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A B S T R A C T 

Celestial bodies approximated with rigid triaxial ellipsoids in a two-body system can rotate chaotically due to the time-varying 

gravitational torque from the central mass. At small orbital eccentricity values, rotation is short-term orderly and predictable 
within the commensurate spin–orbit resonances, while at eccentricity approaching unity, chaos completely takes o v er. Here, we 
present the full three-dimensional rotational equations of motion around all three principal axes for triaxial minor planets and 

two independent methods of numerical solution based on Euler rotations and quaternion algebra. The domains of chaotic rotation 

are numerically investigated over the entire range of eccentricity with a combination of trial integrations of Euler’s equations of 
motion and the GALI( k ) (Generalized Alignment Index) method. We quantify the dependence of the order–chaos boundaries on 

shape by changing a prolateness parameter, and find that the main 1:1 spin–orbit resonance disappears for specific moderately 

prolate shapes already at eccentricities as low as 0.3. The island of short-term stability around the main 1:1 resonance shrinks 
with increasing eccentricity at a fixed low degree of prolateness and completely vanishes at approximately 0.8. This island is also 

encroached by chaos on longer time-scales, indicating longer Lyapuno v e xponents. Trajectories in the close vicinity of the 3:2 

spin–orbit resonance become chaotic at smaller eccentricities, but separated enclaves of orderly rotation emerge at eccentricities 
as high as 0.8. Initial perturbations of rotational velocity in latitude away from the exact equilibrium result in a spectrum of free 
libration, nutation, and polar wander, which is not well matched by the linearized analysis omitting the inertial terms. 

Key words: chaos – methods: numerical – celestial mechanics – minor planets, asteroids: general – planet–star interactions. 
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 I N T RO D U C T I O N  

urrent interest in and scrutiny of Solar system minor bodies –
oons, asteroids, and comets – is unprecedented. For example,

he Cassini mission provided us with detailed shape models of
mall Saturnian satellites (Thomas 2010 ; Spilker 2019 ), and the
ecently launched DART mission will generate the most physical
ntimate portrait yet of another type of moon, one orbiting an asteroid
Agrusa et al. 2021 ; Rivkin et al. 2021 ). Fundamental, but still not
ully understood, properties of these minor planets are their spin
rientation and evolution. 
Spin evolution also plays a critical role in non-resonant asteroids.

n fact, the size distribution of asteroids in the inner Solar system
nd the debris profile of this region are largely driven by spin-
nduced break-up through the radiative YORP effect (Bottke et al.
006 ; Vokrouhlick ́y et al. 2015 ; Hu et al. 2021 ). As asteroids spin-
 E-mail: valeri.makarov@gmail.com (VVM); alexey.goldin@gmail.com 

AG) 

b  

Press on behalf of Royal Astronomical Society 2022. This work is writte
p or spin-down due to the Sun’s radiation, their spin states and
rientations might change in unexplored ways due to their shape,
ffecting which types of asteroids break up and when. Further, the
mportance of rotational break-up characteristics is not limited to
he Solar system, with consequences for shaping planetary debris
istributions in white dwarf planetary systems (Makarov & Veras
019 ; Veras, McDonald & Makarov 2020 ). 
One context in which minor body spin is relatively well understood

s planetary satellites in the Solar system that are locked in spin–
rbit resonances. These satellites rotate in an orderly fashion with
pin rates commensurate with the orbital frequencies. The commonly
bserved resonance is 1:1, i.e. synchronous rotation, with the Earth–
oon pair being the best-known example. 
The main reason for this pre v alence of order is the range of orbital

ccentricity e , which tends to be low. Chaotic rotation may arise from
 v erlap of different spin–orbit resonances (Chirikov 1979 ). As shown
y Wisdom, Peale & Mignard ( 1984 ), the half-width of the chaotic
Published by Oxford University 
n by (a) US Go v ernment employee(s) and is in the public domain in the US. 
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eparatrix between the synchronous and 3:2 spin–orbit resonances is 

 1 = 

14 πe 

ω 

3 
0 

exp 

(
− π

2 ω 0 

)
, (1) 

here ω 0 = 3 n ( B − A )/ C is the asymptotic frequency of the free libra-
ion of the resonant argument in a one-dimensional (1D) approxima- 
ion, n is the orbital mean motion, and A < B < C are the moments of
nertia of the ellipsoidal satellite. Conditions of rotational chaos in the 
ull three-dimensional (3D) set-up have been much less investigated. 

A commensurate spin–orbit state is a stable resonance and an 
ttractor in the parameter space due to a restoring force, which 
ounteracts any perturbation directed away from the point of equilib- 
ium. If the orbit is significantly elongated, most of the action takes
lace around the pericentre because of the explicit proportionality 
f the spin acceleration to ( a / r ) 3 , where a is the semimajor axis
nd r is the instantaneous distance between the bodies. Wisdom 

 1987 ) discussed interesting cases where this pericentre interaction 
ecomes too strong to keep the trajectory within the resonance 
one. The strength of the pericentre interaction depends on the 
ccentricity and, to a lesser degree, on the degree of elongation. 
yperion, with its significant eccentricity (0.1) pumped by Titan, 
as historically the first example of departure from this scene 

uled by order (Wisdom et al. 1984 ). Although its 1:1 resonance
s present, the surrounding chaotic zone makes it attitude unstable. 
ther resonances, such as 3:2, are completely remo v ed by chaos.
ased on theoretical analysis of chaos conditions and numerical 
 xperiments, Koupriano v & Shevchenko ( 2005 ) added Prometheus 
nd Pandora to the list of objects with disorderly rotation. Finally, 
nalysis of a more representative sample of satellites and minor 
odies revealed that chaos is a norm rather than a rarity in Solar
ystem rotational dynamics (Melnikov & Shevchenko 2010 ). 

Most of the previous analyses focused on the planar case of the
rincipal axis of rotation being al w ays orthogonal to the orbital plane.
he equation of motion becomes 1D with the gravitational torque 
ligned with the axis of the greatest moment of inertia. Ignoring the
ontribution of the satellite’s mass, which is much smaller than the 
lanet’s mass, the well-known equation of motion in this toy model 
n the inertial frame (e.g. Goldreich & Peale 1966 ) can be written as 

¨ = −3 

2 
n 2 
(a 

r 

)3 B − A 

C 

sin 2( θ − f ) , (2) 

here n is the orbital mean motion (i.e. frequency), a is the semimajor
xis of the orbit, r is the instantaneous separation between the bodies,
 is the true anomaly, and θ is the orientation angle of the longest
atellite’s axis with respect to the line of apsides. The periodic driving
orce in the right-hand part can be decomposed into an infinite 
eries of harmonics of the mean anomaly with coefficients that 
re certain combinations of the Hansen’s coefficients, i.e. functions 
f eccentricity (Kaula 1964 ). The emerging equation is that of
 driven non-harmonic pendulum without damping (if we ignore 
idal friction). In the approximation of sufficiently small libration 
mplitudes in the close vicinity of a spin–orbit resonance, the solution 
or a harmonic-driven oscillator is often used (Frouard & Efroimsky 
017 ). Numerical integrations of the 1D equation of motion show 

hat this approximate analytical solution is fairly accurate for a small
ccentricity and triaxiality parameter ( B − A )/ C , with the exception
f the initial conditions required to remo v e free libration, which are
ensitive to the non-linearity of the driving torque with respect to the
ibration angle. 

This comfortable and intellectually rewarding situation breaks up 
hen one advances to the full 3D case where the rotating body is

llowed to mo v e around all three principal axes of inertia. Even
 restricted model with only one degree of freedom in rotation
ut a finite tilt of the rotation vector to the orbital plane is prone
o dynamical chaos (Kwiecinski, Biber & van Gorder 2019 ). The
onditions for chaotic rotation and the characteristic Lyapunov 
imes are known to depend on the degree of elongation of triaxial
odies. Even in the generally more stable 1D set-up, an additional
egularization agent is required to make Hyperion’s rotation stable 
nd predictable (Tarnopolski 2017 ). 

