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ABSTRACT

Context. The light curves of magnetic, chemically peculiar stars typically show periodic variability due to surface spots that in most
cases can be modeled by low-order harmonic expansion. However, high-precision satellite photometry reveals tiny complex features in
the light curves of some of these stars that are difficult to explain as caused by a surface phenomenon under reasonable assumptions.
These features might originate from light extinction in corotating magnetospheric clouds supported by a complex magnetic field dom-
inated by higher-order multipoles.

Aims. We aim to understand the photometric signatures of corotating magnetospheres that are governed by higher-order multipoles.
Methods. We determined the location of magnetospheric clouds from the minima of the effective potential along the magnetic field
lines for different orders of multipoles and their combination. From the derived magnetospheric density distribution, we calculated
light curves accounting for absorption and subsequent emission of light.

Results. For axisymmetric multipoles, the rigidly rotating magnetosphere model is able to explain the observed tiny features in the
light curves only when the higher-order multipoles dominate the magnetic field not only at the stellar surface, but even at the Kepler
radius. However, even a relatively weak nonaxisymmetric component leads to warping of equilibrium surfaces. This introduces struc-
tures that can explain the tiny features observed in the light curves of chemically peculiar stars. The light emission contributes to the

light variability only if a significant fraction of light is absorbed in the magnetosphere.

Key words. stars: magnetic field — stars: chemically peculiar — stars: early-type — circumstellar matter — stars: variables: general

1. Introduction

Classical chemically peculiar stars are stars in the upper part
of the main sequence, where the diffusion due to competing
radiative and gravitational forces leads to chemical peculiar-
ity (Michaud 1970; Vauclair et al. 1991; Vick et al. 2011). In
chemically peculiar stars, the elements concentrate in vast sur-
face spots (patches), which are formed by the influence of the
magnetic field (Alecian & Stift 2017) and likely also by other
processes (Kochukhov & Ryabchikova 2018; Jagelka et al. 2019).
As a result of rotational modulation, the spots cause periodic
spectroscopic and photometric variability.

Unlike the spots on cool stars, the patches on chemically
peculiar stars are mostly stable over at least decades (e.g.,
Adelman 2006; Mikulasek et al. 2008) and have the same effec-
tive temperature as the rest of the surface. The latter follows
from the fact that most of the light variability of these stars can
be explained as a result of flux redistribution due to bound-free
(Peterson 1970; Krticka et al. 2007) and bound-bound transitions
(Wolff & Wolff 1971; Molnar 1973; Krticka et al. 2009; Shulyak
et al. 2010; Prvak et al. 2015) of helium and heavier elements
such as silicon, chromium, and iron.

It is commonly assumed that as a result of their modula-
tion by rotation, light curves of chemically peculiar stars can
be typically reproduced using low-order harmonic expansion
(e.g., Mikulasek et al. 2007; Shultz et al. 2019a). However,
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high-precision satellite photometry changed this picture. In addi-
tion to the variability that can be attributed to spots, a large
fraction of hot chemically peculiar stars (Mikul4sek et al., in
prep.) shows tiny complex features (also known as warps) on
their light curves (Hiimmerich et al. 2018; Mikuldsek et al.
2020). These narrow features in the light curves do not appear on
theoretically simulated light curves of chemically peculiar stars
(e.g., Krticka et al. 2009; Shulyak et al. 2010). Moreover, nar-
row features are difficult to explain by surface modulation under
reasonable assumptions about the intensity contrast of spots and
their sharpness (Prvdk 2019, Sects. 5.3 and 5.5).

On the other hand, the rotational light variability of chemi-
cally peculiar stars can be caused by sources other than surface
patches. A large fraction of chemically peculiar stars may
have winds driven by the line radiative force (Abbott 1979;
Babel 1996; Krticka 2014). Even below the limit of hydrogen-
dominated winds, however, purely metallic winds are possible
(Babel 1995). Within the rigidly rotating magnetosphere model,
the stellar wind flows along magnetic field lines and accumulates
in the region of minimum effective potential given by centrifugal
and gravitational forces. The magnetospheric clouds established
by this process occult part of the stellar surface, which may lead
to dips (eclipses) in the light curve (Landstreet & Borra 1978;
Nakajima 1985; Smith & Groote 2001; Townsend et al. 2005).
Only a few stars show dips on their light curves in ground-based
observations (e.g., Townsend et al. 2005; Oksala et al. 2010;
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Grunhut et al. 2012). On the other hand, many more such stars
may be detected with high-precision satellite photometry, which
can be connected with the absorption of stellar radiation by
corotating magnetospheric clouds.

In principle, the observed tiny features in the light curves
can be also interpreted in terms of additional emission (bumps)
instead of absorption. However, the width of these features would
imply a strong beaming of the radiation, which might be less
conceivable than simple absorption by intervening clouds.

The accumulation of matter in dipolar field with a high oblig-
uity leads to two isolated minima in the light curve (Townsend
et al. 2005). Therefore, a magnetic field dominated by higher-
order multipoles might explain the light curves with numerous
warps. A similar model was proposed by Jardine et al. (2001) to
provide prominence support in the magnetospheres of cool stars.
We examine this possibility in this paper, which is organized as
follows. Section 2 gives the structure of equilibrium surfaces at
which the magnetospheric matter accumulates for a magnetic
field dominated by higher-order multipoles, while Sect. 3 pre-
dicts the light curves induced by these magnetospheres. Finally,
in Sect. 4 we discuss an application of our model to typical
chemically peculiar stars with warped light curves, and Sect. 6
presents our conclusions.

2. Rotating magnetosphere model for general
multipoles

A physically motivated distribution of the matter in the mag-
netosphere of a rotating star can be obtained by elaborating
the models proposed by Preuss et al. (2004) and Townsend &
Owocki (2005). The latter model is more general and allows
determining the density distribution accounting for the wind
mass-loss rate modulation due to the magnetic field. The model
was successfully applied not only to study the light curves due to
circumstellar absorption, but also to provide a detailed interpre-
tation of Ho magnetospheric emission (e.g., Oksala et al. 2015;
Shultz et al. 2020) and polarimetry (Carciofi et al. 2013).

