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ABSTRACT

The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable inter-
stellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. We identify aerographite,
a synthetic carbon-based foam with a density of 0.18 kg m−3 (15 000 times more lightweight than aluminum) as a versatile material
for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness εshl = 1 mm could go interstellar upon
submission to solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with εshl = 0.5 mm arrives
at the orbit of Mars in 60 d and at Pluto’s orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 µm thick, at 0.04 AU
(the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km s−1 and 185 yr of travel to the distance
of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to
2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere, whose shell is 100 µm thick, of 1 m (5 m) radius weighs
230 mg (5.7 g) and has a 2.2 g (55 g) mass margin to allow interstellar escape. The payload margin is ten times the mass of the spacecraft,
whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Using 1 g (10 g) of this margin
(e.g., for miniature communication technology with Earth), it would reach the orbit of Pluto 4.7 yr (2.8 yr) after interplanetary launch
at 1 AU. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and
would serve as a precursor mission to αCentauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD
per sail, and a total of <10 million USD including launch for a piggyback concept with an interplanetary mission.
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1. Introduction

The discovery of a roughly Earth-mass planet candidate
in the habitable zone (Kasting et al. 1993) around our
nearest stellar neighbor Proxima Centauri (Proxima Cen;
Anglada-Escudé et al. 2016) and recent evidence of a Neptune-
mass planet candidate (Damasso et al. 2020; Kervella et al.
2020; Benedict & McArthur 2020) motivates a reconsideration
of the possibility of interstellar travel. Chemically driven rockets
are not suited for interstellar exploration on a timescale com-
parable to the human life span, due to their fundamental lim-
itations rooted in the rocket equation (Tsiolkovsky 1903). The
Voyager 1 spacecraft, at a speed of about 17 km s−1 or roughly
3.6 AU yr−1 (the fastest of five vehicles that ever acquired escape
speed from the solar system), would reach the nearest star, Prox-
ima Cen at a distance of 4.2439 ± 0.0012 light-years (at epoch
2015.5; Gaia Collaboration 2018) in about 75 000 yr.

Instead, interstellar speeds could be achieved by shoot-
ing an extremely powerful ground-based laser beam at a light
sail in space (Marx 1966). For a nominal 10 m2 sail with a
mass per cross section ratio of σ = 0.1 kg m−2 the required
power would be ∼1 TW (Redding 1967). The Breakthrough
Starshot Initiative1 has been investigating this possibility of
1 http://breakthroughinitiatives.org

using laser technology to accelerate highly reflective light sails
to interstellar speeds. Some of the key challenges of this con-
cept are in the extreme power output required during the
launch phase (10−100 GW for several minutes; Lubin 2016;
Kulkarni et al. 2018), the stability of the sail riding on a colli-
mated laser beam in the presence of atmospheric perturbations
(Manchester & Loeb 2017), the extreme accelerations of ∼104 g
(g being the Earth’s surface gravity) acting upon a proposed
one-gram sail during launch (Lubin 2016), the aiming preci-
sion towards the target star (Heller et al. 2017), and the structural
integrity of the sail while being heated to 1000 K or more during
launch (Atwater et al. 2018).

Alternatively, the solar irradiation could be used to pro-
pel ultra thin and ultra lightweight sails to interstellar speeds
(Cassenti 1997) and even allow deceleration at their target
star systems (Matloff 2009; Heller & Hippke 2017; Heller et al.
2017). Closer to home, several solar sail missions have already
demonstrated the feasibility of using sunlight as a thrust. The
Light Sail 2 mission2 successfully performed controlled solar
sailing (Mansell et al. 2020) in low Earth orbit (LEO). Prior
to the Light Sail project, the IKAROS mission successfully

2 www.planetary.org/explore/projects/lightsail-
solar-sailing/
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performed acceleration and attitude control using its solar sail
during a six-month voyage to Venus in 2010 (Tsuda et al. 2013).
Dedicated reflectivity changes in its 80 liquid crystal panels
were used to torque the sail using solar photons alone. IKAROS
(Tsuda et al. 2011) had a square format with a 20 m diago-
nal, and was made of a 7.5 µm thick sheet of polyimide. The
polyimide sheet had an areal mass density of about 10 g m−2,
resulting in a total sail mass of 2 kg. While this setup allowed
IKAROS to gain about 400 m s−1 of speed from the Sun within
almost three years of operation, it is impossible for the solar
photon pressure to accelerate such a sail to interstellar speeds
(Heller & Hippke 2017).

Graphene has been suggested as a candidate material for a
Sun-driven, interstellar photon sail, due to its extremely low mass
per cross section ratio (σ = 7.6 × 10−7 kg m−2; Peigney et al.
2001). In theory, a graphene-based sail could achieve high veloc-
ities (Matloff 2012, 2013). As a principal caveat, however,
graphene is almost completely transparent to optical light with a
reflectivity close to zero (R = 0) and an absorptivity of just about
2.3% (A = 0.023) (Nair et al. 2008). As a consequence, its trans-
missivity T = 0.977, because A + R + T = 1. The absorptive
and reflective properties of graphene can be greatly enhanced by
doping graphene monolayers with alkali metals (Jung et al. 2011)
or by sandwiching them between substrates (Yan et al. 2012),
but this comes at the price of greatly increasing σ. The limited
structural integrity of a graphene monolayer requires additional
material thereby further increasingσ and complicating the experi-
mental realization. All of this ultimately ruins the beautiful theory
of a pure graphene sail.

In this work we present a new concept that avoids many
of the above-mentioned obstacles that could serve as a low-
cost precursor to an interstellar mission. Our concept involves
a hollow sphere, approximately one meter in diameter, made of
aerographite (our “solar sail”), which is first brought to space
(LEO, translunar orbit, or interplanetary space) by a conven-
tional rocket and then released to the solar photon pressure for
acceleration to interstellar speed.

2. Interstellar escape from interplanetary space

2.1. Critical mass per cross section

We start by deriving the condition for a solar sail to become
unbound from the gravitational attraction of the Sun, which is
met if the total force (Ftot) on the sail is positive for arbitrary
distances to the Sun. For now we assume that the sail is at a
radial distance r from the Sun and sufficiently far from any plan-
etary gravitational field, that is, in interplanetary space. Neglect-
ing possible effects from the solar wind as well as any drag force
from the interplanetary medium, we consider that the total force
is composed of the repulsive force due to the solar radiation
(Frad; Burns et al. 1979) and the attractive gravitational force
between the sail and the Sun (Fgrav),

Frad =
1
c

L�
4πr2 S κrad, (1)

Fgrav = −
GM�

r2 m, (2)

where c is the speed of light, G the gravitational constant, L� the
solar luminosity, M� the solar mass, S the cross sectional area
of the sail presented to the solar radiation, m the mass of the sail,
and κrad = A + 2R the radiation pressure coupling efficiency of
the sail, which depends on the absorptive–reflective properties
of the sail material. Usually, κrad = 1 but for a fully transparent

material κrad = 0, whereas for a fully reflective material and per-
pendicular reflection κrad = 2. Moreover, all fully opaque objects
have κrad ≥ 1.