The non-inertial part of the equations of motion is defined by a
ime-variable, non-linear gravitational torque from the primary body, 
hich is also unequally distributed between the three dimensions. 
hese non-linear dependences are at the origin of the emerging 
haotic behaviour. The base model, the range of eccentricity, and 
he shape parameter used in this paper are described in Section 2 . We
se the GALI( k ) (Generalized Alignment Index) numerical method 
o probe for chaos, which is briefly introduced in Section 3 . This
ethod requires fast and accurate algorithms of integration of the 

hree Euler’s equations of motion in the inertial body frame, which
re coupled with the attitude reconstruction problem in the fixed 
nertial frame attached to the orbit (world frame), as discussed 
n Section 4 . We solve the attitude problem using two different
echniques, a commonly used 3-2-1 sequence of Euler rotations and 
 more algebraic quaternion implementation, which are detailed in 
ppendices A and B, respectively. Both techniques produce the same 

esults for stable trajectories with identical initial conditions, but the 
uaternion implementation is our preferred numerical method. Using 
 model body with parameters similar to Enceladus, the Saturn’s 
oon, we perform test integrations with varying initial conditions 

n the vicinity of the 1:1 spin–orbit resonance and compute the
requency power spectra (periodograms) of the resulting 3D free 
ibration in the body frame, nutation in the world reference frame,
nd the polar wander in the world frame (Section 5 ). The main
esults are presented in Section 6 , where we discuss the numerically
onstructed GALI(2) maps of chaos versus order in the cross- 
ection of eccentricity and shape parameter, as well as the shape
nd size of the islands of short-term stability centred on the 1:1 and
:2 resonances, and their erosion and disappearance with increasing 
ccentricity. The main results are summarized in Section 7 , where
e also discuss the outlook for further studies and remaining open

ssues. 

 ECCENTRI CI TY,  SHAPE,  A N D  

R AV I TAT I O NA L  TO R QU E  

n this paper, we consider a class of celestial bodies whose
nertia tensor can be well approximated with a diagonal tensor 
I = diag { A, B, C} in a Cartesian coordinate system { Y 1 , Y 2 , Y 3 } .

his class includes all objects with symmetric inertia tensors, because 
n orthogonal (and unitary) transformation of coordinates can be 
ound to diagonalize such tensors. The values A ≤ B ≤ C are the
oments of inertia, and the basis vectors { Y 1 , Y 2 , Y 3 } define the

rincipal axes of inertia. We broadly call such objects triaxial bodies.
 simple example is a solid ellipsoid with semimajor dimensions a , b ,

nd c . The shape of an ellipsoid is fully described by two parameters
 1 and s 2 with the geometric equation (Binggeli 1980 ) 

 

2 
1 /s 

2 
1 + x 2 2 /s 

2 
2 + x 2 3 = c 2 , (3) 

ith s 1 ≥ s 2 ≥ 1. Special cases are a prolate figure at s 2 = 1 and
n oblate figure at s 2 = s 1 . The correspondence to the aspect ratios
sed by Veras et al. ( 2020 ) is s 2 = β, s 1 = γ . The equations of
D rotation (Appendix A ) only involve the ratios of the principal
oments of inertia. Therefore, it is sufficient to compute the scaled
MNRAS 513, 2076–2087 (2022) 
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nalogues of these moments. For an ellipsoid of uniform density, the
caled inertia moments can be written as A = s 2 2 + 1, B = s 2 1 + 1,
nd C = s 2 1 + s 2 2 . One of the objectives for this study is to estimate
ow chaotic rotation can emerge for celestial bodies of different
egrees of asphericity. To reduce the number of degrees of freedom
o 1, we introduce a figure prolateness parameter L f , which scales
he relative extension along the a semiaxis by greater amounts than
long the b semiaxis, keeping the c dimension unchanged. The scaled
hape parameters are 

 1 = ( a/c − 1) L f + 1 

 2 = ( b/c − 1) L f + 1 . (4) 

Most of our computations presented in this paper are performed
or a model object with variable eccentricity and prolateness L f but
xed initial dimensions a = 256.3, b = 247.3, and c = 244.6, which,
xpressed in km, correspond to the size of Saturn’s moon Enceladus.
he moti v ation for this choice was our interest in the past rotational
istory of Enceladus during possible episodes of a higher orbital
ccentricity, as well as the fact the Enceladus is close to a perfectly
rolate shape. The small b / c ratio is also a conscious choice to focus
n almost perfectly prolate shapes, which may be more rele v ant
or asteroids. With these dimensions, the initial inertia coefficients
at L f = 1) in the Euler equations of motion ( 5 ) are ( B − A )/ C =
.03573, ( C − A )/ B = 0.04669, and ( C − B )/ A = 0.01098. These
mall to moderate values are characteristic of the larger moons in the
olar system, while asteroids are expected to often be much more
eformed. 
The present-day eccentricity of Enceladus is 0.0047, which is

emarkably small. On the other hand, main belt asteroids have much
reater eccentricities, with one outstanding case, 2006 HY51, inves-
igated in 1D by Makarov, Goldin & Veras ( 2020 ) for the statistical
arameters of its chaotic rotation. The previous 1D studies have
evealed that eccentricity is indeed a critical parameter separating
he domains of stable and chaotic rotation. We develop here a
omputing algorithm for the full 3D set-up that is numerically stable
nd accurate for the entire range of e ∈ [0, 0.99]. This methodology
an therefore be used for a broad range of celestial objects in the
olar system and outside. Nereid, the distant moon of Neptune, is an

nteresting possible application with its high eccentricity ( e = 0.7417)
nd unknown shape, whose 3D rotation can be mapped for chaos.
ereid’s rotation rate is apparently high, so unless it is chaotically

umbling, its principal axis Y 3 orientation is likely to drift with
espect to the ecliptic with a rate of up to ∼0.01 rad per century.
he only celestial body with a certainly known chaotic rotation
ith a short Lyapunov time is Hyperion (Tarnopolski 2015 ). The
istinction probably comes from its strongly elongated shape, which
uggests large coefficients of inertia, ( B − A )/ C = 0.29, ( C − A )/ B =
.51, and ( C − B )/ A = 0.25, hence, much stronger torques than
or Enceladus. Hyperion’s eccentricity, on the other hand, is rather
oderate at 0.123. We surmise from these examples that manifestly

haotic rotation of triaxial bodies happens at certain combinations of
ccentricity and prolateness, both tending to the higher ends of their
anges. 

