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ABSTRACT
We propose a different way to obtain the distribution of the luminosity function of quasars
by using the Principle of Maximum Entropy. The input data come from Richard et al 2006
quasar counts, extending up to redshift 5 and limited from apparent magnitude i = 15–19.1
at z � 3 to i = 20.2 for z � 3. Using only few initial data points, the principle allows us to
estimate probabilities and hence that luminosity curve. We carry out statistical tests to evaluate
our results. The resulting luminosity function compares well to earlier determinations, and our
results remain consistent either when the amount or choice of sampled sources is unbiasedly
altered. Besides this, we estimate the distribution of the luminosity function for redshifts in
which there is only observational data in the vicinity.

Key words: methods: data analysis, principle of maximum entropy – galaxies: luminosity
function, mass function – quasars: general.

1 IN T RO D U C T I O N

The quasar luminosity function gives a measure for the bidimen-
sional distribution of quasars in luminosity and redshift. Fundamen-
tally, it indicates that the Universe is not in a stationary state. As
consequence, it requires the due interpretation before using quasars
to determine cosmological parameters, but at the same time it
informs about the evolution of quasars themselves, and the changing
content of the space intervening between distant quasars and the
observer. The function usually describing the quasar luminosity
function, as a function of redshift and absolute luminosity, basically
starts from the modulus distance formulae and incorporates several
corrections, to accommodate line emission, the expanding universe
scale of distance, the intrinsic dependency of quasar light emission
on wavelength, terms of self and media absorption, etc. The result
is an empirical description, which exponents and coefficients are
adjusted to each sample examined. It is interesting thus to build
an independent function, able to describe the quasar luminosity
function in a simpler form and from different physical principles.
Although by necessity also incorporating the astrophysical and
cosmological assumptions, an alternative, simpler form for the
quasar luminosity function can be derived from the statistical
mechanics methods.

The concept of entropy, since Clausius, became part of thermody-
namics. In addition, it also became part of statistical mechanics. The
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study of systems in equilibrium and out of equilibrium is closely
related to the notions of entropy as well as its production. There is a
vast bibliography about it with warm discussions. We can cite three
important related principles: Ziegler’s maximum entropy production
principle (e.g. Ziegler 1983; Ziegler 1987, see also Dewar 2005);
Prigogine’s minimum entropy production principle (Prigogine 1967;
Prigogine 1978; Kondepudi & Prigogine 1999); 1 and the Maximum
Entropy Principle (MaxEnt) (Jaynes 1957). This paper employs the
last one.

Derivations of the first two principles from MaxEnt can be found
in literature, as seen in Martyushev et al (2006). In that review, the
authors make a very interesting description of the MaxEnt focusing
on the production of entropy. Other authors emphasize that Jaynes’s
MaxEnt formulation of statistical mechanics provides a theoretical
basis for Maximum Entropy Production Principle (Dewar & Maritan
2014). The applications of the MaxEnt are many. We’ll see below
related issues and discuss how they are connected to the focus of
our treatment, that aims to find the distribution of the luminosity
function of quasars.

Despite this vast reach there are authors who restrict the MaxEnt
applications (see e.g. Shimony 1985, and references therein).

Some of these critiques were addressed by Jaynes himself
(Jaynes 1989). In this paper, Jaynes also provides a fairly complete
description of MaxEnt from its roots to its implications. On the other
hand, we cannot fail to mention that there are also papers written
exactly in defence of Jaynes’s Principle as in Tikochinsky, Tishby &

1This principle is the subject of a specific work in Jaynes (1980).
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184 A. Andrei et al.

Figure 1. Comparison between probabilities calculated from the MaxEnt method and from the control results. Plots show luminosities on the horizontal axis
and probabilities on the vertical ones. Values at horizontal axis should be multiplied by 10−31 (erg s−1 Hz−1) at Z = 0.49, 0.87, 1.25 and by 10−32 (erg s−1

Hz−1) at the others.

Table 1. Statistical tests comparing the MaxEnt and control results luminosity curves.

