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ABSTRACT
With the advent of future big-data surveys, automated tools for unsupervised discovery are
becoming ever more necessary. In this work, we explore the ability of deep generative networks
for detecting outliers in astronomical imaging data sets. The main advantage of such generative
models is that they are able to learn complex representations directly from the pixel space.
Therefore, these methods enable us to look for subtle morphological deviations which are
typically missed by more traditional moment-based approaches. We use a generative model to
learn a representation of expected data defined by the training set and then look for deviations
from the learned representation by looking for the best reconstruction of a given object. In this
first proof-of-concept work, we apply our method to two different test cases. We first show
that from a set of simulated galaxies, we are able to detect ∼90 per cent of merging galaxies if
we train our network only with a sample of isolated ones. We then explore how the presented
approach can be used to compare observations and hydrodynamic simulations by identifying
observed galaxies not well represented in the models. The code used in this is available at
https://github.com/carlamb/astronomical-outliers-WGAN.

Key words: software: data analysis – methods: data analysis.

1 IN T RO D U C T I O N

In recent years, the amount of astronomical data produced both by
observations and simulations has exponentially increased in volume
and complexity. This trend is expected to continue in the near
future with surveys such as LSST and EUCLID becoming available.
Processing and extracting meaningful physical information from
these new data sets is a new challenge for the community.

To provide the necessary computational relief, machine learning
techniques are becoming more and more popular as a way to
address the increasing complexity. In particular, supervised machine
learning has proven to be very successful when large amounts
of labelled or annotated data are available for classification (e.g.
Huertas-Company et al. 2015; Cabrera-Vives et al. 2017; Jacobs
et al. 2017; Kim & Brunner 2017; Domı́nguez Sánchez et al.
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2018; Huertas-Company et al. 2018; Sreejith et al. 2018; Davidzon
et al. 2019), regression (e.g. Tuccillo et al. 2018; Bonjean et al.
2019; Pasquet et al. 2019), and segmentation (e.g. Boucaud et al.
2020).

Supervised algorithms rely on annotated data sets and are thus,
not well suited to the discovery of new types of unknown objects
which will certainly be present in future surveys. In order to fully
unlock the discovery potential of machine learning we have to
leverage unlabelled data. Unsupervised algorithms aim to learn the
underlying distribution of the data and find patterns without relying
on annotated data. Such unsupervised methods can be, hence, used
to detect objects whose properties deviate from the expected or
normal objects given a data distribution. These abnormal objects are
commonly referred to as outliers or anomalies. Anomaly detection
is an active field in machine learning and has a broad range of
applications ranging from fraud detection to surveilance (e.g. Frery
et al. 2017; Zhang, Vukotic & Gardner 2018) to early diagnosis of
disease outbreaks (Wong et al. 2005).
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In astronomy, outliers can represent artifacts in the data, pipeline
errors or new physics. In the case of data or pipeline artifacts, it is
important to further analyse them to better reduce systematics. On
the other hand, any novel findings can potentially lead to interesting
new science (Norris 2017) or objects which differ between models
and observations. Several machine learning methods have already
been successfully applied to detect outliers in astrophysical data
sets, such as unknown classes of objects or objects belonging to
rare classes. For example, self-organizing maps have been used to
detect unusual quasars (Fustes et al. 2013) and spectroscopic outliers
(Meusinger et al. 2012), random forests have been used to detect
anomalous SDSS spectra (Baron & Poznanski 2017), one-class
support vector machines have been employed for novel detection in
the WISE survey (Solarz et al. 2017) and clustering algorithms have
been utilized to detect anomalous data in light-curves (Protopapas
et al. 2006; Giles & Walkowicz 2018).

Anomaly detection in astronomical images is, however, a more
complex task because of the high dimensionality (i.e. high number
of parameters, in this case the number of pixels in the image) and
limited amount of data. Traditional machine learning approaches,
such as those mentioned earlier, typically rely on some reduced set
of summary statistics (such as photometry, spectroscopic features,
or shape measurements), which usually discard a large amount of
information about the image complexity and, therefore, can miss
some subtle morphological anomalies. Deep generative models, on
the other hand, are a modern class of unsupervised methods with
the ability to learn complex representations of high-dimensional
data in such a way that they can generate new examples drawn
approximately from the same distribution as the original data
set. Generative Adversarial Networks (GANs; Goodfellow et al.
2014) provide a framework for training such deep generative
models. They have gained popularity in recent years for their
ability to produce extremely realistic images of everyday scenes
(Radford, Metz & Chintala 2015; Karras et al. 2018) and have
also been used in astronomy to generate realistic galaxy images
(Ravanbakhsh et al. 2017). Recently, work has shown that GANs
can be efficiently used for anomaly detection in medical image
data sets (Schlegl et al. 2017; Murphy et al. 2018). They present
a promising application for anomaly detection in astronomical
images. One of the key advantages of a generative model-based
approach for anomaly detection is that the model can learn
to represent complex data directly from the pixel distribution
without relying on specific galaxy properties, that could, oth-
erwise, introduce biases from the methods used to obtain such
properties.

This work, as the first in a series of studies, aims to achieve two
goals: to test of the ability of generative models to identify outliers
in astronomical imaging data sets (i.e. images that are significantly
different to the expected or ‘normal’ data) and their capability to
globally discern differences between data sets. To address the first
goal, we test the approach in a well-defined sample of simulated
galaxies from the cosmological hydrodynamic simulation Horizon-
AGN (Dubois et al. 2014). We define isolated galaxies as the
normal objects and then quantify how frequently merging galaxies
are detected as outliers. We chose this example for the potential
to have a large sample of well-defined anomalies (the mergers) and
therefore the ability to draw statistically significant conclusions. For
that reason, in this first test, we refrain from testing our method with
human-labelled anomalies on real data, as the sample of anomalies
would not be sufficiently large. For our second task, we explore
whether Wasserstein GANs (WGANs, discussed in Section 3.3;
Arjovsky, Chintala & Bottou 2017; Gulrajani et al. 2017) can

be employed to quantify differences between observations and
simulations.

The paper is structured as follows: In Section 2 we present the
data we use for this work. In Section 3 we explain the methodology
for anomaly detection. Section 4 is devoted to describing different
possible applications. And finally, we summarize our findings in
Section 5.

2 DATA

For this work, we use both simulated data from the Horizon-AGN
cosmological hydrodynamical simulation (Dubois et al. 2014) and
observed galaxies from the CANDELS survey (Grogin et al. 2011;
Koekemoer et al. 2011).