In a corotating circumstellar magnetosphere, the ionized
matter is at rest when the sum of the gravitational and centrifugal
force (per unit of mass) f is perpendicular to the magnetic field,

f-b=0, (D
where
GM 1
f=g—9><(9><r)=—2[6(1——3)—w(w~§)], @)
e &

and g stands for gravity acceleration, Q = Qw is the angular
frequency, b = B/B is the unit vector in the direction of magnetic
field B, and £ = r/rk is the radius vector r in units of the Kepler
radius,

GM\'7?
() - ®
The stability condition further requires that the displacement of
an element from the equilibrium position along the field line b

leads to the appearance of the force in the opposite direction, that
is,

ff=0VYf-b+f-(bV)b<O. “)

In the model of Townsend & Owocki (2005), this corresponds to
the potential minimum along the field line. Inserting the effective
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force in Eq. (2), the stability condition Eq. (4) can be rewritten
as

Flzoer
Here V, denotes the gradient in nondimensional units, V, = r¢V
and f; = f/(GM/r%).

+1—(w-b) + fe- (bVe) b < 0. 5)

2.1. Field aligned with rotational axis

In the simplest case, the axes of the multipole and the rotational
axis are parallel. The magnetic field strength is modeled using
co-aligned axisymmetric multipoles of the order #,

B, 1 B,
B = 2 P,,(COS 9) e, — mmPn(COS 9) €g, (6)

where P, and P! denote the Legendre and associated Legendre
polynomials, respectively. We do not account for a field with
a nonzero azimuthal component in the initial calculations. The
plots of the equilibrium surfaces Eq. (1) fulfilling the stability
condition Eq. (4) are given in Fig. 1.

For a dipolar case (n = 1), the resulting equilibrium surface
corresponds to an equatorial plane with a hole. In the equatorial
plane, the force f is perpendicular to the magnetic field fulfilling
the equilibrium condition of Eq. (1). The central hole appears
from the stability condition Eq. (4). For a dipolar field in the
equatorial plane, b-& =0 and w - b = 1, and after an evalua-
tion of the gradient term, the stability condition consequently is
(Preuss et al. 2004; Townsend & Owocki 2005)

2\!/3
£> (3) . (M)
Therefore, as a result of the influence of the magnetic field, the
matter is stable even slightly below the Kepler radius & = 1.

There are additional equilibrium chimney-like surfaces in the
polar direction (Preuss et al. 2004), where the force f is perpen-
dicular to the magnetic field. However, the equilibrium on these
surfaces is unstable because either gravity or centrifugal force
drives the matter out of the equilibrium position.

The quadrupole (n = 2) has two lobes below and above
the equatorial plane, therefore there are two surfaces at which
the matter is in equilibrium and is stable (Fig. 1; see also
Jardine et al. 2001). In general, there is an equilibrium surface
for each lobe of the multipole. The apex of the lobe appears
where the radial component of the magnetic field is zero, which
from Eq. (6) corresponds to the root of the appropriate Legendre
polynomial. The number of roots is given by an order of multi-
pole, therefore the number of lobes is equal to the order of the
multipole. The surfaces show a mirror symmetry with respect to
the equatorial plane, and this plane consequently corresponds to
stable solutions for odd multipoles. At large distances from the
star, the effective force in the equilibrium condition f - b = 0 is
dominated by the centrifugal force, which is perpendicular to the
rotational axis. Therefore, the equilibrium condition is fulfilled
at the surface where the magnetic field is parallel to the rota-
tional axis. Individual magnetic field lines are similar, therefore
the magnetic field is parallel to the rotational axis for a particu-
lar 6. As a result, at large distances from the star, the equilibrium
surfaces is conical.

This also explains why there is one equilibrium surface for
each order of the multipole. The order of multipole determines
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Fig. 1. Equilibrium surfaces Eq. (1) fulfilling the stability condition Eq. (4) for a field aligned with the stellar rotational axis and multipoles with

different orders.

the number of lobes. In each lobe, there is just one magnetic
latitude where the magnetic field lines are perpendicular to the
effective force, therefore there is just one equilibrium surface per
each lobe or multipolar order. In the equatorial plane, the effec-
tive force is radial, therefore the equilibrium surface appears at
the apex of the lobe where the radial magnetic field component
is zero. This is given by the root of the corresponding Legendre
polynomial. Outside the equatorial plane, the effective force is no
longer radial, therefore the equilibrium surface does not appear
at the apex of the lobe.

For odd multipoles, one of the equilibrium surfaces always
appears in the equatorial plane. Taking into account Eq. (2), the
stability condition Eq. (5) simplifies to —1/&* + y(1 — 1/£%) <
0, where y = € (ng) b. Evaluating the directional derivative in
the equatorial plane in spherical coordinates taking into account
the properties of the Legendre polynomials and Eq. (6) gives
y = —n — 2. Therefore, the solution of the inequality leads to a
generalized condition of Eq. (7),

1/3
f>(n+1) ‘ ®

n+2

This means that with an increasing order of the multipole, the
radius of the central hole grows from & = (2/3)!/? (Eq. (7)) to
¢ = 1. This corresponds to a change in equilibrium condition
with the variation of the order of the multipole. For a uniform
magnetic field parallel with the rotational axis, the matter would
be stable anywhere in the equatorial plane. With increasing order
of the multipole, the magnetic field lines become increasingly
bended. Therefore, for multipoles with high order, the matter
becomes stable if the centrifugal force is stronger than gravity,
as is usually the case without a magnetic field, and the radius of
the central hole approaches & = 1. The numerical results show
that below and above the equatorial plane, the matter is stable
outside the cylinder with radius ¢ = 1.

2.2. Misaligned rotation

The axis of the magnetic field is typically tilted with respect to
the rotational axis in magnetic, hot stars. We denote the angle
between these axes (the magnetic field obliquity) by 8. For 5 > 0,
the equilibrium surfaces become warped, as we show in Fig. 2.
As in aligned case, there is one equilibrium surface per mul-
tipole order. In addition, part of the chimney-like surface that
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Fig. 2. Equilibrium surfaces Eq. (1) fulfilling the stability condition Eq. (4) for a rotational axis w tilted by 5/12 & with respect to the axis of the
magnetic field b for multipoles with different orders. Both axes are denoted in the graph.

was unstable for a field aligned with the rotational axis becomes
stable because potential minima appear at the surface.

In the case of misaligned rotation, the axis of the cylinder
oriented along the rotational axis with radius & = 1, outside of
which the stability condition is fulfilled, is tilted with respect to
the magnetic axis. As a result, the region closest to the star where
the matter is in stable equilibrium, appears at the intersection
of the magnetic and rotational equators (Townsend & Owocki
2005).

2.3. General combination of coaligned multipoles

The structure of the magnetic field of a hot star is typically not
given by just one multipole, but is much more complex (e.g.,
Kochukhov et al. 2011; Rusomarov et al. 2015; Silvester et al.
2017). Therefore, we have to combine multipoles with different
orders to understand the formation of the equilibrium surfaces
in more realistic situations. In Fig. 3 we provide plots of indi-
vidual equilibrium surfaces for different ratios of B,,/B, at the
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Keplerian radius & = 1 and for different orders m and n (m > n),
assuming that the multipoles share the axis of symmetry.

