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A B S T R A C T 

We present the MaNGA PyMorph photometric Value Added Catalogue (MPP-VAC-DR17) and the MaNGA Deep Learning 

Morphological V AC (MDLM-V AC-DR17) for the final data release of the MaNGA surv e y, which is part of the SDSS Data 
Release 17 (DR17). The MPP-VAC-DR17 provides photometric parameters from S ́ersic and S ́ersic + Exponential fits to the 
tw o-dimensional surf ace brightness profiles of the MaNGA DR17 galaxy sample in the g , r , and i bands (e.g. total fluxes, 
half-light radii, bulge-disc fractions, ellipticities, position angles, etc.). The MDLM-VAC-DR17 provides deep-learning-based 

morphological classifications for the same galaxies. The MDLM-VAC-DR17 includes a number of morphological properties, 
for example, a T-Type, a finer separation between elliptical and S0, as well as the identification of edge-on and barred galaxies. 
While the MPP-VAC-DR17 simply extends the MaNGA PyMorph photometric VAC published in the SDSS Data Release 15 

(MPP-VAC-DR15) to now include galaxies that were added to make the final DR17, the MDLM-VAC-DR17 implements some 
changes and impro v ements compared to the previous release (MDLM-VAC-DR15): Namely, the low end of the T-Types is 
better reco v ered in this new v ersion. The catalogue also includes a separation between early or late type, which classifies the 
two populations in a complementary way to the T-Type, especially at the intermediate types ( −1 < T-Type < 2), where the 
T-Type v alues sho w a large scatter. In addition, k -fold-based uncertainties on the classifications are also provided. To ensure 
robustness and reliability, we have also visually inspected all the images. We describe the content of the catalogues and show 

some interesting ways in which they can be combined. 

Key words: catalogues – surv e ys – galaxies: disc – galaxies: elliptical, lenticular, cD – galaxies: photometry – galaxies: struc- 
ture. 
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 I N T RO D U C T I O N  

s we enter the age of large galaxy samples for which spatially
esolved spectroscopic information is available thanks to integral
eld spectroscopic surv e ys like ATLAS 

3D (Cappellari et al. 2011 ),
ALIFA (S ́anchez et al. 2012 ), or SAMI (Allen et al. 2015 ), it is
seful to have accompanying analyses of the associated photom-
try. Fischer, Dom ́ınguez S ́anchez & Bernardi ( 2019 ) describe a
tep in this direction: They provide imaging-based morphological
nformation, as well as one- and two-component fits to the two-
imensional (2D) surface brightness distributions of the galaxies in
n early release (SDSS DR15, Aguado et al. 2019 ) of the MaNGA
Mapping Nearby Galaxies at Apache Point Observatory; Bundy
t al. 2015 ) Surv e y. Now that the surv e y is complete, the main goal
f this work is to extend that analysis to all the ∼10 4 nearby ( z ∼
.03) galaxies in it. This has culminated in the production of two
value-added’ catalogues (VACs), which are part of the SDSS-DR17
 E-mail: dominguez@ice.csic.es 

a  

2  

a  

Pub
elease (SDSS Collaboration, in preparation): the MaNGA PyMorph
hotometric Value Added Catalogue (hereafter MPP-VAC-DR17)
nd the MaNGA Deep Learning Morphology Value Added Catalogue
hereafter MDLM-VAC-DR17), which summarize the photometric
nd deep-learning-based morphological information for the MaNGA
alaxies. 

MaNGA is a component of the Sloan Digital Sky Survey IV
SDSS IV; Blanton et al. 2017 ). Wake et al. ( 2017 ) describe how the

aNGA galaxies were selected from the SDSS footprint. Integral
eld unit (IFU) technology allows the MaNGA surv e y to obtain
etailed kinematic and chemical composition maps of these galaxies
e.g. Gunn et al. 2006 ; Smee et al. 2013 ; Drory et al. 2015 ; Law et al.
015 , 2016 ; Yan et al. 2016a , b ; Greene et al. 2017 ; Graham et al.
018 ) 
For reasons discussed in Fischer, Bernardi & Meert ( 2017 ), we do

ot use the SDSS pipeline photometry of these objects. Rather, we
se the significantly more accurate PyMorph analysis described in
 series of papers (Vikram et al. 2010 ; Meert, Vikram & Bernardi
013 , 2015 , 2016 ; Bernardi et al. 2014 ). PyMorph provides one-
nd two-component fits to the 2D surface brightness distributions
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Table 1. Top: fraction of galaxies that do not have PyMorph parameters 
from S ́ersic (FLAG FAILED S = 1), SerExp (FLAG FAILED SE = 1), or 
both (FLAG FIT = 3) in the SDSS g , r , and i bands. Bottom: fraction of 
galaxies that are better described by one-component S ́ersic fits (FLAG FIT 

= 1), two-component SerExp fits (FLAG FIT = 2), or for which both fits 
are equally acceptable (FLAG FIT = 0). 

Band S ́ersic fit failed SerExp fit failed Both fits failed 

(FLAG FAILED S = 1) (FLAG FAILED SE = 1) (FLAG FIT = 3) 

g 0.069 0.065 0.038 

r 0.065 0.058 0.034 

i 0.077 0.062 0.037 

Galaxies with successful fits (FLAG FIT �= 3) better described by: 

Band One component Two components Both 

(FLAG FIT = 0) (FLAG FIT = 1) (FLAG FIT = 2) 

g 0.103 0.586 0.312 

r 0.106 0.567 0.327 

i 0.104 0.569 0.327 
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f MaNGA galaxies, and was used to produce the MPP-VAC of
he galaxies in DR15 (Fischer et al. 2019 ). The MPP-VAC-DR17,
hich we describe below, extends this to include all the objects in

he completed MaNGA surv e y. 
We also provide the MDLM-VAC-DR17, which includes deep- 

earning-based morphological classifications (the methodology is 
escribed in detail by Dom ́ınguez S ́anchez et al. 2018 ) for the
ame galaxies. In contrast to the photometric MPP-VACs, in which 
he main difference between the DR15 and DR17 versions is 
ample size, the MDLM-VAC-DR17 includes some impro v ements in 
ethodology and content with respect to DR15, which we describe 

elow. 
Note that the MaNGA data were only used for the identification of

he sources included in the two VACs presented in this paper. Both the 
D fits to the surface brightness distributions and the morphological 
lassifications are based on the SDSS imaging data (DR15 for the 
PP-VAC and DR7 for the MDLM-VAC). 
Section 2 describes the minor changes we have made when 

eporting the photometric parameters listed in the MPP-VAC: See 
ischer et al. ( 2019 ) for a detailed discussion of how these PyMorph-
ased parameters were determined, and how they compare with 
revious work. Section 3 describes our morphological classification 
cheme and the MDLM-VAC-DR17. Section 4 combines our MPP- 
nd MDLM-VACs to show how the photometric parameters correlate 
ith morphology. A final section summarizes. 

