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Abstract

Both anti-angiogenesis and gene therapy involve complex processes de-
pending on non-point parameters belonging to a space of values. To
successfully overcome the challenges involved in their therapeutic ap-
proaches, there is a need to analyze the sensitivity of these parame-
ters. In this paper, a new mathematical model that combines immune
system stimulations, inflammatory processes associated with tumor de-
velopment, and gene therapy aimed at enhancing the efficacy of both
treatments are explored. Using the global sensitivity methods of Sobol
and Morris, the most important parameters are estimated. Estimation
of the sensitivity variance revealed a strong interdependence between
the parameters. Also, determinations of the conditions for effective
therapy lead to a target of reducing the cancer cell numbers by at least
50%. This opened the way for delimiting the parameter spaces mak-
ing it possible to reach the treatment target in addition to enhancing
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the estimation of the minimum time of remission. The combination of
therapies and sensitivity analysis have demonstrated the robustness of
therapy success.

Keywords: Cancer gene therapy, Oncolytic viruses, Inflammation,
Mathematical model, isobologram analysis

1. Introduction

Cancer gene therapy is a promising treatment strategy. Advances in
knowledge of the biology of viruses have been used to consider replicat-
ing vectors preferentially in tumors that can significantly amplify the
expression of gene therapy. Among these viruses, some have a mutation
or a deletion in their genome that affect replication in normal cells but
not in cancer cells. However, although much progress has been made
in both the theoretical study and clinical trials of oncolytic viruses
[13, 17, 43, 51, 52, 54, 55], problems still remain to be addressed with
regards to their interactions with the host immune response to virus-
infected tumor cells [29, 50] or the tumor microenvironment [4].
Inflammation in the tumor-microenvironment has gained prominent at-
tention as a potential critical player in tumor metastasis. An inflam-
matory tumor microenvironment fosters tumor growth, angiogenesis,
and metastasis progression. Inflammation is an advantage for the tu-
mor since an important part of the inflammatory process is dedicated
to the reconstruction of the tissue, which also requires mechanisms in-
volved in tumorigeneses. Tumor inflammation is induced by inflamma-
tory factors secreted by tumor cells, such as the platelet-derived growth
factor-D (PDGF-D) that recruits macrophages within the tumor, thus
behaving as a powerful tumor promoter: it allows a faster progression
of oncogenesis [46]. Proliferation and survival, which are already over-
activated in cancer cells, are stimulated by inflammation.
Angiogenesis, which is absolutely necessary for tumor growth, is in-
duced by inflammation [3, 45]. Targeting angiogenesis can be an effec-
tive approach to prevent the development of new blood vessels and is an
essential modality for normalizing the tumor-associated vasculature [1].
As a result, the irregular vasculature leads to impaired tumoral blood
flow that cannot supply nutrient to cells, remove waste products, and
this causes significant fluctuations within the tumor microenvironment
[5, 10, 20, 23]. Oncolytic viruses have been recognized as offering the
possibility of targeted delivery of angiogenesis inhibitors, and recent
studies have uncovered anti-angiogenic effects of oncolytic viral ther-
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apy on tumoral angiogenesis that is in effect backed by inflammatory
processes, [2, 7, 8, 11, 21, 37, 47, 57].
To explore the role of inflammation in cancer, Wilkie and Aktar [49]
proposed a model for inflammation-driven stimulation of tumor growth
through increases to the environmental carrying capacity. Their model
takes into account the formulation derived by Hahnfeldt et al.[22],
which provide a time-dependent carrying capacity for cancer under an-
giogenic control.
In this article, we model the interaction between the susceptible and
infected tumor cells, the onclyotic virus and a time dependence of the
cancer carrying capacity. Therefore, our model also incorporates the
time-dependent resources available to the tumor system, the antitu-
moral and antiviral immune responses, following an initial successful
viral propagation phase on tumor cell populations. The other variables
appearing in our model come from a modification of models introduced
by Mahasa et al. [27] and Storey et al. [41].
It is known that model outputs often have complex, nonlinear rela-
tionships with model parameters [30, 34, 53]. To avoid bias in model
outputs from inappropriate choices of parameter values, we evaluate the
performance of two well-known methodologies for sensitivity analysis.
The model sensitivities can be defined as the derivatives of the solution
with respect to the parameters. It contains two major goals: on the
one hand, the sensitivities serve as diagnostics for the model, very use-
ful for understanding how changes in the parameters induce effects on
the model. On the other hand, this approach is due to the usefulness
of derivatives in many circumstances. In the scientific literature, three
types of sensitivity analyzes are frequent: local sensitivity analysis, as-
sistant sensitivity analysis and methods of global sensitivity analysis.
The local sensitivity analysis is known for its character of directly giv-
ing the gradient of the solution with respect to each parameter along
the time series. It can be costly for larger models. Comparatively,
the methods of global sensitivity analysis (GSA) are most appropriate
for determining the important parameters that dominate model pre-
dictions. GSA can also estimate the magnitude of hidden bias that
would need to be present to alter the conclusions of an observational
study. In this paper, we mainly focus on two common methods of global
sensitivity analysis: the Morris and Sobol methods [31, 40]. For more
details on the implementations of these two global analysis methods,
see [38, 53].
Finally, we use a similar approach developed in [12, 44], as in the
isobole determination of effective concentration (ECx) in a mixture
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dose-response relationship, ( EC50 (x = 50) are concentrations induc-
ing 50% response). That is to say, we determine the model parameter
spaces leading to a synergy of the two therapeutic approaches with 50%
reduction in the population of cancer cells. Synergy indicates that two
or more components are mixed together, and the effect is greater than
the sum of the effects of the individual components when applied alone.

