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Abstract. Verifying anthropogenic carbon dioxide (CO2)
emissions globally is essential to inform about the progress
of institutional efforts to mitigate anthropogenic climate
forcing. To monitor localized emission sources, spectro-
scopic satellite sensors have been proposed that operate on
the CO2 absorption bands in the shortwave-infrared (SWIR)
spectral range with ground resolution as fine as a few tens
of meters to about a hundred meters. When designing such
sensors, fine ground resolution requires a trade-off towards
coarse spectral resolution in order to achieve sufficient noise
performance. Since fine ground resolution also implies lim-
ited ground coverage, such sensors are envisioned to fly
in fleets of satellites, requiring low-cost and simple design,
e.g., by restricting the spectrometer to a single spectral band.

Here, we use measurements of the Greenhouse Gases Ob-
serving Satellite (GOSAT) to evaluate the spectral resolution
and spectral band selection of a prospective satellite sensor
with fine ground resolution. To this end, we degrade GOSAT
SWIR spectra of the CO2 bands at 1.6 (SWIR-1) and 2.0 µm
(SWIR-2) to coarse spectral resolution, without a further ad-
dition of noise, and we evaluate single-band retrievals of the
column-averaged dry-air mole fractions of CO2 (XCO2) by
comparison to ground truth provided by the Total Carbon
Column Observing Network (TCCON) and by comparison
to global “native” GOSAT retrievals with native spectral res-
olution and spectral band selection. Coarsening spectral res-
olution from GOSAT’s native resolving power of > 20000
to the range of 700 to a few thousand makes the scatter of
differences between the SWIR-1 and SWIR-2 retrievals and
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TCCON increase moderately. For resolving powers of 1200
(SWIR-1) and 1600 (SWIR-2), the scatter increases from 2.4
(native) to 3.0 ppm for SWIR-1 and 3.3 ppm for SWIR-2.
Coarser spectral resolution yields only marginally worse per-
formance than the native GOSAT configuration in terms of
station-to-station variability and geophysical parameter cor-
relations for the GOSAT–TCCON differences. Comparing
the SWIR-1 and SWIR-2 configurations to native GOSAT re-
trievals on the global scale, however, reveals that the coarse-
resolution SWIR-1 and SWIR-2 configurations suffer from
some spurious correlations with geophysical parameters that
characterize the light-scattering properties of the scene such
as particle amount, size, height and surface albedo. Overall,
the SWIR-1 and SWIR-2 configurations with resolving pow-
ers of 1200 and 1600 show promising performance for future
sensor design in terms of random error sources while residual
errors induced by light scattering along the light path need to
be investigated further. Due to the stronger CO2 absorption
bands in SWIR-2 than in SWIR-1, the former has the ad-
vantage that measurement noise propagates less into the re-
trieved XCO2 and that some retrieval information on particle
scattering properties is accessible.

1 Introduction

Accurate and spatiotemporally densely resolved information
on localized carbon dioxide (CO2) emission sources such as
power plants is crucial to inform about CO2 emission reduc-
tion targets that national, regional and municipal administra-
tions worldwide have committed to through their climate ac-
tion plans. Satellite remote sensing of the column-averaged
dry-air mole fractions of CO2 (XCO2) could contribute to
providing such crucial information if satellite design suc-
ceeds in combining fine ground resolution with sufficient
precision and if satellite concepts are simple enough to allow
for a fleet of sensors enabling broad coverage of the globe.