 M A N G A  PYMORPH  PHOTOMETRIC  VA LU E  

D D E D  C ATA L O G U E  (MPP-VAC -DR17)  

he MPP-VAC-DR17 1 is one of the VACs available online of 
he completed MaNGA surv e y, which is part of the SDSS-DR17
elease. 2 It is similar to the MPP-VAC-DR15 (Fischer et al. 2019 ,
ereafter F19) published as part of the SDSS-DR15 release (Aguado 
t al. 2019 ). The MPP-VAC-DR17 is updated to include all the
alaxies in the final MaNGA release. Some PLATE-IFU entries are 
eobservations of the same galaxy so the catalogue also provides three
ariables that identify galaxies with multiple MaNGA spectroscopic 
bservations (see DUPL-GR, DUPL-N, and DUPL-ID). Although 
he number of entries is 10 293, the actual number of different
alaxies in this catalogue is 10 127. The structural parameters and 
orphological classifications included in the VACs are identical for 

he duplicate observations. 
The MPP-VAC-DR17 also includes one minor technical change 

egarding how the position angle (PA) of each image is reported. The
A (from PyMorph) given in this catalogue is with respect to the
amera columns in the SDSS ‘fpC’ images (which are not aligned 
ith the north direction); to convert to the usual convention where 
orth is up, east is left, 3 set PA(MaNGA) = (90 − PA) − SPA,
here SPA is the SDSS camera column position angle with respect 

o north reported in the primary header of the ‘fpC’ SDSS images. PA
MaNGA) is defined to increase from east towards north. In contrast 
o the MPP-VAC-DR15 release, where the SPA angles were provided 
n a separate file, the MPP-VAC-DR17 catalogue includes the SPA 

ngles. 
Except for this change, MPP-VAC-DR17 is similar in format to 
PP-VA C-DR15. In particular , table 1 in F19 describes the content

f the catalogue, which is in the FITS file format and includes three
 h ttps:// www.sdss.org/dr17/ data access/ value- added- catalogs/
 www.sdss.org/dr17/ data access/ value- added- catalogs/
 Note that the MaNGA data cubes have north up and east right. 

h
 

o  

a  

i  
eader Data Units (HDUs). Each HDU lists the parameters measured 
n the g , r , and i bands, respectively. These include the luminosity,
alf-light radius, S ́ersic index, etc. for single S ́ersic (Ser) and two-
omponent S ́ersic + Exponential (SerExp) profiles – from fitting the 
D surface brightness profiles of each galaxy. Although for most 
alaxies the Exponential component is a disc, for the most luminous
alaxies, it represents a second component,which is not necessarily 
 disc. 

None of the algorithms has changed since DR15, so the discussion
n F19 about how photometric parameters were determined remains 
ppropriate. In particular, we still use the fitting algorithm called 
yMorph (Vikram et al. 2010 ; Meert et al. 2013 , 2015 , 2016 ; Bernardi
t al. 2014 ), a PYTHON -based code that uses Source Extractor
 SEXTRACTOR ; Bertin & Arnouts 1996 ) and GALFIT (Peng et al.
002 ) to estimate the structural parameters of galaxies. Likewise, 
ecisions about refitting (section 2.1.1 in F19), when to ‘flip’ the
wo components of a SerExp fit (section 2.1.3 in F19), and how to
runcate the profiles (section 2.1.4 in F19) are all the same as before,
s is the (visual-inspection-based) flagging system, which indicates 
hich fit is to be preferred for scientific analyses (see discussion in

ection 2.2 of F19). We urge users to pay attention to the preferences
xpressed by FLAG FIT: FLAG FIT = 1 means that only the S ́ersic
t is preferred (the SerExp fit may be unreliable), FLAG FIT = 2
eans that only the SerExp fit is preferred (the S ́ersic fit may be

nreliable), FLAG FIT = 0 means that both S ́ersic and SerExp fits
re acceptable, and FLAG FIT = 3 means that none of the fits were
eliable and so no parameters are provided. Table 1 lists the fraction
f objects for each FLAG FIT type in the SDSS g , r , and i bands. 
The flags FLAG FAILED S = 1 or FLAG FAILED SE = 1

ndicate failed S ́ersic or SerExp fits, respectiv ely. F ailures can happen
or several reasons: contamination, peculiarity, bad image, or bad 
odel fit. The numbers in the top half of Table 1 give the fraction of

bjects without photometric measurements for the different bands. 
bout 7 per cent of the objects do not have parameters from the S ́ersic

nd SerExp fits, respectively. About 4 per cent of these objects do not
av e an y PyMorph photometric parameters (i.e. FLAG FIT = 3). 
Figs 1 and 2 show the distributions of the S ́ersic index n and n bulge in

ur single- and two-component fits. These are very similar to figs 12
nd 14 in F19, illustrating that other than the factor of 2 increase
n sample size (from DR15 to DR17) the trends are unchanged. In
MNRAS 509, 4024–4036 (2022) 

https://www.sdss.org/dr17/data_access/value-added-catalogs/?vac_id=manga-pymorph-dr17-photometric-catalog
https://www.sdss.org/dr17/data_access/value-added-catalogs/
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Figure 1. Distribution of n from only S ́ersic fits to the r -band surface 
brightness profiles of the objects in our sample (DR17), compared to the 
corresponding distribution from Meert et al. ( 2015 , hereafter DR7), Simard 
et al. ( 2011 , hereafter S11), and the NASA-Sloan Atlas catalogue (NSA; 
nsatlas.org ). Our analysis limits n ≤ 8, whereas the S11 analysis allows 
0.5 ≤ n ≤ 8, and NSA does not allow n > 6. This explains the spike at n = 

6, where NSA has 1709 galaxies. 

Figure 2. Same as the previous figure, but for n bulge of the two-component 
SerExp fits. See F19 for a discussion of the obvious differences with respect 
to S11. Similarly to DR15, our DR17 analysis has several more galaxies with 
n bulge = 1 but many fewer n bulge = 8 compared to the DR7 analysis, as a 
result of our eyeball-moti v ated refitting and flipping. The spike n bulge = 1 for 
DR17 extends to 735 galaxies. 

p  

c
=  

s  

c  

r  

a  

fi  

t

3
V
(

T  

t  

D  

d  

D  

a  

f  

w
 

m  

h  

c  

d  

i  

T  

t  

t  

e  

f  

b  

t  

c  

d

3

T  

s  

−  

b  

c  

f  

c  

t  

r  

o  

t  

c
 

w  

i  

a
 

w

 

T  

T  

4 ht tp://casjobs.sdss.org/ImgCutout DR7/
5 R 90 from the NSA catalogue. 

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/4024/6412530 by guest on 09 M
arch 2023
articular, our reductions do not show a preference for n = 6 (in
ontrast to NSA, which does not allow n > 6), or for n = 4 or n bulge 

 4 (in contrast to S11). Similarly to DR15, our DR17 analysis has
everal more galaxies with n bulge = 1 but many fewer n bulge = 8
ompared to the DR7 analysis, as a result of our eyeball-moti v ated
efitting and flipping. Likewise, we have repeated all the other tests
NRAS 509, 4024–4036 (2022) 
nd comparisons shown in F19, but now for the full DR17 sample,
nding consistent results with our DR15 analysis, so we do not show

hem here. 

 M A N G A  DEEP  L E A R N I N G  M O R P H O L O G Y  

A LU E  A D D E D  C ATA L O G U E  

M D L M - VAC - D R 1 7 )  

he MDLM-VAC-DR17 provides morphological classifications for
he final MaNGA galaxy sample (which is part of the SDSS-
R17 release) using an automated classification based on supervised
eep learning. It extends the ‘MaNGA Deep Learning Morphology
R15 VAC’, described in F19, to now include galaxies which were

dded to make the final DR17. In addition, as we describe in the
ollowing sections, it incorporates some changes and impro v ements
ith respect to the DR15 version. 
The morphological classifications were obtained following the
ethodology explained in detail in Dom ́ınguez S ́anchez et al. ( 2018 ,

ereafter DS18). Briefly, for each classification task, we trained a
onvolutional neural network (CNN) using as input the RGB cutouts
ownloaded from the SDSS-DR7 server 4 with a variable size that
s proportional to the Petrosian radius of the galaxy (5 ×R 90 

5 ).
he cutouts are then resampled to 69 × 69 pixels, which are

he dimensions used to feed the CNN – note that by doing this
he pixel scale varies from one galaxy to another. The counts in
ach pixel are normalized by the maximum value in that cutout
or that particular colour band. As this value is different in each
and, this step prevents colour information from playing a role in
he morphological classifications, and potentially biasing studies of
olour–morphology relations. We refer the reader to DS18 for further
etails. 

