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Abstract. The use of statistical models to study the impact
of weather on crop yield has not ceased to increase. Unfor-
tunately, this type of application is characterized by datasets
with a very limited number of samples (typically one sample
per year). In general, statistical inference uses three datasets:
the training dataset to optimize the model parameters, the
validation dataset to select the best model, and the testing
dataset to evaluate the model generalization ability. Splitting
the overall database into three datasets is often impossible
in crop yield modelling due to the limited number of sam-
ples. The leave-one-out cross-validation method, or simply
leave one out (LOO), is often used to assess model perfor-
mance or to select among competing models when the sam-
ple size is small. However, the model choice is typically
made using only the testing dataset, which can be mislead-
ing by favouring unnecessarily complex models. The nested
cross-validation approach was introduced in machine learn-
ing to avoid this problem by truly utilizing three datasets even
with limited databases. In this study, we propose one particu-
lar implementation of the nested cross-validation, called the
nested leave-two-out cross-validation method or simply the
leave two out (LTO), to choose the best model with an op-
timal model selection (using the validation dataset) and esti-
mate the true model quality (using the testing dataset). Two
applications are considered: robusta coffee in Cu M’gar (Dak
Lak, Vietnam) and grain maize over 96 French departments.
In both cases, LOO is misleading by choosing models that
are too complex; LTO indicates that simpler models actually
perform better when a reliable generalization test is consid-
ered. The simple models obtained using the LTO approach
have improved yield anomaly forecasting skills in both study
crops. This LTO approach can also be used in seasonal fore-

casting applications. We suggest that the LTO method should
become a standard procedure for statistical crop modelling.

1 Introduction

Many approaches are available to study the impact of cli-
mate and weather variables on crop yield. Statistical mod-
elling, which aims to find relations between a set of explana-
tory variables and crop yield, is a widely used approach (see,
for example, Lobell and Burke, 2010; Mathieu and Aires,
2016; Gornott and Wechsung, 2016; Kern et al., 2018). This
approach has many advantages, such as identifying crop pro-
duction sensitivities (Mathieu and Aires, 2018a), comple-
menting field experiments (Gaudio et al., 2019), and helping
in adaptation strategies (Iizumi et al., 2013), but it is often
complex to understand and to use for several reasons.

Unfortunately, crop modelling is often characterized by
datasets with a very limited number of samples. For instance,
Prasad et al. (2006) built a crop yield estimation model with
19 years of yield data. Ceglar et al. (2016) studied the im-
pact of meteorological drivers over 26 years on grain maize
and winter wheat yield in France. One year of data represents
one sample in these applications, and about 20 samples are
small for a data-driven approach. Small sample size poses
two challenges to crop modellers. First, it makes it hard to
choose among competing models. Second, it makes it hard to
assess the quality of the chosen model. For example, increas-
ing the model complexity usually increases the goodness of
fit of the model. However, it can lead to “overfitting” if the
model is too complex and if we have a limited information
included in the database. Overfitting occurs when the model
fits the training dataset artificially well, but it cannot make
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good predictions on unseen data. To overcome these issues,
in statistical modelling, the overall database is divided into
three datasets: the training dataset to optimize the model pa-
rameters, the validation dataset to select the best model, and
the testing dataset to evaluate the model generalization abil-
ity (Ripley, 1996). Splitting a small number of samples into
three datasets is not easy.

Cross-validation (Allen, 1974; Stone, 1974) was intro-
duced as an effective method for both model assessment
and model selection when the data are relatively small. A
common type of cross-validation is the leave-one-out (LOO)
cross-validation that has been used in many crop models (Ko-
gan et al., 2013; Zhao et al., 2018; Li et al., 2019). This ap-
proach relies on two datasets: a training dataset is used to
calibrate the model, and a testing dataset is used to assess its
quality. However, an important drawback of LOO is that it
uses the testing dataset to select the best model, which we
assert is a bad practice, as we shall explain. Since the cho-
sen model is not independent of the testing dataset, the ob-
tained testing score may be unreliable. This is not a prob-
lem if there are many available samples. However, a small
sample size can cause many issues: the model can overfit the
training dataset; thus, the chosen model is not adequate, and
our assessment of its generalization ability is false. This mis-
take is often seen in crop modelling when overly complex
models are developed based on a limited number of sam-
ples (Jayakumar et al., 2016; de Oliveira Aparecido et al.,
2017; Niedbała, 2018). Some regularization techniques (e.g.
information content techniques or dimension reduction tech-
niques) can help to constrain models toward lower complex-
ity to limit the overfitting problem (Lecerf et al., 2019). How-
ever, these approaches can become more technical and more
challenging to interpret, especially for non-statisticians.

To solve the issues of LOO, another more complex ap-
proach has been introduced: nested cross-validation (Stone,
1974), also known as double cross-validation or k× l-fold
cross-validation, is able to use three datasets: training, valida-
tion, and testing. In detail, this approach considers one inner-
loop cross-validation nested in an outer cross-validation
loop. The inner loop is to select the best model (valida-
tion dataset), while the outer loop is to estimate its gener-
alization score (testing dataset). We found very few appli-
cations of this approach in the literature on statistical crop
modelling (Laudien et al., 2020, 2022; Meroni et al., 2021).
This study proposes one particular implementation of this
nested cross-validation (or k× l-fold cross-validation when
l = k− 1) called the leave two out (LTO). Here, we used the
LTO for three purposes: first, to obtain a reliable assessment
of the model generalization ability; second, to compare the
performances of different predictive models; and third, to de-
termine the optimal complexity of the statistical crop models.
This approach is tested in two real-world applications: ro-
busta coffee in Cu M’gar (a district of Dak Lak province in
Vietnam) from 2000 to 2018 and grain maize over 96 depart-
ments (i.e. administrative units) in France for the 1989–2010

period. The following sections of this study will (1) introduce
the materials and databases used for statistical crop models,
(2) describe the role of three datasets in statistical inference,
(3) introduce the two cross-validation approaches, (4) evalu-
ate and select the “best model” by using LOO and LTO ap-
proaches, (5) estimate the robusta coffee yield anomalies in
Cu M’gar (Dak Lak, Vietnam), and (6) assess the seasonal
yield anomaly forecasts for grain maize in France.

2 Modelling crop yield using machine learning

2.1 Materials

2.1.1 Robusta coffee

Overview

Robusta (Coffea canephora) is among the two most widely
cultivated coffee species (the other being Coffea arabica,
known as arabica). About 40 % of the world’s robusta cof-
fee is produced in the Central Highlands of Vietnam (USDA,
2019; FAO, 2019) due to its adequate conditions in terms of
elevation (200–1500 m), soil type (basalt soil), and climate
(an annual average temperature of about 22 ◦C). In addition,
intensive agricultural practices are used (e.g. fertilization, ir-
rigation, shade management, and pruning) in these coffee
farms (Amarasinghe et al., 2015; Kath et al., 2020). The Cen-
tral Highlands region includes four main coffee-producing
provinces, and each province is divided into several districts.
Here, we focus on robusta coffee in Cu M’gar, one major
coffee-producing district in the Central Highlands.