Equation (1) assumes that all wavelengths of the solar spec-
tral energy distribution are absorbed or reflected to the same
extent. This neglect of the wavelength-dependence of the sail
material is lifted in Sect. 2.3. For now, the total force appears as

Ftot = Frad + Fgrav =
1
r2

( L�
4πc

S κrad −GM�m
)
. (3)

The mass per cross section area of the sail is σ = m/S , which
can be substituted in the right-hand side of Eq. (3) as

Ftot =
1
r2

( L�
4πc

S κrad −GM� σS
)
· (4)

The condition for the sail to become unbound from the solar
system is Ftot > 0, which leads to a condition that is independent
of r,

L�
4πc

κrad −GM�σ > 0, (5)

or equivalently

σ

κrad
<

L�
4πcGM�

· (6)

Obviously, the right-hand side of Eq. (6) has units of an areal
mass density (kg m−2), which we define as σ�. This critical
value is the surface density required for a solar system3 object
to become interstellar,

σ� =
L�

4πcGM�
= 7.6946 × 10−4 kg m−2. (7)

This value is about three orders of magnitude higher (i.e., more
tolerant than the material constant of graphene), suggesting that
it should be possible to construct Sun-driven interstellar sails
with more conventional materials and possibly with weight mar-
gins for onboard instrumentation. This insight, given by the
value of Eq. (7), is the key to the mission concept proposed in
this paper.

2.2. Sail designs

2.2.1. Filled cuboid

As a first approach towards estimating plausible physical dimen-
sions of a sail and to identify feasible sail materials and designs,
we start by considering a cuboid shape with mass per volume
density ρ. Its mass is given as m = ρlS . We assume that its front
side offers an effective cross section S towards the Sun and that
it has a length (or thickness) l between its front and back sides.
Then

σcub =
m
S

=
ρlS
S

= ρl, (8)

which only depends on the thickness of any given material. By
substituting ρl for σ� in the left-hand side of Eq. (6), we derive
the critical value for the thickness of a cuboid box of material to
become interstellar from interplanetary space as

lcub <
κrad

ρ
σ� ≡ l′cub. (9)

3 Other star systems have their own value of critical surface density for
objects to become interstellar (see Appendix A).
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2.2.2. Filled sphere

Moving on to a solid sphere of radius l and cross section area πl2
as an alternative geometry of a sail, we have

σsph =
m
S

=
ρ4/3πl3

πl2
=

4
3
ρl. (10)

Substitution of 4ρl/3 for σ in the left-hand side of Eq. (6) yields

lsph <
3
4
κrad

ρ
σ� ≡ l′sph (11)

for the critical thickness of a spherical sail in interplanetary
space to become interstellar.

2.2.3. Hollow sphere (or shell)

The mass per cross section ratio of a spherical sail design can be
decreased substantially if the sphere is hollow. If we consider a
shell with an outer radius l and a thickness ε, we find

σshl =
m
S

=
ρ

πl2

(
4π
3

l3 −
4π
3

(l − ε)3
)

=
4
3
ρ
(
3l2ε − 3lε2 + ε3

)
= 4ρε + (O)

(
ε2

l

)
≈ 4ρε, (12)

where the last line is accurate to <1% if the thickness of the shell
is less than a tenth of the shell radius, ε < l/10. Substitution of
4ρε for σ in the left-hand side of Eq. (6) yields

εshl <
1
4
κrad

ρ
σ� ≡ ε

′
shl (13)

for the critical thickness of a shell-like sail in interplanetary
space to become interstellar.

2.2.4. Material and design of solar interstellar sails

A comparison of Eqs. (9), (11), and (13) reveals that generally
the maximum dimension for a structure to become interstellar by
the solar photon pressure is on the order of l′max ≈ κradσ�/ρ. If we
approximate κrad = 1 for now and assume that the material has
a density similar to that of solid carbon (ρ = 2260 kg m−3), then
we can derive an estimate of l′max = 340 nm. For comparison, if
we consider an ultra lightweight material such as aerographite,
which has been demonstrated to exhibit an extremely low density
near 0.18 kg m−3 (Mecklenburg et al. 2012), we obtain l′max =
4.27 mm.

In Table 1 we summarize our estimates of l′max for a range
of selected materials. In particular, for aluminum we assumed
canonical values of ρ = 2700 kg m−3 and κrad = 1.8, and for
Mylar film we used ρ = 1390 kg m−3 and κrad = 1.9. Both alu-
minum foil and Mylar film are very reflective. In addition to
aerographite we also studied carbon nanofoam as an alterna-
tive ultra lightweight material with ρ = 2 kg m−3 and κrad ∼ 1
(Rode et al. 2000). Among all the materials listed in Table 1,
aerographite particularly stands out.

With respect to the shape of a solar sail, aerographite as a sail
material implies a maximum edge length of 4.27 mm for a cube
to become interstellar (Eq. (9)). For a filled aerographite sphere,
Eq. (11) means a radius of 3.21 mm for the object to become
interstellar. These values demonstrate that the dimensions of

Table 1. Example materials for light sails.

Material ρ [kg m3] κrad l′max

Aerographite 0.18 ∼1 4.27 × 10−3 m
Carbon nanofoam 2 ∼1 3.85 × 10−4 m
Mylar film 1390 ∼1.9 1.05 × 10−6 m
Aluminum foil 2700 ∼1.8 5.13 × 10−7 m
Sand (SiO2) 2600 ∼1 2.96 × 10−7 m

Notes. Columns give typical mass volume densities (ρ), radiation cou-
pling constants (κrad), and resulting characteristic length (or thickness)
as σ�κrad/ρ. Detailed properties of aerographite were described by
Mecklenburg et al. (2012), those of carbon nanofoam by Rode et al.
(2000).

such a vehicle would be limited to scales that are too small to
be useful. But for a hollow sphere the critical length is the thick-
ness ε, and not the radius of the shell. To leading order, Eq. (13)
is independent of the shell radius, which means that a hollow
sphere can virtually have an arbitrarily large radius as long as the
thickness of the shell is εshl . 1/4 × 4.27 mm = 1.07 mm for an
aerographite-based sail. In the following we use ε′shl,aer = 1 mm
as the critical thickness of a hollow aerographite sphere in inter-
planetary space to become gravitationally unbound from the
solar system due to the solar photon pressure.

2.3. Geometrical and absorptive–reflective coupling

Equations (9) and (11) reveal a fundamental relationship
between the critical length scale of a sail with arbitrary geom-
etry (larb), its geometric–radiative coupling, and the density of
its material as

larb < κgeo
κrad

ρ
σ�, (14)

where κgeo is a geometric coupling constant for the incoming
radiation. In particular, for a cuboid we find κgeo,cub = 1, for a
sphere κgeo,sph = 3/4, and for a shell κgeo,sph = 1/4.

In general, the reflective–absorptive properties of any mate-
rial are functions of the wavelength (λ). As a consequence, κrad is
obtained by integrating the reflection and absorption coefficients
of the material over the relevant bandwidth of the incoming radi-
ation. Most of the photonic energy of the Sun is emitted within
200 nm . λ . 1 µm.