Global XCO2 concentration measurements from space
were pioneered by the SCanning Imaging Absorption Spec-
troMeter for Atmospheric CHartographY mission, SCIA-
MACHY (e.g., Burrows et al., 1995; Reuter et al., 2010;
Schneising et al., 2013), with ground resolution of ∼
60 km× 30 km (Bovensmann et al., 1999). Finer ground res-
olution (with sparse sampling, though) was subsequently
achieved by the Greenhouse Gases Observing Satellite
(GOSAT, 10.5 km diameter ground footprint) (Kuze et al.,
2009, 2016) and the Orbiting Carbon Observatory (OCO-2,
1.3 km× 2.3 km ground footprint) (Crisp et al., 2008, 2017).
The Chinese TanSat mission has also embarked on this strat-
egy (Yang et al., 2018). GOSAT and OCO-2 offer insights
into the natural processes of the carbon cycle (Guerlet et al.,
2013a; Parazoo et al., 2013; Liu et al., 2017; Chatterjee
et al., 2017) as well as into anthropogenic emission patterns
(Hakkarainen et al., 2016). Urban carbon dioxide signals

have been detected by these instruments, for example in the
Los Angeles basin (Kort et al., 2012; Eldering et al., 2017;
Schwandner et al., 2017). Nassar et al. (2017) have demon-
strated the ability of OCO-2 to observe anthropogenic CO2
emissions from individual, coal-fired power plants, show-
casing the added value of imaging information. A similar
concept has been put forward by the CarbonSat mission
(Bovensmann et al., 2010), which has evolved into a candi-
date for a future European carbon monitoring mission (e.g.,
Pillai et al., 2016; Broquet et al., 2018; Reuter et al., 2019).
The CO2M mission currently under investigation at the Euro-
pean Space Agency aims at ground resolution of 4 km2 (Sierk
et al., 2019; Wu et al., 2019a). All these satellite missions and
concepts rely on a multi-band spectral configuration that cov-
ers the oxygen (O2) A-band at roughly 0.76 µm (NIR) and the
CO2 bands at 1.6 (SWIR-1) and 2.0 µm (SWIR-2). The spec-
tral resolution ranges from resolving powers λ

1λ
> 20000

(with λ the wavelength and 1λ the full width half maximum
of the instrument spectral response function) for GOSAT,
OCO-2, and TanSat to λ

1λ
> 6000 for CO2M’s SWIR-2 band

and λ
1λ
> 4000 for CarbonSat’s SWIR-2 band. The typical

XCO2 native GOSAT retrievals attempt to make use of these
bands by retrieving XCO2 simultaneously with atmospheric
scattering properties.

For methane (CH4), which poses similar remote sensing
challenges as CO2, it has been demonstrated that a satellite
spectrometer operating at coarse spectral resolution ( λ

1λ
of a

few hundred) on a single absorption band (around 2.35 µm)
can achieve successful CH4 hot-spot detection with a ground
resolution of 30 m (Thompson et al., 2016). Similar results
for CH4 have been reported from aircraft sensors that reach
ground pixel sizes on the order of 1–10 m (Dennison et al.,
2013; Thorpe et al., 2016a, b; Krings et al., 2018). Denni-
son et al. (2013) suggested that measuring the 2.0 µm CO2
bands with a spectral resolution of 10 nm ( λ

1λ
≈ 200) enables

a spaceborne spectrometer design that results in ground res-
olutions as fine as 60 m× 60 m. Thorpe et al. (2016a) have
shown that their airborne AVIRIS-NG instrument exploiting
the CO2 absorption bands at 2.0 µm at a spectral resolution
of roughly 5 nm ( λ

1λ
≈ 400) enables quantitative retrievals

of CO2 in localized emission plumes. Thorpe et al. (2016b)
suggested that, for CH4, a spectrometer design with a spec-
tral resolution of 1 nm ( λ

1λ
≈ 2000) could provide an optimal

trade-off that allows for accurate CH4 quantification while
supporting small ground pixels.

This study is motivated by the margins that coarse spec-
tral resolution offers with respect to improving ground reso-
lution and that single-band configurations offer with respect
to deploying a fleet of several low-cost satellites. Figure 1
schematically illustrates the key advantage of an assumed
50 m× 50 m ground resolution spectrometer over an instru-
ment with kilometer-scale resolution for point-source obser-
vation. If the localized source plume does not fill the satel-
lite’s entire ground pixel, the XCO2 enhancement averages
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Figure 1. Schematic Gaussian plume of the XCO2 enhancement
(1XCO2) originating from a power plant with a 12.3 Mt CO2 yr−1

emission rate (wind from left to right, Gifford–Pasquill stabil-
ity class C; power plant at the origin; satellite assumed to move
from bottom to top, sampling left to right) as seen (without noise)
by hypothetical satellite spectrometers with 2 km× 2 km ground
pixels (a) and with 50 m× 50 m ground pixels (b). Insets show
1XCO2 measured by the sensors at 2 km (red) and 8 km (black)
downwind of the source along the plume cross section (note differ-
ent 1XCO2 scales in insets).