.1 Classification scheme 

he classification scheme of the morphological catalogue is pre-
ented in Fig. 3 . We provide a T-Type value, which ranges from
4 to 9, and was obtained by training the CNN in regression mode

ased on the T-Types from Nair & Abraham ( 2010 , hereafter N10)
atalogue. N10 presents visual classifications for 14 034 galaxies
rom SDSS up to m g < 16 mag. We only use galaxies with confident
lassifications for training (T-Type flag = 0, i.e. ∼ 96 per cent of
he sample). While the N10 T-Type values are integers within the
ange [ −5, 10], none of their galaxies have T-Type values of −4, −2,
r −1. We reassigned T-Type values by shifting them and filling
he gaps in our training labels, as doing so helps the model to
onverge. 

In general, T-Type < 0 corresponds to early-type galaxies (ETGs),
hile T-Type > 0 corresponds to late-type galaxies (LTGs). Follow-

ng F19, we sometimes subdivide LTGs into S1 (0 ≤ T-Type ≤ 3)
nd S2 (T-Type > 3) – see Section 3.3.2. 

The catalogue provides two other binary classifications, which
ere trained with N10-based labels: 

(i) P LTG , which separates ETGs from LTGs; and 
(ii) P S0 , which separates pure ellipticals (E) from S0s. 

For the P LTG model, we labelled positive examples those with T-
ype > 0 and ne gativ e e xamples those with T-Type ≤ 0 (from N10).
his classification complements the T-Type by providing a cleaner

art/stab3089_f1.eps
art/stab3089_f2.eps
http://casjobs.sdss.org/ImgCutoutDR7/
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Figure 3. Schematic representation of the morphological classification presented in the MDLM-VAC. It includes a T-Type ranging from −4 to ∼9, where the 
transition between early and late types happens around T-Type ∼ 0. A complementary binary classification separates ETGs and LTGs (see discussion in the text 
for the differences between these two classifications). Three further binary classifications include (a) separating E from S0 – this separation is only meaningful 
for galaxies with T-Type < 0, (b) identifying edge-on galaxies, and (c) identifying galaxies with bar features. The cutouts show examples of galaxies of different 
types, with classification values shown in white and according to their frame colours. The cutouts are proportional to the size of each galaxy ( ∼5 ×R 90 ). The 
topmost cutouts show a galaxy classified as ETG by both the T-Type and P LTG models (left-hand side), a galaxy classified as LTG by both the T-Type and P LTG 

models (right-hand side), and a galaxy with T-Type > 0 and P LTG < 0.5 – see discussion related to these galaxies in Section 3.3.2. 
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eparation between ETGs and LTGs, especially at intermediate T- 
ypes, where the scatter of the T-Type model is larger (see discussion

n Section 3.3.1). For the P S0 model, we used as training sample only
alaxies with T-Type < 0 and labelled positive examples those with 
5 < T-Type < 0 and ne gativ e e xamples those with T-Type = −5

i.e. pure E according to N10). 
The catalogue also provides two additional binary classifications: 

(i) P edge-on , which identifies edge-on galaxies; and 
(ii) P bar , which identifies barred galaxies. 

The value reported in the catalogue is the probability of being 
 positiv e e xample (edge-on or barred galaxy, respectively). These 
re based on the Galaxy Zoo 2 (GZ2; Willett et al. 2013 ) labels.
Z2 is a citizen science project with morphological classifications 
f 304 122 galaxies drawn from SDSS up to m r < 17. Following
S18, the training sample was composed of galaxies with robust 

lassifications, i.e. at least five votes and weighted fraction values 
reater than 0.8 (for the ‘yes’ or ‘no’ answers in each classification
ask). See DS18 for further details. 
.2 Training methodology 

he CNN architecture used for the morphological classifications of 
he binary models (i.e. P LTG , P S0 , P edge-on , P bar ) is identical to that of
S18 (see fig. 1 therein for a schematic representation). Namely, the

nputs are arrays of dimension (3, 69, 69), and the CNN consists of
our convolutional layers with relu acti v ation, filter sizes of 6 × 6,
 × 5, 2 × 2, and 3 × 3; 32, 64, 128, and 128 channels; and dropouts of
.5, 0.25, 0.25, and 0.25, respecti vely; follo wed by a fully connected
ayer of 64 neurons with 0.5 dropout, sigmoid acti v ation, and adam
ptimizer. The output of the model is one single value, which can be
nterpreted as the probability of being a positiv e e xample. The total
umber of trainable parameters is 2602 849. The CNN was trained
or 50 epochs with binary cross-entropy as the loss function. 

Due to the complexity of the T-Type classification, we used a slight
ariation of the CNN architecture described in DS18 to train the T-
ype model: The convolutional layers remain as explained above, but 

he model includes two fully connected layers of 128 and 64 neurons
ach, with 0.5 dropout. The total number of trainable parameters 
ncreases up to 4978 657. The CNN was trained for 100 epochs in
egression mode and mean squared error as the loss function. 
MNRAS 509, 4024–4036 (2022) 

art/stab3089_f3.eps
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Figure 4. Left-hand panel: comparison of the T-Type derived from the CNN (the average of 15 models trained with k -folding) and the original T-Type (from 

N10) for the test sample of 1348 galaxies. To better visualize it, we plot average binned values, where the symbol size is proportional to the number of objects 
in each bin. The red dots (joined by a solid line) show the median value at each T-Type, while the error bars show the inter-quartile ranges (i.e. the difference 
between 75th and 25th percentiles). The predicted T-Types follow the one-to-one relation (dashed line) very well up to T-Type ∼ 5. Right-hand panel: same as 
the left-hand panel but comparing the new results (red) with the models presented in F19 (blue) for 852 individual galaxies. There is an impro v ement in the bias, 
especially at T-Type < 0 and 1 < T-Type < 4. (The average values and their error bars have been shifted ± 0.1 T-Types for better visualization.) 
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One of the main impro v ements with respect to the MDLM-VAC-
R15 is that the new catalogue includes model uncertainties provided
y the standard deviation obtained with k -folding (with k = 10, except
or the T-Type model where k = 15). This methodology is very
lose to deep ensembles – which are formally demonstrated to be a
ayesian uncertainty quantification (see Lakshminarayanan, Pritzel
 Blundell 2016 ) – and accounts for variations in the initialization

f the CNN weights as well as variations due to the training sample.
he value reported in the catalogue is the average of the k models
nd the uncertainty is their standard deviation. This methodology has
een demonstrated to impro v e the performance with respect to the
alue of the individual models (see Vega-Ferrero et al. 2021 ). We
eserved a sample that has never gone through the CNN and used
t as test sample from which to measure the performance of the k
odels (see Section 3.3). 

.3 Models’ performance 

n this section, we show the performance of the models, i.e. how the
redicted morphological classifications compare to the original ones.
or this purpose, we define a ‘test sample’, which is a set of galaxies

hat were not used to train in any of the k -folds. The results shown
n this section are obtained by applying the deep-learning models to
hese test samples. 

.3.1 T -T ype 

he T-Type model is a linear regression, and the best way to test
ts performance is to make a one-to-one comparison with the ‘true’
alue. Fig. 4 shows that there is excellent agreement between the
nput and predicted T-Types up to T-Type ∼ 5, where the predicted
-Type underestimates the correct value. We attribute this to the
mall number of such objects in the training and test samples (the
ymbol sizes are proportional to the number of objects in each T-
ype bin). In addition, there is also a slight flattening at the lowest
NRAS 509, 4024–4036 (2022) 
-Type values. This was evident, and more pronounced, in the older
odels presented in F19 (as can be seen in the right-hand panel,
here the results of the two models are compared) and is the main

eason why we also provide a classification between pure ellipticals
nd lenticulars ( P S0 ). If we limit the analysis to T-Type < 5, the
verage bias values (T-Type in − T-Type out ) are b = −0.1 and −0.4
or this work and for the F19 models, respectively. This is smaller
han typical differences between the visual classifications of different
rofessional astronomers ( b ∼ 1). The scatter is also smaller for the
ew model at intermediate T-Types ( −1, −3) but larger otherwise.
n part because the flattening of the F19 model, especially around
-Type = −2 and 3, reduces the F19 scatter. 
To summarize: Our new T-Type model shows a smaller bias

ompared to the one presented in F19 (especially at T-Type < 0
nd 1 < T-Type < 4) and includes an uncertainty value (determined
rom the standard deviation of the T-Type predicted by each of the
5 models trained with k -folding). 