A coffee tree is a perennial, which is highly productive
for about 30 years (Wintgens, 2004) but can be much longer
(more than 50 years) with good management practices. Ma-
ture coffee trees undergo several stages before harvesting,
including the vegetative stage (bud development) and the
productive stage (flowering, fruit development, and matura-
tion) (Wintgens, 2004). It requires about 8 months (May to
December) for the vegetative stage and about 9–11 months
(January to September/November) from flowering until fruit
ripening for robusta coffee. The weather during the last few
months before harvest (i.e. the productive stage) is decisive
for the yield (Craparo et al., 2015b; Kath et al., 2020); how-
ever, it has been shown that the weather during the previous
year’s growing season (i.e. the vegetative stage) has a big
impact. A prolonged rainy season (14–19 months before har-
vest) favours vegetative growth and thus increases the poten-
tial coffee yield (Kath et al., 2021). As a result, it is necessary
to consider the weather variables during both vegetative and
productive stages when studying the weather impact on cof-
fee yield. Thus, for this study, we analysed the weather of 19
months (from May of the previous year to November) pre-
ceding the harvest.
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Yield database

The robusta coffee yield data were obtained from the Gen-
eral Statistics Office of Vietnam for the 2000–2018 period
(nsamp = 19). We focus on the Cu M’gar district as it is a
leading coffee-producing district in Vietnam, accounting for
about 10 % of Vietnam’s total coffee production (i.e. 76 400 t
for the 2000–2018 average).

The long-term trend represents the slow evolution of the
crop yield; it often describes the changes in management like
fertilization or irrigation. Thus, suppressing this trend from
the yield time series allows removing the influence of non-
weather related factors, and this is common practice (Math-
ieu and Aires, 2016). For robusta coffee, a simple linear func-
tion is used to define the yield trend: y(t)= y0+αt , where
y(t) is the long-term trend, y0 is the yield in 2000, and α is
the constant annual rate of change. Once the yield trend is de-
fined, the coffee yield anomalies are calculated by removing
this trend from the raw yield data. The robusta coffee yield
for year t is noted as y(t) and the coffee yield anomaly a(t)
(in %) is calculated as

a(t)=
y(t)− y(t)

y(t)
× 100. (1)

If a(t) > 0, then the yield in year t is higher than in a regular
year, and vice versa. For example, an anomaly of a(t)=−16
implies that the yield for year t is 16 % lower than the annual
trend.

2.1.2 Grain maize

Overview

Grain maize (Zea mays) is among the most common annual
crops in Europe. France, our study region, is the largest grain
maize producer in Europe (EUROSTAT, 2021). The study
area has improved a lot in agro-management and irrigation
practices since 1960; e.g. irrigation acres were about 50 %
at the beginning of the 21st century (Siebert et al., 2015;
Schauberger et al., 2018; Ceglar et al., 2020). Although the
sowing time varies for different regions (Olesen et al., 2012),
the average growing season of French grain maize ranges
from April to September (Ceglar et al., 2017; Agri4cast,
2021). Many previous studies showed that grain maize yield
is sensitive to weather conditions (Ceglar et al., 2016, 2017;
Lecerf et al., 2019), especially during the crop growing sea-
son. Therefore, we will analyse the relationship of maize
yield to meteorologic variables during the 6-month growing
season.

Yield database

The French grain maize data (area, production, and yield) on
the regional level (i.e. department, which is an administra-
tive unit in France) were collected from the Agreste web-

site (https://agreste.agriculture.gouv.fr, last access: 15 De-
cember 2020; “Statistique agricole annuelle”) for a period
of 22 years (from 1989 to 2010). Here, we have modelled
the yield of grain maize in 96 French departments (Fig. 1).
Some specific tests (in Sect. 5) will focus on 10 departments
(as presented in Fig. 1d) where the average grain maize pro-
duction is higher than 4× 105 t (or the area is higher than
40 000 ha).

Similar to robusta coffee, the grain maize anomalies are
calculated by removing the long-term yield trend. Here, a
10-year moving average window is used because the trend
is slightly more complex than the one we found for robusta
coffee.

2.1.3 Weather database

The monthly-mean total precipitation (P ) and 2 m tempera-
ture (T ) variables were collected for the period 1981–2018
from the ERA5-Land, i.e. a replay of the land component
of ERA5 re-analysis of the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Hersbach et al., 2018).
This database has a spatial resolution of 0.1◦× 0.1◦ (about
10 km×10 km at the Equator). The monthly data are then
projected from its original 0.1◦× 0.1◦ regular grid onto the
crop administrative levels to match the yield data. In detail,
the gridded data have been aggregated over district or de-
partment shapes: (1) if the shape is smaller than the cell, the
gridded value will be representative of the region; (2) if the
shape includes several cells, the weather data will be aver-
aged based on the area of cells inside the shape.

This study considers the 2× n monthly weather anomaly
variables (representing P and T for n months). The number
of months n varies for each crop:

– for robusta coffee, we evaluated n= 19 corresponding
to the period from the bud development process to the
harvest season’s peak (Sect. 2.1.1). Thus, 2×19 monthly
weather data (P and T from May of year (t − 1) to
November of year t : PMay(t−1), · · ·, PDec(t−1), PJan(t),
· · ·, PNov(t) and TMay(t−1), · · ·, TDec(t−1), TJan(t), · · ·,
TNov(t)) are used as potential explanatory variables for
robusta coffee yield anomalies.

– for grain maize, 6 months of growing period (from sow-
ing to harvest) will be studied (Sect. 2.1.2). Thus, n= 6
results in 2× 6 weather variables: P and T from April
to September (PApr, PMay, · · ·, PSep and TApr, TMay, · · ·,
TSep).

Weather anomalies could be considered in the same way
as for crop yield data. However, the climate trend of the 10
to 20 years is relatively low compared to the inter-annual
variations. Thus, the long-term trend can be neglected, and
the relative anomalies will be estimated based on the long-
term average. This average value is computed for each of the
n months before the harvest time. In addition, we applied
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Figure 1. Grain maize database: (a) the average planted area (in 103 ha), (b) the average production (in 105 t), and (c) the average yield (in
t ha−1) over 96 French departments (dark lines are regions); (d) same as (c) but presenting only 10 major grain-maize-producing departments.
All data are averaged from 2000–2010.

a 3-month moving average centred on the particular month
(instead of the monthly data) to reduce the variability at the
monthly scale. This variability would introduce instabilities
in our analysis due to the short database time length. (It is
actually a regularization technique.)

We also considered adding other explanatory variables
(not shown), e.g. maximum and minimum temperature and
solar radiation. However, we chose not to include these vari-
ables for several reasons: (1) these variables show relatively
low correlations to the crop yield anomalies; (2) they are
highly correlated to P and T variables, especially for the
case of robusta coffee; (3) it will be seen in the following
that considering the available yield database size, it is more

reasonable to consider a limited number of explanatory vari-
ables to avoid overfitting (see more in Sect. 2.3).

2.2 Statistical yield models

The statistical models measure the impact of weather on crop
yield anomalies, which can be denoted as a(t)= fw(X),
where fw is the parametric (or non-parametric) statistical
model, w stands for the model parameters, and X is the set
of weather inputs {Xi for i = 1, 2, · · ·, ninput}. The function
fw can be based on multiple statistical methods depending
on the complexity of the application, for example, linear re-
gression (Prasad et al., 2006; Kern et al., 2018; Lecerf et al.,
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2019), partial least-squares regression (Ceglar et al., 2016),
random forest (Beillouin et al., 2020), neural network (Math-
ieu and Aires, 2016, 2018a), or mixed effects (Mathieu and
Aires, 2016).

In this study, two statistical models are considered:

– Linear regression (LIN) is the simplest model and the
most frequently used. The relationship between the crop
yield anomalies a and the weather variables Xi is for-
mulated as

a = α0+α1X1+ ·· ·+αnXninput + ε, (2)

where αi is the regression coefficients and ε is the error
term. A detailed description of the LIN model can be
found, for example, in Dinh and Aires (2019).