2.1 Horizon-AGN

We refer the reader to Dubois et al. (2014) for complete details of the
simulation suite. Horizon-AGN is a cosmological hydrodynamical
simulation run in a Lbox = 100 h−1 Mpc cube with initial conditions
drawn from WMAP-7 cosmological parameters (Komatsu et al.
2011). The total volume contains 10243 dark matter (DM) particles,
with a DM mass resolution of MDM,res = 8 × 107 M�. The simula-
tion is run with the adaptive mesh refinement code RAMSES (Teyssier
2002), and the initially uniform grid is refined down to a minimum
cell size of 1 kpc constant in physical length. Gas is allowed to
cool down to 104 K through H and He collisions with a contribution
from metals using a Sutherland & Dopita (1993) model. Gas is
heated from a uniform UV background after zreion = 10 following
Haardt & Madau (1996). Star formation occurs in regions where
the gas density reaches a critical density of n0 = 0.1 H cm−3 and it
is modelled with a Schmidt law: ρ∗ = ε∗ρ/tff, where ρ∗ is the star
formation rate density, ρ is the gas density, ε∗ = 0.02 (e.g. Kennicutt
1998) the constant star formation efficiency and tff is the local free-
fall time of the gas. Stellar feedback is included assuming a Salpeter
(1955) initial mass function (IMF), and occurs via stellar winds,
supernovae type II and type Ia, with mass, energy, and metal release
of six chemical species: O, Fe, C, N, Mg, and Si. Black hole (BH)
feedback is also included in the simulation as modelled in Dubois
et al. (2012), with BHs releasing energy in a quasar (heating) mode
for a high accretion rate (Eddington ratio >0.01) and in radio mode
(jet) for low accretion rates (Eddington ratios <0.01).

In Horizon-AGN, galaxies are identified using the ADAPTAHOP
structure finder (Aubert, Pichon & Colombi 2004) over the stellar
distribution. The merger trees for the identified galaxies are built
using the procedure outlined in Tweed et al. (2009), considering
758 time-steps that cover a redshift range spanning from z = 7 to
z = 0 and with a time difference of 17 Myr in average between two
successive time-steps.

2.1.1 Mock images

From the output of the simulation, we produce mock observations
that will be used to train the generative models. In particular,
mock images are produced to replicate the properties of the HST-
CANDELS images in the H-band (F160W), using the SUNSET code
(e.g. Kaviraj et al. 2017; Laigle et al. 2019), which models the
emission of all galaxy particles to produce an image in the observed-
frame. For each identified galaxy in the simulation, we define a cubic
volume centred around the galaxy with an edge length of eight times
the radius of the galaxy (in this case, defined as the average between
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the three semi-axes obtained when fitting an ellipsoid to the stellar
mass distribution of the galaxy). This volume should contain the
stellar particles from the main galaxy as well as those from any
close companion, in order to capture any secondary progenitor in the
image for the case of galaxy mergers. The stellar particles contained
within the volume are used as an input to SUNSET, along with the
spectral response of the H-band filter of the WFC3 camera. SUNSET

computes the fluxes corresponding to the inputs using the stellar
models of Bruzual & Charlot (2003) and a Chabrier (2003) IMF. It
is assumed that each particle is well described by a simple stellar
population, for determining the contribution of each particle to the
Spectral Energy Distribution (SED). For this work, we chose not
to include dust effects in the image generation for computational
reasons. This should not be a problem for tests involving only
simulated data but can significantly affect the comparison with
observations. We will discuss this in Section 4.2.2. Finally, the
integration of the SED in each pixel and the redshift of the galaxy
are used to generate an image in the observed frame. The physical
size of the pixel is re-scaled for every image to 0.06 arcsec, to match
the resolution of the CANDELS H-band images. The flux is then
scaled using the H-band zero-point of CANDELS to match the S/N.
Finally, to generate a realistic mock observation, the rescaled images
are convolved with the corresponding PSF. These steps are repeated
for three different projections along the main axis of the simulations
(X,Y,Z) so that for every 3D cube three images are produced. The
final sample built that way consists of 1524 118 mock images which
include all galaxies with log (M∗/M�) > 10 and 0.5 < z < 3, with
250 snapshots in the redshift range. For the purpose of this work,
we set a fixed image size of 64 × 64 pixels.

2.2 CANDELS

We use H-band images from the five CANDELS (Grogin et al.
2011; Koekemoer et al. 2011) fields: UDS, COSMOS, GOODS-S,
GOODS-N and EGS. The parent sample comes from the catalogue
of Dimauro et al. (2018). Our final selection is made of H-band
selected galaxies with magnitudes brighter than F160 = 23.5,
log (M∗/M�) > 10 and 0.5 < z < 3, to match the sample of galaxies
from the Horizon-AGN simulation in stellar mass and redshift. The
final sample consists of 17 611 CANDELS images.

We use the official catalogues of redshifts (spectroscopic redshifts
are used when available) and stellar masses from CANDELS.
The UDS and GOODS-S photometric redshifts were determined
using the method described in Dahlen et al. (2013). Stellar masses
are drawn from the catalogue presented in Santini et al. (2014)
using these photometric redshifts. For the COSMOS, GOODS-N,
and EGS fields, the photometric redshifts and stellar masses are
discussed in Nayyeri et al. (2017), Barro et al. (2019), and Stefanon
et al. (2017), respectively.

We additionally use the structural parameters (Sérsic index, n,
effective radius, Reff, and axial ratio, q) published in Dimauro et al.
(2018), obtained from 2D single Sérsic fits on the H-band (F160W),
and the deep-learning based visual morphologies from Huertas-
Company et al. (2015).

3 ME T H O D

3.1 Deep neural networks

Artificial Neural Networks (ANN; Hassoun 1995), are compu-
tational techniques vaguely inspired by the connections that are
established between the neurons in the brain and their ability to

store and process information. An ANN consists of a collection
of connected nodes or units (or neurons). The connections (or
synapsis) are directed and have associated weights. Those weights
are determined by training (or learning).

The nodes of a network are typically arranged in layers. The
particular arrangement of the nodes into layers and the connection
patterns between them is called the architecture of the neural
network. Input layers contain the nodes that receive their input from
an external source, output layers provide the output of the network,
and the layers in between are referred to as hidden layers. Each
node of the hidden layers (hidden unit) is a mathematical function
that receives inputs from units in the previous layer and computes
an output that is transmitted to other units in the next layer based
on the connecting weights. The goal is to use the network as a
complex non-linear function that provides some desired output for
each input. A cost function or loss is defined to quantify how far is
the desired output from the network’s actual output. Training is the
process of determining the best set of weights to minimize the cost
function for a given data set.