 DETECTION  O F  C H AO S  BY  G A L I  

ALI (Sk ok os & Manos 2014 ) is one of the numerical methods to
etect chaotic behaviour of a dynamical system. The advantage of this
ethod o v er more commonly known techniques such as the Poincar ́e

urface of section mapping is a numerically economic way of
stimation on a metric limited to a single parameter, which allows its
NRAS 513, 2076–2087 (2022) 
pplication in problems of high dimensionality (Tenaw Moges 2020 ).
n our case, this is a decisive advantage because we are investigating
 vast parameter space. The basic idea of the method is to generate
easonably small initial perturbations to a specific trajectory (i.e.
 particular integrated solution with fixed initial conditions) and
heck their mutual alignment within a certain characteristic time
nterval t max . The initial perturbation vectors should be orthogonal.
or a chaotic parent trajectory, the originally orthogonal differences
onverge in the direction of a Lyapunov exponent and become nearly
ligned. The formal verdict is the parent trajectory is chaotic if the
ALI( k ) index falls below a threshold value ν lim 

within t max . The
umber of perturbation vectors k cannot be greater than the rank of
he parameter space, which is 6 in our case (three angular coordinates
nd three angular velocities). We used a very low threshold of 10 −20 

nd, in the massive simulations, t max = 275–1000 orbits capitalizing
n the fast and stable performance of the published JULIA code 1 

Datseris 2018 ). 
Technically, the GALI method is similar to the somewhat less

uantitatively definite method of sibling trajectory separation based
n the exponential divergence of initially very close chaotic trajecto-
ies. This class of techniques has been used to investigate the multidi-
ensional parameter space of the Solar system (Hayes 2008 , 2007 ),

etect chaotic orbits in exoplanet systems (Makarov & Berghea
014 ), and to map the stability areas of generally chaotic motion of
igh-eccentricity and high-inclination orbits of exoasteroids orbiting
hite dwarfs (Antoniadou & Veras 2019 ). For this paper, we mostly
sed k = 2 because it seems to be sufficient to capture the fine
etails of the chaos/regular transition zones surrounding the islands
f stability. 

 I N T E G R A  TI NG  EQUA  T I O N S  O F  MOTI O N  

e introduce an inertial, non-rotating with respect to distant stars,
eference frame defined by the stationary orbit of the celestial body
round a central mass, which is considered to be a point mass in
his paper. The coordinate triad { X 1 , X 2 , X 3 } is defined so that X 1 

s directed towards the pericentre, X 3 is aligned with the orbital
ngular momentum, and X 2 completes the right-handed coordinate
rame. With respect to the ellipsoidal body, the gravitational attractor
o v es with a varying velocity within the plane spanned by X 1 and

X 2 . We consider another reference frame instantaneously attached to
he rotating body, defined by the right-handed triad of basis vectors
 Y 1 , Y 2 , Y 3 } . Here, the axes are aligned with the principal axes of
nertia of the ellipsoidal body A , B , and C , respectively, where A ≤
 ≤ C . The well-known Euler’s equations of motion (Danby 1962 )

efer to the latter system and can be written in the form 

¨ 1 = 

C − B 

A 

[
3 GM 

r 3 
h 2 h 3 − ẏ 2 ̇y 3 

]

¨ 2 = 

A − C 

B 

[
3 GM 

r 3 
h 3 h 1 − ẏ 3 ̇y 1 

]

¨ 3 = 

B − A 

C 

[
3 GM 

r 3 
h 1 h 2 − ẏ 1 ̇y 2 

]
, (5) 

here [ ̇y 1 , ẏ 2 , ẏ 3 ] is the instantaneous rotation vector in the body
rame, [ ̈y 1 , ÿ 2 , ÿ 3 ] is the instantaneous angular acceleration vector, G
s the gravitational constant, M is the mass of the gravitating body, r is
he instantaneous distance between the two interacting bodies, and h i ,

https://juliadynamics.github.io/DynamicalSystems.jl/v1.3/chaos/chaos_detection/
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Figure 1. Simulated precession, nutation, and pole wander of a test body with L f = 1, e = 0.0047, n = 4.5855 d −1 (model Enceladus) and initial conditions 
described in the text. Left: normalized roll and pitch components of rotation rate in the body frame; middle: normalized components of rotation rate projected 
on to the inertial plane of orbit; right: coordinates of the true pole r = [0 , 0 , 1] in the plane of orbit. 
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2 The small offset of the rotation rate from 1 n at pericentre is due to the 
harmonic pendulum approximation of the amplitude of forced libration in 
longitude, −6 e σ n 2 / ( N 

2 − n 2 ), where N is the natural frequency of free 
libration in longitude (cf. Frouard & Efroimsky 2017 ). 
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 = 1, 2, and 3, are the direction cosines of the vector from the centre
f the triaxial body to the gravitating point mass in the instantaneous
ody frame. The gravitational part of the torque can be derived from
he general equation involving an inertia matrix (Schaub, Junkins & 

chetz 2009 , p. 190), taking the simplest diagonal form in the body
rame. 

The free rotation (inertial) part of these equations of motion is
erived directly from the two conservation laws (Scheeres 2012 ), the 
otal kinetic energy 

 E = A ̇y 2 1 + B ̇y 2 2 + C ̇y 2 3 (6) 

nd the angular momentum squared 

 

2 = A 

2 ẏ 2 1 + B 

2 ẏ 2 2 + C 

2 ẏ 2 3 . (7) 

hese quantities are not constant in any other frames including the 
rbit-fixed inertial frame. It is important for the following derivation 
o understand the properties of the body frame where equations ( 5 ) are
alid. It is the inertial (non-rotating) frame that is instantaneously 
ligned with the principal axes of inertia at a given time t . The
hysical process of rotation can be viewed as a continuous series of
nertial body frames forming a sequence of infinitesimal 3D rotations. 

The second-order ordinary differential equations (ODEs) in equa- 
ion ( 5 ) can be directly integrated with a proper set of initial
onditions to yield the velocity vector components ẏ i as functions of 
ime. The main technical difficulty is computing the direction cosines 
 i as functions of time. These are easily computed in the inertial frame
 X 1 , X 2 , X 3 } , but we need to know the direction to the perturber at
ny time in the body frame. It would seem that the integrated angles
 i should define the orientation of the body frame with respect to
he orbital frame, but in fact, this is not the case. These angles are
ome integrated angular paths of the body with respect to the initial
rientation, which have no immediate physical interpretation. We 
ave therefore a classical attitude reconstruction problem to solve: 
iven a set of initial conditions and second-order ODEs, determine 
he mutual orientation of the two frames in question. 

In this paper, we use two essentially different techniques to solve 
he attitude problem, viz. a standard 3-2-1 sequence of Euler rota-
ions (Appendix A ) and a quaternion representation (Appendix B). 
lthough the latter approach requires one more ODE to be solved, 
e found it to be faster and more numerically accurate. Variations of

he former technique, on the other hand, have been traditionally used 
n such cornerstone problems of celestial mechanics as description of 
unar rotation and orientation. Rambaux & Williams ( 2011 ) describe
 rather involved 3-1-3-1 schema of Euler rotations traditionally used 
or the Lunar attitude, which has explicit numerical singularities. As 
ong as the motion of the Moon is regular and confined to a narrow
orus in the parameter space, these degeneracies are of no concern.
ur 3-2-1 schema also has a singularity related to the second rotation,
hich becomes an issue for a tumbling body. Otherwise, the two
ethods obtain practically identical results for regular trajectories 
ith identical initial conditions. As a sanity check, we integrated our
asic Enceladus model [with n = 4.585 537 d −1 , σ = ( B − A )/ C =
.035 73, e = 0.0047] with the initial conditions of ideal synchro-
ization [at pericentre time t = 0, all attitude angles equal to zero, and
pin rates are ω 1 (0) = ω 2 (0) = 0, ω 3 (0) = 0 . 998 85 n ] 2 and obtained
ith both methods a purely longitudinal forced libration with 

he theoretically expected from equation ( 2 ) asymptotic amplitude 
 e σ/ (3 σ − 1) = −0 . 0647 ◦. 
With these tools in hand, we can accurately and swiftly integrate

he motion of our base model Enceladus with any initial conditions.
s soon as we depart from the perfect synchronism, significant free

ibrations emerge, making the rotational behaviour quite complex. 
ig. 1 shows the solution for heavily perturbed initial conditions 
f the base model and L f = 1, which corresponds to ( B − A )/ C =
.035 73, ( C − A )/ B = 0.046 69, and ( C − B )/ A = 0.010 97. The
nitial periastron orientation remains aligned with the inertial orbit 
rame (zero initial roll, pitch, and yaw angles) and the initial velocities 
re ω 1 (0) = 0 . 11 n , ω 2 (0) = 0 . 2 n , and ω 3 (0) = 1 . 0 n . The angular
 elocity v ector loosely describes a cone both in the body frame
left plot) and the orbital frame (centre plot), which corresponds 
o the free libration. This relatively slow quasi-periodic motion is 
uperimposed with a higher frequency wobble due to the forced 
ibration or nutation. The vector [0, 0, 1] in the body frame defining
he north pole of the body describes high-amplitude loops in the
nertial frame remaining within ∼0.6 rad of the orbit’s axis. These are
he signs of a regular trajectory around the 1:1 spin–orbit resonance
ith a large free libration component. 
More complex patterns of free libration may emerge for trajec- 

ories in the vicinity of higher order spin–orbit resonances, e.g. the
MNRAS 513, 2076–2087 (2022) 
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Figure 2. Periodograms of the longitudinal angular velocity component ω 3 in the body frame (left) and the X 1 coordinate of the north pole in the orbit plane 
for a test body with L f = 1, e = 0.0047, n = 4.5855 d −1 (model Enceladus) and initial conditions described in the text. 