Spearman F-test Student-t
ρ P-value T-status P-value

0.49 0.93 1.17 × 10−5 1.32 �10−99 1
0.87 1 �10−99 4.40 8.88 × 10−16 0.99
1.25 1 �10−99 3.26 �10−99 1
1.63 0.99 6.65 × 10−64 1.10 �10−99 1
2.01 0.99 6.65 × 10−64 2.75 �10−99 1
2.4 1 �10−99 2.53 1.99 × 10−16 0.99
2.8 1 �10−99 1.12 2.21 × 10−16 0.99
3.25 0.99 3.76 × 10−9 1.48 3.35 × 10−16 0.99
3.75 1 �10−99 1.50 �10−99 1
4.25 1 �10−99 1.87 �10−99 1

Levine (1984), stating with: ‘The only consistent algorithm is
one that leads to the distribution of Maximum entropy subject to
constraints given.’. There are other papers with very interesting
critiques that bring out points for and against MaxEnt and provide
quite compelling references on the subject, like in the appendix A
of Pontzen & Governato (2013), where the authors sketch Jaynes’s
reasoning, ‘that the maximization of entropy subject to certain con-
straints is equivalent to testing whether these constraints encapsulate
later the physics of the situation...’, and the use of the method to
derive the phase-space distribution of a virialized dark-matter halo.

In addition, there are several other areas in physics and astro-
physics where it can be applied. Some examples are, in spectral
analysis (Ables 1974), where ‘the method produces superior spectral
representations when compared with more traditional methods...’
as well as a powerful technique of image reconstruction (Skilling &
Bryan 1984), in the same paper other applications of MaxEnt in
astronomy can be found. In Gull & Daniell (1978), MaxEnt is
applied in radio and X-ray astronomy. It is interesting that the

method is also applied in X-ray tomographic image reconstruction
and restoration (Mohammad & Djafari 1989). In the case of
astrophysics and cosmology, we see papers where the dark energy
equation of state w(z) is reconstructed using the MaxEnt (Zunckel
& Trotta 2007).

In gravitation, with the confirmation in 2016 of the existence of
the gravitational waves predicted by A. Einstein, the study of the
black holes assumes still greater importance. The earliest detections
were precisely on collisions of black holes (Abbott et al. 2016).
The traditional second law of thermodynamics was modified into
a generalized second law for the study of black holes (Bekenstein
1974). The Jaynes’s method of maximum entropy was also used by
Bekenstein to determine the probability distribution for a system
containing a Kerr black hole (Bekenstein 1975).

This paper presents a new approach to find the distribution of
probabilities of the luminosity function using the MaxEnt technique.
Even with some criticisms like those cited above, we believe that
the MaxEnt is extremely useful to be applied when we have partial
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Table 2. Statistical tests comparing the error budgets over the MaxEnt and control result luminosity curves.

Spearman F-test Student-t
ρ P-value T-status P-value

0.49 0.77 1.02 × 10−5 0.70 1.48 0.15
0.87 0.48 0.02 0.19 0.71 0.48
1.25 0.63 0.00 0.22 0.11 0.91
1.63 0.60 0.00 0.29 0.44 0.67
2.01 0.53 0.02 0.48 0.03 0.97
2.4 0.46 0.07 0.29 0.50 0.62
2.8 0.60 0.01 0.16 0.55 0.58
3.25 0.56 0.01 0.41 0.45 0.65
3.75 0.65 0.01 0.41 0.45 0.65
4.25 0.58 0.05 0.24 1.49 0.15

Figure 2. Mean luminosity in bins of redshift from z = 0.5 to z = 4.25
derived from SDSS-DR3 as in Richards et al. (2006), not taking into account
any corrections for the Malmquist bias.

information about a certain system. So this principle allows us to
know accurate probabilities (see formula 4) from a small data set.
Although the number of known quasars is constantly increasing, to
get perhaps to a million known objects in the next decade, small
subsamples are useful and had not been yet designed by lack of
elements. On one hand, the quasar zoo is also growing, different
types of active galaxies conceivably exhibiting luminosity functions
peculiar by a certain degree. On the other hand, the capability of
mapping in detail particular thin slices of the universe in redshift
is long sought, none the less to better define the complex form of
the luminosity function. Finally, it is important to be able to drawn
different samples of a large data set for sanity check control. Is this
paper, we will explore such capability of the MaxEnt description of
the luminosity distribution.

Since quasar discovery (Matthews & Sandage 1963; Schmidt
1963), their energy output and magnitude have been object of much
observation and increasingly complex theories. Conversely, that
information became much used for studies as surrounding host
galaxies, gravitational lenses, in situ and intergalactic absorption, up
to the cosmological scale of distances in an expanding universe. The
so-called luminosity function is all important to make sense of such
extraordinary energy output and to those astrophysical quantities
from it derived. The evolution of the quasar luminosity function
with redshift is an important observational tool that allows us to put

constraints on the formation and growth history of supermassive
black holes and their co-evolution with host galaxies. It also gives
us a measure of the contribution of quasars in the cosmological
reionization of the Universe. For all these, the study of the quasar
luminosity function has received the attention of several works (e.g.
Richards et al. 2006; Masters et al. 2012; Ross et al. 2013; Manti
et al. 2017).