with the background concentration field over the satellite
pixel. For the example in Fig. 1, this leads to a maximum
of 3 ppm enhancement for a satellite sensor with 2 km× 2 km
ground resolution. Shrinking the ground pixels leads to larger
enhancements in the vicinity of the source, simply because
the plume fills a larger portion of the (smaller) pixels. In
Fig. 1, 50 m× 50 m ground resolution delivers 12 ppm en-
hancement at a 2 km downwind distance, plus a sampling
of the plume cross section by more than 10 pixels. Fur-
ther downwind, where the plume has laterally spread to the
kilometer-scale, enhancements per pixel are similar for fine
and coarse ground resolution, but the fine-ground-resolution
sensor would still sample the plume by multiple ground pix-
els. Thus, a sensor with fine ground resolution allows for less
stringent precision requirements (per ground pixel), and it
could potentially resolve plume shapes at some detail. Since
small ground pixels imply fewer backscattered photons, sen-
sor design for fine ground resolution typically needs to com-
pensate by enhancing light throughput of the spectrome-
ter and by collecting more photons in the spectral domain,
e.g., by coarsening spectral resolution. Since finer ground
resolution implies narrower ground coverage for the same
detector size, global monitoring with fine ground resolution
almost certainly implies the need for a fleet of sensors which
would be easier to realize if the sensors had a simple, single-
band configuration instead of full spectral coverage from the
NIR into SWIR-2.

Here, we aim at evaluating the performance of a hypo-
thetical XCO2 sensor that has coarse spectral resolution in a
single-band configuration. That is, we evaluate a sensor con-
cept which measures the CO2 bands near either 1.6 (SWIR-1)
or 2.0 µm (SWIR-2) with resolving power in the range of 700
to a few thousand, i.e., roughly between the AVIRIS-NG and
CarbonSat concepts. Galli et al. (2014) conducted a related
study where they spectrally degraded GOSAT soundings to
resolutions ranging from native GOSAT resolution down to
λ
1λ
≈ 3000 while leaving the multi-band configuration (NIR,

SWIR-1, SWIR-2) of the XCO2 retrievals untouched. They
found that coarser spectral resolution typically implies larger
statistical and systematic XCO2 errors when compared to
ground truth. Galli et al. (2014), however, did not address the
range of resolving powers and the single-band selection cov-
ered here. Recently, Wu et al. (2019b) showed that at OCO’s
native resolving power of > 20000 a single-band retrieval
configuration results in almost unchanged XCO2 retrieval ac-
curacy and precision.

Section 2 explains our methodological approach that spec-
trally degrades GOSAT measurements of the SWIR-1 or
SWIR-2 bands to coarser spectral resolution. In Sect. 3, we
assess retrieval performance for the SWIR-1 and SWIR-2
configurations for various resolving powers by comparing
our results to ground truth from the Total Carbon Column
Observing Network (TCCON). Thereby, we derive a target
spectral resolution for which we carry out a global evalua-
tion with respect to native GOSAT measurements in Sect. 4.
Section 5 discusses and concludes on the findings.