.3.2 P LTG and P S0 models 

n addition to the T-Type model, the MDLM-VAC-DR17 provides
wo binary classifications trained with the N10 catalogue. 

The first one, P LTG , separates ETGs from LTGs. 
The model does an excellent job at separating the E and

2 populations, reco v ering 98 per cent of the ellipticals (defined
s true ne gativ es, TN; i.e. P LTG < 0.5 and labelled ne gativ e
n the training sample) and 97 per cent of the S2 (defined as
rue positives, TP; i.e. P LTG > 0.5 and labelled positive in the
raining sample). The separation for the intermediate populations,
0 and S1, is less clean, as e xpected. F or the S0s, 59 per cent
re classified as ETGs and 41 per cent as LTGs, while for the
1s, the fractions of galaxies classified as ETGs and LTGs are
7 per cent and 73 per cent , respectively. This classification is very
seful for making a broad separation between ETGs and LTGs,
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Figure 5. Bimodal distribution of the predicted T-Type is well described by 
our binary ETG and LTG classifier (recall that LTGs are defined as having 
P LTG > 0.5, while ETGs have P LTG < 0.5). The black dashed line at T- 
Type = 0 marks the separation between E/S0 and S, based on the T-Type 
model. Note that there are some galaxies with T-Type > 0 classified as ETGs, 
while the opposite is negligible (see discussion in Section 3.3.2). 
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Figure 6. Galaxies having inconsistent T-Type and P LTG classifications 
(open histograms) tend to be faint (top), have small angular sizes (middle), 
and small central velocity dispersions (bottom). 
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specially at intermediate T-Types, where the T-Type scatter is 
arge. 

Fig. 5 compares our T-Type and P LTG predictions for the full
aNGA DR17. The bimodality distribution of T-Types is very well 

raced by the ETG and LTG populations. Only two galaxies with 
-Type < 0 are classified as LTGs ( P LTG > 0.5). On the other hand,
315 galaxies with T-Type > 0 are classified as ETGs ( P LTG < 0.5).
Fig. 6 shows the distribution in apparent magnitude, angular size, 

nd central velocity dispersion, 6 of the galaxies having inconsistent 
-Type and P LTG classifications. These galaxies (open histograms) 
ccup y the f aint end of the magnitude distrib ution (top), ha ve small
ngular sizes (middle), and low central velocity dispersions (bottom) 
similar to the LTGs). That is, they are probably too faint or small to
learly show spiral structure. We conclude that these galaxies are the 
ost difficult to classify: The T-Type classification might be correct, 
hile the P LTG model is actually separating galaxies with evident 

piral features from galaxies that look smoother. An example of that 
ind of galaxies can be seen in the top cutout of Fig. 3 . 
The second binary classification trained with the N10 catalogue 

eparates S0s from pure ellipticals (E). This model, P S0 , is trained
ith galaxies having T-Type < 0 (from N10) and therefore is only
eaningful for galaxies with ne gativ e values of the predicted T-
ype. The reason for constructing this model is, again, the large 
catter around intermediate T-Types, where the transition between 
s and S0s occurs. Fig. 7 shows that, in the test sample, the model
lassifies as ellipticals 95 per cent of the galaxies from N10 with 
-Type = −5 and as S0 83 per cent of the galaxies classified as
0/a from N10 (with a T-Type = 0). The predicted P S0 for the
alaxies with T-Types in between is distributed around intermediate 
alues, as expected. The performance of this P S0 is not as good
s P LTG , which is reasonable given that what separates Es from
0s is rather subtle compared to the differences between ETGs and 
TGs. 
 Defined as the velocity dispersion at 0.25 arcsec derived from the MaNGA 

ata-analysis pipeline (following the methodology described in Dom ́ınguez 
 ́anchez et al. 2019 ). 

s

Hereafter – as done in F19, we classify the galaxies into three
road categories (E, S0, and S) by combining the T-Type and P S0 as
ollows: 

(i) E: T-Type < 0 and P S0 < 0.5; 
(ii) S0: T-Type < 0 and P S0 > 0.5; 
(iii) S: T-Type > 0. 

In some sections, we further subdivided the S galaxies into two
ubsamples: 

(i) S1: 0 < T-Type < 3; 
(ii) S2: T-Type > 3. 
MNRAS 509, 4024–4036 (2022) 
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Figure 7. Distribution of P S0 separating Es from S0s for different classes 
from N10. Each panel also provides the total number of galaxies and the false- 
positive and true-negative rates (top) or the true-positive and false-negative 
rates (bottom). 

Figure 8. Predicted T-Types for galaxies according to their visual classifica- 
tion. The black dashed line shows galaxies with certain visual classifications 
(VF = 0). There is an evident drop of certain visual classifications for the 
intermediate T-Types ( ∼ 0), where the distinction between E/S0 and S is very 
subtle. 
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Table 2. Comparison of automated (by combining the T-Type and P S0 

models or according to P LTG ) and visual classifications (VC = 1 for 
elliptical, VC = 2 for S0, VC = 3 for S/Irr, and VC = 0 for unclassifiable). 

TT + P S0 VC E VC S0 VC S VC unc 
(VC = 1) (VC = 2) (VC = 3) (VC = 0) 

All 

E 2632 95 4 1 < 1 
S0 963 < 1 96 4 < 1 
S 6698 < 1 9 90 < 1 

VF = 0 

E 2598 95 4 1 < 1 
S0 922 < 1 97 3 < 1 
S 5320 < 1 1 99 < 1 

P LTG VC E VC S0 VC S VC unc 
(VC = 1) (VC = 2) (VC = 3) (VC = 0) 

All 

ETG 4908 52 32 16 < 1 
LTG 5385 0 < 1 99 < 1 

VF = 0 

ETG 3700 67 27 5 < 1 
LTG 5140 0 < 1 99 < 1 

In the leftmost column, we report the number of galaxies of each type, while 
the other columns show the percentage of each type with the corresponding 
visual classification for all galaxies (top) and for galaxies with reliable visual 
classifications (VF = 0, bottom). 
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.3.3 Visual classification 

o have a more robust classification, and since the sample size allows
t, we have also carried out a visual inspection of all the galaxies.
he catalogue includes two columns reporting the results: 

(i) Visual class, which corresponds to the visual classification
ssigned to each galaxy (VC = 1 for elliptical, VC = 2 for S0,
C = 3 for S/Irr, and VC = 0 for unclassifiable); 
(ii) Visual flag, which reports the level of confidence in our visual

lass (VF = 0 for reliable and VF = 1 for uncertain classifications). 

he visual classifications were based on the models (i.e. they were
ot blind) to spot evident misclassifications. Fig. 8 shows that the
isual classifications correlate very well with the predicted T-Types.
alaxies with VC = 1 (E) peak around T-Type ∼ 2 and barely extend
eyond T-Type > 0, galaxies with VC = 3 (S) peak around T-Type

4 and barely extend below T-Type < 0, while galaxies with VC
 2 (S0) tend to have intermediate T-Types with a tail that extends
NRAS 509, 4024–4036 (2022) 
o T-Type > 0. Thus, the reader should be aware that selecting a
ample of S0 galaxies based on T-Type (i.e. T-Type < 0 and P S0 

 0.5) produces a pure but not complete sample. It also shows that
alaxies with low-confidence visual classifications are mostly those
ith intermediate T-Types. 
To quantify the comparison, Table 2 shows the number of galaxies

lassified as E, S0, or S according to the combination of the T-Type
nd P S0 values (as defined in Section 3.3.2) and the visual clas-
ification. Only 5 per cent of galaxies with elliptical morphologies
according to the models) are visually classified as S0 (4 per cent )
r S (1 per cent ). Similarly, for the galaxies classified as S0, there is
6 per cent agreement, with most of the discrepancies coming from
alaxies visually classified as S. The more important mismatch is
or the S sample, where 9 per cent of galaxies classified as S by the
odels are assigned type S0 after visual inspection. Note that, since

he P S0 classification is only meaningful for galaxies with T-Type <
, there is no ‘model’ to distinguish between S0 and S for galaxies
ith T-Type > 0. 
We also note that one third of the galaxies with T-Type > 0 and