Deep-learning Networks (or Deep Networks) are ANNs com-
prised of many more hidden layers than traditional ANNs and
typically have more complex architectures and mathematical func-
tions in their units. Convolutional Neural Networks (CNNs) are a
particular architecture of deep networks that were developed within
the context of image processing and computer vision applications
(Fukushima 1988). CNNs are comprised of one or more convolu-
tional layers followed by one or more fully connected layers. The
convolutional layers take as input a set of feature maps (e.g. the
colour channels of an image) and convolve each of these with a
set of learnable filters to produce the output feature maps. Each
layer adds more abstraction to the original input and produces
a more informative set of features for the next layer. The fully
connected layers have every node in a layer connected to every
node in the following layer. They act as a classifier, taking as input
the features from the last convolutional layer. The architecture of a
CNN is designed to take advantage of the 2D structure of an input
image, preserving the spatial relationship between pixels, i.e. they
are able to learn translationally invariant features from the data.
By exploiting the translational symmetry of the data, CNNs have
shown to produce great results for pattern recognition in images.

3.2 Generative advesarial networks, GANs

Generative adversarial networks (GANs) were first introduced in
Goodfellow et al. (2014). In the original formulation, they consist
of two networks that are trained simultaneously: a generator (the
generative model to be trained) and a discriminator (a classification
model). The generator, Gθ , with parameters θ , produces new
samples from the approximated target data distribution whilst the
discriminator, Dψ , with parameters ψ , aims to distinguish the
generated samples from the true target distribution.

The input for the generator is a random vector, z, usually drawn
from a normal or uniform distribution, and the output is drawn
from the approximate target distribution x̃ = Gθ (z), usually an
image, although not necessarily so. The discriminator is trained
as a standard classifier optimized to distinguish real and generated
images. The output of the discriminator describes whether the
features are likely to be from the true distribution or not. Once the
discriminator is trained to optimize the parameters, ψ , for a given
set of θ , the discriminator parameters are fixed, and the generator
is trained to maximize the distance from the category designated
as a generated image. In doing so, the features which distinguish
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the two categories in the discriminator are backpropagated through
to the generator, allowing the generator to create generated images
with the features representative of the real ones. The networks keep
training alternately until a Nash equilibrium (Nash 1950) is reached
and the generator creates images that are equally categorized by
the discriminator as the real ones. The objective of the combined
networks can be formulated as the minimax objective of distance
V(Pr, Pg) as follows:

V (Pr, Pg) = min
θ∈RNG

max
ψ∈RND

E
x∼Pr

[log Dψ (x)]

+ E
z∼Pz

[log(1 − Dψ (Gθ (z)))] , (1)

where Pr is the real data distribution and Pg is the distribution of
samples of generated targets x̃ = Gθ (z) obtained from the latent
distribution z ∼ Pz.

3.3 Wasserstein generative adversarial networks, WGANs

GANs have shown unprecedented achievements for many genera-
tive tasks, particularly in image generation. However, the original
GAN formulation often suffers from convergence problems, when
the network fails to find a Nash equilibrium (Salimans et al.
2016), or mode collapse, that results in the generator producing
limited varieties of samples. Since GANs were introduced, several
improvements have been proposed in the literature that help sta-
bility in the training phase (e.g. Salimans et al. 2016; Neyshabur,
Bhojanapalli & Chakrabarti 2017; Thanh-Tung, Tran & Venkatesh
2019). One of them is the Wasserstein-GAN (WGAN) model which
is based on the Wasserstein-1 distance as the metric to measure
the similarity between a real and a generated distribution. This
type of network has been shown to be more stable and reach
convergence more easily than the original formulation of GANs and
prevents mode collapse (Arjovsky et al. 2017). Although similar in
style to traditional GANs, WGANs are theoretically separate. In
principle, the difference with WGANs is that the discriminator, Dψ

is replaced by another network, often called a critic, Cψ . Instead
of classifying images into real or generated categories, the critic
gives an estimation of the Wassestein distance, which describes the
amount of work necessary to transport a generated distribution to a
target one. In our case, the distribution is the pixels of a collection
of images. In times gone by, the Wasserstein distance has also
been known as the Monge–Ampère–Kantorovich distance and the
Earth-mover distance (EMD). The name EMD arises since one can
think of a probability distribution as a pile of earth where the EMD
would be the minimal work needed to move one pile to the other.
Work is defined as the amount of earth/mass that was moved times
the travelled distance. Mathematically, the Wasserstein distance
between two probability distributions Pr and Pg can be expressed
as the supremum over the set of all 1-Lipschitz functions, C, via:

W (Pr, Pg) = sup
Cψ ∈C

[
E

x∼Pr
[Cψ (x)] − E

z∼Pz
[Cψ (Gθ (z))]

]
θ=θ∗

, (2)

where θ∗ is some fixed set of parameters of the generator. In order
to implement a WGAN, we approximate the 1-Lipschitz functions
in equation (2) with a neural network, i.e. the critic, that is trained
by maximizing the following cost function:

L =
[

E
x∼Pr

[Cψ (x)] − E
z∼Pz

[ Cψ (Gθ (z))]

]
θ=θ∗

. (3)

However, the function Cψ learned by the critic has to be a 1-
Lipschitz function in order to calculate the approximate Wasserstein

Figure 1. Critic (top) and generator network (bottom). The critic in this
work consists of five convolutional layers and two dense layers. It takes as
input an image of 64 × 64 pixels and outputs a real number. The generator
network is made of one dense layer and six convolutional layers. It takes as an
input a random vector of size 100 and outputs an image of size 64 × 64 pixels.

distance. A differentiable function is 1-Lipschitz if and only if it has
gradients with norm at most 1 everywhere. This can be enforced
in the WGAN using gradient penalty that penalizes the model if
the gradient norm moves away from norm value of order unity,
which results in adding a regularization term in the loss function.
Therefore, the new loss function for the critic that we maximize has
the following form:

LC =
[

E
x∼Pr

[Cψ (x)] − E
z∼Pz

[Cψ (Gθ (z)]

+ λ E
x̂∼Px̂

[(‖∇x̂Cψ (x̂)‖2 − 1)2]

]
θ=θ∗

, (4)

where x̂ = εx + (1 − ε)x̃ is uniformly sampled from the straight
line between a pair of data points sampled from the distribution of
Pr and samples of x̃ ≡ Gθ (z) with z ∼ Pz. ε is a mixing parameter,
uniformly sampled between 0 and 1. λ (the gradient penalty) is
a hyperparameter that is, in practice, tuned to achieve optimal
performance.