2 Methodology

GOSAT measures spectra of backscattered solar radiation
in three spectral bands centered on the O2 A-band (NIR),
the relatively weak CO2 and CH4 bands in the vicinity of
1.6 µm (SWIR-1), and the strong CO2 and water vapor (H2O)
bands around 2.0 µm (SWIR-2). GOSAT’s thermal infrared
band recording telluric emission spectra is not used here.
We use the level 1B (L1B) data version 201.202, and we
add the two measured polarization directions to represent the
backscattered radiances. Due to computational costs, we re-
strict our analysis to cloud-free, quality-screened soundings
over land as identified by the native GOSAT retrievals of
the RemoTeC algorithm (Butz et al., 2011) within the Cli-
mate Change Initiative of the European Space Agency (ESA)
(Buchwitz et al., 2017), available for download at: http://
www.esa-ghg-cci.org (last access: 14 December 2018). In to-
tal, the set comprises 469 689 L1B spectra in the period from
1 April 2009 to 31 December 2016. A typical GOSAT spec-
trum together with the coarse-resolution variants discussed
below are shown in Fig. 2.

A key advantage of GOSAT measurements over other CO2
missions, such as OCO-2, is the wide spectral coverage in
SWIR-1 and SWIR-2. The broad spectral coverage allows

www.atmos-meas-tech.net/13/731/2020/ Atmos. Meas. Tech., 13, 731–745, 2020

http://www.esa-ghg-cci.org
http://www.esa-ghg-cci.org


734 J. S. Wilzewski et al.: Spectral sizing of a coarse-spectral-resolution XCO2 sensor

for conveniently sizing the retrieval windows without being
limited by the actual bandpass of the spectrometer. In par-
ticular, GOSAT’s SWIR-1 and SWIR-2 bands cover, respec-
tively, two and three rotational–vibrational absorption bands
of CO2. In order to mimic a coarse-resolution sensor, we con-
volve the native GOSAT L1B spectra by a Gaussian function
of selectable full width at half maximum (FWHM). Since we
want to isolate the effects of spectral resolution and spectral
band selection, we do not add extra noise to the convolved
spectra; i.e., the level of noise is determined by the convo-
lution of the noise of the native GOSAT spectra with the
coarse-resolution Gaussian line shape function. One would
expect extra noise when going to smaller ground pixels as
we envision for a future sensor. Estimating the extra noise,
however, would require a detailed instrument model which is
not available here. Our approach essentially relates to condi-
tions under which the detector noise is negligible as typical
for GOSAT. Under such conditions, other sources of error
can be addressed, for example, through evaluating geophys-
ical parameter correlations (Sects. 3 and 4). A forthcoming
study will discuss noise performance and retrieval simula-
tions for a hypothetical instrument design. Figure 2 illustrates
the spectral convolution approach for a hypothetical spectral
resolving power of 1200 (blue line) and 1600 (red line) in
SWIR-1 and SWIR-2, respectively, in comparison to native
GOSAT spectra. We assume that the proposed sensor will
have a detector with 256 spectral pixels.

The native and degraded GOSAT measurements are sub-
mitted to the RemoTeC retrieval algorithm (Butz et al., 2009,
2011; Guerlet et al., 2013b), which is in routine use for re-
trieving XCO2 (and XCH4 – throughout this work Xmolecule
refers to the column-averaged dry-air mole fraction of a
molecule) from GOSAT (Buchwitz et al., 2017), XCO2 from
OCO-2 (Wu et al., 2018) and XCH4 from Sentinel-5 Pre-
cursor TROPOMI (Hu et al., 2018). For GOSAT measure-
ments with native spectral resolution, we deploy RemoTeC
in its full-physics (native GOSAT) mode; i.e., RemoTeC uses
four spectral windows within the NIR, SWIR-1 and SWIR-2
ranges (see Table 1 and Fig. 2) and retrieves XCO2, XCH4
together with three particle scattering parameters, and other
parameters such as surface albedo and spectral shifts. The
three particle parameters are the total column number den-
sity Npar, the center height zpar of a Gaussian height distri-
bution and the power αpar of a power-law size distribution
n(r)∼ r−αpar with particle radius r . The native GOSAT con-
figuration is equivalent to the standard retrieval also in opera-
tion for ESA’s climate change initiative (e.g., Buchwitz et al.,
2017).