2.4. Numerical integration of the force equation

Equipped with the necessary expressions for a given sail shape
and composition, we can now compute 1D trajectories of a sail
through the solar system. We divide Ftot(r) from Eq. (3) by the
sail mass, which provides us with the sail radial acceleration, a =
Ftot(r)t/m at time t. Then we integrate the equations of motion
numerically for one year of simulated time using a constant time
step (∆t) of one minute:

r(t + ∆t) = r(t) + ∆t
dr
dt

= r(t) + ∆t v(t) (15)

v(t + ∆t) = v(t) + ∆t
dv
dt

= v(t) + ∆t
Ftot(r)t

m
· (16)

For all trajectories we assumed zero initial velocity, v(t = 0) = 0.
In Fig. 1 we present the tracks resulting from these numer-

ical integrations. Black lines refer to a sail launch at 0.04 AU
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Fig. 1. Travel characteristics of a solar radiation driven aerographite (ρ = 0.18 kg m−3) hollow sphere with a shell thickness ε. Tracks were
computed through numerical integration of the total in force Eq. (3) divided by the sail mass, which equals the sail acceleration. Orange lines refer
to launch at 0.04 AU from the Sun. Black lines refer to launch from interplanetary space (Earth’s gravity being negligible) at 1 AU. Panel a: radial
distance of the sail from the Sun as a function of time. The orbits of the solar system outer planets and of Pluto are indicated by their initials. Panel
b: radial velocity of the sail with respect to the Sun as a function of time.

from the Sun, which is the closest approach of the Parker Solar
Probe (formerly the Solar Probe Plus Mission; Fox et al. 2016).
Red lines refer to a launch at 1 AU from the Sun, but well out-
side the Earth’s gravitational potential (Eq. (3) ignores the effect
of the Earth). For the sail material and shape we assume an aero-
graphite hollow sphere, for which there is σ = σshl = 4ρε
(Eq. (12)) and ρ = 0.18 kg m−3. Solid lines use a shell thick-
ness of ε = 0.5 ε′shl,aer = 500 µm and dash-dotted lines use
ε = 0.001 ε′shl,Cnf = 1 µm. The radiative coupling is set to
κrad = 1.

In Fig. 1a we plot r(t). A hollow aerographite sail with ε =
1 µm deployed at 0.04 AU from the Sun reaches the orbit of Mars
in about 0.4 d or roughly 10 h and the orbit of Pluto within 9.9 d.
The same sail with ε = 1 µm but launched from 1 AU takes 2 d
to the orbit of Mars and 52 d to the orbit of Pluto. A relatively
thick aerographite hollow sphere with ε = 500 µm takes 12 d to
the orbit of Mars and 304 d to the orbit of Pluto if launched at
0.04 AU from the Sun. For comparison, if launched from 1 AU
it would take 60 d and 4.2 yr to the orbits of Mars and Pluto,
respectively.

Figure 1b illustrates v(t) for the same sail properties as used
in panel a. In particular, this plot shows that thinner spheres (see
dash-dotted lines), or more generally sails with a lower σ/κrad
value, achieve their terminal speeds relatively quickly. The effect
increases the closer the sail starts to the Sun. The reason for
this is their fast escape to large distances where the solar flux
is extremely weak. The hollow sphere with 1 µm shell simulated
to launch at 0.04 AU reaches a speed of 1% c within 0.01 d or
14.4 min and a terminal speed of 2.3% c within about 20 d. The
maximum acceleration occurs at launch and is about 400 g. To
the contrary, thicker spheres (solid lines) continue to be accel-
erated for much longer in particular if they start at greater solar
distances. The ε = 500 µm hollow sphere approaches its terminal
speed near 42 km s−1 after about a year. Its maximum accelera-
tion is 6.9 × 10−4 g.

2.5. Terminal speed

The terminal velocity (v∞) of the sail is a key feature to inter-
stellar travel. Although it can be calculated from the numerical
simulations outlined in the previous subsection, there is a more

elegant way. We use the conservation of energy to compute the
terminal speed (v∞) of a sail driven by the solar radiation, assum-
ing that the sail has to overcome the solar gravitational potential.
The kinetic energy of the sail at a distance r from the Sun is
Ekin = mv(r)2/2.

The resulting force is central (see Eq. (3)); it only depends
on the radial distance to the Sun and it is conservative, which
allows us to assume conservation of the total energy E(r). At a
finite distance r from the Sun, we have

V(r) =

r∫
∞

dr F(r) =

r∫
∞

dr
L�

4πcr2 S κrad −
GM�m

r2

=
1
r

(
L�
4πc

S κrad −GM�m
)

+ C. (17)

The integral over the force requires an integration constant C,
chosen such that the energy at infinity of a particle with zero
velocity becomes 0. As a consequence, the total energy at r = ∞
for a particle with v∞ ≡ v(r = ∞) collapses to the kinetic term
E∞ = mv2

∞/2. With E(r) = Ekin(r) + V(r) energy conservation
E(r) = E∞ is equivalent to Ekin(r) + V(r) = E∞, which translates
into

1
2

mv2
∞ = m

(
1
2

v2(r) +
1
r

( L�
4πc

κrad

σ
−GM�

))
, (18)

which is equivalent to

v∞ =

√
v2(r) +

1
r

(
L�
2πc

κrad

σ
− 2GM�

)
. (19)

As an aside, for initial zero velocities v(r) = 0 and neglecting
the solar radiation, Eq. (19) can be used to derive the solar sys-
tem escape velocity from the surface of the Sun (617.5 km s−1)
for r = R� (the solar radius) or from the orbit of the Earth
(42.1 km s−1) for r = 1 AU.

In Fig. 2a, we show v∞(r) for an aerographite hollow sphere
with σ = σshl = 4ρε (Eq. (12)), ρ = 0.18 kg m−3, and shell
thicknesses of 0.5 ε′shl,aer = 500 µm (solid line), 0.1 ε′shl,aer =

100 µm (dashed line), 0.01 ε′shl,aer = 10 µm (dotted line), and
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Fig. 2. Travel characteristics of an aerographite solar radiation-driven hollow sphere. Tracks for four different choices of shell thickness ε are
shown. Panel a: terminal speed at infinite distance from the Sun as a function of the launch distance from the Sun. Results were computed with
Eq. (19). Panel b: travel time to the nearest star.

Fig. 3. Travel characteristics of a solar sail. Results are shown as per Eq. (19) and as a function of the launch distance from the Sun (abscissa) and
mass per cross section ratio over the radiative coupling constant (ordinate). Horizontal dashed lines refer to an aerographite hollow sphere with
shell thickness values corresponding to those chosen in Fig. 2. Panel a: terminal speed at infinite distance from the Sun. White contours show v∞
in multiples of the speed of light (see white labels). Panel b: travel time to the nearest star, Proxima Centauri. White contours refer to constant
travel times (labeled in white).