– Neural network (NN) is a non-linear statistical model.
The simplest type of NN is the feedforward model
(Bishop, 1995; Schmidhuber, 2015), where there is only
one direction forward from the input nodes: through the
hidden nodes and to the output nodes. Only one hidden
layer with nneuron neurons is considered in the architec-
ture here. The output crop yield anomaly a is modelled
by the following equation:

a =

nneuron∑
j=1

wj × σ

(
ninput∑
i=1

wjiXi + bhidden

)
+ boutput, (3)

where w is the weights and b is the NN biases. A de-
tailed description of the NN model (applied for impact
models) is described, for instance, in Mathieu and Aires
(2016).

The least-squares criterion, which minimizes the discrep-
ancies between the model predictions and observed values, is
used to optimize the model during the calibration process for
both LIN and NN models. It is used to obtain the coefficients
αi in Eq. (2) and the NN parameters w in Eq. (3) during the
training stage.

Two diagnostics are considered here to measure the qual-
ity of the yield anomaly estimations: (1) the Pearson’s cor-
relation COR (unitless) between the estimated aest and ob-
served aobs yield anomalies; (2) the root mean square error
is defined as RMSE=

√
1

nsamp

∑nsamp
i=1 (aest(i)− aobs(i))2. The

RMSE includes systematic and random errors of the model.
The RMSE unit is the same as a(t); RMSE= 40 represents
an anomaly error of 40 %.

2.3 Model selection

Model selection is the process of selecting one model –
among many candidate models – that generalizes best (Hastie
et al., 2009). This process can be applied across models of the
same types with varying model hyperparameters or across
different model types. Here we investigate some practically
important factors of the model selection:

– Number of inputs. The inputs are variables that are nec-
essary for model execution through algorithms. The in-
puts are selected among the potential predictors. We
often have a big set of potential predictors (e.g. all-
weather variables during the crop growing season), but
we select only some variables from this set as the model
inputs. The number of inputs defines the model com-
plexity: the higher the number of inputs is, the more
complex the model is (supposing that other factors are
fixed).

– Number of potential predictors. The potential predic-
tors (i.e. potential explanatory variables) here refer to all
possible variables that can potentially impact the yield.
Our study considers 38 weather variables for robusta
coffee and 12 variables for grain maize (Sect. 2.1), but
these numbers could be much larger. For instance, in
addition to selected weather variables, we could con-
sider other variables (e.g. water deficit, soil moisture),
and agroclimatic indices (e.g. degree days, frost-free pe-
riod Mathieu and Aires, 2018b). Here, we use monthly
variables, but weekly or daily variables could have been
considered. Therefore, establishing the list of potential
predictors is not fixed in the model selection: it is a cru-
cial modelling step preliminary to any input selection
(Ambroise and McLachlan, 2002; Hastie et al., 2009).

– Model types. We perform the selection among two
model types (presented in Sect. 2.2) with different com-
plexity levels. For example, with ninput inputs, a sim-
ple LIN model usually requires(ninput+ 1) parameters
(Eq. 2), while a feedforward NN model with one hidden
layer and one output requires many more parameters:
(ninput×nneuron+nneuron)+nneuron+1, where nneuron is
the number of neurons in the hidden layer. A case of an
NN model with varying nneuron will also be investigated.
The number of parameters in the model is often used as
a proxy for the model complexity.

2.4 Overfitting

When performing the model selection, it is possible to arti-
ficially fit the training dataset better. For example, increas-
ing the model complexity can increase the model quality be-
cause a more complex model can better fit the training data.
However, such a simple reasoning is dangerous: the model
complexity can be too high compared to the limited informa-
tion included in the training database. This limitation leads
to the overfitting (or overtraining) problem, i.e. the model
fits the training dataset artificially well but it cannot predict
well data not present in the training dataset. Thus, an overfit-
ted model makes poor predictions and is not reliable. There
is no general rule determining the model complexity based
on the number of samples. An empirical tool needs to be
used to check the adequacy of the model. In the following,
by studying the sensitivity of the model quality to different
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complexity levels, we want to determine the optimal statis-
tical crop model that truly estimates the yield anomalies as
best as possible.

2.5 Training, validation and testing datasets

One of the main challenges in statistical inference is that the
model is set up using a samples database, but it must perform
well on new – previously unseen – samples. For that purpose,
the overall database B needs to be divided into three datasets:
B=BTrain+BVal+BTest (Ripley, 1996):

– The training dataset BTrain is used to calibrate the model
parameters once the model structures has been chosen.

– The validation dataset BVal is a sample of data held
back from the training dataset, which is used to find the
best model. For instance, it helps tune the model hy-
perparameters, choose the more appropriate inputs (i.e.
feature selection), determine the number of predictors,
find the best model type (LIN, random forest, NN), and
determine some training choices.

– The testing dataset BTest is held back from the training
and the validation datasets to estimate the true model
generalization ability.

The process of partitioning B will be called the “folding”
process in the following. For example, the folding choice can
be chosen using BTrain = 50%, BVal = 25%, and BTest =

25%.
The need for the validation dataset is often misrepresented

in the literature on crop modelling. The training dataset is
used to fit the parameters; the testing dataset is often used to
estimate the model quality but also to choose the best model
(as in the LOO approach). However, using only this testing
dataset without a validation dataset brings a risk of choosing
the model that best suits to this particular testing dataset. This
represents a special kind of overfitting, which is not on the
model calibration but on the model choice. If the database is
big, many samples in the testing dataset will be representative
enough; therefore, choosing the best model based on it is ac-
ceptable. If the database is small (as often in crop modelling
tasks), the model selection can be too specific for the particu-
lar samples of the testing dataset; thus, an overfitting problem
can appear (Sect. 2.4). We demonstrate in the following sec-
tions that using only the testing dataset instead of the testing
and validation datasets can be misleading. We avoid this dif-
ficulty by having a dataset to calibrate the model (training)
and another one to choose the best model (validation). The
truly independent testing dataset is then used to measure the
model generalization ability to process truly unseen data.

3 Measuring the quality of statistical yield models

With a limited number of samples, the training process may
need every possible data point to determine model parame-

Figure 2. Folding strategy for the LTO procedure with nfold =
nsamp×(nsamp−1) folds (corresponding to the nfold rows). In each
fold, there are one testing, one validation, and (nsamp− 2) training
samples.

ters (Kuhn and Johnson, 2013). It is thus impossible to keep
a significant percentage of the database for the validation
and the testing datasets. To choose an appropriate model and
avoid overfitting, a robust way to measure the generalization
ability is necessary, using as few samples as possible. Cross-
validation (Allen, 1974; Stone, 1974) was introduced as an
effective method for both model selection and model assess-
ment when having a small number of samples.

3.1 Traditional leave one out

The LOO method is one common type of cross-validation in
which the model uses only two datasets: one to train and an-
other to choose the model and evaluate the result. The main
idea of LOO is that given nsamp available samples in B, the
model is calibrated nsamp times using (nsamp− 1) samples in
the training dataset BTrain (leaving one sample out). The re-
sulting model is then tested on the sample left (BTest). There
are nsamp testing score estimations: one for each sample. In
this case, B=BTrain+BTest and BVal is empty. The aver-
aging of these nsamp testing scores is expected to be a robust
assessment of the model ability to generalize on new sam-
ples. However, since no validation dataset is used to select
the best model, the choice of the best model may be biased
towards this testing dataset (Cawley and Talbot, 2010). The
chosen model is not independent of the testing dataset, and
thus the obtained testing score is not reliable.