2. Material and Methods

2.1. The Mathematical Model

The model describes the interactions between tumor cells (i.e. in-
fected plus uninfected) in the presence of the adaptive immune re-
sponses following an initial successful viral propagation phase on tu-
mor cell populations within intratumoral delivery [42] and by assuming
that viral particles and cells follow mass action kinetics, and all cell
populations are homogenously mixed [6]. In this model, the growth
of tumor cells (i.e. infected plus uninfected) within an inflammatory
environment is stimulated by the immune system through an inflam-
matory process incorporated in the carrying capacity KT . The model
takes into account the dynamical interactions between a population of
susceptible and uninfected tumor cells, TS(t); a population of infected
tumor cells, TI(t); a population of oncolytic viruses V (t); the tumor-
specific immune cells YT (t); the virus-specific immune cells YV (t) and
the carrying capacity KT (t). When the oncolytic virus is administered,
the dynamical interactions between the virus and tumor cell population
is described by the following system of equations in the tumor region
Ω,

dTS
dt

= rTTS

(
1− TS + TI

KT (t)

)
− βTTSV − γT

YT
hY + YT

TS, (1a)

dKT

dt
= p(TS + TI)− qKT (TS + TI)

2/3, (1b)

dTI
dt

= βTTSV − λTTI − γT
YT

hY + YT
TI − γV YV TI , (1c)

dV

dt
= bTλTTI − ωV, (1d)

dYT
dt

= pT
TS + TI

hT + TS + TI
− δTYT , (1e)

dYV
dt

= pV TI(t− τ)− δV YV . (1f)
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Each equation describes the rate of change in hours of the popula-
tion of a single cell type or of the virus. Time t = 0 represents the time
at which the initial viral dose is administered. We assume that there
are no new immune cells being recruited to target the tumor at the time
of the initial viral dose. We start simulations with the initial conditions
TS = 106 cells and V = 107 pfu (plaque-forming units). Virions that
are incapable of forming plaques cannot infect their target cells, and
are excluded when counting the plaque-forming units [28]. All other
cell populations begin at 0 and for τ ≤ t ≤ 0, we have constant history
functions of cell concentrations on that time interval.

2.2. Biological Motivations Behind the Model

The model is explained as follows. During oncolytic virotherapy, the
tumor cell population is sub-divided into two sub-populations, the un-
infected tumor cells represented by TS and infected tumor cells denoted
by TI . The susceptible (uninfected) tumor cells grow logistically at
the rates, rT , up to their carrying capacities, KT .

When the oncolytic virus meets susceptible tumor cells, infection
can occur at a rate βT . The interaction between tumor and the tumor-
specific immune cells follows the Michaelis-Menten kinetics, γT

YT
hY +YT

TS,
because immune cell infiltration into the tumor is often restricted by
tumor architecture [24]. Thus, γT denotes the rate at which tumor cells
are lysed by the tumor-specific immune cells and hY represents the half-
saturation constant of immune cells that supports half the maximum
killing rate.
The equation (1b) is derived from the model of Hahnfeldt et al. [22],
where the effective vascular support of the tumor microenvironment, or
carrying capacity, grows in a time-dependent manner with the tumor
mass. The first term p(TS + TI) represents the stimulatory capacity
of the tumor upon the inducible vasculature (through, e.g., angiogenic
factors like vascular endothelial growth factor) and the second term
qKT (TS + TI)