0.001 ε′shl,aer = 1 µm (dash-dotted line). For the radiative cou-
pling constant we chose κrad = 1. At r = 1 AU the values range
between about 42 km s−1 for ε = 500 µm and approximately
1331 km s−1 for ε = 1 µm. For a launch distance of 0.04 AU
(closest approach planned for the Parker Solar Probe) the termi-
nal speed increases to about 211 km s−1 (ε = 500 µm) or about
6657 km s−1 (ε = 1 µm), respectively. In Fig. 2b, we illustrate the
resulting travel times to Proxima b, which range between 956 yr
(ε = 1 µm) and 30 204 yr (ε = 500 µm) assuming launch from
r = 1 AU. Launch from as close as 0.04 AU to the Sun would
lead to travel times as short (cosmologically speaking) as 191 yr
(ε = 1 µm) to 6041 yr (ε = 500 µm), respectively.

Figure 3 shows a different perspective on these travel charac-
teristics, now as a contour plot over the launch distance from the
Sun (abscissa) and σ/κrad. Panel a is a color-coded illustration
of v∞(r), with a color-to-speed conversion shown in the color
bar. The ordinate refers to the material properties of the sail.
Four horizontal dashed lines are chosen as examples to connect
this visualization to Fig. 2, again featuring a hollow sphere sail
design with four different shell thicknesses as discussed above.
Panel b shows the resulting travel times to Proxima Centauri.

The range of terminal speeds derived for our choices of a
plausible sail material, shape, and composition are in agreement
with the projection of the historical speed development of man-
made vehicles into the near future. Historical speed records can
be nicely described by a speed doubling law, or in a relativistic
framework by a kinetic energy growth law. For the year 2040
the projected maximum speed achieved by humanity is 0.01% c
(Heller 2017), which interestingly is very close to the terminal
speed that can be obtained by a 500 µm thick aerographite sphere
after launch at 1 AU from the Sun, as shown in Fig. 3.

3. Interstellar escape from low-Earth orbit

3.1. Unbound condition

So far we have considered the force balance to derive con-
ditions for an escape from interplanetary space to interstellar
space. Now we investigate the force balance under the addi-
tional impression of the Earth’s gravitational field. In this one-
dimensional problem, d = |r − 1 AU| > R⊕ is the distance of the
sail from the center of the Earth. The total force acting on the
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Fig. 4. Total force resulting from the attractive gravitational field of the Sun and the Earth, and the repulsive force from the solar radiation. The sail
is assumed to have a mass of m = 1 g, a radiative coupling constant of κrad = 1, and a mass per cross section area ratio of σ = 3.6 × 10−4 kg m−2,
about a factor of two below the critical value of σ� = 7.6946 × 10−4 kg m−2 to enable interstellar escape from interplanetary space. For a 1 g
aerographite hollow sphere (σ = 4ρε = m/S ) with a shell thickness of ε = 500 µm this corresponds to a cross section area of 2.78 m2 and a radius
of 94 cm. Panel a: throughout this 1D cut through the solar system, Ftot > 0 because σ/κrad < σ�, except in the vicinity of the Earth at 1 AU. Units
along the ordinate are µN. Panel b: within a fraction of an AU around the Earth, the Earth’s gravitational well is too deep for this sail to escape
and Ftot < 0. Units along the ordinate are mN.

sail then is

Ftot(r) =
L�

4πcr2 S κrad −
GM�m

r2 −
GM⊕m

d2

= m
(

L�
4πcr2

κrad

σ
−G

( M�
r2 +

M⊕
d2

))
· (20)

For our illustration of Eq. (20) in Fig. 4, we make use of the rela-
tion r = 1 AU+d so that the total force becomes a function of the
Earth–sail distance, Ftot(d). Figure 4 assumes a sail with κrad = 1
and σ = 3.6× 10−4 kg m−2. For a 500 µm thick aerographite hol-
low sphere sail with a mass of m = 1 g this implies S = 2.78 m2

through Eq. (12).
We use Eq. (20) to derive a critical mass per cross section

area for a sail to become unbound from the combined Sun–
Earth gravitational potential using the solar photon flux alone.
We require that Ftot(d) > 0, which is equivalent to

σ

κrad
<

L�

4πcG
(
M� + r2

d2 M⊕
) · (21)

Substitution of r = 1 AU + d in our one-dimensional model
defines

σ⊕(d) ≡
L�

4πcG
(
M� +

(1 AU + d)2

d2 M⊕

) , (22)

which shows that Eqs. (21) and (22) (using κrad = 1) converge to
Eq. (6) (the critical surface density for solar system escape from
interplanetary space) in the limit of M� � M⊕(1 AU + d)2/d2 or,
equivalently, d � 1 AU/(

√
M⊕/M� − 1) ∼ 41 R⊕.

Equation (22) reveals that the critical mass per cross section
ratio depends on the distance between the sail and the Earth.
In other words, the farther away the sail can be launched from
Earth, the more massive it can be in relation to its cross section
with respect to the solar photon pressure and still achieve escape
into interstellar space. This dependency of σ⊕ = σ⊕(d) is funda-
mentally different from σ�, which does not depend on r and it is
rooted in the fact that the radiation emanates from the Sun.
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Fig. 5. Critical mass per cross section of a photon sail to become grav-
itationally unbound from the solar system after launch in the vicinity
of the Earth. The solid line shows values computed with Eq. (22). The
dots show results from our 2D numerical integrations. Vertical dashed
lines indicate the orbit of the International Space Station (400 km above
ground; 1.06 R⊕ from the Earth’s center), the geostationary orbit (alti-
tude of 35 786 km; 6.6 R⊕ from the Earth’s center), and the orbit of the
Moon (378 021 km above the ground; 60 R⊕ from the Earth’s center).

This behavior is seen in Fig. 5, where we show σ⊕(d) (solid
line) with d shown in units of Earth radii along the abscissa.
The function σ⊕(d) is only defined for d > R⊕, that is, above
the Earth’s surface. At that point, we find σ⊕(R⊕) = 4.65 ×
10−7 kg m−2. If the Earth had no atmosphere and any other effects
could be neglected as well, then a particle with a mass per cross
section ratio smaller than σ⊕(R⊕) would be blown into interstel-
lar space by sunlight. At an altitude of 400 km, roughly corre-
sponding to the orbit of the International Space Station, we find
σ⊕(RISS) = 5.26 × 10−7 kg m−2.

The solid line in Fig. 5 shows how σ⊕(d) increases by more
than three orders of magnitude from d = R⊕ to the orbit of the
Moon at about 60 R⊕, where it reaches σ⊕(aMoon) = 5.28 ×
10−4 kg m−2. Ultimately, σ⊕(d) converges to σ� = 7.6946 ×
10−4 kg m−2 for large distances from Earth.
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3.2. Numerical integration of the force equation

The force balance equations in Sect. 3 and the resulting condi-
tion on σ⊕(d) for interstellar escape in Eq. (22) ignore not only
the heliocentric orbital motion, but also the geocentric orbital
speed of the sail at the time of launch. If the sail were released
at this particular point on its geocentric orbit when it is mov-
ing away from the Sun, then the additional speed at this moment
of launch would allow for some margin in the ratio σ/κrad and
would increase the critical maximum values shown in Fig. 5 pos-
sibly by a significant amount.