So, among some successful applications of MaxEnt in astro-
physics, we are going now to explore a new one, in the study of the
quasar luminosity function.

The Sloan Digital Sky Survey (SDSS)2 provided observations of
quasars in different redshifts, being responsible for the identification
of the vast majority of the known quasi-stellar objects (QSOs; Pâris
et al. 2018). However, there are observational limitations to the
effect that one can ask: what would be the quasar distribution on
each redshift slice if we could consider unobserved magnitudes?
These observational limitations must be taken into account when
computing the quasar luminosity function, however this does not
constitute the aim of this work. So we are going to use already
corrected counts of QSOs computed by Richards et al. (2006) in
their study of the quasar luminosity function. We show here that
the MaxEnt can provide a good distribution of probabilities for the
luminosity function from few values of a limited sample in each
redshift.

The luminosity function provides the density distribution of
classes of objects, per unit volume and assuming a statistically
complete sample. In the case of quasars, this indicates more or less
probable scenarios for their formation and evolution, as well as
their relationship with the host galaxy. Quasars have been found
out by several projects, chiefly the SDSS, relying on different
strategies to single them out from the more numerous contaminants
of other celestial bodies. The European Space Agancy cornerstone
mission Gaia combines the recognition of such known quasars,
with microarcsecond determination of proper motions over 5 yr,
therefore providing direct means to cleanse away the intruding
false positives, as nearby red dwarfs. On top of it, Gaia will use
a neural network strategy leading to autonomous recognition of
quasars. Combined to the all-sky repeated sweeping of objects up
to magnitude i∼22, it will produce an unprecedent complete sample
of quasars. Therefore to establish an alternative, independent, and
physics, robust method of tracing the quasar luminosity function
affords a strong way of checking upon and getting feedback from the
usual Schechter-based determination. In short, the motivations for
these studies are threefold, an independent study of the luminosity

2http://www.sdss.org/
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186 A. Andrei et al.

Figure 3. Luminosity function obtained from MaxEnt using the fitting curve to z = 3.5.

function on the quasar population in the Sloan Digital Sky Survey
Data Release 3 (SDSS-DR3), the development of an independent
tool for determining the luminosity function based on maximum
entropy physics, and it is a comparative assessment on a limited
sample with views to application on the all sky, statistically complete
sample of quasars in final Gaia catalogue.

Elseways, the definition of the quasar luminosity function have
so far been done using a modified template of the Schechter
exponential for galaxies. Such a description although well adapted
to the somehow simpler quasar case, since it is in practice free
from the surface-brightness issue, limits the reliability of the
astrophysical and cosmological interpretation of the luminosity
function. To mention a few, it is known that the shape and turnover of
the luminosity function would favour either models for the growth
of the super massive black hole from mergers or by inflow and
host-galaxy instabilities. The bright end of the luminosity function
can favour intrinsic properties about which time black holes are
increasing in mass rapidly, whereas the faintest end would indicate
about the length of time quasars spend at relatively low accretion
rates.

The remainder of this work is organized as follows. In Section 2,
we will briefly review the MaxEnt method. With this, we establish
our main formula, the equation (4), which defines from MaxEnt
the probability of the luminosity function. In Section 3, we will
summarize our technique to determine the luminosity function of
quasars, and we show the details of how the Lagrange multipliers
were calculated for the studied cases; in addition, we will show the
comparison between our result by MaxEnt and the Schechter-based
Richards et al. (2006) one.

In Section 4, we will describe the statistical tests we use.
In Section 5, from few observational data in particular red-
shifts, we will make a prediction of the probability density
function (PDF) for in-between redshifts; that is, we will es-
timate the distribution of the luminosity function. Finally, a

summary discussion and conclusions are presented in the last
section.

2 TH E JAY N E S A P P ROAC H TO M A X I M U M
ENTROPY PRI NCI PLE

We can sum up the Maximum Entropy Principle, as we shall see in
the sequel.3 As there is a vast bibliography regarding this principle,
we will only make a brief account.