2/3 reflects endogenous inhibition of previously generated
vasculature (through, e.g., endothelial cell death or disaggregation).
The main conclusion of their work was that the ratio of the second
term should be proportional to the tumor volume raised to the power
2/3.In the equation (1b), p is the stimulation coefficient and q is the
inhibition coefficient.
For infected cell populations TI , we assume that their lifespan is much
shorter than uninfected cell populations; hence, we do not need logistic
growth. The equation (1c) models the infected tumor population, in
which term βTTSV denotes the addition of cells to the population TI
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via viral infection of susceptible tumor cells at rate βT , and −λTTI ,
denotes the death of the infected tumor cells.
Again, since tumor architecture may hinder the adaptive antitumor im-
mune cell infiltration [24], the interaction between the infected tumor
cells and the adaptive antitumor immune response is modeled with the
term γT

YT
hY +YT

TI . The last term, −γV YV TI , represents the number of in-
fected tumor cells that become lysed by the virus-specific immune cells.

Equation (1d) models the oncolytic virus population, with the first
term bTλTTI representing the addition of new viral particles that are
released when an infected tumor cell lyses. The parameter bT denotes
the viral burst size released from each infected cell. The final term
ωV , corresponds to clearance of the viral particles, resulting from local
non-specific immune cells in the tumor region.

Equation (1e) models the tumor-specific adaptive immune response.
We assume that tumor-specific immune cells can recognize and kill
both uninfected and infected tumor cells because tumors often express
tumor-associated antigens [9]. The first term, pT

TS+TI
hT+TS+TI

, represents
the antitumoral immune response, propelled by pro-tumoral inflam-
matory behaviors [21] against the tumor cells, with the immune cell
recruitment rate pT , and the half-saturation constant hT . Finally, the
last term, −δTYT , denotes that the adaptive tumor-specific immune
population declines as a result of natural cell death, at the intrinsic
death rate δT .

Equation (1f) models the adaptive virus-specific immune response.
We assume that the immune response to viral antigens require time
necessary for cell activation and proliferation. That means, antigenic
stimulation generating the antiviral immune response, mediated by T
cells, require a period of time τ , which may depend on prior antigenic
stimulation period t− τ . So, the first term pV TI(t− τ), represents the
delayed immune response to virus infection to tumor cells, where a pa-
rameter pV is a virus-specific proliferative rate of the antiviral immune
cells due to the presence of virus particles (virus antigens) on the sur-
face of the infected cells. The last term, −δV YV , represents the natural
death, with the death rate δV .
The summary of the parameter ranges is presented in Table 1.
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Table 1: Parameter values used in the model simulations.

Parameter Description Value Range Source
rT the intrinsic growth rate of tumor cells 0.003 hr−1 (0.01− 0.3) hr−1 [35, 55]
βT the rate at which virus infects tumor cells 4× 10−11 virion−1 hr−1 (4× 10−12 − 8× 10−6) virion−1 hr−1 [35]
γT lysis rate of susceptible tumor cells by tumor-specific immune cells 1/24 hr−1 (10−9 − 0.50) hr−1 [16]
hY the half-saturation constant of immune cells 40.0 cells (0.01− 50.01) cells [16]
γV lysis rate of the infected normal cells by virus-specific immune cells 1/24 cells−1 hr−1 (5× 10−13 − 0.1) cells−1 hr−1 [27]
λT death rate of infected tumor cells due to virus lysis 1/24 cells−1 hr−1 (10−8 − 0.5) cells−1 hr−1 [16]
bT the burst size from tumor cells lysed by virus 1350 virions cell−1 (400.0− 7400) virions cell−1 [35]
ω virus clearance rate 0.025 hr−1 (0.001− 0.25) hr−1 [18, 36]
δT death rate of the tumor-specific immune cells 0.000375 hr−1 (0.00000375− 0.0375) hr−1 [15]
hT the half-saturation constant of tumor cells in response to tumor antigens 40 cells (0.01− 50.01) cells [16]
pV proliferation rate of virus-specific immune cells in response to virus antigens 0.055 hr−1 (0.01− 0.3042) hr−1 [16]
pT proliferation rate of tumor-specific immune cells 0.0375/24 hr−1 (0.00015− 0.015) hr−1 [27]
τ the delay time 8 hr (5− 10) hr [27]
δV death rate of the virus-specific immune cells 0.00554 hr−1 (0.0001− 0.0554) hr−1 [16]
p the stimulation coefficient 0.008 hr−1 (0.001− 2.00) hr−1 [48]
q the inhibition coefficient 7.0× 10−5 (cell no.)−2/3 hr−1 (0.05× 10−5 − 40× 10−5) (cell no.)−2/3 hr−1 [48]
KT,0 the carrying capacity of tumor cells 1.47× 108 (cell no.) (1.72× 104 − 2.46× 108) (cell no.) [48]