From Fig. 3 it follows that the equilibrium surfaces are dom-
inated by lower-order multipoles for B, < B,. The presence
of additional multipoles is manifested by a slight shift of the
equilibrium surface for the case of multipoles with different par-
ity. As the amplitude of the higher-order multipole increases, a
new equilibrium surface appears, which in the limit B, > B,
approaches the structure of surfaces corresponding to the order
m (cf. Fig. 1). The new surface(s) has a toroidal shape for multi-
poles of the same parity or a cone-like shape for multipoles with
different parity.

Figure 4 explains why the lower multipole order dominates
even for B,, ~ B,. Here we plot the magnetic strength vector for
the dipolar and quadrupolar component in the y = O plane. The
strength of the dipolar component is always normalized to unity,
while the quadrupolar component is plotted relative to the dipo-
lar component, that is, with the length reduced by a factor of 1/&£.
The total magnetic field strength is given by the sum of these
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&
o

Fig. 4. Magnetic field vector for the dipolar (blue) and quadrupolar (red)
field plotted in the y = O plane. The dipolar component is plotted with
the unit length vector, and the length of the quadrupolar field vector is
reduced by a factor of 1/£.

components. The figure shows that the quadrupolar component
changes the orientation of the dominating dipole component only
slightly in most cases. This results in a warping of the equilib-
rium surface, but no new equilibrium surface appears. Additional
surfaces appear only when the quadrupolar surface dominates
the whole region.

These simulations show that a complexly warped light curve
may appear only in stars in which the higher-order multipole
dominates even at the Keplerian radius & = 1. Because mag-
netic field components corresponding to higher-order multipoles
decrease fast, this implies an even stronger dominance at the stel-
lar radius. This condition can be partly mitigated by fast rotation,
in which case the stellar radius is close to the Keplerian radius.

2.4. Nonaxisymmetric multipoles

We have considered only axisymmetric multipoles so far. How-
ever, the general multipole expansion also accounts for non-
axisymmetric terms (e.g., Jardine et al. 1999). To understand
their effect, we accounted for the multipolar expansion in the
form of

1 By, dPﬁl(cos 0)
n+ 12 dé

Pfl(cos 0) sin(lp) ey. 9)

_ Bn,l !
B = P, (cos6)cos(lp) e, —

rn+2

cos(lp) ey

[ Bn,l
L —
n+1sin@rt

The nonaxisymmetric terms do not affect the shape of the equi-
librium surface when the field is aligned with the rotational axis
because the sum of the gravitational and centrifugal force f has a
zero azimuthal component, and the radial and longitudinal field
components both depend on ¢ in the same way. As a result, the
condition described by Eq. (1) is not affected, and the equilib-
rium surfaces are given by the radial and latitudinal components
of the magnetic field. The numerical analysis shows that the
equilibrium surfaces resemble those for multipolar fields given
in Fig. 1.
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Because the individual magnetic field components depend on
the radius in the same way, the magnetic field lines are similar
in the nonaxisymmetric case as well. Therefore, the equilibrium
surface takes a conical shape in the limit of large & for the same
reasons as in the axisymmetric case. From a similar analytical
analysis as in Sect. 2.1 it follows that the radius of the central hole
that appears in the equatorial plane from stability considerations
is not affected by the azimuthal magnetic field and is given by
Eq. (8).

Because the number of lobes is given by the number of roots
of the radial component of the magnetic field, the number of
equilibrium surfaces given by the numbers of lobes could be
higher than in the axisymmetric case. For instance, for [ = 1,
there is one additional root of the associated Legendre polyno-
mial, therefore the number of equilibrium surfaces is n+ 1. These
surfaces show a mirror symmetry, therefore for a field that is
aligned with the rotational axis, the equatorial surface fulfills the
equilibrium condition for even n.

At the apex of individual lobes where P!, (cos 6) = 0, only the
latitudinal magnetic field component remains. This component is
modulated by a factor of cos(l¢), which has 2/ roots. Therefore,
there are 2/ directions in each lobe where the flow can move
freely and escape the star. In reality, this picture may be modified
by other field components. Because the effective acceleration is
not radial above the equatorial plane, the apex of each lobe does
not coincide with the equilibrium surface, as in the axisymmetric
case.

For cos(l¢) = 0, only the azimuthal component of the mag-
netic field is nonzero; consequently, f - b = 0 for aligned rota-
tional and magnetic axes, and new equilibrium surfaces appear.
These surfaces are planes with a common line of intersec-
tion corresponding to the magnetic axis. The stability condition
Eq. (5) for a particular case of a nonaxisymmetric multipole as
in Eq. (9) can after some manipulation be rewritten as

1—%—(1—%—“)529)(%2)

( sinf  dP!(cos6)
+cosé -

Pl (cos ) de

For instance, in the equatorial plane cosé = 0, this gives the
condition & > 1, that is, the equilibrium is stable above the
Keplerian radius. In the general case, the plane is stable for large
&. The numerical analysis has shown that Eq. (10) allows a sta-
ble equilibrium even below the Keplerian radius for & < 1. With
increasing complexity of the field (for higher n), the smallest
radius for which Eq. (10) is satisfied moves toward the star, but
it can never reach zero (as show below).

The stability condition has a particularly illuminating form
for a purely radial force (with f,.(r) < 0) when the magnetic field
is governed by a single component. For radial force fields, the
equilibrium condition Eq. (1) requires that the radial component
of the magnetic field unit vector is zero, b, = 0. This is fulfilled in
the apex of magnetic lobes corresponding to the roots of the Leg-
endre polynomials P,’1(cos 0) (see Eq. (9)). Because at the apex of
the lobes, the longitudinal magnetic field component is zero as
well, by = 0, the stability condition Eq. (4) simplifies to

ob,
11
50 )

Inserting the multipolar field Eq. (9) and canceling the positive
terms, this can be rewritten as

P\’
(dg”) <0,

cos 9) <0. (10)

< 0.

—by

(12)
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which is never fulfilled. Therefore, the stability in the case of a
centered magnetic field governed by a single component always
requires the presence of centrifugal force. A similar condition
can be derived also for cos(l¢) = 0 surfaces. For a general field,
which can be described by a combination of several components,
the stability condition reads

ob, N b_¢ ob,
00  sinf 0¢

0 > 0. (13)

Using the zero current condition rot(Bb) = 0, this can be
rewritten as

orB) rB 9

or * 2 or
This is difficult to fulfill for any radially decreasing magnetic
field. Therefore, either a centrifugal force or possibly nonzero
currents are required for stability.