3.2 Proposed leave two out

LOO is very useful in many cases (Kogan et al., 2013; Li
et al., 2019) but as described in Sect. 2.5, it is preferable to
divide the database into three partitions rather than only two
as done under LOO. In the following sections, we describe
a procedure for leave-two-out nested cross-validation (LTO),
which can improve model selection when the number of sam-
ples is low.

Geosci. Model Dev., 15, 3519–3535, 2022 https://doi.org/10.5194/gmd-15-3519-2022



T. L. A. Dinh and F. Aires: Leave-two-out cross-validation 3525

3.2.1 Folding scheme

For LTO, we will divide the database into three datasets:
training, validation, and testing. Each time we split or par-
tition the dataset, this is referred to as a “fold”. Each fold
divides the database B into a training dataset BTrain of
(nsamp−2) samples and a validation BVal and a testing BTest
dataset with one sample each. Two samples are considered
out of the training dataset instead of one in the LOO pro-
cedure. This folding process is presented in Fig. 2, with
the number of folds nfold = nsamp× (nsamp− 1). This is why
this approach is also called k× l-fold cross-validation when
l = k− 1.

3.2.2 Validation and testing scores

Figure 3 illustrates how the LTO evaluation procedure is con-
ducted. In panel (a1), the number of candidate models nmod
(represented on the horizontal axis) is defined with a fixed
complexity λ of the model. For instance, for the LIN3 model
(i.e. LIN model with three inputs) with 12 potential predic-
tors, we obtain nmod = C

3
12 = 220 models. These models are

used to perform the yield anomaly estimations. In the ver-
tical axis, for each of the nsamp choices of the testing value
idtest ∈ {1, 2, · · ·, nsamp}, there are (nsamp− 1) possible val-
idation datasets and thus training datasets. These (nsamp− 1)
training datasets each correspond to the training of the mod-
els on the horizontal axis, i.e. to fit model parameters. So
(nsamp−1) validation and (nsamp−1) testing estimations are
obtained for each one of the nmod models. The averaged
validation score is used to choose the best model bmi for
i = 1, 2, · · ·, nsamp; this is the role of the validation dataset.

Each choice of the testing value (each idtest) corresponds
to a selected best model bmi and two distributions (i.e. prob-
ability density functions (PDFs)) for (nsamp− 1) validation
errors and (nsamp−1) testing errors, shown in Fig. 3a2. These
two distributions result in a validation score (blue dot) and a
testing score (red dot). The shape of these distributions give
the average goodness-of-fit score and its variance.

Finally, the nsamp testing choices give nsamp validation and
nsamp testing scores that form a validation PDF in a blue line,
a testing PDF in a red line, and thus the two scores Vλ and Tλ
in Fig. 3b.

A pseudo-code is provided in Appendix A to facilitate the
implementation of the LTO procedure in any language.

3.2.3 Generalization ability versus model selection

The process represented in Fig. 3 is used to obtain the valida-
tion (Vλ) and testing (Tλ) scores from the LTO approach for
a given model complexity; for instance, here λ represents the
number of inputs. Each different number of inputs (different
value of λ) results in different values of Vλ and Tλ. The Vλ
and Tλ evolution curves obtained for validation and testing
RMSE values of yield anomalies for an increasing number of

inputs are presented in Fig. 4. For simplicity, only validation
and testing scores will be discussed since the training error
almost always decreases with the number of inputs. Also, the
cases of underfitting are excluded in this example. When in-
creasing the number of inputs, the validation error is smaller
but the testing error is bigger; this is typical for overfitting
(Sect. 2.4). In the following applications (Sects. 4 and 5), we
will study these evolution curves for different models with
various choices (e.g. number of inputs, number of potential
predictors, model types) in order to identify the appropriate
yield models for robusta coffee and grain maize.

4 Robusta coffee in Cu M’gar

The first application concerns the statistical yield modelling
of robusta coffee in Cu M’gar (Dak Lak, Vietnam). The goal
is to find a model that makes the most robust predictions
of crop yield anomaly as a function of weather variables.
We first assess several models (with a varying number of
inputs or number of potential predictors) to find the appro-
priate model choices using both LOO (Sect. 3.1) and LTO
(Sect. 3.2) approaches.

4.1 Yield model selection

We first investigated the model choice by varying the number
of inputs. In this example, the number of potential predictors
is fixed at 18 (npre = 18). The number of inputs is chosen
from one to six, as shown on the horizontal axis in Fig. 5.
We used the LOO and LTO procedures to compute the corre-
sponding training, validation, and testing RMSE values. The
results from the LOO procedure (in Fig. 5a) tell us that a
model with more inputs is preferable: both training and test-
ing RMSE values decrease with the increase in the number
of inputs. In the LTO case, the training and validation RMSE
values decrease with the model complexity, similar to the
training and testing errors in the LOO procedure. This simi-
larity is because the LTO validation dataset has the same role
as the LOO testing dataset: to find the best model! In the case
of too simplistic a model, i.e. the LIN model with one input,
underfitting occurs as the errors are high in the training, val-
idation, and testing datasets (shown in Fig. 5b). These errors
decrease gradually with the number of inputs, i.e. from one to
three. However, the testing errors do increase when the model
has more than three inputs. The LTO procedure indicates that
a simple model – with only three inputs – is optimal.

Figure 6 shows the RMSE values of the predicted robusta
coffee yield anomalies for the LIN models, with the number
of potential predictors ranging from 5 to 38 (on the horizon-
tal axis). These values are computed using the LOO and LTO
procedures for the training, validation, and testing datasets.
Several models have been tested; we presented here a par-
ticular example of the LIN5 model, which is the linear re-
gression model with five inputs. These inputs are selected
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Figure 3. Illustration of the LTO procedure to estimate a model quality for a fixed complexity level λwith nmod candidate models (horizontal
axis). (a) The model errors obtained for each candidate model and each fold of the database B (vertical axes). (b) The obtained RMSE values
for the validation and testing datasets. (See detailed description in Sect. 3.2.)

Figure 4. Schematic illustration of validation and testing RMSE
values of predicted yield anomalies for an increasing number of
inputs, obtained from the LTO procedure. For a fixed complexity
level, i.e. ninput = λ, two RMSE values are obtained: Vλ for val-
idation and Tλ for testing datasets. (The cases of underfitting are
excluded in this illustration.)

among the considered potential predictors. For instance, for
the LIN5 model with six potential predictors, LOO and LTO
aim at choosing five inputs from {PNov(t−1), PNov(t), TMar(t),
TJan(t), TMay(t), and POct(t−1)}.

The LOO procedure suggests that the more potential pre-
dictors the models have, the better the results are. Both train-

ing and testing RMSE values decrease gradually (Fig. 6a)
with the increase in the number of potential predictors for
LIN5 models. On the other hand, the same behaviour is ob-
served for the LTO procedure in Fig. 6b: the testing errors
show an opposite trend to the training and validation errors
and gradually increase with the number of potential predic-
tors. The LTO procedure indicates that a simpler model with
fewer potential predictors is more appropriate. This conclu-
sion makes sense since it is inappropriate to use a very com-
plex model (as the LOO model choice) when having a limited
sample.