Figure 3. Map of rotation states in the cross-section of the shape parameter L f 
and orbital eccentricity e for the close vicinity of the 1:1 spin–orbit resonance, 
ω 3 (0) = 1 . 04 n . The GALI(2) index (see the text) is colour coded in such a 
way that non-chaotic rotation states are white and chaotic rotation states are 
dark coloured. Each GALI trial includes 275 orbits. 
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:1 resonance. The velocity vector describes wide loops that are not
onfined to a certain cone in either reference frame. The trajectory
annot be called quasi-periodic in any sense. The longitudinal libra-
ion in the body frame shows a few beating oscillations of apparently
on-commensurate frequencies, which makes the trajectory, being
on-chaotic and regular, to never return to the same point in the
ix-dimensional parameter space. 

 CHARACTERISTIC  FREQUENCIES  O F  3 D  

OTAT I O N  

he trajectory projections shown in Fig. 1 for a case of model
nceladus with strongly perturbed initial velocities in the latitude
imensions show both free and forced libration patterns. Even in the
implest 1D case, both the amplitude and frequency of free libration
epend on the initial conditions or, in general, on the excess of
inetic energy (Makarov 2015 ). The equations of motion ( 5 ) are
NRAS 513, 2076–2087 (2022) 
xplicitly non-linear and there is no obvious way of computing the
igenfrequencies without simplifying assumptions. The commonly
sed simplification even in the most advanced theory of Lunar
otation is to ‘linearize’ the equations of motion by ignoring the
nertial terms ẏ i ̇y j (Williams et al. 2001 ). This approximation may
e adequate for the Moon with its small amplitudes of libration
ut is not applicable for a wide range of triaxial bodies including
steroids and minor planets. It is therefore of interest to compare
hese analytical estimates with the accurately computed frequency
pectra of integrated trajectories. 

Using the same simulation described in Section 4 and presented
n Fig. 1 , we apply the standard periodogram analysis to the solved
unctions of time representing the angular velocity and orientation
f the model object. Our technical implementation of periodogram
nalysis is based on a direct least-squares fit of a constant term
nd sin- and cos-harmonics (three fitting terms per test frequency)
n discretized trajectories as functions of time. This computation
s relati vely slo w, but it is free of biases that arise when a Fourier
ransform is used on truncated time series. The amplitude spectrum is
omputed from the estimated coefficients of the trigonometric terms.
he duration of each integration is 200 orbits, and the sampling step
f the output functions is P orb /10. Each periodogram least-squares
olution is computed for a dense grid of 3000 test periods, which is
qually spaced on the logarithmic scale, allowing us to detect and
esolv e ev en the sharpest spectral peaks in the high-frequency part
f the spectrum. Using these well-tested and verified techniques, we
nd that unlike the 1D (planar) case, the v elocity v ector variations
re not equi v alent in the body frame and in the inertial world frame.
he former ( ω ) is related to physics, while the latter ( �) is what an
 xternal observ er can measure. 

Fig. 2 , left, shows a short-period portion of the amplitude spectrum
f the longitudinal component ω 3 of angular velocity normalized
o the mean motion n . In the harmonic oscillator approximation
Rambaux & Williams 2011 ), the period of the free libration mode
s P /P orb = (3 ( B − A ) /C) −

1 
2 = 3 . 054 with the parameters of our

nceladus model. The actual location of the highest peak in the
eriodogram is 3.046. This small difference can be attributed to the
eviation of our numerical solution from the idealized harmonic
scillator approximation. The dominating mode (not shown in the
lot) by far, ho we ver, has a much longer period of P / P orb = 15.67.
his mode makes the velocity vector projected on to the equator
escribe a closed elliptical loop in Fig. 1 , left. A more surprising
utcome is that the forced libration mode is split between two
requencies that are both shifted with respect to the mean motion.
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Figure 4. Map of rotation states in the cross-section of initial rotation velocity perturbations ẏ 1 (0) and ẏ 2 (0), with initially synchronous rotation ẏ 3 (0) = 1 n . 
The GALI(2) index (see the text) is colour coded in such a way that non-chaotic rotation states are white and chaotic rotation states are dark coloured. Upper 
left: e = 0.1; upper right: e = 0.65; lower left: e = 0.75; and lower right: e = 0.85. The base model moments of inertia ratios are ( B − A )/ C = 0.035 73, ( C −
A )/ B = 0.046 69, and ( C − B )/ A = 0.010 97. 
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hese two split modes of nearly equal amplitude have normalized 
eriods of ∼0.91 and 0.975. The only expected signal from the 
D analysis at exactly P orb is also present but with a much smaller
mplitude. A similar periodogram for the sidereal component 	3 

lso shows a double peak presumably caused by the variable torque 
t P / P orb = 0.964 and 1.039 but no trace of a free libration mode with
 period around 3. The greatest libration mode in 	3 has a relative
eriod of 15.67 (identical to ω 3 ). Finally, the X 1 coordinate of the
orth pole projected on to the plane of orbit, which is a measure of the
 ariable obliquity, sho ws a double peak in Fig. 2 , right, at the same
igenfrequencies as 	3 , as expected, but no sign of a free libration
ode between this feature and the 15.67 mode. The periodogram 

f X 2 is identical with the same modes of libration shifted in phase.
he analytical expressions provided by Rambaux & Williams ( 2011 ) 

or libration in latitude do not match well these results. We interpret
hese differences and additional features in the spectra of 3D rotation
s non-linear effects of the initial roll and pitch velocity components
ia the free rotation terms that have been neglected in the theoretical
tudies. 

 MAPPI NG  T H E  VA ST  C H AOT I C  SWAMP  

e now depart from our basic Enceladus model with e = 0.0047 and
 f = 1 explored in Sections 4 and 5 and investigate the rotation
ehaviour of test bodies with different orbital eccentricities and 
egrees of prolateness. The GALI index (Section 3 ) with k =
 and t max = 275 orbits allows us to map this behaviour, i.e.
epresent it as an image in the corresponding two-dimensional (2D) 
arameter space. Ho we ver, the results also depend on the initial
onditions of integration. Most of the close-in planets and moons 
MNRAS 513, 2076–2087 (2022) 

art/stac962_f4.eps


2082 V . V . Makarov et al. 

M

Figure 5. Map of rotation states in the cross-section of initial rotation 
velocity perturbations ẏ 1 (0) and ẏ 2 (0) for e = 0.1. The GALI(2) index (see 
the text) is colour coded in such a way that non-chaotic rotation states are 
white and chaotic rotation states are coloured. The model parameters are the 
same as in Fig. 4 for e = 0.1 but 1000 orbits have been integrated instead of 
275. The split colour scheme is used to discriminate between the fast chaotic 
states achieved within 275 orbits (rust tones) and the slower chaotic states 
achieved between 275 and 1000 orbits (terrain tones). 
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otate relati vely slo wly being in spin–orbit resonance, while the Solar
ystem asteroids seem to have fast rotation rates outside resonance.
e therefore pay special attention to the close vicinity of low-order

pin–orbit resonances 1:1 (the Moon, Titan, Enceladus, etc.) and 3:2
Mercury). 

