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ABSTRACT: 

Increasingly advanced and affordable close-range sensing techniques are employed by an ever-broadening range of users, with varying 

competence and experience. In this context a method was tested that uses photogrammetry and classification by machine learning to 

divide a point cloud into different surface type classes. The study site is a peat scarp 20 metres long in the actively eroding river bank 

of the Rotmoos valley near Obergurgl, Austria. Imagery from near-infra red (NIR) and conventional (RGB) sensors, georeferenced 

with coordinates of targets surveyed with a total station, was used to create a point cloud using structure from motion and dense image 

matching. NIR and RGB information were merged into a single point cloud and 18 geometric features were extracted using three 

different radii (0.02 m, 0.05 m and 0.1 m) totalling 58 variables on which to apply the machine learning classification. Segments 

representing six classes, dry grass, green grass, peat, rock, snow and target, were extracted from the point cloud and split into a training 

set and a testing set. A Random Forest machine learning model was trained using machine learning packages in the R-CRAN 

environment. The overall classification accuracy and Kappa Index were 98% and 97% respectively. Rock, snow and target classes had 

the highest producer and user accuracies. Dry and green grass had the highest omission (1.9% and 5.6% respectively) and commission 

errors (3.3% and 3.4% respectively). Analysis of feature importance revealed that the spectral descriptors (NIR, R, G, B) were by far 

the most important determinants followed by verticality at 0.1 m radius.  

1. INTRODUCTION

In the past decades a step change in close range remote sensing 

technologies has allowed techniques such as photogrammetry to 

be employed by an increasingly diverse range of users, not only 

the specialist (Eltner et al., 2016; Westoby et al., 2012). The 

inevitable result of this proliferation has been an abundance of 

high-quality data for which automated processes of classification 

have become a practical necessity (Grilli et al., 2017), since 

manual labelling and classification are cost- and time-demanding 

and unfeasible for large datasets. In this context, at the 2019 

Innsbruck Summer School, Obergurgl (Rutzinger et al., 2018, 

2016), a team of researchers applied machine learning (ML) to a 

point cloud derived from dense image matching of a terrestrial 

photogrammetric survey. This came as part of a larger survey in 

in a mountain environment with also a remotely piloted aircraft 

system (RPAS) over the whole valley (Scaioni et al., 2018). Near 

infrared and RGB information was collected from both RPAS 

and terrestrial surveys, as previous literature has largely proven 

that any vegetation component can validly be labelled with 

spectral features (Alba et al., 2011).  

The fields of interest of the participants comprise a diversity of 

applications that can benefit from close-range sensing: from 

primary colonisation of recently deglaciated ground, through 

slope stability and evolution, to the surveying and interpretation 

of rarely preserved 700-million-year-old landforms. These users 

represent some of the numerous examples that may benefit from 

common data manipulation techniques, allowing statistical data 

to be derived from classifications within point cloud data. 

Within this study the aim was to i) classify relevant surface types 

within a small section of a mountain valley floor, ii) compare the 

efficacy of optical and geometric properties in distinguishing 

between key surface types and finally iii) to evaluate 

photogrammetric methods and machine learning approaches with 

respect to the group members’ research interests. 
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A terrestrial photogrammetry survey was undertaken on a 

partially snow-covered river bank comprising peat, loose soil, 

rock and vegetation and these different components were each 

assigned a class. Point cloud segments representative of each 

were used for training a machine learning model, subsequently 

used to classify areas within the entire point cloud with a degree 

of reliability. 

 

 

2. STUDY SITE 

The study area is located at the main alpine divide of the Austrian 

Alps at the border between the State of Tyrol (Austria) and the 

Province of South Tyrol (Italy). The Rotmoos valley (46° 50' 24'' 

N, 11° 01' 59'' E) extends c.  6 km from SE to NW and covers an 

area of c. 1 km² with an altitudinal range from c. 2240 m to c. 