C = 2 (S0) have a large probability of being edge-on ( P edge-on >

.5, see Section 3.3.4), which explains the discrepancies (it is almost
mpossible to distinguish an S from an S0 when seen edge-on). In
act, if we focus on galaxies with reliable visual classifications (VF
 0), the agreement is significantly impro v ed up to 99 per cent (see

he upper panel with VF = 0 in Table 2 ). 
The bottom part of Table 2 compares the visual classifications

ith the separation between ETGs and LTGs according to the P LTG 

odel. The LTG sample is very pure: 99 per cent of the galaxies with
 LTG > 0.5 were visually classified as S. On the other hand, the ETG
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Figure 9. P LTG uncertainty for the full sample (grey open histogram) and for 
galaxies whose visual classification is in disagreement with the classification 
obtained by combining the T-Type and P S0 models (red for Es visually 
classified as S0, orange for S0s visually classified as S, and blue for Ss 
visually classified as S0 – the other combinations are not shown due to their 
small number, as detailed in Table 2 ). The uncertainties for the ‘misclassified’ 
galaxies are significantly larger. 
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Figure 10. ROC curve – TPR versus FPR – for the edge-on (top) and bar 
(bottom) classifications. Grey, green, and red curves show the full test sample, 
the subset for which the model uncertainties are below the average, and the 
subset for which the uncertainties are larger than 3 σ , with N representing the 
size of each subsample. Galaxies with more certain classifications (green) 
show better performance. 

Table 3. Accuracy, precision, recall, and F1 score for P edge-on and P bar , as 
well as the number of galaxies in the test sample and the fraction of those 
labelled positive (according to GZ2). 

Model N test % Positives Accuracy Precision Recall F1 

P edge-on 98 561 14 0.98 0.87 0.98 0.93 
P bar 2723 50 0.93 0.92 0.90 0.93 
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opulation ( P LTG ≤ 0.5) is composed of 52 per cent Es, 32 per cent
0s, and 16 per cent Ss, according to the visual classification. 
onsidering only galaxies with reliable visual classifications, the 

raction of E increases up to 67 per cent , while the fractions of S0
nd S become 27 per cent and 5 per cent , respectively. 

Interestingly, the percentage of galaxies classified as ETGs with 
eliable visual classifications is only 75 per cent (3700/4908), com- 
arable to the same fraction for galaxies classified as S (5320/6698 =
9 per cent ). While this may seem contradictory, it is because most
f the galaxies with VF = 1 are those with T-Type > 0 (classified
s S by the T-Type models) and P LTG < 0.5 (classified as ETGs by
he P LTG model), i.e. they are the faint and small galaxies difficult
o classify and for which the T-Type and the P LTG classifications 
isagree: 86 per cent of the galaxies with T-Type > 0 and P LTG < 0 . 5
ave VF = 1 (1134/1315) and 78 per cent of galaxies with VF = 1
ave T-Type > 0 and P LTG < 0 . 5 (1134/1453). 
To test whether the model uncertainties correlate with the ‘misclas- 

ifications’, Fig. 9 shows the standard deviation of the value returned 
y k = 10 models separating ETGs from LTGs for galaxies whose
isual classification is different from the classification obtained by 
ombining T-Type and P S0 models. The uncertainties are significantly 
arger than those for the o v erall population. The same is true for
he P S0 uncertainties for Es visually classified as S0s (not shown 
ere). 
On the contrary, the ‘misclassified’ galaxies do not show larger 

-Type uncertainties than the full sample. Although that might seem 

nexpected, we must take into account that the T-Type model is
 linear regression and is not aware of our ‘artificial’ separation 
etween E/S0s and Ss at T-Type = 0 defined in Section 3.3.2. What
appens for these galaxies is that they are close to that limit, with
verage values of T-Type = −0.3 and 0.67 for the ‘misclassified’ S0
nd S, respectively. To quantify this uncertainty, we have generated 
00 classifications based on the average T-Type by bootstrapping 
ne of the k = 15 models in each realization. The percentage of
alaxies which changes class (i.e. has median T-Type > or < 0 in a
ifferent realization) more than 10 times is ∼ 5 per cent for the o v erall
opulation, while this happens for 40 per cent of the ‘misclassified’ 
alaxies, demonstrating that the T-Type scatter is consistent with 
hese subsamples being more difficult to separate into the broad 
/S0 and S classes. 

.3.4 Edge-on and bar classifications 

he catalogue includes two binary classifications based on the GZ2 
atalogue (Willett et al. 2013 ): identification of edge-on galaxies 
 P edge-on ) and identification of galaxies with bar signatures ( P bar ).
he receiver operating characteristic (ROC) curve – the true-positive 

ate (TPR) v ersus false-positiv e rate (FPR) – is commonly used to
ssess the performance of binary classifications. Fig. 10 shows the 
OCs for P edge-on and P bar . The models perform well, with accuracy
f 98 per cent and 93 per cent , respectively. The precision, recall,
nd F1 scores, given in Table 3 , are defined as 

Precision = TP/(TP + FP); 

Recall = TP/(TP + FN); 

F1 score = 2 ×(Recall × Precision)/(Recall + Precision). 
MNRAS 509, 4024–4036 (2022) 
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hese values reach 100 per cent in all cases when computed for the
ubsample of galaxies with certain classifications, defined as those
ith standard deviations of the predicted models below the average

see also green lines in Fig. 10 ). This is reassuring, not just regarding
he quality of our classifications, but also on the meaning of the
eported model uncertainties. 

Combining these classifications with the previous ones, only 9
alaxies classified as E (according to T-Type and P S0 ) have P edge-on 

 0.8 (compared to 1551 for the full catalogue), while 53 have
 bar > 0.8 (compared to 1300 for the full catalogue). The number
f ETGs (i.e. P LTG < 0.5) with P edge-on or P bar > 0.8 is 224 and
46, respectively (out of 4908 ETGs). These small numbers are
xpected, because E galaxies should not have bar features or disc
hapes. We want to highlight that it is very difficult to distinguish
etween S0 and S galaxies when seen edge-on, and therefore, the
eparation between these two families for galaxies with large P edge-on 

s not accurate. In fact, one third of the galaxies with T-Type >
 and VC = S0 have P edge-on > 0.5 (see discussion related to
able 2 ). 

.4 The MDLM-VAC-DR17 catalogue 

able 4 shows the format of the MDLM-VAC-DR17 catalogue. The
atalogue is released with the SDSS DR17 and is available online.
t includes the classifications discussed in the previous sections plus
dditional information on the galaxies, such as their coordinates,
edshifts, or duplicates. 

In contrast to the DR15 version, MDLM-VAC-DR17 does not
nclude P disc or P bulge values since the B/T and b / a values from the

PP-VAC are sufficient for providing such estimates. In addition,
DLM-VAC-DR17 no longer reports P merger because it does not

roperly identify true (3D) mergers but rather projected neighbours
also see discussion in DS18). 

.4.1 A note on the selection of S0s 

here are several ways to combine the morphological classifications
rovided in the MDLM-VAC-DR17 to construct samples of E, S0,
nd S galaxies. Depending on the scientific purpose, users can be
ore (or less) restrictive in order to obtain more pure (or complete)

amples. The more restrictive selection would be to combine all the
nformation included in the catalogue as follows: 

(i) E: ( P LTG < 0.5) and (T-Type < 0) and ( P S0 < 0.5) and (VC =
) and (VF = 0); 
(ii) S0: ( P LTG < 0.5) and (T-Type < 0) and ( P S0 > 0.5) and (VC
 2) and (VF = 0); 
(iii) S: ( P LTG > 0.5) and (T-Type > 0) and (VC = 3) and (VF =

). 