.1 Synchr onous r otation or 1:1 spin–orbit r esonance 

n our first large-scale experiment, we fix the initial conditions at z 1 =
 2 = z 3 = 0 (see the definition of the attitude angles in Appendix A ),

˙ 1 = ẏ 2 = 0, and ẏ 3 = 1 . 04 n . This initial point is close to the perfect
:1 resonance, fa v ouring order in its contest with chaos. The results
re rele v ant for most of the moons in the Solar system, which are
ynchronized and have small amplitudes of free libration. Using
he faster quaternion technique (Appendix B), we integrated the 7
otation parameters for 275 orbits for a 2D grid of 113 values of
ccentricity in the interval [0, 0.99] and 167 values of L f in the interval
0.5, 5.0], thus, 18,871 integrations in total. The corresponding ratios
f inertia moments ( B − A )/ C , ( C − A )/ B , and ( C − B )/ A can be
alculated using formulae in Section 2 . 

Fig. 3 shows the resulting distribution of the number of orbits
 GALI required for the GALI(2) index to drop below a threshold
alue of 10 −12 . The plot is colour coded such that the white colour
orresponds to the maximum number of orbits 275. If the GALI index
oes not reach the threshold value in 275 orbits, the corresponding
rajectory may be regular. If, on the other hand, it drops below the
hreshold value in m GALI orbits, the trajectory is certainly chaotic.
he smaller this number, the larger is the exponent of chaotic
ivergence. Therefore, the darker colours show the trajectories of
aster chaos. Prior to performing this e xperiment, we e xpected to
ee the pre v alence of chaotic rotation for high eccentricity and more
xtended shapes. We now see unexpected structures in the map such
s the extended feature at mid- e , called ‘the scimitar’ in the following,
ith a tip at approximately L f = 1.33, e = 0.29. An e xtensiv e zone
f chaos at lower eccentricity and highly elongated shape is also
oted. 
NRAS 513, 2076–2087 (2022) 
.2 Orbital eccentricity destroys stability 

ig. 3 suggests that chaotic rotation takes o v er for the base Enceladus
odel with L f = 1 approximately at e = 0.8. What happens with the

one of regular rotation at a smaller e ? Is Enceladus’ rotation al w ays
table or it can become chaotic with sufficiently strong perturbations
rom the nearly perfect synchronization? To answer these questions,
e performed another series of large-scale numerical experiments
eeping L f = 1 for a 197 × 213 grid of initial velocities ẏ 1 (roll) and ̇y 2 
pitch) co v ering the interval [ −0 . 9 , + 0 . 9] n and a fixed ẏ 3 = 1 . 04 n .
ach of the 41 961 integrations was performed for se veral v alues of
ccentricity, included 275 orbits, and yielded an m GALI index. The
esults are presented in Fig. 4 as colour-coded maps with the same
olour scheme for comparison. 

The progression of chaoticity maps for e = 0.10, 0,65, 0.75,
nd 0.85 with the same other parameters clearly illustrates how
he island of stability around the point of dynamical equilibrium
orresponding to the synchronous spin–orbit resonance shrinks with
ncreasing eccentricity and completely vanishes between 0.75 and
.85. There is no distinct boundary between chaotic and regular
ones; in fact, small patches of chaotic values make incursions into
he zone of stable rotation on all sides making a possibly fractal
attern. The chaotic zone is not uniform either with a fine structure
ndicating rapidly changing characteristic exponents. The maps are
xially symmetric, indicating that the chaoticity index is an even
unction of initial velocity perturbation. 

.3 The crumbling islands of stability 

he white areas in Figs 3 and 4 indicate that corresponding rotational
rajectories may be regular and stable. The shredded appearance of
he boundary between possible order and definite chaos suggests
hat some of these trajectories are also chaotic and simply did not
ave enough time to reach the threshold GALI value. To test this
ypothesis, we performed the same simulation as shown in Fig. 4 for
 = 0.1 but with 1000 orbits for each grid point instead of 275. The
esult is shown in Fig. 5 . 

Chaos has made considerable advances with longer integration
imes and encroached the large island of stability centred on the
oint of perfect 1:1 resonance on all sides, but more so in the ẏ 1 (0)
imension (roll angle) where the restoring gravitational torque is
he weakest. The map has become even more shredded and finely
tructured. The white spaces may still not represent non-chaotic
rajectories because 1000 orbits are just an instant on the scale
f astronomical lifetimes. Fig. 6 shows an example of integrated
rajectories with initial parameters in the domain where GALI(2)
ndex acquires values above 275 but below 1000, namely the initial
ttitude quaternion at pericentre q (0) = (1, 0, 0, 0), initial velocity

ẏ (0) = ( −0 . 6 , 0 , 1) n , and e = 0.1 for the same model body. The
pin rate component as a function of time (left-hand panel) may
eem to be confined and quasi-periodic for a few hundred orbits
ut becomes obviously chaotic towards the end of this simulation.
he parametric plot of the spin rate trajectory (right-hand panel) is
rastically different from orderly precession patterns seen in Fig. 1,
eft-hand panel. 

.4 3:2 spin–orbit resonance 

he 1:1 spin–orbit resonance (synchronous rotation) is the main
table state for planetary satellites in the Solar system, which mostly
ave small eccentricities and are sufficiently close to their hosts.
he Moon, ho we ver, could be easily captured into a 3:2 spin–orbit

art/stac962_f5.eps
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Figure 6. Trajectories of integrated rotation of the test body (the same as in Fig. 1) with e = 0.1, initial orientation perfectly aligned with the direction to the 
primary at pericentre, and initial velocities ẏ 1 (0) = −0 . 6 n , ẏ 2 (0) = 0, ẏ 1 (0) = 1 . 0 n , representing an initial point with a GALI(2) index between 275 and 1000 
in Fig. 5 . The roll (left plot) and pitch (right plot) components of spin rate are shown as a function of time for 1000 rotations and a parametric plot, respectively. 

Figure 7. Map of rotation states in the cross-section of the shape parameter L f 
and orbital eccentricity e for the close vicinity of the 3:2 spin–orbit resonance, 
ω 3 (0) = 1 . 54 n . The GALI(2) index (see the text) is colour coded in such a 
way that non-chaotic rotation states are white and chaotic rotation states are 
dark coloured. Each GALI trial includes 300 orbits. 
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esonance if its initial rotation was prograde and fast (Makarov 
013 ). Probabilities of capture into higher spin–orbit resonances 
an be semi-analytically solved for in the 1D case with simplified 
oy tidal models such as the constant phase lag model and with

ore advanced non-linear models (Goldreich & Peale 1966 , 1968 ; 
akarov 2012 ). Mercury is currently in the 3:2 resonance but the

utcome could have been different depending on the past chaotic 
volution of its eccentricity (Noyelles et al. 2014 ). Given that 
steroids and minor planets often have higher eccentricities, it is of
nterest to see how the domain of chaotic rotational states looks like
or supersynchronous resonances. 