The field strength of the nonaxisymmetric multipoles varies
with the same power of radius as the strength of the axisym-
metric multipoles. Therefore, low-order multipoles dominate the
magnetic field even in the nonaxisymmetric case unless the
expansion coefficients in Eq. (9) are sufficiently high. How-
ever, the magnetic field component in the direction of force
is zero around the equilibrium surfaces. Consequently, even a
small additional magnetic field may dominate here and perturb
the equilibrium surface. This is shown in Fig. 5 (lower panel),
where we plot the equilibrium surface for the combination of the
axisymmetric dipole and nonaxisymmetric octupole with [ = 3.
For a dipole, the equilibrium surface appears in the equatorial
plane and corresponds to the apex of the lobe of the magnetic
field, where the radial field component is zero. Consequently,
even a relatively weak non-axisymmetric octupole that lacks the
apex of the lobe in the equatorial plane is able to warp the
equilibrium plane. Here the number of warps is equal to [ = 3.

Equilibrium surfaces become warped only if the surfaces of
individual multipoles do not coincide. In the opposite case, the
splitting of surfaces may appear as a result of the interaction of
nearby equilibrium surfaces (see Fig. 5 for [ = 2 case). Relatively
complex shapes of the equilibrium surfaces can also be derived
from a combination of multipoles with the same order, but with
different /.

bg% (erg)+b¢% (er¢) = (bz + bé) >0. (14)

2.5. Radius of the magnetosphere

The magnetic field dominates the magnetosphere up to the
Alfvén radius Ra, at which the magnetic field energy density
is equal to the stellar wind kinetic energy density (ud-Doula &
Owocki 2002). Therefore, the Alfvén radius can be derived from
the condition
B 1,

— = =pV

&t 2 15

For multipolar magnetic field B ~ Bo(R./ r)"*2 and stellar wind
density given by p = M/(4nrv,,), at large distance from the star
(v = V), the Alfvén radius is

RA %

— 3r1+ , 16
R0 (16)
where

2p2
7o = SoR an
My,

Fig. 5. Equilibrium surface fulfilling the stability condition for a field
aligned with the rotational axis and combination of the axisymmetric
dipole and octupole with [ = 2 (upper panel) and [ = 3 (lower panel).
Plotted for B3’2/Bl =0.3or B3$3/Bl =0.3.

which is the wind magnetic confinement parameter (ud-Doula
& Owocki 2002). A strong dependence of the Alfvén radius
on the order of the multipole means that even in the case of a
very high magnetic field confinement 7, ~ 10°~107 (Shultz et al.
2019b), the Alfvén radius is just a few times higher than the stel-
lar radius for n > 3. In this case, the Alfvén radius may become
smaller than the Kepler radius, preventing the existence of stable
magnetospheric matter.

When the velocity is dominated by the rotational velocity, the
condition Eq. (15) should be modified to (Trigilio et al. 2004)

B 1
=5 pv2 (). (18)

For solid-body rotation, v,o(#) = vit(R.)r/R., and using the
stellar wind density, the Alfvén radius is given by

Ra 21( Voo )2
:r]* .
R* vrol(R*)

1

(19)
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Because the ratio of the terminal wind speed and the equa-
torial rotational velocity typically is a factor of a few (Castor
et al. 1975), depending on the stellar parameters, Eq. (19) could
give an even smaller Alfvén radius than Eq. (16). For higher-
order multipoles, both expressions give results close to the stellar
radius.

Above the Alfvén radius, the magnetic field no longer dom-
inates and the wind flows nearly radially (ud-Doula & Owocki
2002). The region of equipartition between the magnetic field
energy density and the wind energy density around the Alfvén
radius is the region of the reconnection events. They may accel-
erate particles to relativistic energies (Trigilio et al. 2004; Leto
et al. 2006).

3. Light curves due to a rotating magnetosphere

The matter accumulates on equilibrium surfaces in the region
of stability (Townsend & Owocki 2005). The density is highest
in the part of the surface that is closest to the star. This mate-
rial may obstruct the radiation emitted by the star and obscure
part of the stellar surface. Wind models (Krticka 2014) show that
absorption is most likely dominated by the light scattering on
free electrons. The obscuration is highest for rays that are tan-
gential to the equilibrium surface, because these rays encounter
the largest amount of the material. As the star rotates, differ-
ent parts of the equilibrium surface obstruct the line of sight.
Therefore, the obscuration depends on the rotational phase and
the light curve displays eclipses, as shown in Townsend et al.
(2005).

The analysis of high-precision satellite photometry revealed
that some chemically peculiar stars display small dips on their
light curves. These features look like absorption features and typ-
ically do not come in isolation, but (when present) up to a dozen
or more of such features appear in the light curve (Mikuldsek
et al. 2020). In our model, the number of these features per rota-
tional period increases with the complexity of the field, therefore
with the order of the multipole. From this, it seems that the
warped light curves of chemically peculiar stars can be explained
by the light absorption in corotating clouds that are trapped by
the magnetic field that is described by multipoles of high order.

The magnetospheric matter settles in the magnetosphere, and
its density distribution is given by the hydrostatic equilibrium
along each field line (Townsend & Owocki 2005),
uA(D(As)} ’ 20)

As) = pmexp |-
p(As) pexp[ 7

where AD(As) is the difference between the potential at a given
point and the potential minimum located at the distance As along
the field line, py, is the matter density at the potential minimum,
1 is the mean molecular weight, and & is the Boltzmann constant.
Approximating A® by its Taylor expansion and using Eq. (4),
AD(As) ~ —f'As* /2. Therefore, the density distribution Eq. (20)
takes the form of

As?
p(As) = pm exp (—?) ) 2h
with the square of the characteristic scale height,
2kT
2 - . (22)
plf|

The density p,, is different for individual field lines, and
Townsend & Owocki (2005) accounted for stellar wind feeding
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to determine its value. However, the observational character-
istics of Ha line profiles (Shultz et al. 2020) show that the
magnetospheric matter density is given by a complex interplay
between wind feeding and gas leakage either via diffusion and
drift (Owocki & Cranmer 2018) or more likely by centrifugal
breakout (Owocki et al. 2020). Consequently, we simply assumed
pm = AE® (Owocki et al. 2020), where A determines the total
amount of mass in the magnetosphere.