3400 m. The area is characterised by an inner alpine climate and 

surrounded and protected by mountains. The nearby weather 

station (Obergurgl, 1938 m) shows a low mean annual 

precipitation of c. 819 mm, with maxima from June to August. 

Mean annual air temperature is + 2.2 °C, with the highest 

monthly means of around + 16 °C in July and the lowest mean of 

-8.3 °C in February (data period 1971-2000; ZAMG - Austria’s 

national weather service 2018). 

 

 
 

 

 
Figure 1.  Location of study area (red star) and Obergurgl (circle 

on middle image). The bottom image shows a close-

up of the erosion feature surveyed for this study. 

  
During the last glacial, the valley was shaped by glacial erosion 

through multiple advances of the Rotmoos glacier. The last 

glaciation of the valley floor was during the Younger Dryas 

period. After the retreat of the Younger Dryas glacier, the valley 

was filled with up to 40 m of sediment (Patzelt, 1995) and 

remained ice free during the last re-advance of the Rotmoos 

glacier during the Little Ice age. The attributed prominent 

terminal moraine complex is located c. 1 km up valley from the 

study site. In the distal and central part of the valley, a peat bog 

developed that covers an area of c. 800 by 120 m. The peat 

deposits are up to 2.65 m thick and radiocarbon dates from the 

base and top of the peat are c. 5994 and 1629 years before present 

respectively (Bortenschlager, 2010). Today, the peat bog is 

dissected and eroded by the river Rotmoosache, a tributary of the 

river Ötztaler Ache. A c. 20 m stretch of its bank is the object of 

this study (for location see Figure 1, red star). The study section 

comprises steep peat faces, which are highly water saturated and 

partly covered by snow and vegetation (Figure 1 bottom). 

 

 

3. METHODS 

Data acquisition was planned together with a team that acquired 

UAV imagery. Three of their ground control points (GCPs) were 

measured with differential GNSS (Global Navigation Satellite 

System) in order to georeference the final product in a projected 

coordinate system. A control measurement between points 

revealed sub-centimetre accuracy of the GCPs. In the study area 

for this investigation eleven GCPs were placed on the eroding 

scarp (Figure 1 bottom) and georeferenced using a total station 

positioned on one of the measured UAV GCPs.  

 

Terrestrial photogrammetry was used to survey the eroding scarp 

surface. Images were acquired using a consumer-grade RGB 

camera Canon EOS 450D (27mm) and a NIKON D-200 with 

HOYA R72 filter, modified to operate in the Near-Infrared region 

(NIR) of the electromagnetic spectrum (750 – 1,500 nm). The 

modification allowed the CCD sensor to record reflected 

radiation above 720 nm. As shown in Figure 2, the natural 

sensitivity of the CCD sensor includes wavelengths up to 950 nm, 

but these are filtered out by the camera filter. By removing this 

filter and adopting an external filter, NIR information can be 

recorded in the image. 

 

 

Figure 2.  CCD sensitivity of Nikon D200.  

 

3.1 Pre-processing 

In total 24 images were imported to Agisoft Metashape (AM). 

The GCPs were automatically detected and located by the 

●OBERGURGL 
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software. The coordinates of the GCPs that were measured using 

the total station in the field, were loaded into AM. After camera 

alignment, dense image matching was performed in order to 

obtain a dense point cloud. The same workflow was applied to 

the NIR imagery acquired with the modified camera. 

 

The point clouds from the RGB and NIR imagery were imported 

to CloudCompare software. First, NIR information was merged 

to the RGB point cloud using three nearest neighbours. The 

software finds, for each point in the RGB cloud, the three closest 

points in the NIR cloud, and appends the average from the three 

NIR values to the RGB point. Additionally, 18 geometric features 

were calculated within CloudCompare (see Table 1). A 

description on the computation of the eigenvalue and vector 

based features is given by Hackel et al. (2016). 