We performed massive integrations for the base Enceladus model 
Section 6 ) with fixed initial conditions z 1 = z 2 = z 3 = 0,
˙ 1 = ẏ 2 = 0, and ẏ 3 = 1 . 54 n . This initial point is close to the
erfect 3:2 resonance, with a small deviation meant to introduce 
 low-amplitude longitudinal libration. Using the faster quaternion 
echnique (Appendix B), we integrated the 7 rotation parameters for 
00 orbits for a 2D grid of 113 values of eccentricity in the interval
0, 0.99] and 167 values of L f in the interval [0.5, 5.0], thus, 18 871
ntegrations in total. Each integration computed the GALI(2) value 
or 300 orbits or until it dropped below the threshold. The resulting
umbers of orbits are shown in Fig. 7 as a colour-coded map. 
Compared to the analogous computation for the 1:1 resonance 

hown in Fig. 3 , we note a much wider spread of chaos, which made
ncursions into the domain of quasi-stable states at low eccentricity 
nd small prolateness values. Rotation in the vicinity of 1 . 5 n
ecomes strongly chaotic for L f = 1 already at e � 0.4. Surprisingly,
here is another area of stable rotation for e > 0.75, as well as a few
maller islands of stability for more elongated bodies at higher eccen-
ricities. The scimitar feature in Fig. 3 is completely gone; instead, a
ew smaller streaks are present at low eccentricity around L f = 2. 

This numerical experiment shows that there are islands of stable 
otation (at least, within 300 orbits) surrounding the 3:2 resonance. 
ow large are they? Do they also shrink with increasing eccentricity? 
o answer these questions, we performed numerical simulations for 

he base Enceladus model with L f = 1 on a grid of e analogous to the
ntegrations described in Section 6.2 . For a 197 × 213 grid of initial
elocities ẏ 1 (roll) and ẏ 2 (pitch) co v ering the interval [ −0 . 9 , + 0 . 9] n
nd a fixed ẏ 3 = 1 . 5 n , up to 300 orbits were computed yielding an
 GALI index. The results are shown in Fig. 8 as colour-coded maps
ith the same colour scheme for comparison. A wide stability island

s found at e = 0.3. It rapidly dwindles as eccentricity increases
owards e = 0.4, and completely disappears at slightly larger e . There
s no area of stable rotation at e = 0.5 or 0.7. Ho we ver, a similar map
or e = 0.8 (not reproduced for bre vity) sho ws again a sizeable island
f stability centred on the 3:2 resonance. The boundaries are complex
nd shredded, indicating sharp variations of maximum Lyapunov 
xponents with initial conditions. 

 SUMMARY  

otational dynamics of elongated celestial bodies in two-body 
ystems is a battlefield of chaos versus order. Chaos clearly pre-
ails across the parameter space outside of the domain of low
ccentricity and nearly spherical shapes. The maps of chaoticity 
n the eccentricity–shape space as measured by the m GALI index 
MNRAS 513, 2076–2087 (2022) 
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Figure 8. Map of rotation states in the cross-section of initial rotation velocity perturbations ẏ 1 (0) and ẏ 2 (0), with initially prograde rotation in the 3:2 resonance 
ẏ 3 (0) = 1 . 5 n . The GALI(2) index (see the text) is colour coded in such a way that non-chaotic rotation states are white and chaotic rotation states are dark 
coloured. Left: e = 0.3; right: e = 0.4. The base model moments of inertia ratios are ( B − A )/ C = 0.035 73, ( C − A )/ B = 0.046 69, and ( C − B )/ A = 0.010 97. 
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how complex structures and shredded boundaries in the vicinity
f the lowest order resonances 1:1 and 3:2. The islands of stable
otation centred on these resonances tend to shrink with increasing
ccentricity and completely vanish at some limiting values. Even
uasi-stable trajectories in the vicinity of perfect resonances may be
n reality chaotic with longer characteristic times than the duration
f integrations implemented in this paper. We find that chaotic
rajectories of highly variable maximum exponents are tightly packed
n the space of initial parameters. Isolated areas of quasi-stable
otation unexpectedly appear for the vicinity of the 3:2 spin–orbit
esonance at high values of eccentricity. 

The commonly used simplification of the Euler’s equations of
otion by omitting the inertial terms and approximating the ODE
ith a harmonic pendulum does not give a full and accurate account
f the spectrum of free libration, nutation, and polar motion for
he 1:1 resonance. We find that the forced longitudinal libration

ode splits into two frequencies that are either shifted away from
he orbital frequency or bracket it depending on which coordinate
rame is used. The dominating mode of libration in all three angles
f orientation and velocity components is not predicted by theory. It
orresponds to a relati vely slo w precession-like variation of obliquity.
e could not find the classical free libration mode in longitude for

elocity components in the world reference frame, i.e. as seen by
n external observer. Rotational motion in the vicinity of higher
pin–orbit resonances is more comple x, go v erned by a set of non-
ommensurate eigenfrequencies. 

This study opens up quite a few issues that have yet to be answered.
ne w ould lik e to know whether there are islands of stable rotation

t non-zero initial obliquity in pericentre, analogous to the Cassini
tate of the Moon. The observed distribution of rotation periods of
ain belt asteroids and their orbital eccentricities suggest that many

f them may be in chaotic states. It remains to be seen if long-
erm stable resonances exist at high eccentricities and high rates of
otation. We w ould lik e to understand the pattern of coupled 3D
otion that results in significantly different libration frequencies in

he body and world reference frames. Tidal friction is likely a great
NRAS 513, 2076–2087 (2022) 

K

egularizer of chaos for planetary satellites and close exoplanets,
hereas its role for more distant and typically more eccentric minor
lanets is not well known. 
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PPENDIX  A :  ATTITUDE  SOLUTION  WIT H  

ULER  A N G L E S  

mong a few mathematical representations of coordinate frame 
otation, we choose the sequence of elementary Euler’s rotations 3- 
-1, which is standard in marine applications and space engineering 
for a detailed deri v ation, see F ossen 2011 ). F or an y point within the
ody with a central position vector ̂  r in the orbital frame, the position
ector r in the body frame is obtained through a sequence of right-
anded rotations around axis 3, then around axis 2, and, finally, axis
: 

r = R 1 ( z 1 ) R 2 ( z 2 ) R 3 ( z 3 ) ̂  r = R 321 ( z 1 , z 2 , z 3 ) ̂  r . (A1) 

he angles z i , i = 1, 2, and 3, define the instantaneous orientation
f the body frame with respect to the orbital frame; hence, they are
ontinuous functions of time. The elementary rotation matrices are 

R 1 = 

⎡ 

⎣ 

1 0 0 
0 cos z 1 sin z 1 
0 − sin z 1 cos z 1 

⎤ 

⎦ 

R 2 = 

⎡ 

⎣ 

cos z 2 0 − sin z 2 
0 1 0 

sin z 2 0 cos z 2 

⎤ 

⎦ 

R 3 = 

⎡ 

⎣ 

cos z 3 sin z 3 0 
− sin z 3 cos z 3 0 

0 0 1 

⎤ 

⎦ . (A2) 

he matrices R i are orthogonal, as well as their product R 321 , and 
R 

−1 
i ( z i ) = R 

T 
i ( z i ) = R i ( −z i ). The order of elementary rotations is

mportant because the same orientation of the body frame can be 
epresented by another sequence of elementary rotations through 
ifferent angles. 
As we noted before, there is no direct mapping between the angles

 z 1 , z 2 , z 3 } and { y 1 , y 2 , y 3 } . Their time deri v ati ves, on the other
and, are related by the same sequence of geometrical rotations and
rojections on to the basis vectors of the rotated frames. This is true
ecause of the invariance of the rotation vector to a frame rotation, 

ˆ ẏ = R 321 ( z 1 , z 2 , z 3 ) ̇y , (A3) 

hich is a direct consequence of the invariance of the 
ector cross-product to unitary transformations, ˆ � = 