3.1. Light absorption due to the circumstellar magnetosphere

As the circumstellar matter obstructs the rays aimed at a dis-
tant observer, it absorbs the stellar radiation and causes the light
variability. The intensity along the ray is reduced according to

I =1Lhe™, 23)
where the optical depth is given by
oTP oTA 1 As(l)?
= | —di=—| = - di, 24
f my my J & exp( h? @4

where we used Eq. (21), / denotes the length variable along the
ray, my is the hydrogen mass, and ot is the Thompson scattering
cross-section. We integrated the specific intensity from Eq. (23)
across the visible stellar surface for different viewing angles to
obtain the phase-dependent light curve.

The magnetospheric matter accumulates around the equilib-
rium surfaces Eq. (1). For an axisymmetric magnetic field with
B = 0, the resulting density distribution is also axisymmetric.
Consequently, there is no rotational variability in the case of
aligned rotation of axisymmetric multipoles. For 8 > 0, the equi-
librium surfaces become warped even for the case of multipoles
that are axially symmetric around the magnetic axis. Most of
the matter accumulates in the surface regions closest to the star,
leading to a modulation of the light variability by the rotation.

Figure 6 shows light curves for different combinations of
multipoles. We adopted a stellar mass M = 8 M, a radius R =
4Ry, and a rotation period P = 1d roughly corresponding to
o Ori E (Oksala et al. 2015). The light curves are plotted for a
magnetic axis perpendicular to the rotational axis (8 = m/2) and
for an equator-on orientation (i = m/2). This gives the largest
amplitude of the variability (Townsend 2008). With a nonzero
magnetic axis tilt, the equilibrium surfaces become warped with
the maximum density of matter in the surface regions closest
to the star. As the equilibrium surfaces show a mirror symme-
try around the plane containing the rotational and magnetic axes
(see Fig. 2), there are two magnetospheric clouds per equilibrium
surface. Therefore, each equilibrium surface produces two light
minima at most, which appear when the cloud occults part of the
stellar surface. Because the number of surfaces is given by the
order of the multipole, the maximum number of light curve min-
ima is twice the order of the multipole. However, minima due to
higher multipoles show up only when these multipoles dominate
at the Kepler radius. When the higher-order multipoles do not
dominate at the Kepler radius, then they cause just a phase shift
of minima due to equilibrium surface elevation (see Fig. 3).

For higher-order multipoles (n > 3), the rays that are neither
close to parallel nor normal to the rotational axis may intersect
several equilibrium surfaces. Consequently, the minima due to
individual surfaces merge and create one huge absorption fea-
ture that is modulated by the minima due to individual surfaces
(Fig. 6).
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Fig. 6. Light curves due to the light absorption in circumstellar mag-
netospheres for i = 8 = n/2. Upper panel: combination of dipole and
quadrupole. Middle panel: combination of quadrupole and octupole.
Bottom panel: light curves due to higher-order multipoles.

We also tested the influence of nonaxisymmetric multipoles
(Sect. 2.4) on the light curve. Inclusion of the azimuthal mag-
netic field may increase the number of equilibrium surfaces and
therefore the number of warps. Higher-order multipoles are still
needed to obtain a large number of warps in the light curve,
however. The equilibrium surfaces are axisymmetric even for
nonaxisymmetric multipoles for a field that is aligned with the
rotational axis (8 = 0) because the alignment forms a disk-like
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Fig. 7. Light curves due to the light absorption in circumstellar mag-
netospheres for a combination of the axisymmetric dipole and octupole
with / =3 and [ = 1 for 8 = 0 viewed equator-on (i = 7/2).

circumstellar structure. However, because the f’ term in the disk
density scale height Eq. (22) depends on mixed terms, the den-
sity distribution is not axisymmetric for equilibrium surfaces
that do not lie in the equatorial plane. As a result, the variabil-
ity appears even in the case of a field that is aligned with the
rotational axis.

The disk width is inversely proportional to the square root of
|f’|. Therefore, the disk width is large (disk flares) when f” tends
to zero. This leads to an occultation of a large part of the stellar
surface and to the appearance of a minimum in the light curve.
For nonaxisymmetric multipoles, this appears when cos(/¢) = 0.
Therefore, there are 2/ such flaring regions that may lead to 2/
absorption features in the light curve.

Even a tiny nonaxisymmetric component in an otherwise
dominant axisymmetric field leads to a warping of the equi-
librium surface even when the rotational and magnetic axes
coincide (Fig. 5). This results in a light curve with 2/ dips caused
by 2/ disk warps (Fig. 7).

3.2. Continuum emission from a corotating magnetosphere

Part of the light absorbed by the corotating magnetosphere is
emitted again and may reach a distant observer (Oksala et al.
2015). If the extinction appears due to light that scatters on
free electrons, then the scattered light has the same spectral
energy distribution as the star and there is no net absorption in
the magnetosphere. However, unlike the simulation of the mag-
netospheric light absorption, modeling the light emission is a
formidable problem. With emission, the radiative transfer equa-
tion needs to be solved in its full integro-differential form for
all rays intercepting all magnetospheric points. In addition, the
solution of the radiative transfer equation should be iterated for
a consistent solution.

To make the problem more tractable, we did not solve
the radiative transfer equation within the clouds and simply
assumed that the radiation is reflected by the surface of the
clouds. The amount of energy emitted by the stellar surface
element dS. is FydS., where Fy is the surface flux. Assum-
ing that the stellar surface radiates according to the cosine law,
the flux observed at the distance r, from the surface element is
FydS, cos 6,/(nr?), where 6, is the angle between the normal
to the surface and the ray. A geometrically thin magnetospheric

A37, page 9 of 14



A&A 659, A37 (2022)

-0.04
& -0.03}
£
3
3 -0.02¢}
=
[@)]
(]
€ -0.01}
<
0 N N N N
0 02 04 06 08 1
phase ¢

Fig. 8. Light curves due to the light emission in circumstellar mag-
netospheres for a dipolar magnetic field with § = 90° and different
inclinations denoted in the graph.

medium can be described by its cross-section with respect to the
infalling radiation cos v dS, where v < 7/2 is an angle between
the normal to the equilibrium surface element (given by V(f - b)
from Eq. (1)) and the direction to the stellar surface element.
The amount of radiation that is scattered by a given element
is then cosvdS (1 — e )F dS, cos 6, /(nr?). Assuming that the
light is redistributed in the magnetospheric matter according to
the cosine law, the flux observed at the distance d from the star
is cos @cos vdS (1 —e 7)F dS, cos 8, /(n*r2d?), where 6 < 7/2 is
the angle between the normal to the surface and the direction to
the observer. Integrating over all stellar and equilibrium surfaces,
the total observed reemitted flux relative to the flux coming from
the star F = R2/d*F, is