Initially, we assume that a quantity x can have the discrete values
xi(i = 1, 2, ..., n), but we do not know the corresponding probabilities
pi. All we have is the expectation value of the function f(x),

〈f (x)〉 =
n∑

i=1

pif (xi). (1)

Based on this information, how can we obtain the expectation
value of another function of the system g(x)? Jaynes responds
to this apparently insoluble question. The given information is
insufficient to determine the probabilities pi. The equation (1) and
the normalization condition∑

pi = 1 (2)

would have to be supplemented by (n − 2) more conditions before
g(x) could be found.

In order to find a solution to this problem, Jaynes’s method uses
the following expression for entropy:

H (p1, p2, ..., pn) = −k
∑

i

pi ln pi, (3)

where k is a positive constant. Since H is just the expression for
entropy as found in statistical mechanics, it will be called the

3Here, we will follow Jaynes (1957).
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‘entropy of the probability distribution pi’. The entropy H, given
in (3) is maximized subject to the constraints (1) and (2).

In order to achieve a final expression for the probability of xi, we
use the method of Lagrangian multipliers, usually noted by λ and
μ, where λ is associated with the normalization equation, i.e. the
equation (2) and μ is associated with the equation of the expectation
value (1). With this methodology, we obtain the probability

pi = e−λ−μf (xi ). (4)

This formula gives an important expression, which can be associated
with the function of the luminosity distribution of the objects to
which we wish to estimate the distribution, and the method used
in its determination is called the Maximum Entropy Principle. See
the complete development from data to Lagrange multipliers at
Appendix B.

3 THE LUMINOSITY FUNCTION O F Q SO(S)
F RO M M A X E N T

To summarize what will be done next, from MaxEnt we will
determine the distribution of the luminosity function of the quasars
in a certain redshift zk, by using the probability distribution (4).
Notice that the strong energy released by quasars make possible
to observe them from the nearby Universe at least up to redshifts
greater than 7 (e.g. Bañados et al. 2018). This large range of distance,
hence an evolving luminosity function, allowed us to inspect how
consistent are the predictions from MaxEnt, and compare the results
against those originally derived from the same observed data, used
here as control result.

In the MaxEnt methodology, for the consistency of the principle,
the strongest symmetry that we could have ‘a priori’ would be
the uniform distribution, but this is not the case. We know that if
we have a single constraint, that is associated with normalization∑n

i=1 pi = 1 , we get exactly for n = N → pi = 1/N or the uniform
distribution. The other constraint, associated with equation (1),
breaks this symmetry. Let us also remember that as it is well placed
in Caticha & Preuss (2004): ‘The method of maximum entropy (ME)
is designed for updating from a prior probability distribution to a
posterior distribution when the information to be processed takes
the form of a constraint ... ’. Then, we assume that we can extract
a certain expected value obtained through some luminosity values
provided by the system observations, which obviously have the
uniformity between all values broken. These values are randomly
chosen, and under these conditions we will apply MaxEnt with
their two constraints: (1) and (2). This is the central point of the
methodology, namely that from just some values a strong estimate
of the luminosity function of the distribution of all values in this
redshift can be made.4

For the present quasar luminosity function derivation by MaxEnt,
we have tested different sets from the whole of the initial data,
seeing in every case great accordance between the Luminosity
curve from MaxEnt and the control result. In order to analyse the
most realistic scenario, the one for which the sample is small and,
thus, not necessarily containing a perfect representation of the data
population, we choose to analyse here the results from random initial

4One interesting question posed by Jaynes is ‘generating paradoxes in the
case of continuously variable random quantities, since intuitive notions of
“equally possible” are altered by a change of variables’ (Jaynes 1957, p.
622).

data. We have picked up just three luminosities in each redshift as
initial data.

The starting point of using MaxEnt is the calculation of μ and λ

from the equations (1) and (2) (see details in Appendix B). From a
certain redshift, the mean value to be used in the Lagrange multiplier
method is calculated from three luminosities randomly chosen, to
each of which is assigned the corrected number of quasars in that
luminosity bin after applying the selection function of Richards
et al. (2006, table 6, p. 2782). Those values will be used to calculate
the weighted mean luminosity 〈Lz〉, which is the value to be used
in the equation (1). The other Lagrange multiplier comes from the
normalization of the probability, or,

∑n

i=1 pi = 1.
Errors have been calculated using a bootstrap method. In each

case, three random luminosities were drawn 200 times and the mean
value used to find a different λ and μ that, applied to original data,
gave us a different set of points. The extreme values stand as the
upper and lower limits of the error bars to the results from the
principle. Likewise the errors on the control result were calculated
using probabilities from bootstrap draws.