Our previous calculations in one dimension also ignore the
Earth’s shadow. If released at the point of maximum tangential
deflection from Earth and at the point when moving away from
the Sun, we estimate that the sail would have about 5.5% of its
∼90 min orbit (about 5 min) before it entered the Earth’s shadow
and no longer be subject to the repulsive solar radiation force.
The sail would only be propelled towards outer space again upon
egress. At this point, however, its orbital elements would be very
different from those at launch.

To address the effects of the geocentric orbital motion at
launch as well as the effect of the Earth’s shadow in detail,
we resort to numerical computations in two spatial dimensions,
r = (x, y). We derive the acceleration of the sail with initial con-
ditions corresponding to a Keplerian orbit from the total force in
two dimensions,

dr
dt

= u, (23)

du
dt

=
1
m

(
Fgrav,⊕ + Fgrav,� + Frad,⊕

)
, (24)

where r is the geocentric vector position of the particle, u is its
geocentric velocity, Fgrav,⊕ + Fgrav,� is the sum of the gravita-
tional force of the Earth and the Sun, and Frad,⊕ is the radi-
ation pressure force from solar radiation. The purpose of this
integration is the qualitative assessment of the typical effect of
the dominant forces in the Earth’s immediate environment; thus,
second-order effects such as the reflected radiation pressure from
Earth and thermal emission, the non-inertial forces due to Earth’s
orbit around the Sun, and the gravitational effect of the moon and
other solar system bodies are not included. The shadow cast by
the Earth is included in the simulation by imposing that Frad,⊕ be
zero when the Earth is between the particle and the Sun. In addi-
tion and for simplicity, all simulations were performed assum-
ing orbits on the ecliptic plane of the solar system. Perturbations
from the Moon’s gravity and the Lorentz force exerted by the
Earth’s magnetic field are ignored, and the motion of the Earth
around the Sun is also ignored.

We integrate the equations of motion numerically for one
year of simulated time using a constant time step (∆t) of 1/1000
of the initial orbital period. The integration is performed using a
fourth-order Runge-Kutta integrator (Runge 1895; Kutta 1901).
Integration is stopped when one of the following conditions is
reached: the particle collides with Earth (r < R⊕), the particle
reaches the Earth–Moon distance (r > 57 R⊕), or the particle
performs 1000 orbits around the planet.

In Fig. 6 we show examples for the resulting trajectories.
The left panel features a family of trajectories for launch from
the ISS in LEO. Black lines refer to trajectories that lead to
bound orbits (and ultimate collision with Earth) because the
mass per cross section area for these sails is too high. Green
trajectories signify interstellar escape, which we find occurs for
σ ≤ 3.5 × 10−6 kg m−2. That said, σ ≤ 1.5 × 10−6 kg m−2 leads
to immediate collision of the sail with the Earth (red lines), and

so there is a sensible window of σ values suitable for successful
escape. We have also sampled the ISS orbit for different launch
positions and found that the critical mass per cross section area
only weakly depends on the start position. The critical value of
3.5× 10−6 kg m−2 is about a factor of 6.7 higher than our analyt-
ical approximation in Sect. 3.1.

The right panel of Fig. 6 illustrates a family of trajectories
upon launch from geostationary orbit. Interstellar escape is pos-
sible for σ ≤ 1.7 × 10−4 kg m−2, which is a factor of 8.5 higher
than our analytical prediction.

Interestingly, by further increasing σ up to values near σ�,
we discover a resonant behavior. A family of four trajectories
with σ ∼ σ� is shown in cyan lines in the right panel of
Fig. 6. The sail is forced into a nearly elliptical orbit with apogee
beyond 60 R⊕ irrespective of the launch position along the geo-
stationary orbit. This resonance occurs for all launch altitudes,
but the window of σ values susceptible to this phenomenon
decreases with decreasing launch altitude. For launch altitudes
.4 R⊕ the step size of σ used for the trajectories in Fig. 6 is too
small to find these resonances, but we have verified manually
that these resonances exist. The maximum σ value for interstel-
lar escape as a function of distance from Earth resulting from our
numerical integrations is shown with dots in Fig. 5.

4. Follow-up monitoring of the sail

For the mission to be declared a success and in order to max-
imize its scientific return, the sail must be tracked as long and
far as possible on its journey. Since aerographite is black, it is
impossible to track its reflected sunlight.

Instead, a black aerographite sphere could be observed in the
infrared (IR). If independent distance measurements were avail-
able, the apparent magnitude could allow studies of interplane-
tary extinction and offer a new method for the exploration of the
interplanetary medium.

Another possibility is through onboard communication
equipment. A laser sending the proper time of the sail to Earth
would allow distance and speed measurements through the rela-
tivistic Doppler effect. Measurements of gravitational perturba-
tions (Christian & Loeb 2017; Witten 2020) under consideration
of dust and gas drag as well as magnetic forces exerted from the
interstellar medium (Hoang & Loeb 2020) could also be used to
search for the suspected Planet Nine in the outskirts of the solar
system. Its expected orbital semimajor axis is between about
380 AU and 980 AU (Batygin & Brown 2016; Brown & Batygin
2016).

4.1. Infrared observations from space

Ground-based IR observations are complicated by the strong
absorption of atmospheric water vapor. Instead, spaced-based
observations, for example with the James Webb Space Tele-
scope (JWST; operations planned from 2021 to 2031), could
allow tracking of the probe. How far out in the solar system
could an aerographite sphere be observed? To answer this ques-
tion we compute its temperature in thermal equilibrium with the
absorbed sunlight,

T (r) =

(
L�(1 − α)
4πr2 fσSB

)1/4

, (25)

where σSB is the Stefan-Boltzmann constant, f = 2 is the energy
flux redistribution factor for a non-rotating aerographite sphere,
and α = 0 is the Bond albedo of aerographite. Next we calculate
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the radiative intensity (the wavelength-integrated spectral radi-
ance of a black body) of a swarm of n sails,

I(r) = n
σSBT (r)4S
π(r − AU)2 , (26)

where the nominator (equal to πd2) signifies that we consider a
one-dimensional radial sail trajectory from the Sun to the Earth
and beyond. The bolometric magnitude of the swarm is then
given as

ms(r) = −2.5 log10

(
I(r)
F0

)
, (27)

using F0 = 2.518 × 10−8 W m−2 as reference flux of a zero bolo-
metric magnitude star. Finally, the peak emission wavelength is
given through Wien’s displacement law: λpeak(r) = b/T (r) with
b = 2.897771955 × 10−3 K m.

Figure 7a shows ms(r) (left ordinate) and I(r) (right ordinate)
for two choices of a sail radius (1 m and 10 m) and two choices
of a sail swarm size (one and ten), all tracks assuming a hollow
sphere (Sect. 2.2.3). Distances r < 1 AU might be difficult to
observe because the sail in this one-dimensional model would
be moving towards Earth from the direction of the Sun.