The LOO procedure is actually misleading because it
could encourage us to choose a model that overfits the data:
the same testing dataset is used to choose the best model and
to assess the generalization ability. If the modellers select the
best model based on information from the LTO procedure,
they are less likely to choose an overfit model. As in this case,
they choose the model on the validation dataset and assess its
generalization score on an independent testing dataset.

In short, considering the limited information in the avail-
able database – that is used to train, select the model, and
evaluate its quality – it is not possible to use more than a very
simple and limited model. Therefore, for this 19-sample cof-
fee yield modelling case, using a simple LIN model is better
than a complex one.
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Figure 5. The training, validation, and/or testing RMSE values of the predicted coffee yield anomalies, using different LIN models (with 18
potential predictors) by increasing the number of inputs, in Cu M’gar (Dak Lak, Vietnam): (a) is induced from the LOO procedure, and (b) is
from the LTO procedure.

Figure 6. The training, validation, and/or testing RMSE values of the predicted coffee yield anomalies, using LIN5 models by increasing the
number of potential predictors, in Cu M’gar (Dak Lak, Vietnam): (a) is induced from the LOO procedure, and (b) is from the LTO procedure.

4.2 Yield anomaly estimation

The previous section showed that the LTO procedure allows
us to choose a reasonable model, simple enough, with fewer
inputs and potential predictors. Thus, the crop yield estima-
tions of the LTO method will be assessed here to see how
good the selected model (LIN3 model with three predictors)
is. The final model includes {PNov(t−1), PNov(t), TMar(t)}, and
these selected variables coincide with the key phenological
phases of robusta coffee. For example, there is the need for a
dry period for the buds to develop into dormancy at the end of
the development stage, i.e. Nov(t − 1) (Schuch et al., 1992).
Therefore, PNov(t−1) impacts the buds directly and thus the
potential yield. Similarly, the fruit maturation stage (Nov(t))
benefits from weather conditions with less precipitation. At
the beginning of the fruit development period (Mar(t)), too
low a temperature slows the maturation rate to the detriment
of yield, while a higher temperature is beneficial (Descroix
and Snoeck, 2004).

Figure 7 presents the estimated yield anomalies time series
for robusta coffee in Cu M’gar from 2000 to 2018. The esti-
mation (aest in the dashed line) describes quite well the obser-
vations (aobs in the solid line) with a correlation of 0.57. With

precipitation and temperature variables, the selected model is
able to identify many extreme years (e.g. 2005–2009, 2010,
2011) or a decreasing trend from 2011 to 2015. Also, the cor-
relation score means that the model can explain more than
30 % (0.572) of the variation in coffee yield anomalies. This
value is reasonable as the weather is among several factors
(e.g. prices, sociotechnical factors, managerial decisions) af-
fecting coffee yield (Miao et al., 2016; KC et al., 2020; Lil-
iane and Charles, 2020). It is possible to apply the result-
ing statistical crop yield model to future climate simulations
and then study the impact of climate change on coffee (Bunn
et al., 2015; Craparo et al., 2015a; Läderach et al., 2017).

5 Grain maize over France

This application considers several aspects of grain maize
over France. First, the sensitivity of the forecasting qual-
ity to the model selection is studied, using the LOO and
LTO approaches, over Bas-Rhin and Landes – the major
grain-maize-producing departments and all 96 departments
in France. Then, the forecasting scores are investigated over
10 major grain-maize-producing departments.
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Figure 7. The observed (solid line) and LTO estimated (dashed line) coffee yield anomalies time series in Cu M’gar (Dak Lak, Vietnam).

5.1 Yield model selection – focus on Bas-Rhin and
Landes

In this section, we describe how we selected the most ap-
propriate statistical model for grain maize using 22 years of
yield data. This test is done over Bas-Rhin and Landes (i.e.
two major grain-maize-producing departments in France).
As shown in Sect. 4.1, the LOO approach can be mislead-
ing and cause the analyst to select overly complex models.
Thus, we focus here on the LTO results for different mod-
els with various selections: number of inputs, model types,
number of neurons in the hidden layer, and the number of
potential predictors.

Similar to the robusta coffee case (Sect. 4.1), we fixed the
number of potential predictors npre = 12 and gradually in-
creased the number of inputs from one to six on the hori-
zontal axis of Fig. 8. Again, in both the Bas-Rhin and the
Landes examples, underfitting occurs when models are too
simple, for example, with one input. With a higher number of
inputs, the LTO procedure shows a similar behaviour as pre-
vious examples (Sect. 4.1): the training and validation errors
decrease gradually, while the testing errors show an oppo-
site trend. This behaviour suggests that a simple model (e.g.
LIN3 for both Bas-Rhin and Landes) is more appropriate.

More complex models were tested in Fig. 9: (a) NN mod-
els (with 12 potential predictors and 7 neurons in the hidden
layer) by increasing the number of inputs and (b) NN3 mod-
els (with four potential predictors) by increasing the num-
ber of neurons in the hidden layer. The impact of overfitting
(Sect. 2.3) is noticeable when the model is too complex. For
instance, in both cases (Fig. 9), the training errors get smaller
– close to 0 – for more inputs or more neurons in the hidden
layer, as expected. However, the testing and validation er-
rors show large fluctuations when increasing the model com-
plexity. These fluctuations imply that the model is overfit-
ted, and thus, random error or noise appear. Similar results
(not shown) were obtained for NN3 models with n poten-

tial predictors, where n= 3, 7, 12. Thus, the NN models are
unreliable due to the limited number of samples to train a
non-linear model.

We also tested other examples with LIN3 and NN3 mod-
els (Fig. 10) to illustrate the cases where model types and
the number of potential predictors affect the model quality.
Figure 10 describes the RMSE values of the predicted grain
maize yield anomalies for three datasets (training, validation,
and testing) of the LTO procedure. The results of LIN3 mod-
els are presented in Fig. 10a, and NN3 models (with seven
neurons in the hidden layer) are in Fig. 10b, with a different
number of potential predictors ranging from 3 to 12 on the
horizontal axis. The same behaviours are observed: the val-
idation/training errors decrease, while the testing errors in-
crease with the number of potential predictors. Also, the NN3
models show much higher testing and validation RMSE val-
ues compared to the LIN3 models. Again, we can conclude
– in this grain maize application – that a simpler model will
be more beneficial than the complex one.

5.2 Reliability model assessment

In this section, a statistical yield model is applied first over 96
French departments to assess the true model quality. Then,
we will focus on 10 major departments to assess how the
selected models perform for yield anomaly predictions.

Figure 11 shows the true testing RMSE maps of predicted
grain maize yield anomalies in France. Here, the testing er-
rors induced from the LTO procedure are used on the models
chosen by the LOO and LTO approaches. In other words,
both methods (LOO and LTO) can be considered to identify
optimal crop models, but only the LTO method is used (as a
reliable tool) to estimate the model generalization ability. For
example, when considering only LIN3 models, LOO chooses
models with 12 potential predictors, while LTO chooses 3.
From these choices, the true model generalization scores (i.e.
testing errors) are estimated using the LTO approach, shown
in the RMSE maps of Fig. 11a1 and b1. Another example fo-
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Figure 8. The training, validation, and testing RMSE values of the predicted grain maize yield anomalies, using different LIN models (with
12 potential predictors) by increasing the number of inputs, in (a) Bas-Rhin and (b) Landes.