 

1. Roughness 2. Mean curvature 

3. Gaussian curvature 4. Normal change rate 

5. Number of neighbours 6. Surface density 

7. Volume density 8. Eigenvalues sum 

9. Omnivariance 10. Eigenentropy 

11. Anisotropy 12. Planarity 

13. Linearity 14. PCA1 

15. PCA2 16. Surface variation 

17. Sphericity 18. Verticality 

Table 1.  List of geometric features calculated from the point 

cloud.   

 

The geometric features are calculated by considering a number 

of neighbours. In CloudCompare the neighbours are identified 

using a user-defined radius. In this work three radii were tested: 

0.02 m, 0.05 m and 0.1 m. Respectively each distance had the 

following number of neighbouring points – average (standard 

deviation): 4.8(3.1), 12(8), 24.12(16). The final cloud had ~2.16 

million points. The final cloud was exported as a text file with 

information on the coordinates (x, y, z), RGB and NIR values and 

the 18 geometric features for each radius. The final feature count 

was therefore 54 geometric features and four spectral features 

(NIR, R, G, B), for a total of 58 descriptive features that can be 

used for classification. Further analysis was carried out using the 

statistical software R and R Studio. 

 

3.2 Classification 

The final cloud was imported in a text file format as a table 

(data.frame) in R 3.6 (R Core Team, 2018). A random  forest 

classifier was used as previous tests  have shown positive results 

(Pirotti et al., 2016; Pirotti and Tonion, 2019) and initial tests run 

on the data of this study supported the use of this classifier. This 

choice is however debatable as many factors must be taken into 

consideration and the issue is expanded upon in the Discussion 

Section. For the random forest model, the number of trees in the 

ensemble was set to 200 and the number of variables to split a 

node was set to 16, after tuning the model trying a grid of 6x6 

reasonable values of number of trees and number of variables. 

Six surface classes were defined, dry grass, green grass, peat, 

rock, snow and target (Table 2). This last class is represented by 

the 11 black and white targets used for GCPs.   

 

For classification with machine learning (ML), manually labelled 

(classified) points were used for training and testing. Manual 

labelling was a crucial task. For this study, subsets for each of the 

six classes were extracted from the original point cloud by 

manually clipping regions with points having a defined unique 

class. Table 2 shows that the number of labelled points per class 

is quite balanced, except for the “rock” class. The rock class is 

under-represented in the study area, as the surveyed area is 

mostly covered with grass, peat or snow. It was nevertheless 

included as it does represent a class of its own and cannot be 

reasonably merged in the other classes. 

 

 

ID Class N. Points 

1 dry grass 10932  

2 green grass 6494  

3 peat 13344  

4 rock 1621  

5 snow 5476  

6 target 12198  

Table 2.  List of classes with number of points in the labelled 

subset and colour related to Figure 4 . 

 

The labelled point set was further split into training (50%) and 

testing (50%) subsets. Random Forest was used to create a 

classification model based on the training data. The efficacy of 

each variable in creating the model was reported as Mean 

Decrease Accuracy (MDA). To assess accuracy of the model, the 

points in the test dataset were classified and the predicted classes 

compared to the labelled classes using a confusion matrix and 

accuracy metrics. Finally, the fitted Random Forest model was 

used to classify the entire point cloud, to generate a labelled 3D 

model of the study area (Figure 4). 

 

  

4. RESULTS 

The machine learning approach provided a very high overall 

classification accuracy of 98% across all classes, with a Kappa 

index of 97%. These figures are related to the independent testing 

dataset. Predictor accuracy was highest for the following classes: 

target, peat and snow, followed by rock and dry vegetation. 

Green and dry vegetation had both highest commission and 

omission errors, thus showing a likely mutual misclassification. 

Accuracy was high for snow, rock, peat and targets (> 98%). 

However, when dividing vegetation into dry and green, the 

observer’s accuracy drops to below 98.1% and 94.4% 

respectively (Table 3).  