2.3. Computation methods of sensitivity analysis

The Sobol method [40] is a variance-based computation and breaks
the variance of the model or system output into fractions that can be
assigned to inputs or sets of inputs. This helps to not only obtain the
sensitivities of the individual parameters, but also provides a means
of quantifying the effect and sensitivity of the interaction between the
parameters. Let the model be represented by a function

Y = f(X) = f(X1, . . . , Xd),

where Y is the model output and X = (X1, . . . , Xd) is the parameter
set. Sobol suggested to decompose the function f into summands of
increasing dimensionality:

Y = f0 +
d∑
i=1

fi(Xi) +
d∑
i<j

fij(Xi, Xj) + · · ·+ f1,2,··· ,d(X1, X2, · · · , Xd)

The attribution of total output variance to individual model param-
eters and their interactions can be written as:

V ar(Y ) =
d∑
i=1

Vi +
d∑
i<j

Vi,j + · · ·+ V1,2,··· ,d,

where V ar(Y ) represents the total variance of the output metric Y ; Vi
is the first-order variance contribution of the i-th parameter, Vi,j is the
second-order contribution of the interaction between parameters i and
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j; and V1,2,··· ,d contains all interactions higher than third-order, up to d
total parameters. In this study, each parameter’s total sensitivity index
is used (i.e., its individual effects plus an estimate of its interactions
with all other parameters).

The Sobol indices are “ordered”, the first order indices given by

Si =
Vi

V ar(Y )
is the fraction of the total output variance caused by

the parameter i. It is a measure for the variance contribution of the
individual parameter Xi to the total model variance. It is normalized
by the total variance to provide a fractional contribution. Higher order
interaction indices Si,j, Si,j,k and so on can be formed by dividing other
terms in the decomposition of the variance by V ar(Y ).
Sensitivity indices are approximated using numerical integration in a
Monte Carlo framework. A global sample of the parameter space is
taken using a quasi-random Sobol’sequence of values to achieve a uni-
form coverage of the space. The parameter sets generated from these
sampling ranges are evaluated in the model, creating a distribution of
output values, Y , which have a total variance D as follows:

Y0 =
1

n

n∑
s=1

Y (θs)

D =
1

n

n∑
s=1

Y 2(θs)− Y 2
0 ,

where Y0 is the mean of the distribution of model outputs and θs rep-
resents the parameter set associated with sample s.

Parameter ranges used Sobol methods are listed in Table 1.

2.4. Computation methods for the determination of effective parameter
values

In each of our simulations to determine the space of parameter val-
ues for which we observe synergistic effects of anti-angiosenesis and gene
therapy combination, we choose two varying control parameters from
our model (one is linked to the anti-angiosenesis and the other to gene
therapy). The rest of the other model parameters are fixed when the
model control parameters vary. We assume that the initial amount of
cancer cells exceeds 106. For a given couple of control parameter pair,
we observe the model output in a period of 200 hours. If over the last
100 hours of observation, the quantity of cancer cells is below 50% of
their initial size, then the value of the control parameter pair becomes
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an effective control value. This effective control value is thus saved as
well as the minimum time to observe for the first time a 50% decrease
in cancer cells.

3. Results

In Figure 1 and Figure 2, we represent from the second line of
the times column, the dynamics of the six populations studied. The
figures on the diagonal represent the distribution of the observed values
for a given variable. The rest of the other figures represent all the
phase portrait couples of the five populations. The values on the upper
diagonal represent the associated correlations. The model parameters
were set as follows in (2):

rT = 0.15 , βT = 8e− 11, γT = 0.3, hY = 15.0,

p = 0.06 , γV = 0.001, bT = 1800, ω = 0.15, λT = 0.0001 (2)

pT = 0.005 , hT = 22, δT = 0.0075, pV = 0.15, δV = 0.0155

In Figure 1, we fix the inhibition coefficient q = 4e−5 , leading to slow
down of cancer cells. While in Figure 2, q is fixed as q = 0.01e−5 which
leads to the failure of virotherapy.