Since the parameters θ of the generator Gθ do not enter into the
first term of equation (3), its derivative with respect to θ is zero and
as such we can define the generator-only loss as:

LG =
[
− E

z∼Pz

[Cψ (Gθ (z))]

]
ψ=ψ∗

. (5)

3.4 Training procedure

We implement CNN architectures for the critic and the generator,
both shown in Fig. 1. The generator network takes as input a random
vector of size 100 and outputs an image of size 64 × 64 pixels. It
consists of one dense layer and six convolutional layers. The critic
consists of five convolutional layers and two dense layer. It takes as
input an image of 64 × 64 pixels and outputs a real number. The final
architectures used in this work have been achieved through manual
optimization and will not necessarily suit other applications.
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Figure 2. Schematic representation of the WGAN training. Given a batch
of real and generated images, the critic is trained for ncritic iterations to
approximate the Wasserstein distance, by minimizing Lc whilst keeping
the weights of the generator fixed. Afterwards, the generator’s weights are
updated for a single iteration, whilst the critic weights are held constant so
that it minimizes the approximate Wasserstein distance.

The WGAN is trained following the standard procedure outlined
in Gulrajani et al. (2017). Similar to the original GAN, the
two networks of the WGAN are trained alternately. A schematic
representation of the WGAN training is shown in Fig. 2. We use a
default value of λ = 10 for the gradient penalty coefficient, a number
of critic iterations per generator iteration ncritic = 10, batch size m =
32 and Adam optimizer with the following hyperparameters: α =
0.00005, β1 = 0.5, β2 = 0.9. We use KERAS1 with TENSORFLOW2

as the backend. The exact algorithm is shown in Appendix A.

3.5 Anomaly detection method

Our goal is to use the trained WGAN to detect outliers. The main
underlying idea is that after training is completed, the generator Gθ

should be able to take a point z from the latent space and generate an
image that resembles the images used for training (normal images).
However, whenever an image does not come from the distribution
of normal images then it will not be possible to generate a similar
image from any point, {z|z ∈ RNz }, in the latent space, RNz , and it
will be in some sense anomalous.

Therefore, in order to identify if a given image xt is an outlier,
we need first to look for the closest image the trained network
can generate from the latent space and then quantify the degree of
similarity between the generated image x̃′ ≡ Gθ (z′) and the original
one xt . In this work, we follow the method described in Schlegl
et al. (2017) to find the z′ vector that generates the closest image to
a given input image. With the weights of the WGAN fixed, we train
a neural network μφ composed of two fully connected layers that
maps a noise vector, y, of the same size as the latent space into the
actual latent space, z. This output is fed to the WGAN to generate
an image. The shallow network is optimized using a loss function
with two components, a residual loss LR and a critic loss LF. The
residual loss enforces the visual similarity pixel to pixel between the
generated image Gθ (z) and xt . The critic loss pushes the generated
image to lie on the learned manifold of trained images (i.e. have the
same types of features). The total loss is defined as the weighted
sum of both components:

LA = γLR + (1 − γ )LF (6)

1https://keras.io/
2https://www.tensorflow.org/

Figure 3. Schematic representation of the anomaly detection training. The
grey colour represents that the weights of a network are fixed during training.
Given a real image and a noise vector, the network μ finds the anomaly score
and the closest generated image by minimizing the combined loss LA (see
equation 6) whilst keeping the weights of the generator and critic fixed. The
critic features box represent the critic network without the last two dense lay-
ers, and it outputs a feature map obtained before the fully connected layers.

γ ∈ (0, 1) is a hyperparameter that weights the two contributions
to the final loss. Here we use a value of γ = 0.7 (we note that our
results do not change significantly when choosing different values
of γ ). Each contribution is defined as follow:

LR(z′) = |x − Gθ (z′)| (7)

LF (z′) = |cϕ(x) − cϕ(Gθ (z′))|, (8)

where cϕ is the output of the last convolutional layer of the critic,
Cψ , i.e. the set of informative features obtained before the fully
connected layers. A schematic representation of the training for the
network μφ is shown in Fig. 3.

An anomaly score AS is then defined as the loss at the last
iteration, when the training has converged (i.e. the loss is not
decreasing any further; in this case convergence is reached after
about 500 iterations) and the closest image in terms of equation (6)
has been found:

AS = γLo
R + (1 − γ )Lo

F , (9)

where L0
R and L0

F are the residual and critic loss at the last iteration,
respectively.

The procedure is not optimal from a performance perspective
since images need to be processed individually. It can easily be
improved by performing a global optimization over multiple images
and then applying a simple gradient descent to refine as shown in
Storey-Fisher et al. (in preparation). Since computing time is not
critical for this work in which the sample of images to test is not
enormous, we keep this original implementation.

Note that, whilst the anomaly score does not have a true meaning
independent of the training of each of the critic, the generator
and μφ , anomalous data can be identified by comparing it to the
distribution of the training data, which the generator is trained to
approximately draw from. For this reason, we measure the anomaly
score for all the images in our training set which acts as the
calibration of the anomaly detector. Any new image with an anomaly
score significantly outside the bulk of scores for the training images
is then quantified as being, in some way, anomalous.

4 A PPLI CATI ONS

In the following section, we explore several cases in astronomy
for our WGAN-based anomaly detector. We first calibrate how the
anomaly detector performs with a sample of known anomalies.
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Detecting outliers with WGANs 2351

Figure 4. Examples of mock images (observed in the H-band) from the Horizon-AGN simulation that are used as training data. The images have a size of
64 × 64 pixels, and the pixel scale is 0.06 arcsec pixel−1.

In particular, we quantify how accurately images of mergers are
detected as anomalous when our training sample (the ‘normal’
sample) is a set of isolated galaxies. We split this application in
two cases: the first case focuses on detecting anomalies due to the
presence of a neighbour object, and the second one focuses on
analysing more subtle merger-induced morphological disturbances.
The last application consists of using the anomaly score to compare a
sample of images from the Horizon-AGN simulation to real galaxies
from the CANDELS survey, to quantify the difference or similarity
between such data sets.