 

 
 1 2 3 4 5 6   

1 4183 72 4 1 0 2 4262 1.9% 

2 132 2384 9 0 0 0 2525 5.6% 

3 5 11 5119 0 0 4 5139 0.4% 

4 0 0 0 633 0 0 633 0.0% 

5 0 0 0 0 2139 2 2141 0.1% 

6 6 1 6 0 9 4806 4828 0.5% 

 4326 2468 5138 634 2148 4814 19528  

 3.3% 3.4% 0.4% 0.2% 0.4% 0.1%  
 

         

Table 3.  Confusion matrix: columns=IDs of predicted classes, 

rows=IDs of real classes, commission errors (red) and 

omission errors (green) for each class. Class names 

are listed in Table 2. 

 

Feature importance over the whole classification process was 

also analysed (Figure 3). Figure 3 revealed that spectral 

descriptors were the most influential in classification. Within 

these, NIR ranked highest followed by red and then overall RGB. 

The next most-important non-spectral descriptor was the 

verticality at 0.1 m radius. 
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Figure 3. Overall variable importance of first ten most important 

features. 

 

 

 

  
  

Figure 4.  Classified results over the full point cloud (left) and 

RGB point cloud (right). 

 

 

Looking at importance of each feature for class scale (Table 4) 

shows that verticality at the highest radius size (0.1 m) was 

particularly important for the “target ” and “green grass” classes, 

along with point density features (features 5, 6 and 7  - i.e. 

number of neighbours, surface and volume density – see Table 

1). Surface variation (16) and sphericity (17) at 0.1 m showed a 

moderate, but relatively constant importance over all classes. 
 

 

Feature  

dry 

grass 

green 

grass peat rock snow target 

R 1,00 0,85 1,00 0,87 0,97 1,00 

G 1,00 0,83 1,00 0,89 0,97 1,00 
B 0,98 0,87 1,00 0,95 0,87 0,98 

NIR 1,00 0,92 0,91 0,81 1,00 1,00 

1 (0.05) 0,59 0,59 0,67 0,59 0,59 0,57 
2 (0.05) 0,60 0,60 0,64 0,60 0,60 0,58 

3 (0.05) 0,65 0,65 0,76 0,65 0,65 0,59 

4 (0.05) 0,69 0,69 0,82 0,69 0,69 0,62 
5 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 

6 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 

7 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 
8 (0.05) 0,51 0,54 0,52 0,51 0,51 0,54 

9 (0.05) 0,58 0,58 0,81 0,64 0,58 0,54 

10 (0.05) 0,51 0,54 0,51 0,52 0,52 0,54 
11 (0.05) 0,70 0,70 0,83 0,70 0,70 0,62 

12 (0.05) 0,59 0,59 0,59 0,59 0,59 0,59 

13 (0.05) 0,54 0,59 0,54 0,56 0,54 0,59 
14 (0.05) 0,54 0,57 0,60 0,54 0,54 0,57 

15 (0.05) 0,58 0,59 0,58 0,58 0,58 0,59 

16 (0.05) 0,69 0,69 0,82 0,69 0,69 0,62 
17 (0.05) 0,70 0,70 0,83 0,70 0,70 0,62 

18 (0.05) 0,82 0,94 0,77 0,70 0,71 0,94 

1 (0.02) 0,53 0,53 0,64 0,56 0,53 0,53 
2 (0.02) 0,58 0,58 0,72 0,58 0,58 0,55 

3 (0.02) 0,59 0,59 0,70 0,59 0,59 0,56 

4 (0.02) 0,58 0,58 0,81 0,63 0,58 0,55 
5 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 

6 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 
7 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 