This selection will return 2467, 891, and 5125 galaxies classified
s E, S0, and S, respecti vely. Ho we ver, there would be 1810 galaxies
 ∼18 per cent of the sample) which do not belong to any of the
lasses. 

If the selection is based on the reliable visual classifications (i.e.
F = 0), there will be 2474 Es, 1031 S0s, and 5325 Ss. But

gain, there is a large fraction of galaxies ( ∼14 per cent ) without a
lass. 

Alternatively, the classification could be based on the combination
f P LTG and P S0 (which selects 2774 Es, 2134 S0s, and 5385 Ss)
r on the combination of T-Type and P S0 (which selects 2632
s, 963 S0s, and 6698 Ss). It is evident that the S0 galaxies
NRAS 509, 4024–4036 (2022) 
re most affected by the classification criteria. Out of the 1315
alaxies with T-Type > 0 and P LTG < 0.5, 541 (44 per cent ) are
isually classified as S0s, but only 33 of these have reliable visual
lassifications (VF = 0). As already noted throughout the text
see Section 3.3.2), S0 galaxies are sometimes very difficult to
istinguish from Sa, and it is practically impossible to identify
hem when seen edge-on. Therefore, we strongly recommend that
atalogue users test the effects different selection criteria may
ave on their scientific conclusions, especially when dealing with
0s. 

 C O M B I N I N G  T H E  TWO  C ATA L O G U E S  

n this section, we consider the benefits of combining the MPP-VAC-
R17 with the MDLM-VAC-DR17. Table 5 shows the frequency of
LAG FIT for galaxies separated by morphological classes. E and
2 galaxies tend to be better described by a one-component fit, while
0 and S1 show a mixture of one- and two-component fits. This does
ot depend on whether we use T-Type or visual classifications to
efine the morphological class. On the other hand, more than half
f the galaxies classified as ETGs or LTGs are better described by a
ne-component fit (this is due to the ETGs being a mix of E and S0
nd LTGs a mix of S1 and S2). 

Figs 11 –14 show how the distributions of n , B/T, luminosity,
entral velocity dispersion, and ε ≡ 1 − b / a depend on morphology
nd FLAG FIT. The morphological classes shown in the following
re based on the VC values, with an additional separation between
1 and S2 at T-Type = 3. 
The figures show that Es and S2s tend to be dominated by galaxies

etter described by a one-component fit (FLAG FIT = 1), with a
 ́ersic index peaking around ∼4–6 and ∼1, respectively. The S2s
ith FLAG FIT = 1 also tend to have larger ε. 
The S0s and S1s tend to have more similar numbers of galaxies

etter described by a one- or two-component fit (FLAG FIT = 1 or
), with one-component objects tending to be less luminous and to
ave smaller σ 0 . The B/T distributions of galaxies better described
y a two-component fit (FLAG FIT = 2) also show the expected
rends: As one goes to later types, the peak of the distribution (and its
ke wness) shifts to wards lo wer B/T. Since the PyMorph fits played no
ole in the morphological classification, the correspondence between
LAG FIT and morphology in these figures is remarkable, and this

s why we believe FLAG FIT should be used in scientific analyses
f our photometric catalogue. 

 C O M PA R I S O N  WI TH  G A L A X Y  Z O O  

e now compare our MDLM Deep Learning morphologies with
hose of the GZ2 provided by Willett et al. ( 2013 ), in the same
ormat as figs 24–26 in F19. We use the ‘weighted fraction’ GZ2
robability P smooth , which is sometimes used as a proxy for ETGs
nd LTGs. 
∗The top panel of Fig. 15 shows that objects with P LTG ≤ 0.5 –

.e. that are unlikely to be LTGs – tend to have large P smooth ≥ 0.6
their images are smooth, with no disc features). Although we do not
how it here, objects with P LTG ≤ 0.5 tend to have P disc ≤ 0.3 (i.e.
hey are unlikely to be discs), as expected. The bottom panel shows
hat, although most galaxies with P smooth ≥ 0.6 are dominated by Es
r S0s, there is a significant fraction ( ∼ 30 per cent ) of objects that
re Ss. 

To check if our S1 and S2 classifications at P smooth ≥ 0.6 are incor-
ect, Fig. 16 shows the distribution of n for one-component galaxies
FLAG FIT = 1) and B/T for two-component galaxies (FLAG FIT
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Table 4. Content of the Deep Learning Morphological catalogue for the DR17 MaNGA sample. This catalogue is available online. 7 

MDLM-VAC: The MaNGA Deep Learning Morphological VAC 

Column name Data type Description 

INTID int Internal identification number 
MANGA-ID string MaNGA identification 
PLATEIFU string MaNGA PLATE-IFU 

OBJID long64 SDSS-DR14 photometric identification number 
RA double Object right ascension (degrees) 
DEC double Object declination (degrees) 
Z double NSA redshift (from SDSS when not available) 
DUPL GR int Group identification number for a galaxy with multiple MaNGA spectroscopic observations 
DUPL N int Number of multiple MaNGA spectroscopic observations associated with DUPL GR 

DUPL ID int Identification number of the galaxy in the group DUPL GR 

TType double T-Type value trained with the N10 catalogue; the value in the catalogue is the average of 15 k -fold models; T-Type < 0 
for ETGs and T-Type > 0 for LTGs 

TT std double Standard deviation of the value returned by the k = 15 T-Type models; can be used as a proxy of the T-Type uncertainty 
P LTG double Probability of being LTG rather than ETG; trained with the N10 catalogue 
P LTG std double Standard deviation of the value returned by the k = 10 P LTG models; can be used as a proxy of the P LTG uncertainty 
P S0 double Probability of being S0 rather than pure elliptical, trained with the N10 catalogue; only meaningful for galaxies with 

T-Type ≤ 0 and not seen edge-on 
P S0 std double Standard deviation of the value returned by the k = 10 P S0 models; can be used as a proxy of the P S0 uncertainty 
P edge-on double Probability of being edge-on, trained with the GZ2 catalogue 
P edge-on std double Standard deviation of the value returned by the k = 10 P edge-on models; can be used as a proxy of the P edge-on 

uncertainty 
P bar double Probability of having a bar signature, trained with GZ2 catalogue; edge-on galaxies should be remo v ed to avoid 

contamination 
P bar std double Standard deviation of the value returned by the k = 10 P bar models; can be used as a proxy of the P bar uncertainty 
Visual Class int Visual classification: VC = 1 for ellipticals, VC = 2 for S0, VC = 3 for S (including irregulars), and VC = 0 for 

unclassifiable 
Visual Flag int Visual classification flag: VC = 0 certain visual classification and VC = 1 uncertain visual classification 

Table 5. Leftmost columns: fraction of galaxies of a given morphological type, which have PyMorph parameters (from S ́ersic and/or SerExp, i.e. FLAG FIT 

�= 3) and reliable visual classification (VF = 0). Rightmost columns: fraction of galaxies with FLAG FIT �= 3, VF = 0 and having two components (FLAG FIT 

= 2), one component (FLAG FIT = 1), or for which both descriptions are equally acceptable (FLAG FIT = 0).Please, keep the format of the table as close as 
possible to the original one. At least separate the two parts of the table with a line, in a similar way as in the original manuscript. The content of the table is less 
clear in this new version. 