Verifying our assumptions, the calculated probabilities by Max-
Ent and the ones of the control results show similar behaviour.

For each redshift, the complete table leading to the control result
is in Appendix A, Table A1, and the three ones randomly chosen in
each redshift are on the lines indicated in bold at the first column.

The conversion from calibrated magnitudes to luminosities was
done using the following relation:

L = 10
−(Mi+48,6)

2,5 4π
(
3.0857 × 1019

)2
, (5)

where L (in erg s−1 Hz−1) is the luminosity and Mi the magnitude.
The curves obtained for each redshift are shown in Fig. 1. We can

see clearly that a correspondence is found at the sampled redshifts,
within the error bars, between the MaxEnt results and those for the
control.

4 STATISTICAL TESTS

As discussed in the previous paragraphs, and detailed in Ap-
pendix B, the MaxEnt approach, from robust yet simple physical
principles and computational algorithms, delivers a statistical proba-
bility distribution of the luminosity function that is cosmologically
plausible, vis-à-vis the literature on the subject. The magnitude
and redshift data used for that is taken from the SDSS project.
It is natural thus that the outcomes from the luminosity function
here obtained shall be compared with those from the SDSS
analysis.

At the start of the current application of the MaxEnt principle
to derive the quasar luminosity function, several approaches were
used. Choosing by hand representative data, choosing data from
quartiles of the distribution, and picking up the extreme and mean
values. The outcomes were always concurrent (they are available
under request), what served as sanity check, as well as gave us
ground to adopt the random draws finally used. The plots in Fig. 1
are compelling to show the agreement between the two luminosity
function statistical probability distributions. Such agreement can be
quantified. Table 1 shows results of the statistical tests comparing
the two distributions of probabilities, the one from MaxEnt and the
one from the control results, at each redshift.

As indicated in Section 3 a minimal number of points were
randomly drawn from the data. Using only these few data points,
MaxEnt can provide us an estimate luminosity function to be com-
pared with the luminosity function obtained from the control results.
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The results are compared by verifying the mutual correlation. The
Spearman’s correlation test is used because of the small number of
chosen points, as well to not assume their normal distribution. The ρ

is quite close to unity. Notice however that although the luminosity
function is best represented as an exponential progression, the pair
of points of the two compared distributions are not necessarily so,
thus we have also used the F-test and the Student’s T-test because
these are non-parametric tests.

Since the shape of the curves is obviously similar but not the error
bars, while the number of points is small, the F-test for variances
is advisable. The table of the F-distribution indicates that the null
hypothesis (no difference) must be accepted to a large degree of
statistical certainty, with two exceptions, out of the limit redshift.
Those exceptions lie at z = 0.87 and z = 1.25, for which the null
hypothesis certainty is mediocre. In both cases, that befalls upon the
large error bars seeing at the one brightest luminosities. The F-test
without those points give us results 1.64 and 0.92, respectively, that
take us back to a null hypothesis scenario.

On views of the outturn of the correlation and variance tests
pointing to the agreement of the MaxEnt and control results, the
two-samples Student’s T-test is next justified. On this one, as Table 1
shows, in all cases – even for the troublesome redshifts as detected
in the previous tests – the null-hypothesis on the means cannot be
rejected for usual statistical standards.

Table 1 brings the three statistics for the distributions. On Table 2,
instead, the same statistical tests are applied to compare their error
budgets. Notice, at start, that the error bars are asymmetrical, and
therefore up and down pairs are formed. The correlations are
poor, though they undeniably exist. On the other hand, the F-
test and T-test for the errors show the MaxEnt method and the
control results faring quite alike also in this respect. We thus can
further conclude for the independence of the methods, but similar
efficiency.

5 ESTIMATION O F THE LUMINOSITY
F U N C T I O N FO R OTH E R R E D S H I F T S

In this section, we use the MaxEnt luminosity function presented
in this paper to investigate the outcomes for a redshift in which we
suppose that data exist only in its vicinity.

For this simulation, the redshift z = 3.5 is chosen. As shown
in Fig. 2 at this redshift the luminosity L seems to increase again
after a drop between z = 2.75 and z = 3.25, at the same time
there are enough input data and good results for the neighbour
redshifts. From those the mean value 〈Lz = 3.5〉 is interpolated,
and next we will obtain by MaxEnt the distribution of L for the
redshift 3.5.