AF 0.
— =de cost(l—e’T)M ds,.

n2riR? 25)

When we numerically evaluated Eq. (25), we assumed that each
surface element directly faces the star, and we accounted for
occultation by the star. To simplify the calculation, the optical
depth was approximated from Eq. (24) by

2
T = m i exp(—l— cos’ u)dl =~ M.
my &6 h? my& cosv
The test showed that the total emitted flux calculated with
this method is lower than the total absorbed flux by just a few
percent. This is an acceptable difference because absorption and
emission were treated differently, which is not fully compatible.
Figure 8 shows light curves due to magnetospheric emis-
sion for the case of a dipole (n = 1) with a rotational axis
perpendicular to the magnetic field axis (8 = 90°) and for dif-
ferent inclinations. The light curve due to light emission has a
smooth profile and the variations appear because the line of sight
changes. The minimum has a wedge-like shape with a nearly lin-
ear behavior on either side of the minima because the cos 6 term
appears in Eq. (25), which is roughly proportional to |cos¢g|.
The maxima due to each cloud are shifted with respect to the
absorption minima by 0.25 in phase because the normal to the
equilibrium surface is nearly perpendicular to the rotational axis
and the maximum appears at the phase when the surface normal
points in the direction of the observer. In contrast to the absorp-
tion, the variability appears even for a small magnetic field tilt
and for a small inclination (cf. Townsend 2008).

(26)
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Fig. 9. Simulated light curve assuming a magnetic field given by the
combination of a dipole and quadrupole and accounting for both absorp-
tion and emission in the magnetosphere (dashed line). The solid line
corresponds to the model that also accounts for surface spots (Oksala
et al. 2015). This is compared with the observed light curve of o Ori E
(Townsend et al. 2013) and phased with the ephemeris from Townsend
et al. (2010).

4. Application to stars with warped light curves
4.1. Staro Ori E

The enigmatic light curve of o Ori E (Hesser et al. 1976, see
also Fig. 9) motivated several studies that interpreted its light
variability as the result of absorption in the circumstellar magne-
tosphere (Landstreet & Borra 1978; Nakajima 1985; Preuss et al.
2004; Townsend et al. 2005). The light curve shows two deep
minima that originate from the absorption in the stellar mag-
netosphere and from additional variability between the minima,
possibly due to the light scattering (Oksala et al. 2015). With
respect to the light curves of other chemically peculiar stars, it
might be regarded as a warped light curve at its extrema.

We modeled the light curve assuming an inclination i = 75°,
which roughly corresponds to observations (Oksala et al. 2015),
and a magnetic field tilt 8 = 90°. We selected a higher value of
the tilt than derived from magnetic maps (Oksala et al. 2015)
to obtain a light curve maximum height that agrees with obser-
vations. As a result of the magnetic field tilt, the circumstellar
matter is not distributed axisymmetrically, but mostly appears
at the intersection of the rotational and magnetic equatorial sur-
faces (Townsend et al. 2005). This results in two circumstellar
clouds that periodically occult the stellar surface, leading to the
light curves with two minima. To fit the width of the minima,
we assumed the magnetospheric density parameter p,, = A&,
This corresponds to the stellar wind attenuation in a dipolar field
and gives a slower decrease in density than predicted by the
model of a centrifugal breakout (Owocki et al. 2020) that we
used in our previous calculations. This particular choice of the
radial power-law index is also motivated by observational data.
A higher index of the radial power law predicts a wider occulta-
tion phase than observed because most of the absorption appears
closer to the star. The observed minima do not appear shifted
by 0.5 in phase, which indicates that the magnetospheric matter
is not distributed symmetrically (Townsend et al. 2005). There-
fore, we assumed a combination of the dipolar and quadrupolar
components B,/B; = 0.6 to shift the equilibrium surface (see
Fig. 3) and consequently also the light minima in accordance
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with observations. A similar approach was used by Oksala et al.
(2015). Additionally, we introduced a dependence of the density
parameter A on a position to account for different depths of light
minima. We assumed that the value of A in one half-space of the
magnetosphere is half that in the second half-space.

The simulated light curve in Fig. 9 reproduces the main fea-
tures of the observed light curve, although some details remain
unexplained. The deep minima are nicely reproduced. The vari-
ations between the minima can be interpreted as due to the light
scattering in the magnetosphere. As a result of the shift in the
equilibrium surface introduced above, only one side of the sur-
face is illuminated by the star, therefore the light curve due to
the scattering contains only one maximum. This broad maxi-
mum appears around the phase ¢ = 0.7 and is the only effect
in the light curve due to the light scattering. From this it follows
that the quadrupolar component is needed not only to shift the
light minima in phase, but also to explain the different heights of
the local maxima in the light curves. Compared to the circum-
stellar density distribution determined by Oksala et al. (2015),
the density distribution is asymmetric because of the variation
in A parameter that we adopted, and it is more aligned with the
rotational axis.

The shift between the predicted and observed maxima of
about 0.2 in phase (Fig. 9) remains to be explained. It likely
appears because the shape of the equilibrium surface is more
complex than expected. We have not been able to explain this
shift by variations in any magnetospheric parameters, including
different orders of multipole, their mutual strength, and magnetic
field inclination. The shift between primary minima and max-
ima due to emission is nearly 0.5 in phase, which means that it
can be explained by assuming that the surface around which the
magnetospheric cloud accumulates is perpendicular to the radial
direction (i.e., the surface forms a small section of a sphere). A
similar model was introduced to explain the continuum polar-
ization in this star (Carciofi et al. 2013). The adopted model of
geometrically thin clouds perhaps oversimplifies the situation.

The model of two clouds connected by a ring proposed
by Carciofi et al. (2013) might be interpreted assuming a non-
axisymmetric field with n» = [ = 1. This model leads to the
appearance of two flaring regions, which would explain the two
deep minima. The flaring regions are extended in the direction
perpendicular to the radial direction, therefore the extrema due
to light emission and absorption coincide in phase.

Oksala et al. (2015) introduced another component of the
light variability of o Ori E due to abundance spots that appear
on the surface of this star and that can be revealed from Doppler
mapping. The abundance spots dominate the light variability in
the ultraviolet domain to a great extent, and they manifest them-
selves as an additional shallow light maximum around phase 0.9
in the optical region. Accounting for the spots in our model has
a small impact in the light curve, except for a slight shift of the
light maximum toward a higher phase (Fig. 9).

We aimed to determine a magnetic field distribution that was
able to reproduce not only eclipses, but also the height of the
emission-like feature around phase ¢ = 0.6. In turn, the resulting
surface magnetic field poorly agrees with the observed longi-
tudinal magnetic field curve. This again indicates that further
improvement of the magnetospheric model is required.

