characteristics of the problem, to show the
xistence of a real number C > 0 that does not depend on p , such
hat −C ≤ ∂ t ln ˆ f ≤ 0. As such, ˆ f decreases slower than a decaying
xponential for which the stability condition is known. Equation (13)
ecomes (
∂ t ˆ f , ∂ p ˆ f , −1 

) · (1 , ˆ f − M 0 ( t ) , −M 1 ˆ f 
) = 0 . (14) 

quation (14) is solved by a method of characteristics by setting t =
 ( r , s ), p = p ( r , s ), u = u ( r, s ) ≡ ˆ f ( t, p ) , and u ( t ( 0 , s ) , p ( 0 , s ) ) =
ˆ 
 0 ( s ) , following Banasiak et al. ( 2019 ). One has 

∂ r t = 1 , t ( 0 , s ) = 0 , (15) 

 r p = u − M 0 ( r ) , p ( 0 , s ) = s, (16) 

∂ r u = −M 1 u, u ( 0 , s ) = 

ˆ f 0 ( s ) . (17) 

quation (15) gives t ( r , s ) = r and equation (17) gives u ( r, s ) =
ˆ 
 0 ( s ) e −M 1 r . Integrating equation (12), solving for equation (16)
ives 

 ( r, s ) = s + 

(
ˆ f 0 ( s ) − M 

i 
0 

)
M 1 

(
1 − e −M 1 r 

)
. (18) 

onsider now z( r , p ), the implicit solution of equation (18) where r
nd p are seen as two independent variables, i.e. 

 = z ( r, p ) + 

(
ˆ f 0 ( z ( r, p ) ) − M 

i 
0 

)
M 

(
1 − e −M 1 r 

)
. (19) 
1 
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hen, ˆ f ( t ( r, s ) , p ( r, s ) ) = u ( t, s = z ( t, p ) ) , and ˆ f ( t, p ) is ex-
ressed in the implicit form 

ˆ f ( t, p ) = 

ˆ f 0 ( z ( t, p ) ) e −M 1 t . Deriving
ith respect to time gives 

 t ln ˆ f = −M 1 + ∂ t z ( t, p ) 
ˆ f ′ 0 ( z ( t, p ) ) 
ˆ f 0 ( z ( t, p ) ) 

, (20) 

here we have denoted for convenience ˆ f ′ 0 ( p ) = ∂ p ˆ f 0 ( p ) . Differ-
ntiating equation (18) with respect to r gives 

∂z 

∂r 
= M 1 

(
M 

i 
0 − ˆ f 0 

)
e −M 1 r 

M 1 + 

ˆ f ′ 0 
(
1 − e −M 1 r 

) . (21) 

he identity ˆ f ′ 0 ( p ) = − ∫ ∞ 

0 x e −px f ( x ) d x ensures that 

 ≤ ∂ t z ≤ M 1 
M 

i 
0 − ˆ f 0 

M 1 + 

ˆ f ′ 0 
, (22) 

nd that for any p , 

 ≥ ∂ t ln ˆ f ≥ −M 1 ( 1 + T ( p ) ) , (23) 

here T ( p ) ≥ 0 is given by 

 ( p ) ≡
∫ ∞ 

0 x e −px f 0 ( x ) d x ∫ ∞ 

0 e −px f 0 ( x ) d x 

∫ ∞ 

0 

(
1 − e −px 

)
f 0 ( x ) d x ∫ ∞ 

0 ( 1 − e −px ) xf 0 ( x ) d x 
. (24) 

herefore, the physical solution decays more slowly than an envelope
ith exponential decay and is associated with the stability condition 

t � 

C 

add 

M 1 

(
1 + sup 

p 

T [ f 0 ] 