In practice, we start from the same set of data used before,
from Richards et al. (2006), plotting all the available redshifts
with respective mean luminosities. Then the curve of best fitting
to the observational data is obtained, and from this fitting curve
we associate a mean luminosity with the redshift aimed at. Next,
in order to procure the Lagrange multipliers μ and λ a set of
observed luminosities is demanded. Those were picked up at
random from the luminosities actually present for the neighbour
redshifts.

The point now is to verify whether using this quite arbitrary choice
the MaxEnt formulation is capable to issue a credible luminosity
function. We thus compare the MaxEnt formulation results to a
direct interpolation of the control results and of the MaxEnt results
themselves (both depicted in Fig. 1). Fig. 3 shows these three results.
It is seen that the MaxEnt formulation based on neighbour data gives

a result comparable to the direct interpolation results, but at the same
time, it delivers a smoother curve.

This type of situation occurs frequently in astrophysics, and
MaxEnt demonstrates here to be a very useful tool to estimate
values, what later can be tested later as more data become available.

6 C O N C L U S I O N S

The quasar luminosity function is intended as a measure of the
actual distribution of quasars in luminosity and redshift. For that
observational, astrophysical, and cosmological restricting factors
must be accounted for and often different surveys must be combined,
before a complete population is inferred. That satisfied, most quasar
luminosity functions available in the literature are represented either
by a double power-law regimen or by a modified Schechter function.
The adjustments are semi-empirical, having as usual parameters a
normalization factor, a break magnitude, a reference redshift, and
bright and faint ends slopes.

By contrast, the MaxEnt method, on top of being quite simple to
handle, offers three strong features. First, it represents a physically
distinct approach, thus bringing the known benefits of different bias,
limitations, and systematics. Secondly, because it is purely statisti-
cal, it depends of less astrophysical and cosmological assumptions,
in special the key ones break magnitude and reference redshift.
Thirdly, a hallmark of MaxEnt is to deliver trustful conclusions
from small samples. This last quality is particularly suited to deal
with limited dedicated surveys, as well as to piece off portions
of the luminosity function without further requirements to the
mathematical representation of the function itself. By the same
token, it is suited to try out luminosity functions for putative new
classes of quasars and their location, either within large clusters or
relatively isolated.

In this pioneer derivation, we took the SDSS-DR3 quasar popula-
tion and the normalization made by Richards et al. (2006) there in.
The luminosity functions and corresponding curves were used here
as control results. The comparisons hold very well, being practically
immaterial whether the whole luminosity population or samples as
small as three random elements were used.

As Jaynes has stated, that MaxEnt is the generalization of the
Principle of Insufficient Reason. In our case, we show that little
information of the system (quasar luminosities) gave us consistent
results. In so, it is an effective way of practical generalization.
As a result, the Lagrange multipliers behaved in a stable manner,
enabling to use bootstrapping for determination of errors. The
aspect of updating the knowledge when of the outcome of a much
larger data set, as expected from Gaia, is foreseen to be coherently
accommodated, as well as to investigate piecemeal the luminosity
function.
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APPENDIX A

Table A1 was obtained from Richards et al. (2006), with the addition
of the probability required to our objective and derived from their
data, plus the probability we obtained for the comparison.

Table A1. The redshift, luminosities, and probability.