4.2. HD 37776 and other stars with warped light curves

The light curve of HD 37776 can mostly be explained as a result
of flux redistribution in surface abundance patches of helium
and silicon (Krticka et al. 2007). A detailed inspection of the
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Fig. 10. Simulated light curve of HD 37776 derived assuming the sil-
icon and helium surface distribution by Khokhlova et al. (2000) and
modulated by n = 3 and / = 3 multipole (solid line). This is compared
with the TESS light curve phased with the nonlinear ephemeris from
Mikulések et al. (2020, dots) and with the light curve calculated purely
from surface spots (dashed line). All light curves were shifted to derive
a zero mean magnitude.

HD 37776 light curve derived with the TESS satellite, how-
ever, revealed about ten localized narrow features that can be
interpreted in the form of dips (warps; Mikuldsek et al. 2020,
Fig. 10) with additional substructures. Mikuldsek et al. (2020)
succeeded in providing a detailed phenomenological model of
the HD 37776 TESS light curve, but the physical origin of the
fine structure remained unclear. The star shows a complex mag-
netic field (Thompson & Landstreet 1985) with a dominating
octupolar component (Kochukhov et al. 2011) and a significant
nonpotential field (rot B # 0). Some of the strong warps might
be attributed to the dominating / = 3 nonaxisymmetric compo-
nent of the field. This component should give rise to six warps,
which is slightly fewer warps than derived from observations.
This is illustrated in Fig. 10, where we plot HD 37776 light
curve! simulated by Krtic¢ka et al. (2007) from the Khokhlova
et al. (2000) abundance maps, which was further modulated by
circumstellar absorption due to n = 3 and / = 3 aligned multi-
poles (8 = 0). In Sect. 2.4 we identified additional equilibrium
planes cos(l¢) = O that intersect the magnetic field axis. These
surfaces appear in the region in which the equilibrium disk
flares, therefore we did not account for the variability induced
by them. The comparison with the light curve derived using
the TESS satellite (Ricker et al. 2015) shows slightly higher
amplitude of the simulated data. This might be attributed to a
missing iron opacity, which was not accounted for in our atmo-
sphere modeling that we used to determine emergent fluxes,
and it can compete with other opacity sources. Inclusion of cir-
cumstellar absorption better reproduces the overall shape of the
light curve, although many details are missing, which indicates
that shape of the magnetosphere might be more complex. This
might be connected with additional components of the mag-
netic field. Alternatively, the light curve could be interpreted as

1 The detailed ephemeris will be published elsewhere (MikulaSek
et al., in prep.). The phase of the adopted nonlinear ephemeris can be
approximated as & = ¥ — Py 93 /2 — PPy 93 /6, where 9 = (t— Mo)/ Po.
Py = 1.538736(2) days, Py = —1.51(4) x 1078, P, = —-3.07(12) x
10712d7!, and M, = 2459 580.715(5).
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a result of light absorption on the equilibrium surface of low-
order axisymmetric multipoles (dipole or quadrupole) warped
by a higher-order nonaxisymmetric multipole. We also note that
the adopted magnetic field model was not selected to reproduce
the surface magnetic field distribution derived from spectropo-
larimetry, and a more realistic magnetic field model may fit the
observed light curve better.

The magnetic fields of most magnetic, chemically peculiar
stars are dominated by the dipolar component already at the stel-
lar surface (Bychkov et al. 2005; Auriere et al. 2007; Rusomarov
et al. 2015; Shultz et al. 2018; Kochukhov et al. 2019), and stars in
which higher-order multipoles prevail are scarce (Thompson &
Landstreet 1985; Donati et al. 2006; Bailey et al. 2012; Yakunin
et al. 2015). In stars with purely dipolar components, simple light
curves with at most two absorption dips are predicted, such as
that found in o Ori E (Townsend et al. 2005). More complex light
curves can appear in stars in which the higher-order multipoles
dominate not only at the stellar surface, but at the Keplerian
radius, where the clouds start to form. This is an even more strict
condition than a dominance at the stellar surface caused by the
radial decrease of higher-order multipoles, which is faster than
for a pure dipole.

It follows from this that the multiple warps in the light
curves of stars with prevailing dipolar magnetic field need to be
explained by something else than the axisymmetric model of a
rigidly rotating dipolar magnetosphere. For instance, the pertur-
bation of an otherwise dominant axisymmetric field by even a
weak nonaxisymmetric component leads to the appearance of
warps on the equilibrium surface (Fig. 5) that may cause dips in
the light curve (Fig. 7). Given the dominance of dipolar fields
among magnetic, chemically peculiar stars, this appears to be
the most promising model of the nature of the tiny features in
the light curves of chemically peculiar stars.

On the other hand, if the magnetic field in the outer parts of
the magnetosphere has a more complex topology than a simple
dipole and is, for instance, governed by higher-order multipoles
or has a component with a significant nonaxisymmetric term or
with nonzero rotation, then this field may lead to a more com-
plex distribution of magnetospheric matter and to the appearance
of warps in the light curve. In the context of stellar interiors,
Braithwaite & Nordlund (2006) showed with their numerical
simulations that stable internal fields are not composed just from
axisymmetric dipole, but also include a significant toroidal com-
ponent. Magnetic field components with nonzero rotation may
appear, for example, due to outflows or due to electric cur-
rents flowing in the magnetosphere. In this case, the explanation
of warps by corotating magnetospheric clouds might be possi-
ble even for stars with simple surface fields. We additionally
tested this possibility and simulated the light curve due to a
magnetosphere governed by higher-order multipoles with accu-
mulating clouds located in the outer regions of magnetosphere.
The derived light curves resembled the warped light curves,
giving this possibility some credit.

Magnetic Doppler imaging has unveiled a magnetic field
with nonzero rotation in some hot stars (Kochukhov et al. 2004,
2011; Donati et al. 2006), which might indicate nonzero elec-
tric currents. We tested the possibility that these currents may
be generated by nonzero velocity differences between oppositely
charged particles in line-driven wind. We used our multicom-
ponent wind models (Krticka & Kubat 2001) to estimate the
magnitude of the electric current in B star winds. Our models
showed that the magnetic fields induced by wind currents are
weaker by several orders of magnitude than the field observed in
magnetic, hot stars. Therefore, it is more likely that the magnetic
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fields with nonzero rotation are connected with atmospheric cur-
rents (Woltjer 1971; Rakosch et al. 1974) that are thought to
contribute to hydrogen and helium line profile variations (Madej
1983; Valyavin et al. 2004; Vallverdu et al. 2014).