ˆ ω × ˆ r = 

 R 321 ( z 1 , z 2 , z 3 ) ω ) × ( R 321 ( z 1 , z 2 , z 3 ) r ) = R 321 ( z 1 , z 2 , z 3 ) ( ω × r ).
onsidering that the angular rates { ̇z 1 , ̇z 2 , ̇z 3 } are the geometric
rojections of the spin vector ̂  ẏ on to the basis vectors of sequentially
otated frames (starting with the orbital frame), we can write 

˙ 1 = ( R 

−1 
1 ẏ )[[1]] = ẏ [[1]] 

˙ 2 = ( R 

−1 
2 R 

−1 
1 ẏ )[[2]] = ( R 

−1 
1 ẏ )[[2]] 

˙ 3 = ( R 

−1 
3 R 

−1 
2 R 

−1 
1 ẏ )[[3]] = ( R 

−1 
2 R 

−1 
1 ẏ )[[3]] , (A4) 

here [[ i ]] denotes i -th component of a three-vector. 
The same transformation in the reverse order can be written as (cf.

ossen 2011 , equation 2.27) 

 ̇y 1 , ̇y 2 , ̇y 3 ] 
T = [ ̇z 1 , 0 , 0] T + R 1 [0 , ̇z 2 , 0] T + R 1 R 2 [0 , 0 , ̇z 3 ] 

T , (A5) 

hich formally leads to a linear matrix equation in the form 

 ̇y 1 , ẏ 2 , ẏ 3 ] 
T = T [ ̇z 1 , ̇z 2 , ̇z 3 ] 

T . (A6) 

e note that this is merely a formal representation of sequential
eometric projections as the three-vector [ ̇z 1 , ̇z 2 , ̇z 3 ] T does not exist
n any specific coordinate frame. Equations ( A6 ) are further inverted
rriving at 

 ̇z 1 , ̇z 2 , ̇z 3 ] 
T = T 

−1 [ ̇y 1 , ẏ 2 , ẏ 3 ] 
T , (A7) 

r, explicitly, 

˙ 1 = ẏ 1 + ẏ 2 sin z 1 tan z 2 + ẏ 3 cos z 1 tan z 2 

˙ 2 = ẏ 2 cos z 1 − ẏ 3 sin z 1 

˙ 3 = ẏ 2 sin z 1 sec z 2 + ẏ 3 cos z 1 sec z 2 . (A8) 

The time deri v ati ves of z i are burdened with an explicit singularity
t z 2 = ±π/2. The reason for this singularity is that a second rotation
y π/2 makes the rotated first axis to be aligned with the former
hird axis, which results in a de generac y of the rotation schema.
he same attitude can be obtained by changing z 3 and z 1 by an
rbitrary angle in the opposite sense. Physically, this de generac y 
s encountered when the pitch angle (related to the obliquity of
he equator in orbital dynamics) exceeds the critical value and the
otation becomes retrograde. It is noted that these time deri v ati ves in
he inertial frame of the orbit refer to three mutually non-orthogonal
irections, and the total spin is therefore not conserved, ż 2 1 + ̇z 2 2 +

˙ 2 3 �= || ̇y || 2 . 
As a sanity check, we can derive the same equations for ż i as

n equations ( A4 ) considering the geometric projections of the spin
ector ˆ ẏ in the inertial orbital frame and performing the elementary 
otations in the direct 321 order. Indeed, it is readily seen that ż 3 =
ˆ ẏ [[3]], etc. Thus, the chain of rotations is reversible, maintaining the
nvariant spin vector. Our approach implemented in this paper is to
dd equations ( A8 ) to the set of second-order ODEs of motion ( 5 ).
he number of unknown functions is formally raised from 3 to 6,
ut this hardly has any impact on the integration time. An additional
enefit is that the sidereal rotation velocity and the rotational axis
utation are directly obtained from the same integration. 
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For the sake of completeness, we also provide an algebraic rigorous
eri v ation that does not require any geometric considerations. It
nvolves a third coordinate frame { ̄Y 1 , Ȳ 2 , Ȳ 3 } , which is a rotating
riad defined by the principal axes of inertia of the asteroid. Any
xed point within the body has a constant position r̄ in this frame,
nd its velocity and acceleration are equal to zero. At an y giv en time
 , the orientation of this frame coincides with that of the previously
onsidered body frame { Y 1 , Y 2 , Y 3 } . Therefore, from equation ( A1 ), 

ˆ r = R 3 ( −z 3 ) R 2 ( −z 2 ) R 1 ( −z 1 ) ̄r . (A9) 

ifferentiating this equation with respect to time, 

d ̂ r 
d t 

= 

(
Ṙ 3 ( −z 3 ) R 2 ( −z 2 ) R 1 ( −z 1 ) + R 3 ( −z 3 ) Ṙ 2 ( −z 2 ) R 1 ( −z 1 ) 

+ R 3 ( −z 3 ) R 2 ( −z 2 ) Ṙ 1 ( −z 1 ) 
)

r̄ , (A10) 

here we use ẋ for time deri v ati ve of x . By definition, d ̂ r / d t = 

ˆ ω ×
ˆ r , which can further be equalled to R 3 ( −z 3 ) R 2 ( −z 2 ) R 1 ( −z 1 )( ω ×
r ) due to the frame invariance of the spin vector. Note that we
witched to the instantaneously inertial body frame { Y 1 , Y 2 , Y 3 } . At
n y giv en time, r = r̄ ; hence, 

 × r = 

(
R 1 ( z 1 ) R 2 ( z 2 ) R 3 ( z 3 ) Ṙ 3 ( −z 3 ) R 2 ( −z 2 ) R 1 ( −z 1 ) 

+ R 1 ( z 1 ) R 2 ( z 2 ) Ṙ 2 ( −z 2 ) R 1 ( −z 1 ) 

+ R 1 ( z 1 ) Ṙ 1 ( −z 1 ) 
)

r . (A11) 

he cross-product in the left-hand part of this equation can be
eplaced by a scalar product S r , with S being the corresponding
kew-symmetric matrix. Using the three non-zero elements abo v e its
iagonal and performing the matrix multiplication and summation
n the right-hand side, we obtain 

− ω 1 = −ż 1 + sin z 2 ̇z 3 

ω 2 = cos z 1 ̇z 2 + cos z 2 sin z 1 ̇z 3 

−ω 3 = sin z 1 ̇z 2 − cos z 1 cos z 2 ̇z 3 . (A12) 

olving this linear system of equations for { ̇z 1 , ̇z 2 , ̇z 3 } , one arrives at
 solution equi v alent to equations ( A8 ). 

In principle, there is an alternative approach to solving the problem
f integrating the 3D equations of motion by rewriting Euler’s
quations ( 5 ) in terms of angles z i and their deri v ati ves. Black,
icholson & Thomas ( 1995 ) explored this route to map the chaotic

otation of Hyperion. They used the more traditional for celestial
echanics 3-1-3 schema of elementary Euler rotations to represent
yperion’s instantaneous attitude, which is a matter of technical
reference. After deriving a system of first-order equations for body
rame spin rates analogous to equation ( A5 ), the vector of angular
cceleration [ ̈y 1 , ÿ 2 , ÿ 3 ] T was computed by time differentiating the
ight-hand part incorrectly assuming that the rotation matrices R i and
heir arguments z i are independent physical entities. The resulting
omplex trigonometric forms were inverted, yielding second-order
quations with explicit singularities. The correct second deri v ati ves ̈z i 
an be obtained by replacing all single-dotted terms in equations ( A4 )
ith double-dotted variables. This follows from the fact that the

ngular acceleration vector in the body frame is also rotation
nvariant, ˆ �̇ = 

ˆ ω̇ × ˆ r = ( R 321 ( z 1 , z 2 , z 3 ) ω̇ ) × ( R 321 ( z 1 , z 2 , z 3 ) r ) =
R 321 ( z 1 , z 2 , z 3 ) ( ̇ω × r ) for any fixed position r . The second deri v a-
ives of the attitude angles therefore depend only on the physical
cceleration vector and the attitude angles themselves but not on
heir first deri v ati ves. 