Since Eq. (26) is proportional to S ∝ l2, l has a stronger effect
on the apparent magnitude than the swarm size, which appears
as n in Eq. (26). This behavior can be seen in Fig. 7a, where
an increase in the sail size from l = 1 m to l = 10 m decreases
the apparent magnitude at any given distance twice as much as
an increase in the swarm size from 1 to 10 objects. That said,
an aerographite hollow sphere of 10 m radius might be challeng-
ing to construct let alone to be lifted into space and released
from a rocket, satellite, or spaceship. A swarm of many small

objects might be more practical to construct, and redundancy
would have the benefit of allowing for the loss of some of the
objects without total mission failure.

The sensitivity threshold of MIRI of about 10−20 W m−2

(Glasse et al. 2015; Pontoppidan et al. 2016)4 is shown in the
upper left corner of Fig. 7a. Details of a particular observation
would depend on the actual trajectory of the sail and in particular
on its tangential and radial velocity with respect to JWST. These
aspects determine the longest plausible exposure time before the
sail would start to smear over several pixels.

As the sail recedes from the Sun, its effective temperature
drops and so the wavelength of peak emission increases. This
effect is shown in Fig. 7b with λpeak(r) plotted on the left ordi-
nate and T (r) shown on the right ordinate. Also shown are the
wavelength coverage of the NIRCam and MIRI instruments of
JWST that can be used for standard imaging observations and
the JHKL′ filters as implemented at the 2.2 m telescope of ESO
at La Silla (Assendorp et al. 1990).

JWST observations of an aerographite sail of 1 m radius
would be possible out to about 2 AU from the Sun, almost
midway between the orbits of Mars (1.52 AU) and of the most
massive asteroid Ceres (2.77 AU). At that distance it would
have a temperature of 234 K and a peak emission wavelength of
12.4 µm, central to the wavelength coverage of MIRI (5.6 µm ≤
λ ≤ 25.5 µm). Alternatively, a sail 10 m in radius would be
observable out to 3 AU from the Sun, where it would have cooled
to 191 K with a peak emission at 15.1 µm. At any given distance,
a swarm of n sails in close formation would decrease the appar-
ent magnitude by −2.5 log10(n).

4 We used the JWST exposure time calculator at
https://jwst-docs.stsci.edu
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Fig. 7. Panel a: apparent bolometric magnitude (left ordinate) and
observed energy flux (right ordinate) of a swarm of spherical solar sails
with different radii as a function of distance from the Sun. The observer
is supposed to be sitting 1 AU from the Sun. The 10σ sensitivity limit
of a 10 ks (2.78 h) exposure with the MIRI instrument of JWST is indi-
cated at 10−20 W m−2. Panel b: peak emission wavelength (left ordinate)
and sail temperature (right ordinate) as a function of distance from the
Sun. The wavelength coverage of the NIRCam and MIRI instruments
of JWST are shown along the left ordinate together with the JHKL′
standard filters.

4.2. Mass margins for onboard equipment

We now consider the option that the sail carries its own onboard
electronic devices such as a laser to communicate with Earth
(Lubin 2016; Parkin 2020). More fundamental than the question
of the content and the design of the signal is the question about
the mass margins (mmgn) set by the force equation.

Miniaturization of electronic components has made great
progress in the last few decades, but we focus on mass mar-
gins above 1 g because we do not expect sub-gram margins
to be relevant for the foreseeable future. Commercial lithium-
ion batteries weighing a few grams and with power densities
>1 kW kg−1 (Duduta et al. 2018) as well as ultra high-energy
density supercapacitors with power densities of ∼32 kW kg−1

(Rani et al. 2019) are already available, allowing energy emis-
sion of a gram-sized power source of 32 W in theory.

First, we express the total mass of a hollow sphere as m =
mshl + mmgn, where mshl is the pure mass of the shell. Then we
substitute the expression for m in Eq. (12) and find

mmgn = S (σ − 4ρε), (28)

where σ > 4ρε is required.
In Fig. 8 we plot the resulting mass margin for an aero-

graphite hollow sphere with two different choices of a shell
thickness: (a) ε = 1 µm and (b) ε = 100 µm. The dashed line at
σ� = 7.6946 × 10−4 kg m−2 sets the limit for interstellar escape
(see Eq. (7)). In panel a for ε = 1 µm we find that a 1 g mass mar-

gin would permit interstellar escape (with terminal speed close
to zero) of a sphere with a radius of at least 0.65 m. The weight of
an aerographite sphere of this radius is 1 mg, which means that
the mass of the payload is a factor of 1000 greater than the mass
of the spacecraft, mmgn/m ∼ 1000. For comparison, interstellar
missions on chemical rockets such as Voyager 1 on a Titan IIIE
rocket and New Horizons on an Atlas V rocket typically achieve
mmgn/m ∼ 1/1000.

A sphere with a 2 m radius could carry 10 g in addition to
its mere aerographite structure of 10 mg weight and still achieve
interstellar escape with zero terminal speed. As an alternative, a
1 m (5 m) radius hollow sphere would weigh 2.3 mg (57 mg) and
have a margin of 2.4 g (60 g) to go interstellar. If it were equipped
with a 1 g (10 g) load it would have σ = 3.2 × 10−4 kg m−2

(σ = 1.3 × 10−4 kg m−2). Our numerical simulations show that
this results in a terminal speed of about 0.017% c = 51 km s−1

(0.031% c = 93 km s−1), or about 3 times (5.5 times) the ter-
minal speed of Voyager 1 if launched in interplanetary space at
1 AU from the Sun (see Fig. 3). At that speed, it would reach the
orbit of Pluto after 3.9 (2.1 yr) of interplanetary travel.

In Fig. 8b for a sphere with ε = 100 µm we find again
that mass margins above 1 g for interstellar escape are possible
for sphere radii >0.65 m. Different from panel a, the pure aero-
graphite mass would contribute about 0.1 g for this sail size. For
any sail radius the aerographite mass is higher by a factor of 100
compared to panel a, which is determined by the proportional-
ity of σshl ∝ ε in Eq. (12). But since the mass of the sail is
completely dominated by the payload (and not the aerographite
structure), the travel characteristics for the ε = 100 µm sail are
similar to the ε = 1 µm sail if σ/κrad ∼ σ�. A sail with a 1 m
(5 m) radius has a mass of 0.23 g (5.7 g) and a mass margin of
2.2 g (55 g) to go interstellar. A payload of 1 g (10 g) would result
inσ = 3.9×10−4 kg m−2 (σ = 2.0×10−4 kg m−2), v∞ = 41 km s−1

(v∞ = 70 km s−1), and travel time to the orbit of Pluto within
4.7 yr (2.8 yr).

5. Discussion

5.1. Flight vector and course correction

The benefit of a spherical design is in its extremely low mass
per cross section area in the limit of a thin shell (Sect. 2.2.3).
Moreover, a perfect sphere would have perfect photodynami-
cal stability when riding on light (Manchester & Loeb 2017).
That said, even a small localized imperfection of its reflective–
absorptive properties could trigger uncontrolled spin. This might
not affect its trajectory or observability from Earth, but it could
frustrate communication with Earth for which precise aiming of
an onboard communicator (e.g., a laser) would be necessary.