4.1 Galaxy mergers as anomalies

4.1.1 Training

The training set consists of images of isolated galaxies (no mergers),
which we call the ‘normal images’, and the test set consists of
images of galaxy mergers. The selection of interacting galaxies in
the simulations is done by checking an increase in galaxy mass due
to the contribution of more than one progenitor from the previous
time-step (Rodriguez-Gomez et al. 2015; Abruzzo et al. 2018). If a
galaxy has more than one progenitor and the ratio between the stellar
mass provided by the secondary and the main progenitor is equal or
larger than 1:10, then that galaxy will be considered a merger. When

a merger is identified, we build a merger sequence by going back
in time in the merger tree until the companion is four effective radii
away from the central galaxy. We call all these images pre-mergers.
We also follow forward in time after the merger event for the same
number of time-steps. These images are called post-mergers.

Isolated galaxies, on the contrary, satisfy the condition of having
only one progenitor when going back in time 1 Gyr and only one
descendant when going forward in time 1 Gyr. Images for both data
sets are generated as explained in Caro (2018). The final training
sample is made of 531 922 isolated galaxies. Examples of these
images are shown in Fig. 4. We also show the stellar mass and
redshift distributions for our training and test samples in Fig. 5.
Notice that the distributions are significantly different given the
restrictive constraints used to define the sample of isolated galaxies.
By imposing no interactions in a 2 Gyr time window we remove very
massive galaxies from the sample. This is not a problem since we are
aiming to calibrate the sensitivity of the WGAN anomaly detector
in identifying out-of-distribution objects. It should be noted that
mergers are not anomalous scientifically speaking but are outside
of our training data and as such we want to detect them.

We train a WGAN network, described in Section 3.3 for ∼×106

epochs using only isolated images. As a first exploratory step,
Fig. 6 shows some examples from the test set indicating their
anomaly score, the closest generated image, and the residual image
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2352 B. Margalef-Bentabol et al.

Figure 5. Stellar mass (left-hand panel) and redshift distribution (right-hand panel) of the training data (isolated galaxies in striped green and mergers images
in solid yellow). We can see obvious deviations between the distributions of isolated galaxies and mergers which should be quantifiable as anomalous by the
anomaly WGAN detector.

(derived by subtracting the closest generated image to the original
image). We see that for images with low anomaly score values,
the residuals are low as expected, due to the network being able to
generate very similar images. For high anomaly score images, the
residuals are larger because the network cannot generate a similar
image. In several cases, the anomaly is due to the presence of a
secondary source as one would naturally expect. Fig. 7 shows a 2D
representation of the last layer of the critic (which is used to compute
LF) computed with t-Distributed Stochastic Neighbour Embedding
(t-SNE; van der Maaten & Hinton 2008). t-SNE is a technique for
dimensionality reduction that helps with the visualization of high-
dimensional data sets. In the high dimensional space, it models
the probability distribution that dictates the relationships between
neighbours around each point. Then in the low-dimensional space,
it recreates, as close as possible, the same distribution. When points
are close to one another in the high-dimensional space they will
tend to be close to one another in the low-dimensional space as well.
Notice that the axis of the low-dimensional space are arbitrary and
have no particular interpretation. We show a subsample of normal
galaxies and a subsample of galaxies with a neighbour in the image.
This visualization suggests that the network is well trained for our
purpose, and the critic is, indeed, able to separate these two classes
well. Therefore, using the critic as part of the anomaly score should
provide information with which we can detect anomalies. The next
sections quantify the performance.

4.1.2 Results: anomalies caused by a companion in the image

We now quantify how accurately we can detect anomalies due
to the presence of a companion in the image. Given that our
training sample consists of isolated galaxies, we can assume that the
presence of a secondary object will contribute the most to the degree
of anomaly on an image when compared with the training sample.

We, therefore, select all the images with at least a secondary
object in the image (this will be our known anomalous sample in
this application). All these images belong to the pre-merger phase.
However, not all pre-mergers have a secondary object in the image.
This is because, in order to speed up the training process and due
to memory capability, we have cropped the original images from
the simulations to 64 × 64 pixels, and therefore, in some cases, we

have artificially removed the companion object that will eventually
merge with the main galaxy.

We compute the anomaly score for the training sample as well
as for the test sample and compare their distributions in Fig. 8.
The figure clearly shows that the AS distribution for mergers peaks
at larger values than the one for isolated galaxies. To quantify the
anomaly detection method, we define a threshold-based method.
Images that have an AS larger than the threshold are considered
anomalous (or inconsistent with the training sample), while images
with AS lower than the threshold, are considered ‘normal’ (or
consistent). We use three different thresholds defined as the value
that contains 85, 90, and 95 per cent of the training galaxies
within the generative distribution. Using these thresholds, we find
86, 80, and 67 per cent of the anomalous samples are correctly
identified as anomalies, respectively. We compare our results with
a more traditional method of outlier detection, the k-means clus-
tering method (MacQueen 1967). For that, we use non-parametric
measures of structure used to quantify the broad morphology: CAS
(concentration C, asymmetry A and clumpiness S; Conselice 2003),
and Gini/M20 parameters (e.g. Abraham, van den Bergh & Nair
2003; Lotz, Primack & Madau 2004). We calculate these parameters
for the two samples (training and test) using the code STATMORPH,
a PYTHON package for calculating non-parametric morphological
diagnostics of galaxy images (Rodriguez-Gomez et al. 2019), and
apply the k-means method with two clusters. We find that 99 per
cent of the training sample belongs to one cluster while 74 per cent
of the pre-mergers with a neighbour lie in the other cluster. These
results are summarized in Table 1.

We further investigate the incorrectly classified pre-merger galax-
ies, and find that the majority of these are caused by a high flux
ratio between the main galaxy and the brightest neighbour. We
hence compute the flux ratio Fr between the main galaxy and the
companion using SEXTRACTOR (Bertin & Arnouts 1996) and then
divide the test sample into three bins depending on the flux ratio (Fr

< 1.5, 1.5 < Fr < 2, Fr > 2). For flux ratios lower than 1.5, we find
that 96, 93, and 86 per cent are correctly classified as anomalous,
using the three thresholds mentioned above, respectively. For
galaxies between 1.5 and 2 times as bright, there is only a small
decrease in these percentages (94, 90, and 76 per cent). It is only
when the companion is 2 times fainter than the central galaxy (46
per cent of our test sample) that the percentage of galaxies correctly
classified drops to 75, 66, and 48 per cent, respectively, for the three

MNRAS 496, 2346–2361 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/2/2346/5858005 by guest on 08 July 2022



Detecting outliers with WGANs 2353

Figure 6. Examples of images draw from the test sample with low anomaly score (left-hand panel) and high anomaly score (right-hand panel). In the first
column, we show the input image, in the second column, the closest generated image obtained in the anomaly detection method, and in the third column, the
residual (pixel by pixel difference) between the input and the generated. The normal images show low anomaly score values and a very similar image can be
generated by the network. For the test images the anomaly score is high and no close image can be generated which results in large residuals.
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2354 B. Margalef-Bentabol et al.