For an instantaneous unit vector p towards the perturbing body
Saturn in the case of Enceladus), the direction cosine products in
quations ( 5 ) are the corresponding elements of the outer product of
NRAS 513, 2076–2087 (2022) 
p with itself: 

 i h j = ( p ⊗ p )[[ i, j ]] . (A13) 

his vector is computed from the known attitude and the direction
ector in the inertial orbital frame: 

p = R 321 ( z 1 , z 2 , z 3 ) ˆ p . (A14) 

he gravitating perturber al w ays stays in the initial orbit plane, and
ts position is defined by a single true anomaly angle f ( t ): 

ˆ p = [ cos f , sin f , 0] T . (A15) 

he required trigonometric functions of true anomaly are computed
rom 

cos f = 

cos E − e 

1 − e cos E 

sin f = 

√ 

1 − e 2 sin E 

1 − e cos E 

, (A16) 

here e is eccentricity and E is the eccentric anomaly as a function
f time. The latter orbital parameter is computed either by the back-
nterpolation scheme of Tommasini & Olivieri ( 2020 ) or by the
ptimized high-accuracy method by M. Murison of USNO 

3 from
he mean anomaly M ( t ) = ( t − t 0 ) n . 

The system of six ODEs includes three equations of second order.
he required number of initial conditions is 9. We chose to define

he initial angles y 1 (0) = y 2 (0) = y 3 (0) = 0 (by definition) and the
nitial angular velocity in the body frame ω = [ ̇y 1 (0) , ẏ 2 (0) , ẏ 3 (0)],
s well as initial Euler angles of the attitude matrix,
 1 (0), z 2 (0), z 3 (0). 

PPENDI X  B:  ATTI TUDE  SOLUTI ON  WI T H  

UA  T E R N I O N  REPRESENTA  T I O N  

 well-kno wn alternati ve to the Euler rotation matrix representation
f rigid rotation is the use of attitude quaternions Ben-Ari 2017 . It
ormally includes more time-variable functions but it is also numeri-
ally stable for any type of motion, free of singularities, and compu-
ationally faster because it does not involve as many trigonometric
unctions. 

The orientation (attitude) of a rotating body is represented by a
nit quaternion q = ( q 0 , q 1 , q 2 , q 3 ), where each of the components is
 smooth function of time. Alternatively, it can be written as ( q 0 , q )
eparating its scalar part and three-vector part. Consider an arbitrary
ector r = [ r 1 , r 2 , r 3 ] fixed in the body frame rotating with the body.
his frame was introduced in Appendix A as { ̄Y 1 , Ȳ 2 , Ȳ 3 } , but we
rop the bar symbol here for simplicity. The quaternion representing
his point attached to the body is ρ = (0 , r ), and it is constant in
ime. The corresponding position vector and quaternion in the inertial
rame attached to the orbit are ˆ r and ˆ ρ = (0 , ̂  r ), respectively. By the
ules of quaternion algebra, the rotation from r to ˆ r is performed by
he Hamilton product of quaternions 

ˆ = q −1 ρ q. (B1) 

ur goal is to derive time derivatives of q . Differentiating by t , 

d ̂  ρ = 

d q −1 

ρ q + q −1 ρ
d q 

, (B2) 

http://murison.alpheratz.net/dynamics/twobody/KeplerIterations_summary.pdf
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nd further substituting from equation ( B1 ) the inverse rotation ρ =
 ˆ ρ q −1 , we obtain 

d ̂  ρ

d t 
= 

d q −1 

d t 
q ˆ ρ + ˆ ρ q −1 d q 

d t 
. (B3) 

ecause q is a unit quaternion, q −1 q = 1, and 

d q −1 

d t 
q + q −1 d q 

d t 
= 0 , (B4) 

ence, 

d ̂  ρ

d t 
= −q −1 d q 

d t 
ˆ ρ + ˆ ρ q −1 d q 

d t 
. (B5) 

et 

 = q −1 d q 

d t 
. (B6) 

he inverse unit quaternion q −1 equals conjugate q , q −1 = ( q 0 , −q 1 ,
q 2 , −q 3 ). The scalar part of u equals zero, 

 0 = 

d q 0 
d t 

q 0 + 

d q 1 
d t 

q 1 + 

d q 2 
d t 

q 2 + 

d q 3 
d t 

q 3 = 0 , (B7) 

ecause the norm of q is constant. So u is a vector quaternion (as
ell as ˆ ρ); thus, 4 

− u ˆ ρ + ˆ ρ u = −2 u × ˆ r (B8) 

using × as a sign of vector product). 
The time deri v ati ve of vector ˆ r , by definition, is 

d ̂ r 
d t 

= 

ˆ ω × ˆ r . (B9) 

rom equations ( B5 ), ( B6 ), and ( B8 ), 

ˆ  = −2 u = −2 q −1 d q 

d t 
. (B10) 

n our integrations, we operate with the angular v elocity v ector ω in
he instantaneous inertial body frame { Y 1 , Y 2 , Y 3 } (cf. Section 4 )
hose quaternion (0 , ω ) is ω = q ˆ ω q −1 . This obtains 

d q 

d t 
= −1 

2 
ω q. (B11) 

n space engineering and maritime applications, it is customary to 
mploy the inverse quaternion q −1 , which represents rotation from 

he body frame to the inertial (world) frame. For example, it is needed
 A useful relation underpinning these transformations is, for the product 
f two quaternions s and p , ( s 0 , s )( p 0 , p ) = ( s 0 p 0 − s · p ) + ( s 0 p + p 0 s + 

 × p ). 
o compute the direction of a transmitting antenna attached to a space
raft. The time deri v ati ve of this quaternion is readily obtained from
quation ( B11 ) by conjugation: 

d q −1 

d t 
= 

1 

2 
q −1 ω. (B12) 

or a driven rotation integration in the quaternion paradigm, the three
uler equations ( 5 ) should be complemented with four additional
DEs that follow from equation ( B11 ) 5 : 

˙ 0 = −0 . 5 ( q 1 ̇y 1 + q 2 ̇y 2 + q 3 ̇y 3 ) 

˙ 1 = + 0 . 5 ( q 0 ̇y 1 − q 3 ̇y 2 + q 2 ̇y 3 ) 

˙ 2 = + 0 . 5 ( q 3 ̇y 1 + q 0 ̇y 2 − q 1 ̇y 3 ) 

˙ 3 = + 0 . 5 ( −q 2 ̇y 1 + q 1 ̇y 2 + q 0 ̇y 3 ) . (B13) 

The system of seven ODEs requires seven initial conditions to 
e integrated if its order is reduced to one. This is achieved by
xplicitly using the vector of angular velocity ω = [ ̇y 1 , ẏ 2 , ẏ 3 ] in
he body frame, thus eliminating the second time deri v ati ves of
he angles y i . The initial conditions then define the initial angular
elocity ω (0) = [ ̇y 1 (0) , ẏ 2 (0) , ẏ 3 (0)] and the components of the
nitial attitude quaternion q = ( q 0 , q 1 , q 2 , q 3 ). If the starting
ime t = 0 corresponds to a pericentre time, the initial quaternion
efines how much the body is tilted and inclined with respect to
he equilibrium orientation when the longest axis of the ellipsoid 
s aligned with the direction to the perturber and the equator is in
he orbit plane. A useful geometric interpretation is that a rotation
y angle φ around a unit vector h is represented by a quaternion
 cos ( φ/ 2) , sin ( φ/ 2) h ). 

 In advanced languages such as Mathematica and Julia, standard quaternion 
ultiplication can be directly used. 
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