Figure 1: Population dynamics with cancer cell extinction, phase portraits and
correlation when all the parameters are fixed as in (2) except q = 4e−5.
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Figure 2: Population dynamics with cancer cell persistence, phase portraits and
correlation when all the parameters are fixed as in (2) except q = 0.01e−5.

3.1. Computation of the sensitivity of model parameters

Global sensitivity analysis (GSA) of the model was performed using
the variance-based Sobol method [39, 40]. Model output variances were
estimated using Monte Carlo integrals. So a critical step of sampling-
based GSA is therefore the choice of the sample size to run the Monte
Carlo experiment.

The total cost of this analysis is N = (p+ 2)× n model evaluations
(where p is the number of factors and n is the random sample size).
The generation of this set of model runs of size N is by far the most
computationally demanding step in the calculation of variance- based
indices. The aim is therefore to pick the minimum n needed to en-
sure our index calculation is reliable. Based on the work of Nossent et
al. [33], we found that the sample size n is 10800, resulting in 194,400
model evaluations to calculate the first order and total sensitivity index.
Results of convergence analysis across the GSA method was performed
with the Python software package “SALib”.

In Figure 3, the sensitivity analysis showed that the inhibition co-
efficient q is strongly influenced by the population of susceptible and
uninfected tumor cells TS(t), for all time points. It has 2 times more
influence on the total variance than the second and third ranked pa-
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rameters, rT (the intrinsic growth rate of uninfected tumor cells) and
p (the stimulation coefficient).

At the very beginning, the parameter rT occupied this place but
quickly decreases with an exponential speed after 75 hours of obser-
vation period, which suggest the importance of the effects of the in-
flammatory environment. Indeed, the parameter q is the factor involv-
ing the most non-linear interactions unlike the rest of the parameters,
throughout the study duration.

Figure 3: Sobol sensitivity indices for TS state variable

As seen in Figure 4, the inhibition coefficient q is the single most
influential parameter in addition to being an important factor of vari-
ability for non-linear interactions on the load capacity KT . At the same
time, q and p are parameters that induce the most residual variability
due to interactions between the fixed parameter Xi and the other pa-
rameters (see the right of Figure 4).

With regard to the population of infected tumor cells TI(t), Figure
5 shows that q is the most influential parameter from the first 65 hours.
However after t = 65 hours, q lost its global influence on TI(t) to the
detriment of pV , the proliferation rate of virus- specific immune cells in
reponse to virus antigens. In addition, pV , λT (the death rate of infected
tumor cells due to virus lysis) and q represent the parameters which
involve the most interactions and non- linearities on the dynamics of
TI(t). We note that the estimates of the first-order Sobol’s index of
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Figure 4: Sobol sensitivity indices for KT state variable

Figure 5: Sobol sensitivity indices for TI state variable.

λT and βT are slightly negative, which may occur when the indices
do not significantly differ from 0. Also, it is important to note strong
variability induced by almost all the parameters from 50 hours to 160
hours.
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Figure 6: Sobol sensitivity indices for V state variable

With regard to the free virus population V (t), Figure 6 shows that
q is the most influential parameter from the first 60 hours. After t = 60
hours, q lost its global influence to the detriment of λT . However, total
effect of λT is slightly higher than the main effect signifying that there
is little interaction with other parameters. On other hand, the virulence
rate ω and q are those which contributed the most on the non-linearity
or the level of interaction of their influences on V .

In Figure 7, pT and δV are far from the parameters that most affect
the tumor-specific immune cells YT (t), and since the difference between
the total effect index and main effect index of each parameter appear
similar it can be assumed they are interacting parameters. This cor-
roborates the idea that increased efficacy depends on the combination
of virus and immune response [19].

Figure 8 shows us that p and q have the greatest overall influence
on the immune cells specific for the virus YV (t), followed by w, λT and
γV , in the order of listing.