Figure 7. Output of the last convolutional layer of the trained critic after
reducing it to two dimensions using the t-Distributed Stochastic Neighbour
Embedding method (noting that this is just one realization of the t-SNE). We
show where normal images (purple) and images of galaxies with neighbours
(green, images that are most different to the normal set) lay in this plane.

Figure 8. Anomaly score distribution for the isolated galaxies (training
data, purple) and the pre-mergers with neighbours (green). The black dash,
solid, and dotted line represent the three thresholds defined as the value that,
respectively, contain 85, 90, and 95 per cent of the training galaxies within
the generative distributions. The distribution for the pre-mergers peaks at
a higher value than the training data, with clear separations between the
distribution. This indicates that the majority of pre-mergers with neighbours
are inconsistent with the training sample.

different thresholds. We find that while for Fr < 1.5 and 1.5 < Fr

< 2, our results are comparable to the k-means method (91 and
93 per cent of the test sample are correctly classified according to
the k-means method), when considering galaxies with a companion
two times fainter, the k-means method performs significantly worse
at detecting them as anomalous (only 39 per cent, compared with 75,
66, and 48 per cent, respectively, for the three different thresholds
used in our method). These results are summarized in Table 2. We
have also explored whether the distance between the main galaxy
and the companion has an effect on the anomaly score, but we have
found no correlation.

Table 1. Accuracy of the threshold-based anomaly detector for differ-
ent thresholds, and of k-means anomaly detector method. Each method
(columns) is evaluated for test sets (rows) of isolated and pre-merger
galaxies. Thresholds 1, 2, and 3 represent the three thresholds defined as
the value that contains, respectively, 85, 90, and 95 per cent of the training
galaxies within the generative distribution. The last column indicates the
accuracy according to the k-means clustering method.

Accuracy of the anomaly detector
Threshold

1 2 3 k-means

Isolated 85 per cent 90 per cent 95 per cent 99 per cent
Pre-mergers 86 per cent 80 per cent 67 per cent 74 per cent

Table 2. Accuracy of the threshold-based anomaly detector for differ-
ent thresholds, and of k-means anomaly detector method. Each method
(columns) is evaluated for test sets (rows) of pre-merger galaxies divided
according to their flux ratio between the central galaxy and the brightest
neighbour (Fc/Fn). Thresholds 1, 2, and 3 represent the three thresholds
defined as the value that contains, respectively, 85, 90, and 95 per cent
of the training galaxies within the generative distribution. The last column
indicates the accuracy according to the k-means clustering method.

Accuracy of the anomaly detector
Threshold

1 2 3 k-means

Fr < 1.5 96 per cent 93 per cent 86 per cent 91 per cent
1.5 < Fr < 2 94 per cent 90 per cent 76 per cent 93 per cent
Fr > 2 75 per cent 66 per cent 48 per cent 39 per cent

4.1.3 Results: anomalies caused by merger induced
morphological perturbations

In the previous section, we have seen how the anomaly detection
method is able to detect anomalous galaxies with high accuracy
when a relatively bright companion is found in the image. Here
we investigate how accurately the method works when the com-
panion is not present (i.e. for the pre-merger galaxies that do not
show a neighbour object in the image and images of the post-
merger phases). This exercise is intended to test the robustness
of the WGAN-based anomaly detector given more subtle merger-
induced perturbations in the main galaxy light distribution. For this
application our anomalous sample, therefore, consists of galaxies
in the pre-merger phase that do not have a neighbour object as well
as galaxies in the post-merger phases.

Fig. 9 shows the anomaly score distributions for isolated pre-
mergers (or pre-mergers without neighbours) and post-mergers.
As expected, we observe that even if both samples have anomaly
score distributions extending to larger values than the training
set, the majority of the samples overlap with the training data.
Using the same three thresholds as before, 46, 39, and 30 per
cent of these images are classified correctly (respectively for the
three thresholds), while only 8 per cent when using the k-means
clustering method. Overall, it appears the isolated pre-mergers are
detected as anomalous slightly more often than the post-mergers.
We summarize these results in Table 3. These results indicate that
the presence of a secondary object is not the only cause of anomaly
in these images, although it is the dominating factor, and that the
WGAN is able to detect more subtle morphological differences
between the samples. Our results also demonstrate the WGAN
method is better suited to finding outliers than traditional clustering
methods, particularly when the differences with the training sample
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Figure 9. Anomaly score distribution for the isolated galaxies (training
data, purple), the isolated pre-mergers (orange), and post-mergers (blue).
The black dash, solid, and dotted line represent the three thresholds defined
as the value that contain, respectively, 85, 90, and 95 per cent of the training
galaxies within the generative distribution. The distribution for the isolated
pre-mergers and post-mergers (test sample) extend to larger values than the
training data, even though there is significant overlap between the distribu-
tion. There are many samples which are inconsistent with the training data.

Table 3. Accuracy of the threshold-based anomaly detector for differ-
ent thresholds, and of k-means anomaly detector method. Each method
(columns) is evaluated for test sets (rows) of isolated pre-mergers, post-
merger galaxies, and the combinations of both sets. Thresholds 1, 2, and 3
represent the three thresholds defined as the value that contain, respectively,
85, 90, and 95 per cent of the training galaxies within the generative
distribution. The last column indicates the accuracy according to the k-
means clustering method.

Accuracy of the anomaly detector
Threshold

1 2 3 k-means

Isolated pre-mergers+Post-mergers 46 per cent 39 per cent 30 per cent 8 per cent
Isolated pre-mergers 52 per cent 45 per cent 37 per cent 7 per cent
Post-mergers 45 per cent 38 per cent 28 per cent 9 per cent

are subtle and cannot be fully described by global measures, as they
are in this case. We further investigate what features describe the
difference between the anomalous images and the training set.