Z L (× 1030) Probability Probability
(erg s−1 Hz−1) MaxEnt

0.49 13.70 3.32 × 10− 3 3.84 × 10−4

0.49 10.42 6.336 × 10− 3 1.89 × 10−3

0.49 7.90 1.00 × 10− 2 6.36 × 10−3

0.49 5.60 1.55 × 10− 2 1.59 × 10−2

0.49 4.55 2.83 × 10− 2 3.20 × 10−2

0.49 3.45 4.70 × 10− 2 5.42 × 10−2

0.49 2.62 6.95 × 10− 2 8.09 × 10−2

0.49 1.99 1.08 × 10− 1 1.10 × 10−1

0.49 1.51 1.52 × 10− 1 1.38 × 10−1

0.49 1.14 1.96 × 10− 1 1.65 × 10−1

0.49 0.87 2.83 × 10− 1 1.88 × 10−1

0.49 0.66 8.16 × 10− 2 2.08 × 10−1

Table A1 – continued

Z L (× 1030) Probability Probability
(erg s−1 Hz−1) MaxEnt

0.87 41.50 9.74 × 10− 4 1.07 × 10−2

0.87 31.50 3.70 × 10− 3 2.07 × 10−2

0.87 23.90 5.61 × 10− 3 3.40 × 10−2

0.87 18.10 1.23 × 10− 2 4.96 × 10−2

0.87 13.70 2.62 × 10− 2 6.61 × 10−2

0.87 10.40 3.46 × 10− 2 8.21 × 10−2

0.87 7.91 5.74 × 10− 2 9.69 × 10−2

0.87 5.60 9.09 × 10− 2 1.10 × 10−1

0.87 4.55 1.2 × 10− 1 1.21 × 10−1

0.87 3.45 1.419 × 10− 1 1.30 × 10−1

0.87 2.62 1.77 × 10− 1 1.37 × 10−1

0.87 1.99 3.30 × 10− 1 1.43 × 10−1

1.25 72.10 1.69 × 10− 3 2.79 × 10−3

1.25 54.70 3.29 × 10− 3 8.38 × 10−3

1.25 41.50 4.14 × 10− 3 1.93 × 10−2

1.25 31.50 1.04 × 10− 2 3.63 × 10−2

1.25 23.90 1.98 × 10− 2 5.87 × 10−2

1.25 18.10 3.52 × 10− 2 8.45 × 10−2

1.25 13.70 6.27 × 10− 2 1.11 × 10−1

1.25 10.40 1.11 × 10− 1 1.37 × 10−1

1.25 7.90 1.37 × 10− 1 1.61 × 10−1

1.25 5.60 1.807 × 10− 1 1.82 × 10−1

1.25 4.55 4.33 × 10− 1 1.99 × 10−1

1.63 125.00 2.57 × 10− 3 1.55 × 10−4

1.63 95.00 3.79 × 10− 3 1.14 × 10−3

1.63 72.10 7.57 × 10− 3 5.20 × 10−3

1.63 54.70 1.86 × 10− 2 1.64 × 10−2

1.63 41.50 3.46 × 10− 2 3.93 × 10−2

1.63 31.50 6.30 × 10− 2 7.61 × 10−2

1.63 23.90 1.07 × 10− 1 1.26 × 10−1

1.63 18.10 1.82 × 10− 1 1.84 × 10−1

1.63 13.70 2.51 × 10− 1 2.46 × 10−1

1.63 10.40 3.31 × 10− 1 3.06 × 10−1

2.01 165.00 1.65 × 10− 3 4.48 × 10−3

2.01 125.00 4.87 × 10− 3 1.25 × 10−2

2.01 95.00 7.54 × 10− 3 2.71 × 10−2

2.01 72.00 1.81 × 10− 2 4.89 × 10−2

2.01 54.70 3.00 × 10− 2 7.65 × 10−2

2.01 41.50 5.72 × 10− 2 1.07 × 10−1

2.01 31.50 9.06 × 10− 2 1.39 × 10−1

2.01 23.90 1.50 × 10− 1 1.69 × 10−1

2.01 18.10 2.44 × 10− 1 1.96 × 10−1

2.01 13.70 3.96 × 10− 1 2.19 × 10−1

2.4 165.00 6.57 × 10− 3 7.35 × 10−3

2.4 125.00 8.08 × 10− 3 2.07 × 10−2

2.4 95.00 2.22 × 10− 2 4.56 × 10−2

2.4 72.00 4.44 × 10− 2 8.28 × 10−2

2.4 54.70 7.71 × 10− 2 1.30 × 10−1

2.4 41.50 1.31 × 10− 1 1.84 × 10−1

2.4 31.50 2.12 × 10− 1 2.39 × 10−1

2.4 23.90 4.98 × 10− 1 2.91 × 10−1

2.8 274.00 1.04 × 10− 2 3.64 × 10−3

2.8 218.00 1.77 × 10− 2 1.09 × 10−2

2.8 165.00 3.21 × 10− 2 3.01 × 10−2

2.8 125.00 4.34 × 10− 2 6.53 × 10−2

2.8 95.00 8.65 × 10− 2 1.17 × 10−1

2.8 72.10 1.81 × 10− 1 1.83 × 10−1

2.8 54.70 3.00 × 10− 1 2.57 × 10−1

2.8 41.50 3.29 × 10− 1 3.32 × 10−1

3.25 287.00 4.09 × 10− 3 4.64 × 10−4

3.25 218.00 7.11 × 10− 3 2.32 × 10−3

3.25 165.00 6.63 × 10− 3 7.85 × 10−3

3.25 125.00 1.63 × 10− 2 2.00 × 10−2
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Table A1 – continued