8 (0.02) 0,51 0,54 0,52 0,51 0,51 0,54 

9 (0.02) 0,58 0,58 0,81 0,64 0,58 0,54 
10 (0.02) 0,51 0,54 0,51 0,52 0,52 0,54 

11 (0.02) 0,58 0,58 0,82 0,63 0,58 0,54 

12 (0.02) 0,62 0,66 0,52 0,52 0,61 0,66 
13 (0.02) 0,61 0,65 0,56 0,51 0,62 0,65 

14 (0.02) 0,60 0,60 0,60 0,53 0,62 0,60 

15 (0.02) 0,62 0,66 0,53 0,51 0,61 0,66 
16 (0.02) 0,58 0,58 0,81 0,63 0,58 0,55 

17 (0.02) 0,58 0,58 0,82 0,63 0,58 0,54 

18 (0.02) 0,76 0,87 0,75 0,66 0,65 0,87 
1 (0.1) 0,62 0,62 0,62 0,62 0,62 0,60 

2 (0.1) 0,63 0,61 0,61 0,61 0,61 0,63 

3 (0.1) 0,69 0,71 0,69 0,69 0,69 0,71 
4 (0.1) 0,77 0,77 0,80 0,77 0,77 0,70 

5 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 

6 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 
7 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 

8 (0.1) 0,54 0,57 0,54 0,60 0,56 0,57 

9 (0.1) 0,76 0,76 0,80 0,76 0,76 0,71 
10 (0.1) 0,57 0,60 0,55 0,59 0,56 0,60 

11 (0.1) 0,77 0,77 0,80 0,77 0,77 0,71 

12 (0.1) 0,57 0,57 0,57 0,60 0,57 0,57 
13 (0.1) 0,53 0,54 0,52 0,62 0,53 0,54 

14 (0.1) 0,63 0,60 0,60 0,64 0,60 0,63 

15 (0.1) 0,56 0,57 0,56 0,60 0,56 0,57 
16 (0.1) 0,77 0,77 0,80 0,77 0,77 0,70 

17 (0.1) 0,77 0,77 0,80 0,77 0,77 0,71 

18 (0.1) 0,85 0,98 0,80 0,73 0,79 0,98 

 

Table 4.  Variable importance for each class and feature. 

Numbers in first column are related to Table 1, values 

in parenthesis in first column is radius for 

neighbourhood definition. 
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5. DISCUSSION 

The primary objective of this investigation was to test the 

performance of a well-known machine learning algorithm, 

Random Forest, for classification of point clouds from a 

terrestrial photogrammetric survey. The following discussion 

will focus on the strengths and weaknesses of the techniques 

applied and their resulting outputs, allowing suggestions for 

future improvements. Moreover, consideration will be given to 

the replicability of the method used herein, to address the 

respective research questions of other fields of research. 

 

5.1 Effectiveness of methods and outputs 

Visual comparison of the classified point cloud and original 

images immediately reveals a striking qualitative similarity, 

(Figure 4) which is supported by the confusion matrix and the 

Kappa index of agreement and other accuracy metrics which 

have high values. It must be noted that the accuracy metrics are 

calculated over an independent set, but still over a small number 

of points, i.e. ~50 thousand labelled points from a total of a point 

cloud with ~2 million points (~2.5%). The points have been 

chosen from across the dataset, to avoid spatial autocorrelation 

(see Figure 5), and further splitting into training and testing 

datasets have been done with stratified random sampling (strata 

according to classes), thus keeping independency, but still 

training and testing data are limited to a small dataset. This 

implies that classification accuracy metrics can be very high, but 

not necessarily reflect the performance over all the area.  A visual 

analysis from the classified set (Figure 4) shows that some points 

of snow patches are erroneously classified as targets. This is 

probably due to similarity in colour (white target and white snow) 

and in shape of the object, as a snow patch around a 10 cm radius 

will appear close to flat, just like a target. Since colour and 

verticality are the most important features (Figure 3), a similarity 

in these features will result in class mixing.  

 

 
Figure 5.   Red points represent labelled points used for training 

on the whole dataset. 