) . (25) 

n Appendix A, we pro v e that T ( p ) ≤ 1, allowing us to write the
ondition of equation (25) 

t � 

C 

add 

2 M 1 
= O 

(
M 

−1 
1 

)
. (26) 

 refined criterion can be obtained when T 
[

ˆ f 0 
]

is actually a
ecreasing function of p . In this case, T ( p ) ≤ T ( 0 ) = M 

2 
1 / M 

i 
0 M 

i 
2 ,

hich would provide the refined stability condition 

t � 

C 

add 

M 1 

(
1 + 

M 

2 
1 

M 

i 
0 M 

i 
2 

) . (27) 

e obtain excellent agreement for the conditions given by equa-
ions (25)–(27) in the Laplace space (Fig. B1 ), against a numerical
olution obtained at high resolution. Fig. 3 shows very good appli-
ability of this condition in the real space (varying M 1 gives similar
esults). This validates the findings of Liu et al. ( 2019 ). For example,
 factor of ∼10 in processing time is gained with the no v el condition.

The term sup p T [ f 0 ] of equation (25) is the mathematical con-
equence of the fact that the contribution of 

[
M 0 ( t ) − ˆ f 

]
∂ p f̂ 

einforces the one of −M 1 ˆ f in equation (13). Finding this correction
o be of order unity is physically consistent with fluxes of mass
f similar intensities generated by the two terms of the right-hand
ide of equation (1). We note that the CFL condition comes from
he limit p → 0, which corresponds to the limit case of a constant

ass distribution that is non-inte grable o v er the mass space. Mass
uxes are indeed expected to be more intense for this distribution,
ince an additive k ernel f a v ours growth o v er the largest grains. We
onjecture that this CFL condition can, alternatively, be obtained
rom the evolution of the moments of equation (1). The method
resented here can be applied to other rele v ant coagulation kernels. 
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Figure 3. Numerical integration of the Smoluchowski equation with a 
discontinuous Galerkine scheme of order 2. Solutions are displayed in log–
log scale for the main plot and lin–log scale when zooming-in close to 
the maximum. Grey squares correspond to the generic stability condition 
equation (4) (initially, � t � 2 × 10 −8 ). Green and red circles correspond 
to � t � 0.9 � t CFL and � t � 1.5 � t CFL , respectively, where � t CFL = 2/3 
from equation (27). No oscillations develop when the novel CFL condition is 
satisfied (green), and numerical integration remains stable. Blue dashed line: 
analytical solution. 
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 C O N C L U S I O N  

n this study, we revisit the derivation of the stability condition for
 xplicit numerical solv ers of the Smoluchowski equation. Generic 
ormulae are too stringent since they also ensure positivity. En- 
orcing positivity by some alternate way (e.g. with a slope limiter 
ssociated with an SSP integrator) allows to improve stability 
ondition by several orders of magnitude. Novel conditions that 
nvolve moments of the mass distribution – �t CFL ∼ M 

−1 
0 for 

he constant kernel and �t CFL ∼ M 

−1 
1 for the additive kernel –

re obtained by analysing dual problems in the Laplace space, 
o account for the non-locality of the coagulation equation and 
ts different responses to different dust distributions. Numerical 
imulations are in excellent agreement with the theory and validate 
ur no v el CFL condition, confirming the observations of Liu et al.
 2019 ). 
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r ążkowska J., Windmark F., Dullemond C. P., 2014, A&A , 567, A38 
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CFL condition for the coagulation equation 5225 

Figure B1. Left: Numerical solution of equation (5) obtained with a first-order Euler scheme. Small grey, large green, and large red circles correspond to � t = 

10 −3 � t CFL , � t = 1 � t CFL , and � t = 1.25 � t CFL , respectively, where � t CFL is given by equation (25) ( C 

cst = 1). � t varies with time. Black solid line: analytical 
solution. Right: Numerical solution of equation (13) obtained with a first-order upwind scheme, under the condition ˆ f ( 0 , t ) = 1 with 20 grid points. Grey, large 
green, and large red circles correspond to � t � 0.09 � t CFL , � t � 0.83 � t CFL , and � t � 1.07 � t CFL , respectively, where � t CFL = 2/3 from equation (27) ( C 

add = 

1). Black solid line: analytical solution (a better sampling in mass makes the numerical solution closer to the analytical solution). 
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