Figure 9. The training, validation, and testing RMSE values of the predicted grain maize yield anomalies, using different NN models with
various choices, in Bas-Rhin (France): (a) NN models (with npre = 12 and nneuron = 7) by increasing the number of inputs; (b) NN3 models
(with npre = 4) by increasing the number of neurons in the hidden layer.

cuses on LIN5 models (presented in Fig. 11a2 and b2). The
true errors obtained from the LOO choice are clearly higher
than those from the LTO choice for LIN3 models. For in-
stance, the testing RMSE values range from 10 % to 18 % in
many departments in Fig. 11a1, while these values are often
lower than 10 % in Fig. 11b1. This difference shows that the
LOO approach underestimates these true errors, as seen in
Fig. 11a1. Thus, the model choice of the LOO approach is
misleading. For more complex models like LIN5 models –
that are preferred by the LOO choice – in the second row of
Fig. 11, the higher errors are observed, especially for LOO
model errors of many northern departments with up to 22 %
of RMSE (Fig. 11a2). This grain maize application confirms
the benefit of LTO to select and assess the true quality of
statistical yield models, while LOO is misleading by under-
estimating the true errors of its selected models. A simple
LIN3 model with three potential predictors is appropriate for
this application considering the limited amount of data.

We now analyse how good the LTO testing estimations
are compared to the observations over 10 major grain-maize-
producing departments (as shown in Fig. 1d). Figure 12
presents the boxplots of residuals for these departments,
which are the differences between the observed and esti-

mated yield anomalies (Residual = aobs− aest in %). The
medians of the residuals lie near zero. This means that the
selected models can predict the yield anomalies with ac-
ceptable coverage and precision. Although there are some
extreme values (Lot-et-Garonne) and some outliers, the in-
terquartile, which ranges from about −8 % to 8 %, shows
slight differences between the observations and estimations
over study departments.

5.3 Seasonal yield forecasting

The LTO approach is helpful for selecting an appropriate
model with better forecasting. Here, the model chosen by
the LTO procedure is tested for seasonal forecasting, from
the sowing time (April) to the forecasting months (i.e. from
June to September): all-weather variables (including P and
T ) from April to June can be selected for the June forecast-
ing. Table 1 represents the correlations between the observed
and estimated yield anomalies of the forecasts from June to
September. The quality of the seasonal forecasting models
gradually increases when approaching the harvest because
more information is provided. With the weather information
at the beginning of the season (April, May, and June), the
June forecasting model obtains an average correlation of 0.35
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Figure 10. The training, validation, and testing RMSE values of the predicted grain maize yield anomalies, using different models by
increasing the number of potential predictors, in Bas-Rhin (France): (a) LIN3 and (b) NN3 (with nneuron = 7) models.

Figure 11. The true testing RMSE maps of predicted grain maize yield anomalies in France for LOO (a1, a2) and LTO (b1, b2) approaches,
induced from two LIN models with a different number of inputs: LIN3 (a1, b1) and LIN5 (a2, b2).
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Figure 12. Boxplots of residuals (the difference between the observed and estimated yield anomalies) for 10 major grain-maize-producing
departments: red horizontal bars are medians, boxes show the 25th–75th percentiles, error bars depict the minimum and maximum values,
and red + signs are suspected outliers.

between the observations and estimations. This score is sig-
nificantly improved when adding information from July (cor-
relation of 0.51). This improvement means that the weather
in July strongly influences grain maize yields. The improve-
ment from July to August is much less than from June to
July, with an average increase of 0.01 and 0.16, respectively.
No information is added in the September forecasting model
since it coincides with the harvest time. In other words, the
final model should consider only variables from April to Au-
gust. As in our case, the statistical model selects {TJul, PMay,
PApr} as the final inputs for grain maize in the eastern region
(Bas-Rhin, Haut-Rhin), {TJul, PJul, TApr} for the southern re-
gion (e.g. Landes, Pyrénées-Atlantiques, Gers), and {PJul,
PApr, PJun or TJun} for the central part (Vendée, Charente-
Maritime, Vienne). It is reasonable to have different inputs
for different regions (or even departments) due to their dis-
tinct environmental conditions. In general, weather variables
in July – the flowering period – are among the most influ-
ential variables. During this time, a high temperature affects
the photosynthesis process, thus reducing the potential yield;
in contrast, positive precipitation anomalies are preferable
(Ceglar et al., 2016; Mathieu and Aires, 2018b). Precipita-
tions in April and May also show significant impacts on grain
maize as a water deficit during this vegetative stage decreases
plant height (Çakir, 2004).

In addition, Fig. 13 shows time series plots of the yield
anomaly observations and estimations for different forecast-
ing months in Landes (France). In this case, the June fore-
casting results show a high correlation with the observed
yield anomalies (0.63). This score slightly increases when
approaching the harvest. It also indicates that the weather
can explain more than 40 % (0.672

= 44.89%) of variations
in grain maize yield anomalies in this region, which is in line
with other crop studies (Ray et al., 2015; Ceglar et al., 2017).
However, the forecasting models cannot predict all the ex-

Table 1. The correlation between the observed and estimated yield
anomalies for different forecasting months (from June to Septem-
ber), over 10 major grain-maize-producing departments.

Forecasting months

Departments June July August September

Bas-Rhin 0.46 0.47 0.47 0.47
Haut-Rhin 0.35 0.53 0.53 0.53
Landes 0.63 0.64 0.66 0.67
Lot-et-Garonne 0.02 0.22 0.22 0.29
Pyrénées-Atlantiques 0.34 0.60 0.60 0.60
Gers 0.33 0.61 0.60 0.43
Vendée 0.63 0.63 0.63 0.63
Charente-Maritime 0.21 0.52 0.53 0.62
Vienne 0.39 0.40 0.40 0.40
Ain 0.17 0.52 0.52 0.52

Average 0.35 0.51 0.52 0.52

tremes (e.g. negative yield anomaly in 1990) that are proba-
bly influenced by the climate extremes (Hawkins et al., 2013;
Ceglar et al., 2016). The statistical models could be improved
by adding the indices that focus on extreme weather events.

6 Conclusions and perspectives

Crop yield modelling is very useful in agriculture as it can
help increase the yield, improve the production quality, and
minimize the impact of adverse conditions. Statistical mod-
els are among the most used approaches with many advan-
tages. The main difficulty in this context is the limitation of
the available crop databases to calibrate such statistical mod-
els. Applications typically rely on only 2 or 3 decades of data.
This small sample size issue directly impacts the complexity
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Figure 13. The observed (aobs) and the estimated yield anomalies time series, for different forecasting months from June to September (e.g.
aJun means June forecasting), for grain maize in Landes (France).

level that can be used in the statistical model: a model too
complex cannot be fit with such limited data, and assessing
the true model quality is also challenging. In practice, statis-
tical inference requires three datasets: one for calibrating the
model, a second one for choosing the right model (or tun-
ing the model hyperparameters), and another for assessing
the true model generalization skills. Dividing a very small
database into such three datasets is very difficult.

The LOO method has been used as a cross-validation tool
to calibrate, select, and assess competing models (Kogan
et al., 2013; Zhao et al., 2018). It was shown in this paper
that LOO can be misleading because it uses only one dataset
to choose the best model and estimate its generalization skills
simultaneously. This is a true problem as LOO is one of
the main statistical tools to obtain crop yield models. This
study proposes a particular form of nested cross-validation
approach that we call an LTO method. This method helps
select the best model by using two datasets that are indepen-
dent of the training dataset: first the validation dataset is used
to select the best model form or complexity, and then the
test dataset is used to independently assess the model per-
formance. In our case studies of crop yield prediction, LTO
shows that only very simple models can be used when the
database is limited in size. The LTO implementation pro-
posed here is very general and can be applied to any sta-
tistical crop modelling problem when the number of samples
is small and a large number of potential predictors are avail-
able.