Course corrections of light sails can be made by adjusting
its pitch and yaw angles. In our case of a maximally simple
mission concept, onboard thrusters are not available for con-
trolled maneuvering. Instead, an intended slight deformation of
the sail into a conical shape would enable passive stabiliza-
tion (Kirpichnikov et al. 1995; van de Kolk & Flandro 2001).
An axisymmetric, conical solar sail has a stable attitude; that is,
it moves on a straight path when illuminated by a distant point
source. For this stabilizing shape to be effective, the concave side
would need to point towards the Sun. The decrease in surface
area to mass compared to a flat sail depends on the cone angle.
Stable orientation can be achieved for moderately conical shapes
and only reduce the cross section surface area per given mass
by a few percent compared to a hollow sphere (Hu et al. 2014).
This holds for a wide range of sail parameters (reflectivity,
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Fig. 8. Mass margins for a hollow sphere with a shell made of aerographite (ρ = 0.18 kg m−3). Colors indicate log10(mmgn) in grams (see color scale)
whenever the margin is ≥1 g. The critical value for interstellar escape from interplanetary space in the solar system (σ� = 7.6946 × 10−4 kg m−2

as per Eq. (7)) is indicated with a dashed line. The gray area indicates the region in which there is no margin for additional mass (see Eq. (28)).
The abscissa at the bottom shows the sail radius and the abscissa at the top shows the corresponding aerographite mass of the sail without payload.
Panel a: the shell is assumed to have a thickness of ε = 1 µm. Panel b: the shell is assumed to have a thickness of ε = 100 µm.

center of mass), imperfections, and perturbations. Even a hollow
hemisphere could result in stabilization, which would actually
decreaseσ by a factor of two compared to the hollow sphere con-
cept studied in this paper. Attitude equilibrium can be obtained
by proper arrangements of the center of mass of the sail with
respect to the center of the light pressure (Hu et al. 2014).

5.2. Non-point source effects

Our model assumes that the Sun acts as a point source of
light. This is a viable assumption for launch at 1 AU from
the Sun and beyond. A mission that first approached the
Sun to increase the terminal speed for solar system escape,
however, would encounter significant non-point source effects
(McInnes & Brown 1990a,b) upon which Eq. (1) would need to
be modified to

F(r) =
L?A

3πcR2
?

1 − [
1 −

(R?

r

)2]3/2· (29)

This would affect the terminal speed and travel time to Prox-
ima Cen shown in Fig. 2 as well as the total force acting on the
sail illustrated in Fig. 4a.

5.3. Other physical effects on the sail trajectory

Quickly after submission to the solar radiation, an aerographite
photon sail could become electrically charged by the solar UV
radiation or possibly by the solar wind. If launched from LEO,
this charge could lead to a deflection of the sail due to the
Lorentz forces induced by the Earth’s magnetic field. Moreover,
an ultra light sail, as envisioned in this study, could be substan-
tially affected by the air resistance in the Earth’s upper atmo-
sphere, a phenomenon known as atmospheric drag.

At the Earth’s position around the Sun, the solar wind has
a number density on the order of n = 10 particles per cubic
meter (Kepko & Spence 2003) with a median velocity near vsw =
500 km s−1. The particle flux through a sail is f = S n|v − vsw|.
Assuming that the relative speed between the sail and the solar
wind is comparable to vsw the particle flux is f = 5×106 m−2 s−1

and the number of absorbed particles is N ∼ 1.6× 1014 after one
year. Their cumulative kinetic energy of Ekin,sw = Nmprov2

sw/2 ∼

3 × 10−2 J (mpro being the mass of the proton) is negligible com-
pared to the kinetic energy of a 1 g sail traveling at 100 km s−1,
for which Ekin = mv2/2 ∼ 5×106 J. The kinetic energy absorbed
by the sail is smaller than Ekin,sw because the absolute value of
the relative speed between the sail and the solar wind is smaller
than vsw as long as v < 1000 km s−1. Even for the highest sail
velocities of 10 000 km s−1 considered in this study the absorp-
tion of solar wind particles does not contribute to the velocity
budget of the sail.

The calculations in Sect. 2.2.4 show that the critical length
scale for interstellar escape is comparable to the wavelength of the
solar radiation at peak emission near λ = 500 nm. Mie scattering
is thus important to properly calculate the reflective and absorp-
tive properties, which we have encapsulated in the radiation cou-
pling constant κrad. Proper treatment will affect our results on the
terminal speed and travel time by a factor of a few.

5.4. Cost estimate

5.4.1. Manufacturing costs

Aerographite stands out as a potential material for an interstel-
lar solar sail in many ways. Beyond its ultra lightweight prop-
erties, it can also be fabricated in a large variety of macro-
scopic shapes (on centimeter scale) (Mecklenburg et al. 2012;
Garlof et al. 2017). It is completely optically opaque (thus κrad =
1) and superhydrophobic. It recovers completely after compres-
sion by 95%, exhibits outstanding mechanical robustness, spe-
cific stiffness, and tensile strength as well as high temperature
stability and chemical resistance (Mecklenburg et al. 2012). All
these things combined make it an ideal material to maintain
structural integrity in the presence of strong vibrations expected
during rocket launch into space and to survive the high acceler-
ations expected for the solar sail upon release to the solar wind.

The demonstration of 3D printing of centimeter-sized struc-
tures made of graphene aerogel (Zhang et al. 2016), another
carbon-based ultra lightweight material that shares many
properties with aerographite, suggests that production of meter-
sized structures of similar ultra lightweight material is plausible
within the next decade or so. The typical price tag of modern com-
mercial aerogel insulation tiles is on the order of 100 USD m−2.
For comparison, monolayer graphene is commercially available
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at a cost of approximately 100 EUR cm−2. Weight being a main
factor for the price tag of commercial products, the extremely
low density of aerographite comes with a key advantage for the
scalability of our proposed concept to a swarm of sails. Costs
for raw materials are negligible on a per-sail basis, and without
sensors the costs for development are substantially reduced
compared to more complex mission concepts. It therefore seems
reasonable to project that meter-sized aerographite hollow
spheres with a thickness of µm could be produced in large num-
bers for 1000 USD or less per piece. This price tag is comparable
to the per-sail cost estimate of 100 USD for the Breakthrough
Starshot mission (Loeb 2016).

These estimates come on top of any development costs
towards the final product, which may be on the order of one mil-
lion USD.

5.4.2. Launch costs

Rocket launches have become a business that could be leveraged
for future co-ride options. The first launch of a SpaceX Falcon
Heavy rocket in early 2018 sent a dummy payload of 1300 kg
into an elliptical orbit beyond the orbit of Mars (Bowler 2018;
Rein et al. 2018). The additional cost (and risk) of transporting a
meter-sized solar sail would have been essentially zero. The pub-
licity effect of a live broadcast of an interstellar mission launch
using onboard cameras would potentially be massive.

SpaceX plans to take people to Mars (Crane 2017;
Wooster et al. 2018). Many uncrewed missions will precede such
a journey, offering ample low-cost possibilities for a lightweight
co-payload in the form of a solar sail. The SpaceX Starship
spacecraft and Super Heavy rocket, collectively referred to as
Starship, will be the world’s most powerful launch vehicle ever
developed, with the ability to carry in excess of 100 metric tons
to Earth orbit5. The additional weight of an aerographite sail is
negligible in this context, but the scientific value and public out-
reach would likely be immense.