For degraded spectral resolution, we use either SWIR-1 or
SWIR-2 alone (see Table 1), from which we retrieve XCO2
(as well as XCH4 in SWIR-1) and auxiliary surface albedo
and spectral shift parameters. The spectral degradation of the
modeled spectra to coarse resolution follows the same ap-
proach as for the measurements. First, RemoTeC calculates
spectra for GOSAT’s native spectral resolution; then the con-

volution with a Gaussian function simulates the hypotheti-
cal measurements at coarse spectral resolution. For degraded
spectral resolution, the SWIR-1 retrievals also adjust XH2O
and XCH4, but neglect scattering by particles (Rayleigh scat-
tering is included) and thus no particle scattering parame-
ters are retrieved. This approach, which is essentially a trans-
mittance calculation along the geometric light path, is here-
after referred to as non-scattering retrieval. Sensitivity stud-
ies have shown that retrieving atmospheric scattering param-
eters from the individual CO2 bands at coarse spectral resolu-
tion in the SWIR-1 band suffers from low information con-
tent and results in worse XCO2 retrieval performance than
under the non-scattering assumption. In the SWIR-2, we re-
trieve XH2O along with XCO2. Employing the standard Re-
moTeC Phillips–Tikhonov (e.g., Butz et al., 2012) regular-
ization, we additionally retrieve our standard three particle
parameters from SWIR-2. We found a regularization strength
that allows for retrieving an average of 0.38 degrees of free-
dom (DFS) for particles (DFS '1.5 are typically found in
native GOSAT retrievals). Despite this low DFS, the perfor-
mance of the retrieval was significantly improved in compar-
ison to a non-scattering retrieval. As the spectral resolution
coarsens, the average degrees of freedom for particles de-
crease from 0.45 (at 6500 resolving power) to 0.32 (at 700
resolving power). Although variations in DFS may lead to
changes in the ability of the retrieval algorithm to converge
towards the minimum of the cost function, more than 75 %
of all retrievals converge at any given FWHM that we con-
sider in this study. We note that while we divide the SWIR-
1 and SWIR-2 retrievals into several sub-windows, the re-
trieved XCO2 is coupled among the sub-windows.

The actual spectral retrieval windows are defined in Ta-
ble 1 and illustrated in Fig. 2. The spectral boundaries of
the retrieval windows are identical at all selected FWHM
values. For the coarse-spectral-resolution SWIR setups, we
have chosen to cover two CO2 absorption bands each, while
the native GOSAT retrievals cover only one of the bands in
SWIR-1 and one of the bands in SWIR-2. Our choice of spec-
tral retrieval windows maximizes the information on CO2 for
the coarse-resolution retrievals. However, a fine-tuning of the
spectral windows for the proposed sensor may be conducted
in a future study with an instrument noise model at hand. For
native GOSAT resolution, the two extra bands would provide
mostly redundant information while adding significant com-
putational cost. Further, the coarse-spectral-resolution con-
figurations cover (almost) transparent ranges in the vicinity
of the absorption bands in order to constrain surface albedo,
even at coarse spectral resolution. If the spectral boundaries
of the retrieval windows lie within the CO2 absorption bands,
i.e., parts of the CO2 absorption bands are cut off, this loss of
information generally leads to poorer retrieval performance
with respect to TCCON (not shown here).

For both native GOSAT and degraded SWIR configura-
tions, air mass information is derived from ECMWF sur-
face pressure reanalyses (ERA-Interim) and topographic data
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Figure 2. Measured GOSAT spectrum of the backscattered radiance in the NIR, SWIR-1 and SWIR-2 (a–c) ranges shown in grey with
respective GOSAT retrieval windows in bold black. The spectrally degraded measurements at resolving powers of ∼ 1200 (SWIR-1) and
∼ 1600 (SWIR-2) are shown in bold blue and bold red, respectively.

Table 1. Spectral windows for the various retrieval configurations. Bold numbers indicate the spectral resolution that was chosen for subse-
quent analyses (see Sect. 3).