3.2. Computation of effective control paramater space

This section presents the simulations to show where, both in time, space
and in parameter space, 50% of cancer size reduction exists. In each
graph of Figure 9, we have two regions: one in gray where the target
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Figure 7: Sobol sensitivity indices for YT state variable

Figure 8: Sobol sensitivity indices for YV state variable

of cancer reduction is not reached and one with color palettes varying
from blue to red where the target is reached. The color palette repre-
sents the minimum time for the quantity of tumor cells to be reduced
by 50%: the red color corresponds to a longer minimum time and the

14



blue color is for a shorter minimum time. Therefore, the simulations
of our model that combines anti-angiogenic treatment with gene ther-
apy shows the existence of effective model parameters inducing 50%
of cancer size reduction. Furthermore we observe, at the limits of the
reduction target regions, a non-linear relation of the critical values of
control parameter pairs. By considering, in Figure 9(A), the couple(bT ,
hY )as a control parameter pair, we observe a parabolic covex curve
that delimits the upper limit of the region where the cancer reduction
target is reached. The minimum time (> 50 hours) to reach the target
is longer (red or yellow color) for low values of bT and hY . However,
this minimum time becomes lower (< 25 hours, blue color) as soon as
bT > 5700. In Figure 9(B), (βT , p) is chosen as representative control
parameter pair. The obtained shape of the 50% reduction region is
similar to that of the pair (bT , hY ). The minimum control time is more
than 10 hours if βT < 5 × 10−10 while it becomes less than 5 hours as
soon as βT > 6×10−10. In Figure 9(C), (γT , q) is the ccontrol parameter
pair. The reduction target of the cancer cells is not reached in the gray
region where γT < 0.42 and q < 2.3 × 10−4. Outside this gray region,
the reduction target is faster (less than 10 hours) for large values of q
(q > 1.5 × 10−4) and later (more than 75 hours) with low values of q
( q < 0.5 × 10−4). The control parameter pair (p, q), in Figure 9(D),
delimits a line below which control is not achieved. However above this
limit line the reduction is reached more quickly as q increases. Indeed
in this region, the color palette of the minimum period time control,
varies from yellow to blue. For low values of q and pT , in Figure 9(E),
the pair of control parameters (q, pT ) does not achieve the 50% cancer
cell reduction. However, increasing the q values makes it possible to
achieve this reduction over a minimum period time going from more
than 90 hours (red color) to less than 10 hours (blue color). In the case
where (rT , q) becomes the control parameter pair, as in Figure 9(F),
the remission becomes really effective only if q > 2×10−4. In addition,
the simultaneous increase in the values of rT and q makes it possible to
decrease the minimum time period for cancer reduction by 50%.
Our simulations also show that for a fixed choice of control parameter,
estimating the minimum time peroid for cancer reduction greatly en-
hances in a synergistic fashion, the effectiveness of the control strategy..

4. Discussion and Conclusion

We have formulated in this work a mathematical model describing
the interactions between the oncolytic virus, the tumor cells, the an-
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Figure 9: parameter space where the cancer reduction target is reached. The color
palettes correspond to the minimum time to reach this control
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titumoral and antiviral immune responses, by including inflammatory
actions that contribute to both the stimulatory and inhibitory signals
controlling the environmental capacity. The global sensitivity analysis
in an inflammatory environment, showed strong variances, thus sug-
gesting strong interactions between the parameters of the models. This
sensitivity analysis also showed that the angiogenic inhibition stimula-
tion parameters, integrated into the carrying capacity of cancer load,
play an important role in the effectiveness of therapy. In particular,
the carrying capacity inhibition coefficient most strongly influences the
tumor proliferation.
Recent studies in vivo, suggest a positive benefit of combining an on-
colytic virus with an anti-angiogenic agent in cancer treatment. In
fact, Kurozumi et al. [26] found hat pretreatment of gliomas with the
angiogenesis inhibitor cRGD peptide [56], reduced inflammation, vas-
cular hyperpermeability, and leukocyte infiltration of tumor tissue upon
treatment with the oncolytic virus hrR3. Reduction of host immune
responses by cRGD treatment also enhanced the anticancer efficacy of
oncolytic virus treatment by increasing oncolytic virus propagation in
tumors. Kottke et al. [25] have demonstrated that combining VEGF165
inhibitors [32] with systemic delivery of oncolytic viruses leads to sub-
stantial regression and cure of established tumors in immunocompetent
mice. This approach led to direct tumor cell lysis and triggered innate
immunemediated attack on the tumor vasculature.

The sensitivity analysis has also revealed the key role played by
the immune response in the tumor microenvironment (Figure 7). This
matches the comments of de Graaf et al. [14] summarizing the benefits
of onclyotic virus armed with immune modulators. In fact, they sug-
gested in the case of inflamed tumors, hat responses of effector T cells
and Natural Killer (NK) cells can be improved by immune activating
agonists, such as 4-1BBL, and checkpoint inhibitors .