Alternatively, the most expensive option would be to purchase
a rocket launch at the common market price. A single launch of
a Falcon 9 rocket is available6 for 62 million USD. The upper
stage vehicle is able to inject 4020 kg into a Mars orbit, more than
enough to send a fleet of millions of gram-sized aerographite sails
into interplanetary space, at least from a weight perspective.

6. Conclusions

We identify aerographite as a practical low-cost, and low-weight
material for a meter-sized solar sail to be pushed to interstellar
speed by the solar photon pressure. We show that a hollow aero-
graphite sphere with a shell thickness of up to 1 mm results in
sufficiently low mass per cross section for Sun-driven escape to
interstellar space from interplanetary space. If such a sail could
be lifted out of the Earth’s gravitational well prior to submission
to the solar radiation pressure (e.g. as a piggyback mission to an
interplanetary mission), no onboard or ground-based propellant
would be necessary for the sail to go interstellar. A sail with a
1 m radius could be tracked through its IR remission of absorbed
sunlight with JWST out to a distance of about 2 AU from Earth,
that is, between the orbits of Mars and the most massive asteroid,
Ceres.

Alternatively, a thinner aerographite shell could carry ultra
lightweight scientific equipment. Our analytical approxima-

5 www.spacex.com/vehicles/starship
6 May 2020 prices: www.spacex.com/about/capabilities

tions for launch from interplanetary space show that a hollow
graphene sphere with a shell thickness of 0.1 mm can carry a
payload of several grams to the orbit of Pluto within a few
years. In a benchmark scenario, a 1 m radius hollow aerographite
sphere with a shell thickness of 1 µm (100 µm) would weigh
2.3 mg (230 mg) and have a margin of 2.4 g (2.2 g) to go inter-
stellar. Upon release to the solar radiation in interplanetary space
at 1 AU from the Sun, a payload mass of 1 g would yield a termi-
nal speed of 51 km s−1 (41 km s−1), which is 3 times (2.4 times)
the terminal speed of Voyager 1. The travel time to the orbit of
Pluto would be 3.9 yr (4.7 yr). An increase in the sail radius to
5 m would allow payload masses of 10 g to reach the orbit of
Pluto in almost half the time. Although the weight of the payload
is extremely small in these benchmark scenarios, it is a thousand
times more than the weight of its transport system. For compar-
ison, the transport systems of the Voyager 1 and New Horizons
interstellar missions (Titan IIIE and Atlas V, respectively) were a
thousand times heavier than their payloads.

Our concept is scalable in size and numbers. A swarm of
aerographite spheres could be constructed by connecting them
with carbon nanofibers, the additional weight of which would be
small compared to the mass of the aerographite shell. If mutual
shading or entanglement can be avoided, then their combined
thrust would allow larger payloads for a fixed travel duration or,
vice versa, faster travel of a given payload. A large swarm of
sails could be accessible to deep space tracking with ALMA. At
a distance of 1000 AU the sail temperature would decrease to
10 K and enter ALMA’s sensitivity limit near 900 GHz. Alterna-
tively, a sail with a 1 m radius could, in principle, be tracked by
a reflection of an active radio ping to distances corresponding to
several times the Moon’s orbital distance around the Earth.

Our numerical simulations of test particles with cross section
ratios corresponding to meter-sized, sub-millimeter thick aero-
graphite shells suggest that interstellar speeds can also be
achieved from within the Earth’s gravitational potential. Launch
from the ISS is possible in principle, but would be complicated
by the non-negligible effects of the Earth’s magnetic field and
atmospheric drag. Instead, launch from geostationary orbit, for
example as a piggyback mission to a geostationary satellite mis-
sion, would be much more practical. We find a secular resonance
that allows escape from the Earth’s gravitational field from near
geostationary orbit (or beyond) with mass per cross section ratios
more than one order of magnitude higher than predicted by the
analytical solution.

This mission concept looks like an extremely challenging
option, though principally feasible, from a manufacturing per-
spective. Commercial ultra light (1 g) and ultra high-energy
density (∼32 kW kg−1) lithium-ion batteries or supercapacitors
could, in theory, be implemented in the sail and permit short-
burst energy emission of ∼32 W from an onboard miniature laser
using a gram-sized power source. A swarm of such minimally
equipped aerographite spherical sails could be used to study the
Planet Nine hypothesis by measuring relativistic Doppler effects
of the laser signal emanating from a sail, the frequency of which
would be affected by gravitational perturbations of a massive
object.

We estimate a total price tag of less than 1000 USD per sail,
development costs of 1 million USD for a prototype sail, and
maximum launch costs of 62 million USD. If implemented as a
piggyback mission, launch costs could be reduced dramatically.
The total cost would be less than 100 million USD including
overhead, possibly near 10 million USD in a piggyback mission
scenario. The key distinction from the Breakthrough Starshot
concept with its total cost estimate far beyond 1 billion USD is
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the use of freely available sunlight as a propulsion instead of an
expensive ground-based laser array.

Three key challenges for such a mission remain to be
addressed: (1) manufacturing a meter-sized sub-millimeter thick
sphere of aerographite; (2) producing and installing gram-scale
onboard equipment to enable communication with Earth; and (3)
transporting the ultra thin aerographite sphere into interplanetary
space while preserving its structural integrity.
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Appendix A: Other star systems
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Fig. A.1. Critical mass per cross section (σ∗) for a photon sail to escape
from a main-sequence star into interstellar space. The value of σ� from
Eq. (7) is in black. The values of αCen A, B, and C (=Proxima Cen)
are in red. The dots that are connected by a line use the stellar evolution
models of Baraffe et al. (2015).

Other star systems have their individual critical mass per cross
section ratio (σ∗), which depends on the stellar luminosity (L∗)
and mass (M∗). We can generalize Eq. (7) as

σ∗ =
L∗

4πcGM∗
· (A.1)

In Fig. A.1 we show σ∗ for main-sequence stars with masses
ranging between 0.07 M� and 1.2 M�. The solar value (σ�) is
computed according to Eq. (7) (black label). We also show the
values for the three stars of the αCentauri system for reference
(red labels), using Eq. (A.1) with mass and luminosity estimates
for αCen A/B from Thévenin et al. (2002) as well as luminos-
ity (Doyle & Butler 1990) and mass estimates (Kervella et al.
2017) of Proxima Cen. The black lined dots cover the entire
range of main-sequence stars based on stellar evolution tracks
of Baraffe et al. (2015), assuming solar metallicity and an age of
4.5 Gyr.

As a general result, we find that σ∗ increases with stel-
lar mass. This finding can also be explained without the use
of stellar evolution models by invoking the well-known mass–
luminosity relation of main-sequence stars. It has long been
known that (L∗/L�) can be expressed by a proportionality to
(M∗/M�)α, where typically α is much larger than 1 for main-
sequence stars (Kuiper 1938). The results shown in Fig. A.1
become relevant in the context of the deceleration of interstel-
lar sails at distant star systems (Heller et al. 2017) or even return
missions (Heller & Hippke 2017).
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