Good fits Good fits Good S ́ersic and SerExp fits Good S ́ersic fits Good SerExp fits 
(S ́ersic and/or SerExp) and reliable visual class and reliable visual class and reliable visual class and reliable visual class 

(FLAG FIT �= 3) (FLAG FIT �= 3 + VF = 0) (FLAG FIT = 0 + VF = 0) (FLAG FIT = 1 + VF = 0) (FLAG FIT = 2 + VF = 0) 

Class Based on T-Type + P S0 

E 0.968 0.956 0.182 0.618 0.200 
S0 0.964 0.930 0.123 0.450 0.427 
S1 0.966 0.550 0.077 0.390 0.532 
S2 0.966 0.920 0.048 0.640 0.312 

Based on visual classification 

E 0.966 0.946 0.184 0.630 0.186 
S0 0.973 0.626 0.125 0.438 0.437 
S1 0.966 0.692 0.078 0.392 0.529 
S2 0.966 0.921 0.048 0.640 0.312 

Based on P LTG 

ETG 0.967 0.729 0.161 0.561 0.277 
LTG 0.966 0.925 0.056 0.575 0.369 
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 2). The Es clearly have larger n and B/T, and the Ss clearly have
 ∼ 1 and lower B/T (neither n nor B/T played a role in determining
-Type or P smooth ). This strongly suggests that our classifications are 
ppropriate, so (a) the presence of Ss with P smooth > 0.6 implies
hat conclusions about Es that are based on GZ2 P smooth should be
reated with caution; (b) selecting Es based on our MDLM T-Type
lassifications is much more robust than selecting on GZ2 P smooth . 

In their analysis of DR15, F19 showed that selecting objects with
 disc < 0.3 produces almost identical results as Fig. 16 . This remains

rue in DR17, so we have not shown it explicitly. 
MNRAS 509, 4024–4036 (2022) 
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Figure 11. Distribution of r -band n and n bulge for galaxies better described by a one-component fit (FLAG FIT = 1, left-hand panel) and a two-component 
fit (FLAG FIT = 2, middle panel). For galaxies with FLAG FIT = 2, the distribution of B/T is also shown (right-hand panel). Galaxies are colour coded by 
morphology based on the VC values, with an additional separation between S1 and S2 at T-Type = 3. There is a strong correlation between morphological 
classes and photometric parameters. (The peak height of the S2 histogram is 0.153.) 

Figure 12. Distribution of r -band absolute magnitude for galaxies selected 
on the basis of their morphology and FLAG FIT. Es are the brightest, while 
Ss peak at fainter absolute magnitudes, especially those with a preferred 
one-component fit (FLAG FIT = 1 – i.e. without a bulge component). 

Figure 13. Same as the previous figure, but for central velocity dispersion 
σ 0 . Es tend to have large σ 0 , whereas for S2s σ 0 tends to be very small. S1s 
with a preferred one-component fit (FLAG FIT = 1) have smaller σ 0 . 

Figure 14. Same as the previous figure, but for observed ε ≡ 1 − b / a . Es 
tend to be round, whereas S2s have a wide range of ε as expected for inclined 
discs. This correlation with morphology is striking because PyMorph b/a 
played no role in the classification. 
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 SUMMARY  A N D  C O N C L U S I O N S  

e have presented the MPP-VAC-DR17 and MDLM-VAC-DR17
or the final data release of the MaNGA surv e y (which is part of the
DSS Data Release 17 – DR17). 
The MPP-VAC-DR17 is an extension of the MPP-VAC-DR15 to

nclude all the galaxies in the final MaNGA release. It provides
hotometric parameters for 2D surface brightness profiles for 10 293
bservations (of which 10 127 are unique galaxies) in the g , r , and i
ands. The MPP-VAC is identical to the one presented in F19, and
ts content is detailed in table 1 of F19. The only difference with the

PP-VAC-DR15 is the definition of the PA, given in this catalogue
ith respect to the camera columns in the SDSS ‘fpC’ images. The
D light profile fittings are derived both for S ́ersic and SerExp
odels. The catalogue contains a flagging system that indicates
hich fit is to be preferred for scientific analyses (FLAG FIT =
 for S ́ersic, FLAG FIT = 2 for SerExp, FLAG FIT = 0 when both
re acceptable). We urge users to pay attention to the preferences
xpressed by this flag since some fits may be unreliable. 

The MDLM-VAC-DR17 is also an extension of the MDLM-VAC-
R15 presented in F19 and includes exactly the same entries as MPP-
 AC-DR17. The MDLM-V AC-DR17 implements some changes

art/stab3089_f11.eps
art/stab3089_f12.eps
art/stab3089_f13.eps
art/stab3089_f14.eps
https://www.sdss.org/dr17/data_access/value-added-catalogs/?vac_id=manga-morphology-deep-learning-dr17-catalog
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Figure 15. Distribution of P smooth from GZ2 for DR17 galaxies divided 
according to our P LTG (top) and T-Type + P S0 (bottom). Most galaxies with 
P smooth ≥ 0.6 have P LTG ≤ 0.5 and tend to be Es or S0s, although there is a 
non-negligible fraction of Ss. 
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Figure 16. Distribution of r -band S ́ersic index n for galaxies better described 
by a one-component fit (FLAG FIT = 1, top) and B/T for galaxies better 
described by a two-component fit (FLAG FIT = 2, bottom), for galaxies 
with GZ2 P smooth > 0.6. Objects with small n or B/T tend to be S, confirming 
that our morphological classification is correct. Results for P disc ≤ 0.3 from 

GZ2 are nearly identical, so we have not shown them here. 
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ompared to the previous release, and its content is detailed in Table 4 .
he main impro v ements of the new release are as follows: 

(i) The low end of the T-Types is better reco v ered, with a smaller
ias b compared to the previous version, thanks to a change in
he CNN architecture (an additional dense layer was added, see 
ection 3.2). 
(ii) A new binary model P LTG , which separates ETGs from LTGs

n a complementary way to the T-Type, especially at intermediate 
-Types where the scatter is larger. 
(iii) All the classifications are trained using k -folding (with k = 15

or the T-Type and k = 10 for the rest of the models), and the value
eported in the catalogue is the average of the k models. 

(iv) We report the standard deviation of the outputs of the k models, 
hich can be used as a proxy for their uncertainties (see Figs 9 and
0 ). 
(v) A visual classification (VC = 1 for E, VC = 2 for S0, and VC
 3 for S/Irr) and a visual flag (VF = 0 for reliable classification and
F = 1 for uncertain classifications) are also included. 

By combining the different classification models, we find the 
ollowing: 

(i) Galaxies having inconsistent T-Type and P LTG classifications 
end to be faint and small galaxies with small central velocity 
ispersion, i.e. they are difficult to classify. In general, they share 
ome properties with LTGs, but they have no obvious spiral features. 
(ii) The larger discrepancy between the visual classification and 
he one provided by the combination of the T-Type and the P S0 

as defined in Section 3.3.2) is for galaxies classified as S0 by the
ormer and S by the latter (see Table 2 ). This fraction is reduced
rom 10 per cent to 1 per cent when only galaxies with VF = 0 are
onsidered. 

(iii) The larger discrepancy between the visual classification and 
 LTG is for galaxies classified as S by the former and ETG by the

atter (see Table 2 ). This fraction is reduced from 16 per cent to
 per cent when only galaxies with VF = 0 are considered. 

By combining the two catalogues MPP-VAC-DR17 and MDLM- 
AC-DR17, and despite the changes to the morphological classifi- 
ation, we find similar results to those found in F19: 

(i) There is a strong correlation between the morphological clas- 
ification and the values of n , n bulge , and B/T (see Fig. 11 ). 

(ii) E galaxies tend to be bright (more ne gativ e M r values), hav e
arge central velocity dispersion σ 0 , and small ellipticity ε, while the
rend is the opposite for the S galaxies, especially S2 (see Figs 12 –
4 ). 
(iii) Separating galaxies according to the FLAG FIT, we observe 

hat Es and S2s tend to be dominated by galaxies better described by
 one-component fit (FLAG FIT = 1). On the other hand, the S0s and
1s tend to have more similar numbers of objects described by a one-
MNRAS 509, 4024–4036 (2022) 
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r two-component fit (FLAG FIT = 1 and 2), with one-component
bjects tending to be less luminous and having smaller σ 0 . 
(iv) Since the PyMorph fits played no role in the morphological

lassification, the correspondence between FLAG FIT and morphol-
gy is remarkable: FLAG FIT should be used in scientific analyses
f our photometric catalogue. 
(v) We find a significant fraction of S galaxies with P smooth > 0.6

rom GZ2 (Fig. 15 ). Most of these galaxies ha ve ha ve n ∼ 1 and low
/T (Fig. 16 ), consistent with being disc galaxies. Therefore, as F19
oted previously, conclusions about Es that are based on GZ2 P smooth 

hould be treated with caution. 