Given the growing importance of combination therapies, we evalu-
ated whether there was synergism between anti-angiogenic treatment
and gene therapy. Isobologram analysis showed, that over a 200-hour
observation period, the existence of parameter regions leading to a re-
duction of 50% in tumor size was possible. In addition, we estimated
the minimum time to reach this reduction target depending on the con-
trol parameters. Our simulations suggest that simultaneous variations
of parameter pairs, having same or opposite effects on the dynamics of
cancer cells display similar behavior to individual parameters in affect-
ing nonlinear model output. We submit at this juncture that our results
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provide a new way to achieve highly synergistic combinational strategy
of anti-angiogenic treatment and gene therapy for cancer cell control.
Furthermore, our analysis provides an estimate for the minimum period
of time for cancer reduction in case of synergistic effects.

It is imperative from the sensitivity analysis of our model that em-
ploys the approach of combined anti-angiogenic and gene therapies pro-
vides new insights for effective overall cancer therapy. It opens up the
possibility of an analytical approach to achieving remission or total
extinction of cancer cells. It provides a tool for understanding how
the combined effects of anti- angiogenic and gene therapies may be
influenced by parameter variations and behaviors in inflammatory en-
vironments.

Finally, it yields insight into the robustness and stability of the tar-
get solutions for cancer reduction. At this point, we must remark that
the rankings achieved especially by the inhibitory parameter q in the
various scenarios leads us to conclude that the role played by inflam-
mation, particularly in an anti-tumorigenic sense, suggests that this
phenomenon cannot be ignored in cancer development and treatment.

Appendix

The method of Morris [31] derives measures of global sensitivity
from a set of local derivatives, or elementary effects, sampled on a grid
throughout the parameter space. The method of Morris is an exten-
sion of the traditional one-at-a-time (OAT) methods, in which each
parameter xi is perturbed along a grid of size ∆i to create a trajectory
through the parameter space. For a given model with d parameters,
one trajectory will contain a sequence of p such perturbations. Each
trajectory yields one estimate of the elementary effect for each param-
eter. Equation (3) shows the calculation of a single elementary effect
for the i-th parameter :

EEi =
f(x1, x2, · · · , xi + ∆i, · · · , xd)− y

∆i

, (3)

where f(x) represents the prior point in the trajectory.
These elementary effects (EE) are evaluated at different points in

the chosen input so that a large “dispersion” of the parameter space is
explored and taken into account in the analysis. The obtained sample
of all EE provide a measure of approximate overall importance, the
mean and variance of the elementary effects. A high value of the mean
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implies that a parameter is important, a high variance implies that its
effects are non-linear or result from interactions with other inputs. This
method does not separately evaluate the contribution of the interaction
and the contribution of the parameters individually and gives the ef-
fects for each parameter which takes into account all the interactions
and its individual contribution.

Morris global sensitivity analysis

In this section, the Morris method is investigated with different
numbers of trajectories to identify the number of trajectories needed
for a robust ranking of the parameters.
Results obtained from the Morris method yielded similar results com-
pared to the Sobol’s total effects sensitivity index, with regard to the
parameter ranking and differentiation of important and non-influential
parameters. The graphical representations in Figure 10 to Figure 15,
illustrate our various results of parameter sensitivity analysis. Accord-
ing to the order of magnitude of the axis µ∗, we can establish a clas-
sification of the influence parameters. Interpretations concerning the
non-linearity or the interaction level of the influence of all the param-
eters can be made in an analogous way by focusing on the plot of σ.

Figure 10: Morris screening for TS state variable
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In Figure 10, the Morris index indicates that the capacity inhibation
coefficient q most strongly influence the population of susceptible and
uninfected tumor cells, TS(t). Indeed, it has the greatest value µ∗

throughout the study period. This same parameter is a factor involving
non-linear interactions with the rest of the parameters. This same trend

Figure 11: Morris screening for KT state variable

for the parameter q is observed for the dynamics KT during the 200
hours. The inhibition coefficient q is both the single of most influential
parameter and factor of variability for non-linear interactions on the
load capacity KT (Figure 11). Figure 12 shows q, βT and γV to be the
most influential parameters on the population of infected tumor cells
TI(t), but their relative importance changes during the simulation. In
fact, q overtakes βT and γV after a cap of 25 hours. The parameter γV
will tend to lose its global influence on TI(t) in favor of the parameter
ω from around 70 hours. It declines after 150 hours and close to 0 at
the end of simulation.