Fig. 10 shows the fraction of samples outside of the training set as
a function of the position of the image on the merger sequence. The
time is normalized such as that t = −1 shows the time at which the
companion is at four effective radii from the central galaxy, t = 0 is
the time at which the two galaxies become one in the merger tree. We
distinguish between pre-mergers with and without neighbours for
comparison. Images in which the neighbour is present are the most
anomalous, as seen in the previous section. But the fraction does
not change significantly with time from the merger. The fraction of
anomalous images for the pre-mergers without companions remains
mostly constant as well, at around 45 per cent. In the merger phase,
the percentage of samples outside of the training set reaches 56 per
cent and decreases with time from the merger at about 35 per cent
as the system relaxes. The trends we observe prevail even when we
use different thresholds, and only differ by a scaling factor.

We now investigate other properties from the simulations that
can have an effect on the anomaly score: stellar mass, redshift z,
effective radius Reff, and axial ratio q. The axial ratio is derived
using SEXTRACTOR, and the other properties are defined by the

Figure 10. Fraction of samples outside of the training set as a function of
time from merger of different types of galaxies. Pre-mergers with a bright
neighbour (Fc/Fn < 2) in purple, pre-mergers with a faint neighbour (Fc/Fn

> 2) in green, isolated pre-mergers in yellow and post-mergers in blue. We
show the fraction of samples outside of the training set according to the
threshold 2, which corresponds to 90 per cent of the training galaxies being
consistent.

simulations. We show in Fig. 11 how the fraction of samples
inconsistent with the training set change as a function of these
properties (we again choose the threshold 2 but note that the
choice of the threshold does not affect the trends we observe,
they only change by a scaling factor). We observe that there are
more anomalous galaxies in the pre-merger stage than in the post-
merger phase and that galaxies with a secondary object have, for
all properties, higher fractions of anomalies. However, regardless
of the galaxy being in the pre- or post-merger phase, or having or
not a secondary object, the fraction of anomalies increases with
increasing stellar mass and size (larger and more massive galaxies
tend to be less consistent with the training set). This is not surprising,
as the stellar mass distribution of the training sample does not
expand to masses larger than log (M∗/M�) = 10.75, while for the
test sample we find galaxies with stellar mass up to log (M∗/M�) =
12 (see Fig. 5). The anomaly score decreases with axial ratio (the
most elongated galaxies are more anomalous). This can be explained
by the absence of very elongated galaxies in our training sample.
Lastly, we observe that there is not a strong correlation with redshift.

One interesting fact to note here is that the distribution of test
images is really being compared to the distribution of training
images, and as such, by choosing a hard threshold we quantify
rare objects (even in the training set) as being less consistent with
the bulk of the rest of training set.

4.2 Comparison between observations and simulations

This last application focuses on investigating how we can use the
anomaly detection method to compare two sets of data. Here we
compare simulated data from Horizon-AGN and data from the
CANDELS survey described in Section 2.2 to see if the WGAN is
able to distinguish the images coming from different distributions.
Assessing how well modern hydrodynamical simulations reproduce
the observed properties of galaxies is a complex task because of the
large number of parameters involved. The proposed approach has
the advantage of collapsing all properties to one unique metric of
similarity that encapsulates all morphological features.

For this application, the first thing we do is to add realistic noise
to the mock observations to be able to compare the two data sets
directly. We first select sky-only regions from the CANDELS-HST
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Figure 11. Fraction of samples outside of the training set as a function of stellar mass (top left-hand panel), redshift z (top right-hand panel), effective radius
Reff (bottom left-hand panel), and axial ratio q (bottom right-hand panel). In blue we show the fraction of post-mergers, in yellow the fraction of pre-mergers
without a neighbour in the image, in purple the pre-mergers with a bright neighbour and in green pre-mergers with a faint neighbour present in the image. The
fractions of anomalies increase with mass and size and decreases with axial ratio, while remains constant with redshift.

Figure 12. Stellar mass (left-hand panel) and redshift distribution (right-hand panel) of the training data (Horizon-AGN images, in striped green), and the test
data (CANDELS images, in solid purple).

observation in the H-band, to create noise-only mosaics of 64 × 64
to use randomly with each galaxy from the simulations. For a given
galaxy image, we then generate a corresponding Poisson noise,
to which we introduced pixel-to-pixel correlation such that 1D
autocorrelation power spectral density (PDS) of the sky mosaic
matches the source noise. Finally, we add this correlated Poisson
noise and a sky mosaic to generate mock images that match the
CANDELS-HST observations.

4.2.1 Training

We train our WGAN (see Section 3.3) with a training sample
composed of all the mock images from the Horizon-AGN simulation
(1524 118 images), with added noise. For this application, the test
set is comprised of the 17 611 CANDELS images in our sample.
The stellar mass and redshift distributions for the training (Horizon-
AGN) and test set (CANDELS) are shown in Fig. 12. Both sets
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Figure 13. Examples of CANDELS galaxies classified as normal (left-hand panels) and anomalous (right-hand panels). Similar to Fig. 6, in the first column
we show the input image, in the second column, the closest generated image, and in the third, the residual image.

cover the same range in stellar mass and redshift, although with
a very slight difference in distribution, so any difference between
the data sets is not expected to be a consequence of the selection
function.

Fig. 13 shows examples of CANDELS galaxies indicating their
anomaly score, the closest generated image and the residuals. As
in Fig. 6, we observe that for galaxies with low anomaly score the
network is able to generate a very similar image and, therefore,
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Figure 14. t-SNE space for the output of the last convolutional layer of the
trained critic. We show in green a subset of training images and in purple
CANDELS images. Note the separation is much less obvious than with
Fig. 7 since the distribution of images is much closer.

Figure 15. Distribution of anomaly scores for the Horizon-AGN galaxies
(training sample), in striped blue, and for the CANDELS data in solid
orange. The anomaly scores for the CANDELS galaxies are, overall, higher
than the training set, which points at differences between the Horizon-AGN
simulations and the CANDELS observations.

the residuals are low, while high anomaly scores result in high
residuals (the network is not able to generate similar images). Fig. 14
shows the t-SNE reduced dimensional representation of the output
of the last layer of convolutions for both the Horizon-AGN and
CANDELS images. We easily observe that the two sets globally
populate different parts of the space, although with some degree of
overlap, which suggests that the network is able to distinguish the
two populations. We investigate the reasons behind this apparent
discrepancy in the following section.

4.2.2 Results: Difference between Horizon-AGN and CANDELS

We compute the anomaly scores for Horizon-AGN and CANDELS
images, and show their distribution in Fig. 15.