Two applications have been considered. The first one con-
cerns the coffee yield modelling over a major robusta coffee-
producing district in Vietnam. It was shown that considering
the available historical yield record, the best statistical model
can explain about 30 % of the coffee yield anomaly vari-
ability. The remaining variability is rather large and may be
explained by non-climatic factors (e.g. prices, sociotechni-
cal factors, managerial decisions, or political and social con-

text). It could also come from climate; however, the model
would require more detailed variables (e.g. at a daily scale)
or more samples to go into greater details of the climate–
crop-yield relationship. In addition, explaining a third of the
coffee yield variability is in line with the literature (Ray et al.,
2015; Craparo et al., 2015b). LTO was able to identify the
suitable model trained on the historical record and estimate
the true model ability to predict yield on independent years.
The final model includes {PNov(t−1), PNov(t), TMar(t)}, which
corresponds to the key phenological phases of robusta coffee:
the end of the bud development, the fruit maturation, and the
beginning of the fruit development, respectively.

The second application is related to grain maize yield in
France. The LTO was used here to choose between simple
linear models and more complex neural network models. Our
findings also show that LOO was misleading in overesti-
mating the testing scores. LTO indicated that a simple lin-
ear model is preferable because it has a lower testing error.
This approach can also be helpful in seasonal forecasting ap-
plications (during the growing and the beginning of harvest
seasons). In this application, the weather can explain more
than 40 % of the yield anomaly variability, which is simi-
lar to that reported in the literature (Ray et al., 2015; Ceglar
et al., 2017). This score can vary depending on study regions
because some regions are more sensitive to the climate than
others. Generally, grain maize yield anomalies are mainly
influenced by weather variables during the flowering period
(July) and the early season (April).

In the future, the mixed-effects model can be considered
instead of a straightforward statistical model. This approach
– which intends to use samples in several regions (e.g. gath-
ering samples into groups) to compensate for the lack of his-
torical data – could help us obtain more complex crop mod-
els (Mathieu and Aires, 2016). Such a mixed effect could
benefit from the LTO scheme. In terms of applications, the
crop models that we derived here could be used on climate
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simulations (from an ensemble of climate models for the
next 50 years) to investigate the crop yield sensitivity to cli-
mate change. In addition, by using a similar approach pre-
sented here, other crops will be investigated, for instance,
over France (Ceglar et al., 2016, 2020; Schauberger et al.,
2018), over Europe (Ceglar et al., 2017; Lecerf et al., 2019),
or globally (Bunn et al., 2015). Furthermore, these types of
statistical crop models can be used to refine the potential
adaptation and mitigation strategies. For instance, it is ex-
pected that the climate runs could help us identify the change
in optimality for the crop culture in the world.

Appendix A

Code availability. The Matlab code used to run an example of the
leave-two-out method is available at the following Zenodo link:
https://doi.org/10.5281/zenodo.5159363 (Anh and Filipe, 2021).

Data availability. The coffee data were provided by Viet-
nam’s General Statistics Office (GSO) for the 2000–2018
period. These data are available from GSO on reasonable
request. For any inquiries, please send an email to banbien-
tap@gso.gov.vn. The series of annual agricultural statistics
1989–2010 (i.e. grain maize and other French crops) are avail-
able on request from: fatima.bouhaddi@agriculture.gouv.fr
or angelique.toulon@agriculture.gouv.fr. In addition, the
weather data, i.e. ERA5-Land data, can be downloaded from
https://doi.org/10.24381/cds.68d2bb3 (Muñoz Sabater, 2019).
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Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bó-
nis, P., Bognár, P., and Lichtenberger, J.: Statistical modelling of
crop yield in Central Europe using climate data and remote sens-
ing vegetation indices, Agr. Forest Meteorol., 260–261, 300–320,
https://doi.org/10.1016/j.agrformet.2018.06.009, 2018.

Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko,
O., Kryvobok, O., Shelestov, A., Kolotii, A., Kussul, O., and
Lavrenyuk, A.: Winter wheat yield forecasting in Ukraine
based on Earth observation, meteorologicaldata and bio-

Geosci. Model Dev., 15, 3519–3535, 2022 https://doi.org/10.5194/gmd-15-3519-2022

https://doi.org/10.1098/rstb.2019.0510
https://doi.org/10.1007/s10584-014-1306-x
https://doi.org/10.1016/j.fcr.2004.01.005
https://doi.org/10.1016/j.agrformet.2015.10.004
https://doi.org/10.1016/j.agrformet.2017.03.019
https://doi.org/10.1088/1748-9326/aba1be
https://doi.org/10.1088/1748-9326/aba1be
https://doi.org/10.1016/j.agrformet.2015.03.005
https://doi.org/10.1016/j.agrformet.2015.03.005
https://doi.org/10.2134/agronj2016.03.0166
https://doi.org/10.1002/9783527619627.ch6
https://doi.org/10.1175/JHM-D-18-0206.1
https://ec.europa.eu/eurostat/web/products-datasets/-/tag00093
https://ec.europa.eu/eurostat/web/products-datasets/-/tag00093
http://www.fao.org/faostat/en/#home
http://www.fao.org/faostat/en/#home
https://doi.org/10.1007/s13593-019-0562-6
https://doi.org/10.1007/s13593-019-0562-6
https://doi.org/10.1016/j.agrformet.2015.10.005
https://doi.org/10.1111/gcb.12069
https://doi.org/10.21957/tkic6g3wm
https://doi.org/10.1038/nclimate1945
https://doi.org/10.1007/s00484-016-1181-4
https://doi.org/10.1111/gcb.15097
https://doi.org/10.1016/j.crm.2021.100281
https://doi.org/10.1007/s42452-020-03824-6
https://doi.org/10.1007/s42452-020-03824-6
https://doi.org/10.1016/j.agrformet.2018.06.009


T. L. A. Dinh and F. Aires: Leave-two-out cross-validation 3535

physical models, Int. J. Appl. Earth Obs., 23, 192–203,
https://doi.org/10.1016/j.jag.2013.01.002, 2013.

Kuhn, M. and Johnson, K.: Applied predictive modeling, Springer,
ISBN 978-1-4614-6848-6, 2013.

Läderach, P., Ramirez-Villegas, J., Navarro-Racines, C., Zelaya, C.,
Martinez-Valle, A., and Jarvis, A.: Climate change adaptation of
coffee production in space and time, Climatic Change, 141, 47–
62, https://doi.org/10.1007/s10584-016-1788-9, 2017.

Laudien, R., Schauberger, B., Makowski, D., and Gornott,
C.: Robustly forecasting maize yields in Tanzania
based on climatic predictors, Sci. Rep.-UK, 10, 19650,
https://doi.org/10.1038/s41598-020-76315-8, 2020.

Laudien, R., Schauberger, B., Waid, J., and Gornott, C.: A forecast
of staple crop production in Burkina Faso to enable early warn-
ings of shortages in domestic food availability, Sci. Rep.-UK, 12,
1638, https://doi.org/10.1038/s41598-022-05561-9, 2022.

Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., and
Baruth, B.: Assessing the information in crop model and me-
teorological indicators to forecast crop yield over Europe, Agr.
Syst., 168, 191–202, https://doi.org/10.1016/j.agsy.2018.03.002,
2019.

Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B.,
and Peng, J.: Toward building a transparent statistical
model for improving crop yield prediction: Modeling rain-
fed corn in the U.S., Field Crop. Res., 234, 55–65,
https://doi.org/10.1016/j.fcr.2019.02.005, 2019.

Liliane, T. N. and Charles, M. S.: Factors Affecting Yield of Crops,
in: Agronomy, edited by: Amanullah, A., chap. 2, IntechOpen,
Rijeka, https://doi.org/10.5772/intechopen.90672, 2020.

Lobell, D. B. and Burke, M. B.: On the use of statis-
tical models to predict crop yield responses to cli-
mate change, Agr. Forest Meteorol., 150, 1443–1452,
https://doi.org/10.1016/j.agrformet.2010.07.008, 2010.

Mathieu, J. A. and Aires, F.: Statistical weather-impact models: An
application of neural networks and mixed effects for corn pro-
duction over the United States, J. Appl. Meteorol. Clim., 55,
2509–2527, https://doi.org/10.1175/JAMC-D-16-0055.1, 2016.

Mathieu, J. A. and Aires, F.: Using Neural Network Classifier Ap-
proach for Statistically Forecasting Extreme Corn Yield Losses
in Eastern United States, Earth and Space Science, 5, 622–639,
https://doi.org/10.1029/2017EA000343, 2018a.

Mathieu, J. A. and Aires, F.: Assessment of the
agro-climatic indices to improve crop yield fore-
casting, Agr. Forest Meteorol., 253-254, 15–30,
https://doi.org/10.1016/j.agrformet.2018.01.031, 2018b.

Meroni, M., Waldner, F., Seguini, L., Kerdiles, H., and Rembold,
F.: Yield forecasting with machine learning and small data:
What gains for grains?, Agr. Forest Meteorol., 308–309, 108555,
https://doi.org/10.1016/j.agrformet.2021.108555, 2021.

Miao, R., Khanna, M., and Huang, H.: Responsiveness of Crop
Yield and Acreage to Prices and Climate, Am. J. Agr. Econ., 98,
191–211, https://doi.org/10.1093/ajae/aav025, 2016.

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to
present, Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb3,
2019.

Niedbała, G.: Application of multiple linear regression for multi-
criteria yield prediction of winter wheat, Journal of Research and
Applications in Agricultural Engineering, 63, 4, 2018.

Olesen, J., Børgesen, C., Elsgaard, L., Palosuo, T., Rötter, R. P.,
Skjelvåg, A., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ew-
ert, F., Siebert, S., Brisson, N., Eitzinger, J., Asselt, E., Ober-
forster, M., and Van der Fels-Klerx, H. I.: Changes in time
of sowing, flowering and maturity of cereals in Europe un-
der climate change, Food Addit. Contam. A, 29, 1527–42,
https://doi.org/10.1080/19440049.2012.712060, 2012.

Prasad, A. K., Chai, L., Singh, R. P., and Kafatos, M.: Crop
yield estimation model for Iowa using remote sensing and sur-
face parameters, International J. Appl. Earth Observ., 8, 26–33,
https://doi.org/10.1016/j.jag.2005.06.002, 2006.

Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.:
Climate variation explains a third of global crop yield variabil-
ity, Nat. Commun., 6, 1–9, https://doi.org/10.1038/ncomms6989,
2015.

Ripley, B. D.: Pattern Recognition and Neu-
ral Networks, Cambridge University Press,
https://doi.org/10.1017/CBO9780511812651, 1996.

Schauberger, B., Ben-Ari, T., Makowski, D., Kato, T., Kato, H., and
Ciais, P.: Yield trends, variability and stagnation analysis of ma-
jor crops in France over more than a century, Sci. Rep.-UK, 8,
1–12, https://doi.org/10.1038/s41598-018-35351-1, 2018.

Schmidhuber, J.: Deep learning in neural networks:
An overview, Neural Networks, 61, 85–117,
https://doi.org/10.1016/j.neunet.2014.09.003, 2015.

Schuch, U. K., Fuchigami, L. H., and Nagao, M. A.: Flowering,
Ethylene Production, and Ion Leakage of Coffee in Response to
Water Stress and Gibberellic Acid, J. Am. Soc. Hortic. Sci., 117,
158–163, 1992.

Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and
Scanlon, B. R.: A global data set of the extent of irrigated land
from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545,
https://doi.org/10.5194/hess-19-1521-2015, 2015.

Stone, M.: Cross-Validatory Choice and Assessment of Sta-
tistical Predictions, J. Roy. Stat. Soc. B, 36, 111–133,
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x, 1974.

USDA: Coffee: World Markets and Trade, https://downloads.
usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/
8w32rm91m/coffee.pdf (last access: 22 April 2020), 2019.

Wintgens, J. N.: Coffee: Growing, Processing, Sustain-
able Production: A Guidebook for Growers, Proces-
sors, Traders, and Researchers, John Wiley & Sons, Ltd,
https://doi.org/10.1002/9783527619627.ch1, 2004.

Zhao, Y., Vergopolan, N., Baylis, K., Blekking, J., Caylor, K.,
Evans, T., Giroux, S., Sheffield, J., and Estes, L.: Com-
paring empirical and survey-based yield forecasts in a dry-
land agro-ecosystem, Agr. Forest Meteorol., 262, 147–156,
https://doi.org/10.1016/j.agrformet.2018.06.024, 2018.

https://doi.org/10.5194/gmd-15-3519-2022 Geosci. Model Dev., 15, 3519–3535, 2022

https://doi.org/10.1016/j.jag.2013.01.002
https://doi.org/10.1007/s10584-016-1788-9
https://doi.org/10.1038/s41598-020-76315-8
https://doi.org/10.1038/s41598-022-05561-9
https://doi.org/10.1016/j.agsy.2018.03.002
https://doi.org/10.1016/j.fcr.2019.02.005
https://doi.org/10.5772/intechopen.90672
https://doi.org/10.1016/j.agrformet.2010.07.008
https://doi.org/10.1175/JAMC-D-16-0055.1
https://doi.org/10.1029/2017EA000343
https://doi.org/10.1016/j.agrformet.2018.01.031
https://doi.org/10.1016/j.agrformet.2021.108555
https://doi.org/10.1093/ajae/aav025
https://doi.org/10.24381/cds.68d2bb3
https://doi.org/10.1080/19440049.2012.712060
https://doi.org/10.1016/j.jag.2005.06.002
https://doi.org/10.1038/ncomms6989
https://doi.org/10.1017/CBO9780511812651
https://doi.org/10.1038/s41598-018-35351-1
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.5194/hess-19-1521-2015
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/8w32rm91m/coffee.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/8w32rm91m/coffee.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/8w32rm91m/coffee.pdf
https://doi.org/10.1002/9783527619627.ch1
https://doi.org/10.1016/j.agrformet.2018.06.024

	Abstract
	Introduction
	Modelling crop yield using machine learning
	Materials
	Robusta coffee
	Grain maize
	Weather database

	Statistical yield models
	Model selection
	Overfitting
	Training, validation and testing datasets

	Measuring the quality of statistical yield models
	Traditional leave one out
	Proposed leave two out
	Folding scheme
	Validation and testing scores
	Generalization ability versus model selection


	Robusta coffee in Cu M'gar
	Yield model selection
	Yield anomaly estimation

	Grain maize over France
	Yield model selection – focus on Bas-Rhin and Landes
	Reliability model assessment
	Seasonal yield forecasting

	Conclusions and perspectives
	Appendix A
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