C K N OW L E D G E M E N T S  

he authors thank the referee for useful comments, which helped to
mpro v e the quality of the paper. This w ork w as supported in part
y NSF AST-1816330. HDS acknowledges support from PIE2018-
0E099 project: Cross-field research in space sciences. The authors
ratefully acknowledge the computer resources at Artemisa, funded
y the European Union ERDF and Comunitat Valenciana as well as
he technical support provided by the Instituto de F ́ısica Corpuscular,
FIC (CSIC-UV). 

Funding for the Sloan Digital Sky Survey IV has been provided
y the Alfred P. Sloan Foundation, the U.S. Department of En-
rgy Office of Science, and the Participating Institutions. SDSS-
V acknowledges support and resources from the Center for High
erformance Computing at the University of Utah. The SDSS
ebsite is www.sdss.org . 
SDSS-IV is managed by the Astrophysical Research Consortium

or the Participating Institutions of the SDSS Collaboration, includ-
ng the Brazilian Participation Group, the Carnegie Institution for
cience, Carne gie Mellon Univ ersity, Harvard–Smithsonian Center
or Astrophysics, the Chilean Participation Group, the French Par-
icipation Group, Instituto de Astrof ́ısica de Canarias, The Johns
opkins University, Kavli Institute for the Physics and Mathematics
f the Uni verse (IPMU)/Uni versity of Tokyo, the Korean Partic-
pation Group, Lawrence Berkeley National Laboratory, Leibniz
nstitut f ̈ur Astrophysik Potsdam (AIP), Max-Planck-Institut f ̈ur
stronomie (MPIA Heidelberg), Max-Planck-Institut f ̈ur Astro-
hysik (MPA Garching), Max-Planck-Institut f ̈ur Extraterrestrische
hysik (MPE), National Astronomical Observatories of China,
ew Mexico State University, New York Univ ersity, Univ ersity
f Notre Dame, Observat ́ario Nacional/MCTI, The Ohio State
ni versity, Pennsylv ania State University, Shanghai Astronomical
bservatory, United Kingdom Participation Group, Universidad
acional Aut ́onoma de M ́exico, University of Arizona, University of
olorado Boulder, University of Oxford, University of Portsmouth,
niversity of Utah, University of Virginia, University of Wash-

ngton, University of Wisconsin, Vanderbilt University, and Yale
niversity. 
NRAS 509, 4024–4036 (2022) 
ATA  AVAI LABI LI TY  

he catalogues described in this paper are part of the final data
elease of the MaNGA surv e y and will be released as part of
he SDSS DR17. The catalogues are available at https:// www.sd
s.org /dr17/data access/value-added-catalogs. The code used for the
eep-learning algorithm may be shared upon request. 

EFERENCES  

guado D. S. et al., 2019, ApJS , 240, 23 
llen J. T. et al., 2015, MNRAS , 446, 1567 
ernardi M., Meert A., Vikram V., Huertas-Company M., Mei S., Shankar

F., Sheth R. K., 2014, MNRAS , 443, 874 
ertin E., Arnouts S., 1996, A&AS , 117, 393 
lanton M. R. et al., 2017, AJ , 154, 28 
undy K. et al., 2015, ApJ , 798, 7 
appellari M. et al., 2011, MNRAS , 413, 813 
om ́ınguez S ́anchez H., Huertas-Company M., Bernardi M., Tuccillo D.,

Fischer J. L., 2018, MNRAS , 476, 3661 (DS18) 
om ́ınguez S ́anchez H., Bernardi M., Brownstein J. R., Drory N., Sheth R.

K., 2019, MNRAS , 489, 5612 
rory N. et al., 2015, AJ , 149, 77 
ischer J.-L., Bernardi M., Meert A., 2017, MNRAS , 467, 490 
ischer J. L., Dom ́ınguez S ́anchez H., Bernardi M., 2019, MNRAS , 483,

2057 (F19) 
raham M. T. et al., 2018, MNRAS , 477, 4711 
reene J. E. et al., 2017, ApJ , 851, L33 
unn J. E. et al., 2006, AJ , 131, 2332 
akshminarayanan B., Pritzel A., Blundell C., 2016, preprint

( arXiv:1612.01474 ) 
aw D. R. et al., 2015, AJ , 150, 19 
aw D. R. et al., 2016, AJ , 152, 83 
eert A., Vikram V., Bernardi M., 2013, MNRAS , 433, 1344 
eert A., Vikram V., Bernardi M., 2015, MNRAS , 446, 3943 (DR7) 
eert A., Vikram V., Bernardi M., 2016, MNRAS , 455, 2440 
air P. B., Abraham R. G., 2010, ApJS , 186, 427 (N10) 
eng C. Y., Ho L. C., Impey C. D., Rix H.-W., 2002, AJ , 124, 266 
 ́anchez S. F. et al., 2012, A&A , 538, A8 
imard L., Mendel J. T., Patton D. R., Ellison S. L., McConnachie A. W.,

2011, ApJS , 196, 11 (S11) 
mee S. A. et al., 2013, AJ , 146, 32 
ega-Ferrero J. et al., 2021, MNRAS , 506, 1927 
ikram V., Wadadekar Y., Kembhavi A. K., Vijayagovindan G. V., 2010,

MNRAS , 409, 1379 
ake D. A. et al., 2017, AJ , 154, 86 
illett K. W. et al., 2013, MNRAS , 435, 2835 

an R. et al., 2016a, AJ , 151, 8 
an R. et al., 2016b, AJ , 152, 197 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

file:www.sdss.org
file:www.sdss.org
http://dx.doi.org/10.3847/1538-4365/aaf651
http://dx.doi.org/10.1093/mnras/stu2057
http://dx.doi.org/10.1093/mnras/stu1106
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.3847/1538-3881/aa7567
http://dx.doi.org/10.1088/0004-637X/798/1/7
http://dx.doi.org/10.1111/j.1365-2966.2010.18174.x
http://dx.doi.org/10.1093/mnras/sty338
http://dx.doi.org/10.1093/mnras/stz2414
http://dx.doi.org/10.1088/0004-6256/149/2/77
http://dx.doi.org/10.1093/mnras/stx136
http://dx.doi.org/10.1093/mnras/sty3135
http://dx.doi.org/10.1093/mnras/sty504
http://dx.doi.org/10.3847/2041-8213/aa8ace
http://dx.doi.org/10.1086/500975
http://arxiv.org/abs/1612.01474
http://dx.doi.org/10.1088/0004-6256/150/1/19
http://dx.doi.org/10.3847/0004-6256/152/4/83
http://dx.doi.org/10.1093/mnras/stt822
http://dx.doi.org/10.1093/mnras/stu2333
http://dx.doi.org/10.1093/mnras/stv2475
http://dx.doi.org/10.1088/0067-0049/186/2/427
http://dx.doi.org/10.1086/340952
http://dx.doi.org/10.1051/0004-6361/201117353
http://dx.doi.org/10.1088/0067-0049/196/1/11
http://dx.doi.org/10.1088/0004-6256/146/2/32
http://dx.doi.org/10.1093/mnras/stab594
http://dx.doi.org/10.1111/j.1365-2966.2010.17426.x
http://dx.doi.org/10.3847/1538-3881/aa7ecc
http://dx.doi.org/10.1093/mnras/stt1458
http://dx.doi.org/10.3847/0004-6256/151/1/8
http://dx.doi.org/10.3847/0004-6256/152/6/197

	1 INTRODUCTION
	2 MANGA PYMORPH PHOTOMETRIC VALUE ADDED CATALOGUE (MPP-VAC-DR17)
	3 MANGA DEEP LEARNING MORPHOLOGY VALUE ADDED CATALOGUE (MDLM-VAC-DR17)
	4 COMBINING THE TWO CATALOGUES
	5 COMPARISON WITH GALAXY ZOO
	6 SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