We observe that, even though there is considerable overlap
between the two distributions, the anomaly scores for the CAN-
DELS are, overall, higher. If the simulations were to reproduce the
observed data perfectly, we would expect the distributions of the
anomaly score for both the Horizon-AGN and CANDELS samples
to be more consistent. However, the difference in anomaly score
distribution suggests that the simulations are not able to completely
reproduce the observational data from CANDELS. This could be, in
part, because we did not include effects such as dust, but could also
include other choices in the physical model of the simulation, or
by resolution effects or other prescriptions in the radiative transfer
code. Therefore this example has to be seen as an illustration of
the potential of this approach to detect global subtle morpholog-
ical differences between data sets coming from different origins.
However, we do not aim to establish robust conclusions given the
many limitations. One possible application would be exploring how
different simulations, produced with different physical processes,
compare with observational data. For that purpose, our WGAN
could be trained on images from an observational survey, and then,
anomaly scores can be computed for the observational images,
and for the images from the different simulations. Comparing
the distributions of anomaly scores will give information about
which simulations produce images that are more consistent with
the observations.

As a preliminary step forward, we show in Fig. 16 the anomaly
score distribution for observed galaxies as a function of different
galaxy physical properties (stellar mass, effective radius, redshift,
axial ratio, Sérsic index, and morphological type). The figure reveals
some interesting trends. While there is no effect on the anomaly
score due to redshift, globally speaking, massive galaxies tend to
be more anomalous. The smallest galaxies tend to have higher
AS values, possible due to resolution effects in the simulations.
Spheroidal, high Sérsic index galaxies, and point-source/compact
are also skewed towards larger AS values. This suggests that
compact galaxies might not be well represented in the Horizon-
AGN simulation. However, this needs to be investigated further
given the limitations of this comparison.

5 SU M M A RY

In this first proof-of-concept work, we have explored generative
methods as a way to quantify anomalous objects in astronomical
imaging data without labels. The method consists of, first, training a
WGAN with ‘normal’ data and calculating the anomaly score of the
test sample to quantify the degree of anomaly. The main advantage
of such an approach is that it can learn complex representations
directly from the pixel space without manual extraction of specific
features. It can therefore identify subtle morphological differences
and collapse morphological comparisons to one unique metric.

We have tested the method on three different applications:

(i) In the first application we asses how accurately we can detect
known differences between the training and test samples. In this
case, the WGAN is trained with images of isolated galaxies (with
no merger history) from the Horizon-AGN simulation, and used
to identify known mergers. We show that the WGAN correctly
classifies 80 per cent of the test images as anomalous with a
contamination of only 10 per cent (i.e. 10 per cent of the isolated
galaxies are incorrectly classified as anomalous). The percentage of
anomalous images increases to 92 per cent when not considering
images with very faint neighbours in the image.
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Figure 16. Distribution of the anomaly score for the CANDELS galaxies as a function of different properties (stellar mass, effective radius, redshift, axial
ratio, Sérsic index, and morphology type). Each histogram is normalized. These plots show which properties are causing high anomaly scores. We observe that
the largest and more massive galaxies tend to have higher anomaly scores, as well as spheroidal galaxies and galaxies with high Sérsic index.

(ii) In the second application we investigate how our method is
able to detect anomalies caused by more subtle properties. When
investigating a test sample that consist of images of merging galaxies
without a visible companion in the image, we find that 45 per cent of
the test set is anomalous compared to the training set. In this case, the
anomaly is cause by morphological features instead of a secondary
source in the image. We observe that the most anomalous objects
generally have higher mass and have high axial ratio. This is because
the training sample lacks galaxies with these properties. It is, there-
fore, useful to consider how this anomaly detection method really
allows us to introspect biases in the training set as well as the phys-
ical model with which we can generate such realistic training sets.

(iii) The third application shows how the anomaly detection
method can be used to compare two data sets. The training set
for this example is a complete set of simulated galaxies from
the Horizon-AGN simulations, and the test or comparison sample
comprises observed images from the CANDELS survey. We show
that the anomaly score distribution of the observations tends to peak
at larger values compared to that of the simulated data. We further
explore what properties were causing the main differences, to better
understand how the simulations differ from the observations. We
observe that the simulations were not reproducing the smallest
galaxies and high Sérsic index galaxies well. This may be, in
part, due to the lack of dust treatment in the radiative code, but
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could also be due to the resolution effects and/or other radiative
processes.

The code to train our WGAN and generate is made public with
this work. In future papers we plan to investigate the effect that
physical processes from the simulations (such as the addition of
dust) have on our analysis when comparing the Horizon-AGN
simulation to the CANDELS survey. Additionally, we plan to
use the WGAN anomaly detector to look for outliers in the
HSC survey (Storey-Fisher et al. in preparation) and investigate
its applicability in the pipelines of future surveys such as LSST
and EUCLID. As part of the efforts to investigate the practical
use of generative models to compare simulations to observa-
tions, we are also exploring regressive models (Zanisi et al. in
preparation).
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A P P E N D I X A : TR A I N I N G A L G O R I T H M

Given a batch of real and generated images, the critic is trained for ncritic iterations to approximate the Wasserstein distance, by maximizing
the loss in equation (4) whilst keeping the weights of the generator fixed. Afterwards, the generator’s weight are updated for a single iteration,
by maximizing equation (5), whilst the critic weights are held constant so that it minimizes the approximate Wasserstein distance. This is
repeated until the network has converged. Fig. 2 shows a schematic representation the WGAN training procedure.

while θ has not converged do
for t = 1, ..., ncritic do

for i = 1, ..., m do
Sample x ∼ Pr , real data.;
Sample z ∼ Pz, latent variable.;
Sample ε ∼ U [0, 1], random number to apply gradient penalty.;
x̃ ← Gθ (z), generate image from latent variable;
x̂ ← εx + (1 − ε)x̃, apply gradient penalty;
L(i) ← Cψ (x̃) − Cψ (x) + λ(‖∇x̂Cψ (x̂)‖2 − 1)2, calculate loss.

end
ψ ← Adam(∇ψ

∑m

i=1 L(i)/m, ψ, α, β1, β2);
end
for i = 1, ..., m do

Sample a batch of latent variables z(i) ∼ Pz.;
end
θ ← Adam(∇θ

∑m

i=1 −Cψ (Gθ (z(i)))/m, w, α, β1, β2);
end

Algorithm 1: WGAN with gradient penalty training algorithm (Gulrajani et al. 2017). We use default values gradient penalty coefficient
of λ = 10, number of critic iterations per generator iteration ncritic = 10, batch size m = 64 and Adam hyperparameters: α = 0.00005,
β1 = 0.5, β2 = 0.9.
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