Z L (× 1030) Probability Probability
(erg s−1 Hz−1) MaxEnt

3.25 95.00 3.25 × 10− 2 3.99 × 10−2

3.25 72.10 4.80 × 10− 2 6.80 × 10−2

3.25 54.70 6.79 × 10− 2 1.02 × 10−1

3.25 41.50 1.15 × 10− 1 1.38 × 10−1

3.25 31.50 1.45 × 10− 1 1.75 × 10−1

3.25 23.90 2.25 × 10− 1 2.08 × 10−1

3.25 18.10 3.32 × 10− 1 2.38 × 10−1

3.75 165.00 1.65 × 10− 2 1.14 × 10−2

3.75 125.00 2.74 × 10− 2 2.78 × 10−2

3.75 95.00 6.42 × 10− 2 5.48 × 10−2

3.75 72.10 6.57 × 10− 2 9.16 × 10−2

3.75 54.70 1.04 × 10− 1 1.35 × 10−1

3.75 41.49 1.54 × 10− 1 1.82 × 10−1

3.75 31.50 1.98 × 10− 1 2.28 × 10−1

3.75 23.90 3.69 × 10− 1 2.70 × 10−1

4.25 218.00 4.65 × 10− 2 4.22 × 10−2

4.25 125.00 9.28 × 10− 2 1.11 × 10−1

4.25 95.00 1.09 × 10− 1 1.53 × 10−1

4.25 72.10 1.73 × 10− 1 1.94 × 10−1

4.25 54.70 2.18 × 10− 1 2.33 × 10−1

4.25 41.50 3.61 × 10− 1 2.67 × 10−1

APPENDIX B: LAG RANGE MULTIPLIERS
M E T H O D : DATA , C O N S T R A I N T S , A N D
C O M P U TAT I O N

To develop the fundamentals of MaxEnt, consider the following set
of data.

Object1 A1

Object2 A2

Object3 A3

· · · · · ·
Objectn An

Here, each Objecti is a quasar and Ai is its respective luminosity,
with i = (1, 2, 3, ..., n). From now on, we adapt Jaynes’s notation
to our work. Thus, we will call the luminosities by Ai, and their
mean value by 〈A〉. Each Ai has a probability pi to occur and we
get from the data an average value 〈A〉 that can be obtained from
arithmetic mean, weighted average, or from a more accurate form,
using expression (1). This expression may be rewritten as

〈A〉 =
n∑

i=1

Aipi, (B1)

where at one redshift zk, the index n varies in the sum of i = 1,
..., n only on selected objects, that is, only in those three chosen
luminosities in this redshift. Considering that the data set contains
all possible values to occur, we have the bond condition that the
summation of all probabilities must be equal to 1, see equation (2),
or

n∑
i=1

pi = 1. (B2)

The two Lagrange multipliers μ and λ are associated with these two
equations, respectively, equations (B1) and (B2). Then, next they
will be placed into a new form of the above equations.

From B1, we have

μ

[
n∑

i=1

Aipi − 〈A〉
]

= 0, (B3)

and from B2,

λ

[
n∑

i=1

pi − 1

]
= 0. (B4)

According to Jaynes, the method consists in the determination of the
distribution function, pi, by maximizing the so-called informational
entropy,

H ≡ H (pi, p2, ...pn) = −K

n∑
i=1

pi ln pi ;

this can be done by the standard method using the additional
conditions (B1) and (B2) and the Lagrange multipliers λ and μ.
The maximization procedure leads to the following result:

pi = e−μAi−λ. (B5)

The two equations that we have to adjust to compute are obtained
by taking (B5) into the equations of constraints (B1) and (B2), so
we obtain the equations:

e−λ

n∑
i=1

Aie
−μAi = 〈A〉, (B6)

e−λ

n∑
i=1

e−μAi = 1. (B7)

The equation (B6) informs us that

eλ =

n∑
i=1

Aie−μAi

〈A〉 . (B8)

Taking (B8) into equation (B7), we obtain an equation in μ to be
solved:

〈A〉

n∑
i=1

e−μAi

n∑
i=1

Aie−μAi

= 1. (B9)

To find λ, the obtained values of μ are taken into equation (B8).
That is, the sequence of procedures to find μ from equation (B9)
and substitute it into the equation (B8) to find λ.

With both Lagrange Multipliers found, we can get by MaxEnt
the resulting probability (B5) and the average value (B1) for each
redshift.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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