If the magnetospheric clouds appear at larger distances
where the magnetic field no longer corresponds to a dipole, then
the centrifugal acceleration dominates gravity in these regions.
The vertical scale height at large distances is given by

kT kT

S ouf o ouQrr
In other words, as a result of the linear increase in centrifugal
acceleration with radius, the vertical scale height is inversely

proportional to radius. Therefore, we expect larger clouds close
to the star and smaller ones at large radii.

27

5. Discussion: Other possible sources of complex
light variations

Matter cannot be supported by continuum radiation. This can be
seen from evaluating the maximum mass that can be supported
radiatively, which is given by the balance of the gravitational
and radiative force GME/R} = oT4/c, where X is the column
mass. The optical depth of this material is given by orX/my =
orL/ (4ncmyGM) = T. Therefore, the optical depth is given by
the Eddington parameter, which is I < 1 for normal stars. Conse-
quently, a star cannot radiatively support material that is optically
thick due to Thomson scattering.

Some stars show a complex magnetic field structure just
above the stellar surface, with magnetic field lines closing signif-
icantly below the Keplerian corotation radius (e.g., Kochukhov
& Wade 2016). These structures do not necessarily lead to coro-
tating clouds supported by centrifugal force, as studied here.
Instead, the field lines may be filled with wind material, which
collides with streams from the opposite footpoint of the mag-
netic loop (Ud-Doula et al. 2008; Petit et al. 2013). This leads to
the appearance of a dynamical magnetosphere with a complex
upflow and downflow structure. These structures are inevitably
unstable. However, because the flow along different loops is
independent, the combination of absorption from a large number
of loops may lead to a more or less time-independent photomet-
ric signature even for a dynamical magnetosphere. Moreover,
this effect might be stronger in cooler stars with a lower wind
density because the cooling time in these stars is longer and the
post-shock gas is able to occult a larger fraction of the stellar
surface.

The density of the post-shock in nearly isobaric matter can
be estimated as (Owocki et al. 2016)

T,

on = 4pw7:1, (28)

where p,, is the wind density, T is the shock temperature, and
Ty, is the temperature of the cooled post-shock gas. The Thomson
scattering optical depth due to this structures is
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where Ry, is the length corresponding to the post-shock gas, and
vy 1s the wind velocity. Because T5/T, may be up to 103, the
dynamical magnetosphere may affect the light curve only for
stars with a higher mass-loss rate M > 10~'% M, yr~!. This over-
comes the mass-loss rates of a typical chemically peculiar star
by several orders of magnitude (Krticka 2014).

It is also possible consider the problem of the shock-heated
magnetospheres (Babel & Montmerle 1997; ud-Doula et al.
2014) from the point of view of X-ray energetics. The density
scale height at these temperatures is comparable to the stellar
radius, therefore this matter is close to the hydrostatic equi-
librium along the field lines (Owocki et al. 2016). The denser
structures in this environment may give rise to the warped light
curves. The hot magnetospheric matter needs to obscure about
§ = 1073 of stellar radiation to cause warp features with an
amplitude of about 1 mmag. This gives the condition for the
minimum density of this material as orpC/my ~ 6, where C
denotes the length of the cloud in the direction of observation.
This implies that the mass of the cloud ABmyd /o1 must be about
10~'* M, assuming the cloud dimensions A ~ B ~ R, and the
total mass of this corona-like structure of 1073 M, with about
ten such clouds. The X-ray luminosity of such a cloud would
be about Ly ~ ABCA(p/mH)z, which, using the unity optical
depth condition and assuming B = C, gives an X-ray luminosity
of Lx ~ A6*A/o . The X-ray cooling function A from Schure
et al. (2009) gives Lx ~ 103! ergs™!, which is higher by two to
three orders of magnitude than the typical luminosity of mag-
netic B stars (Nazé et al. 2014) and cannot be sustained by the
weak winds of late-B stars.

Prominence-like structures (e.g., Sudnik & Henrichs 2016)
may provide an analogy for the proposed model of matter dis-
tribution leading to dips in the light curves. Classical solar
prominence models (Kippenhahn & Schliiter 1957; Kuperus &
Raadu 1974) nicely correspond to structures that may cause
warped light curves. The potential extrapolation of surface fields
in cool stars showed that equilibrium regions may exist even
below the Keplerian radius (Jardine et al. 2001) if the field is suf-
ficiently complex. However, the height of these structures would
have to be comparable to the stellar radius to cause warp features,
which again requires higher-order multipoles.

6. Conclusions

We simulated light curves due to light absorption and emission in
the matter that is centrifugally supported in magnetospheres for
a magnetic field governed by higher orders of multipolar expan-
sion. Our aim was to understand the complex light curves of
chemically peculiar stars, which show persistent phased multiple
features that can be interpreted as dips (warps).

We have shown that with increasing order of the multipo-
lar expansion of the magnetic field, the complexity of the light
curve increases. Two warps at most appear per order of multi-
polar expansion for axisymmetric fields. However, higher-order
axisymmetric multipoles have to dominate not only at the stel-
lar radius, but also at the Keplerian radius to significantly affect
the light curve. A similar condition was found by Jardine et al.
(2001) for the existence of prominences in cool stars. Because
most of the hot, magnetic stars do not show these intricate
surface fields, complex warped light curves originating from
complicated surface fields are expected to be rare. A study is
under way to test this prediction (Mikulasek et al., in prep.).

We distinguished two geometrically different sources
of variability. For axially symmetric magnetic fields, the

resulting distribution of magnetospheric matter retains some
kind of symmetry, therefore a nonzero tilt between the magnetic
and rotational axes is needed to obtain some light variability.
In this case, the variability occurs because the star is occulted
by a geometrically thin magnetospheric disk that moves across
the visible surface. This leads to strong warps in the light curve,
which appear, for example, in o Ori E.

On the other hand, for nonaxisymmetric fields, the variabil-
ity appears even when the magnetic and rotational axis coincide.
In this case, the disk geometrically flares and warps in the light
curve are caused by the occultation of a large part of the stel-
lar surface by the flaring disk. The occulting matter is typically
optically thin, which leads to weak dips such as that observed in
HD 37776.

A combination of low-order axisymmetric multipole with
weak higher-order nonaxisymmetric multipoles leads to the
warping of the originally symmetric equilibrium structure. This
could appear even in typical magnetic, hot stars, which are
dominated by a dipolar field. This combination of axisymmet-
ric and non-axisymmetric multipoles might introduce structures
that can explain the tiny features observed in the light curves of
chemically peculiar stars.
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