Coarse-spectral-resolution sensor Native GOSAT

SWIR-1 SWIR-2

0.7741–0.7560
1.559–1.593

Spectral windows used (µm)
1.595–1.628 1.593–1.621
1.630–1.672 1.629–1.654

1.982–2.038
2.040–2.092 2.042–2.081

FWHM (cm−1) 0.75 . . . 5.1 . . . 8.0 0.75 . . . 3.1 . . . 7.0 0.24

FWHM (nm ) 0.20 . . . 1.37 . . . 2.15 0.31 . . . 1.29 . . . 2.90 0.1

Approx. resolving power 8,100 . . . 1200 . . . 760 6,500 . . . 1600 . . . 700 > 20000

from the Shuttle Radar Tomography Mission (SRTM). For
each sounding, we use ECMWF and SRTM data to calcu-
late the ground-pixel average surface pressure and the cor-
responding dry air mass. This is the standard operation pro-
cedure for RemoTeC trace gas retrievals from the GOSAT,
OCO-2 and TROPOMI satellite instruments. Errors in the
calculation of the air mass can be caused by erroneous satel-
lite pointing; these errors are part of the overall errors re-
ported for the TCCON validation sites (Sect. 3).

Butz et al. (2013) have shown that the CO2 absorption
cross sections used in RemoTeC for the SWIR-1 bands and
the CO2 band centered at 2.06 µm in SWIR-2 are consis-
tent to within 0.16 %, while the band centered at 2.01 µm in
SWIR-2 is inconsistent with its neighboring SWIR-2 band.
Since Butz et al. (2013) used a shorter measurement pe-
riod than here, we repeat that study for our period, and
we determine a scaling factor for the absorption cross sec-
tions at 2.01 µm with respect to the 2.06 µm band. To this
end, we select ocean-glint scenes that are confidently free of
cloud and aerosol using the upper-edge method (Butz et al.,
2013). Then, we run RemoTeC retrievals on the 2.01 and the

2.06 µm bands separately under the non-scattering assump-
tion. The average ratio of the retrieved XCO2 is our scal-
ing factor, which amounts to 0.981 at native GOSAT spectral
resolution (i.e., cross sections of the 2.01 µm band need to
be scaled by 0.981). The “upper-edge” method is also used
to adjust the scaling factor at each spectral degradation to
reflect the impact of the convolution procedure on the low-
resolution spectra. The updated factors differ on the sub-per
mill level from the correction at native spectral resolution.

3 Validation with TCCON

As detailed in Sect. 2, we run XCO2 retrievals for the native
GOSAT configuration, and for the coarse-spectral-resolution
SWIR configurations on a global set of cloud-free GOSAT
measurements. The SWIR-1 and SWIR-2 configurations are
run for various spectral resolutions, i.e., for various values of
the FWHM of the Gaussian function that convolves the na-
tive GOSAT spectra. The native GOSAT configuration serves
as the reference run corresponding to state-of-the-art full-
physics retrievals from a spectrometer with fine spectral res-
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Figure 3. Standard deviation of retrieved XCO2 values in SWIR-
1 (a) and SWIR-2 (b) around TCCON measurements plotted as a
function of resolving power. For SWIR-2, the faint line indicates
scatter for a non-scattering retrieval. The dotted line marks the re-
solving power at which spectral lines become indistinguishable in
the convolved spectra. The black horizontal line indicates the native
GOSAT scatter around TCCON. The × marks the resolving power
that we study in the rest of the article.

olution and wide spectral coverage (from NIR to SWIR-2).
The SWIR-1 and SWIR-2 configurations represent our test
cases for a potential future sensor with coarse spectral reso-
lution and single-band spectral coverage. To evaluate our re-
trievals, we compare retrieved XCO2 with measurements by
the ground-based TCCON (Wunch et al., 2011a, b; Messer-
schmidt et al., 2011; Kiel et al., 2019) (the stations we do
not use could not be colocated with satellite measurements
of our GOSAT dataset). We use data from 24 TCCON sta-
tions worldwide from the GGG2014 dataset (available at:
https://tccondata.org, last access: 12 August 2018). GOSAT
soundings are defined to be coincident with a TCCON sta-
tion if the satellite sounding is located within 5◦ with respect
to latitude–longitude of the respective ground station. The
GOSAT XCO2 retrieval is then compared to the average of
the TCCON XCO2 measurements within±2 h of the GOSAT
sounding time.