 

Moreover, there is a lack of point cloud data within the snow 

patches (Figure 4); a more quantitative approach reveals that, 

whereas discrimination between rock, snow, soil and vegetation 

was reliable, the distinction between wet and dry vegetation was 

more problematic (Table 3). 

 

The weakness discriminating between the two classes of 

vegetation (green and dry vegetation) is likely due to the 

gradational boundaries between the two classes, where one 

blends into the other. This is exacerbated by their physical 

proximity, as they do not occur in discrete areas of dry and wet 

vegetation. In any case this distinction between wet and dry is 

somewhat arbitrary, using qualitative colour choices within the 

image for the selection of training data. Future workers should 

consider the ground truthing of wet and dry areas by touch or 

using a more quantitative approach with moisture detection 

equipment. 

 

The lack of data cloud points within the snow areas results from 

the high snow albedo in contrast to the relatively dark remainder 

of the images, resulting in over-exposure of the former. This 

could be overcome by multiple images from the same position 

using different exposure settings (i.e. ISO, shutter speed, F-stop), 

or by using a camera with greater bit depth. The former is 

potentially labour intensive if images require merging by hand 

before construction of the point cloud, whereas the latter solution 

is limited by the available camera. Other options might be taking 

images in the RAW format and using post-processing in order to 

fix the over-exposed spots or using a polarizing filter, which 

increases contrasts and the overall colour saturation. These 

solutions may however be equally labour or cost intensive and 

have their limitations. 

 

5.2 Descriptors 

The importance of NIR and red descriptors suggests that the 

Normalized Difference Vegetation Index (NDVI) could be used 

as a proxy for changes along the eroding riverbank. Although 

generally much less important than spectral features, verticality 

was the highest non-spectral descriptor and especially useful in 

dividing rocks from other classes. 

 

5.2.1 Geometric descriptors: as seen in Table 4, verticality 

and density-based descriptors like surface and volume density 

and number of neighbours do have importance for the Random 

Forest method. It must be noted that correlation does not 

necessarily indicate causation and therefore importance might 

not be related to class-intrinsic information, but to a coincidental 

relationship. For example most targets were placed vertically 

thus verticality might support classification, yet this would not be 

useful in a scenario where targets were placed at different angles. 

An important rule is that machine learning and artificial 

intelligence in general work as well as the similarity to trained 

data. Care must be taken when applying a model trained with a 

dataset which has different characteristics than the dataset to be 

classified. 

 

5.2.2 Neighbourhood size: The questions of ideal radius size 

and ideal number of neighbours are important when considering 

descriptors that use neighbours to describe shape and 

morphology (Pirotti and Tonion, 2019; Weinmann et al., 2015). 

The ideal method would involve finding the best number of 

neighbours for each point from a range by adopting a minimal 

entropy approach. Although effective this requires very intensive 

calculation as entropy has to be determined for a range of 

neighbours for each point. For this study therefore three radii 

were tested, instead of adopting the minimal entropy method. As 

a compromise, considering that a number of geometric features, 

including verticality, showed highest importance at the largest 

chosen radius, (0.1) the study could be extended to test if even 

larger radii could give better results. 

 

5.3 Class definition  

In general, the choice of classes within any point cloud will be 

guided by the research question at hand. However practical 

limitations of the data may restrict what can be distinguished by 

the machine learning process. With this in mind it is suggested 

that future work could attempt unsupervised classification of the 

point cloud data. On the one hand this may provide insights into 

the type of further classifications that could reliably be made and 

on the other it may reveal patterns that are not otherwise obvious. 