It is important to highlight other parameters which have a signifi-
cant global influences on TI(t) during the first 50 hours such as rT , pV ,
hY , p et λT . In addition, they also represent the overall parameters
involving the most interactions and non-linearities on the dynamics of
TI(t). In Figure 13, the virus clearance rate ω, represent the most in-
fluential parameter on the free-virus population size V (t) and the key
parameter concerning the non-linearity or the interaction level of influ-
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Figure 12: Morris screening for TI state variable

Figure 13: Morris screening for V state variable

ence among all other parameters. As seen in Figure 14, pT and δT are
far from the parameters that most affect the tumor-specific immune
cells YT (t). The pT parameter gives way to the δT parameter from 140
hours. In addition, there are other non-negligible influence parameters,
respectively hY , and few p on tumor-specific immune cells YT (t). After
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Figure 14: Morris screening for YT state variable

a cap of 30 hours, hY , δT and pT are respectively the parameters that
most induce non-linearity or level interaction of their influences on YT .
Other parameters such as p, rT and γT induce non- linearity or level
interaction of their influences on YT . Also The graph for µ∗ in Fig-

Figure 15: Morris screening for YV state variable
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ure 15, reveals that the death rate from infected tumor cells, γV and
the inhibation coefficient q have the greatest overall influence on the
immune cells specific to the virus YV (t). Interestingly, we notice that
γV is closely followed by the parameter q. Other parameters of global
influence on YV (t) are respectively ω, pV , βT , q, p and rT . Likewise,
they are the ones that most imply non-linearity or the levels of influ-
ence interactions on YV (t).

Analytical results

The non-trivial steady states of the model without virus (i.e., TI =
YV = V = 0) are described by

E0 = (0, 0, 0, 0, 0, 0) Tumor-free steady state

and
E1 = (TS0 , KT0 , 0, 0, YT0 , 0) Tumor-only steady state

with KT0 =
p

q
T

1/3
S0

, YT0 =
pTTS0

δT (hT + TS0)
, and TS0 is a solution of the

following equation

aX5/3 + bX + cX2/3 − e = 0,

where
a :=

q

p
rT (δThY + pT ),

b := γTpT − rT (δThY + pT ),

c :=
q

p
rT δThY hT ,

e := rT δThY hT .

In the presence of the virus, we deduce from the eqaution (1a) that
TS = 0 or

rT

(
1− TS + TI

KT

)
− βTV − γT

YT
hY + YT

= 0 (4)

If TS = 0, we have from eqaution (1b), that TI = 0 or TI = (
q

p
KT )−1/3.

If TI = 0, we have the following equilibrium point E2 = (0, KT , 0, 0, 0, 0)
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and in this case, KT is necessarily zero. So, E2 = E0.

If TI = (
q

p
KT )−1/3, we have the following equilibrium point:

E3 =
(

0, KT , (
q

p
KT )−1/3,

bTλT
w

(
q

p
KT )−1/3,

(
q

p
KT )−1/3

hT + (
q

p
KT )−1/3

,
pT
δV

(
q

p
KT )−1/3

)
.

In the case where TS 6= 0, TS ans TI satisfy the following equation:

rT−
rT q

p
(TS+TI)

2/3−βT
bTλT
w

TI−
γTpT (TS + TI)

hY δT (hT + TS + TI) + pT (TS + TI)
= 0

The Jacobian matrix J of the system (1a)–(1f) at any equilibria is
written in this form:

−βTV−rT (
TI+TS
KT

−1)− YT γV
YT+hY

−TSrT
KT

rT (TI+TS)TS
K2
T

−TSrT
KT

−TSβT − TSγV
YT+hY

+
TSYT γV

(YT+hY )2
0

− 2qKT

3 (TI+TS)
1
3

+p −q(TI+TS)
2
3 − 2qKT

3(TI+TS)
1
3

+p 0 0 0

βTV 0 −YV γV − YT γV
YT+hY

−λS TSβT − TIγV
YT+hY

+
TIYT γV

(YT+hY )2
−TIγV

0 0 bTλT −ω 0 0
pT

TI+TS+hT
− (TI+TS)pT
(TI+TS+hT )

2 0
pT

TI+TS+hT
− (TI+TS)pT
(TI+TS+hT )

2 0 −δT 0

0 0 pV (t−τ) 0 0 −δV
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