This would overcome a limitation of the technique employed 

herein. Specifically, spectral attributes (i.e. examination of the 

photographs) were used to select classes and training segments 

therefore it is unsurprising that spectral descriptors are the most 

influential. 
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5.4 Data acquisition 

In terms of practicalities two potential obstacles were 

encountered, both relating to time. First the terrestrial 

photography of the survey team took place within the UAV flying 

area of another team, allowing our data to be placed into a broader 

context. However, both teams worked on the area at the same 

time, resulting in significant waiting time during which the area 

could not be accessed whilst imaged from the air. Improved 

coordination would significantly reduce time in the field 

improving efficiency. Second, although only a small area was 

imaged for terrestrial photogrammetry, it was time consuming in 

terms of processing time.  Caution must be applied in similar 

surveys in determining the ideal scale for surveying the area of 

interest as a function of required detail and objects to be 

classified.  

 

5.5 Future work 

Several aspects can be further investigated. An interesting aspect 

is the impact of point density on results. As mentioned in the 

previous section, the processing time does impact significantly 

on the method. Depending on the study area size and types of 

classes it is very likely that there is an ideal density below which 

the classification accuracy drops unacceptably. Addressing this 

is relatively simple, as the method can be applied to gradually 

decimated point clouds. The presented workflow could also be 

preceded by a point cloud segmentation to enable an object-based 

classification. As outlined by Vosselman, (2013), this would 

allow for the computation of additional features such as shape, 

which could be well suited for discriminating targets from other 

classes. If rocks have a common morphological appearance in the 

study area due to their transport history, descriptors of size and 

shape could also improve the classification. 

As outlined in Section, 5.2.1, the importance of some features is 

likely related to peculiarities of the research area. Therefore, 

future work should also assess the transferability of the proposed 

method. This could for example include alteration of class 

definitions, size of the research area and environmental 

characteristics. Additionally, the study design should be tested 

for robustness under different weather conditions. At the day of 

the study most surfaces were relatively dry. Moist weather could 

change the surfaces reflectance, making it harder to distinguish 

certain classes (for example dry and green vegetation or rocks 

and peat). 

 

5.6 Relevance to the research interests  

The potential applications of these methods are diverse, in terms 

of both scale and classification type. At the metre to ten-metre 

scale, classification techniques can distinguish categories of 

surface features upon boulders, to help elucidate their transport 

history. At the kilometre scale this method may be used to 

classify bedrock surfaces using UAV data, that may be host to 

subglacially striated areas. The advantage of machine learning in 

this approach is that these surfaces have distinct 

geomorphological characteristics, of roughness and curvature, 

but are often in remote areas. The resulting classification could 

allow targeting of the most likely areas for ground examination. 

Machine learning techniques based on the Random Forest 

algorithm are used to detect landslides and to assess landslide 

susceptibility maps for large regions e.g.Catani et al., 2013; Kim 

et al., 2018; Stumpf and Kerle, 2011; Taalab et al., 2018). In 

terms of monitoring and predicting landslide movements, these 

methods can be of great help for civil protection and risk 

mitigation. 

 

Distinguishing between biotic and abiotic classes to better 

understand their relative influences on a recently deglaciated 

landscape could also be a target for a classification framework of 

point cloud data. Moreover, integration of the classification with 

spatial data can be used to investigate the relationship between 

primary succession and relief. More environmental applications 

can be distinguishing between healthy and damaged vegetation, 

for example due to icing events in Arctic tundra environments. 

 

 

6. CONCLUSIONS 

During the course of the Summer School the participants 

captured, constructed and merged geo-referenced point clouds 

that contained NIR and RGB data respectively and used these to 

train a machine learning process that segregated the merged 

cloud into six classes. The target, snow, rock and peat classes 

were reliable whereas distinguishing between wet and dry 

vegetation classes was more problematic, likely due to 

ambiguous training segments. Optical descriptors were far the 

most important attributes in classification, although, this is pre-

determined by the selection of training areas based on visible 

light properties. Shape features from 3D points clouds bring some 

improvement over the overall classification results, and this can 

be further addressed including the laser scanning data (Pirotti, 

2019) from the RPAS survey of the area.  During data 

acquisition, processing and analyses each of the participants 

learned new skills and identified practical applications of those 

skills in their own study areas. 
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