XCO2 precision is commonly quantified through the stan-
dard deviation of the differences (“scatter”) between GOSAT
and TCCON. Figure 3 shows that, while coarser spectral res-
olution implies larger scatter overall, there is some margin
for the choice of spectral resolution in the SWIR-1 band and
the figure suggests that the scatter around TCCON exhibits
a “plateau” in resolving power space just beyond the critical
spectral resolution necessary to distinguish between two typ-
ical adjacent CO2 absorption lines in the SWIR-1 (the criti-
cal resolving powers are ∼ 3300 in SWIR-1 and ∼ 2700 in
SWIR-2). This resolving power is marked by the dotted line
in Fig. 3. As spectral lines are blended into a broader spec-

tral shape by our convolution procedure, the non-scattering
SWIR-1 retrieval retains a very similar scatter around TC-
CON for another 1000 resolving powers. This pattern is not
observed for SWIR-2 scatter around TCCON, which gradu-
ally increases towards lower resolving powers (bold red line
in Fig. 3). We also conducted a sensitivity study where we
switched off the retrieval of particle scattering properties in
SWIR-2, i.e., using the same non-scattering configuration in
SWIR-2 as in SWIR-1. Then, the scatter of SWIR-2 with re-
spect to around TCCON increases significantly (faint red line
in Fig. 3), indicating that while DFS for the particle retrievals
is small, XCO2 retrievals benefit. Our observation that spec-
tral resolution degradation for the SWIR-1 and SWIR-2 con-
figurations generally results in larger scatter (than for the na-
tive GOSAT retrievals) is in broad agreement with the ten-
dency reported in both Galli et al. (2014) and Wu et al.
(2019a), who, however, did not assess the resolution range
reported here.

To constrain the resolving power of our future satellite
sensor, the scatter around TCCON is the most crucial vari-
able since the sensor will be built to study local-scale XCO2
enhancements. As a consequence, spectral resolving powers
greater than the ones that lead to a steep increase in scatter
around TCCON in Fig. 3 seem reasonable choices. A tech-
nical constraint for the spectral resolution for the envisioned
satellite sensor is that the target spectral range ought to be
imaged entirely onto the presumed 256 spectral pixels of the
sensor’s detector assuming a sampling ratio of 3. Thereby
we define two target resolving powers of 1200 and 1600 in
SWIR-1 and SWIR-2 (marked with a × in Fig. 3). For these
choices, Fig. 4 shows the correlation of the SWIR-1, SWIR-
2 and native GOSAT XCO2 retrievals with TCCON. The
standard deviations around TCCON amount to 2.43 (native),
3.00 (SWIR-1) and 3.28 ppm (SWIR-2). Given that all re-
trievals here are without bias correction, the three configura-
tions yield different mean differences (“biases”) with respect
to TCCON. Generally, although spectral resolution degrada-
tion causes a change of the overall bias, an overall bias itself
is irrelevant for emission estimates which rely on concentra-
tion gradients. Even if the satellite data are to be used in com-
bination with other CO2 measurements, it is common prac-
tice to derive a scaling factor of the satellite retrievals with
respect to ground truth.

Figure 5 resolves the biases per TCCON station for the re-
solving powers of 1200 and 1600 in SWIR-1 and SWIR-2,
respectively. Typically, the standard deviation among these
station-by-station biases (“bias variability”) is taken as a
measure for regional systematic errors which cause regional-
scale spurious gradients, and thus they are detrimental for
regional assessment of sources and sinks. The present re-
trieval configurations lead to marginally increased TCCON
bias variability from 0.94 ppm for native GOSAT up to 0.99
and 0.97 ppm in SWIR-1 and SWIR-2 retrievals, respec-
tively. Figure 5 also shows XCO2 retrieval standard devi-
ations per TCCON station. The corresponding data for re-
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Figure 4. Correlation between XCO2 retrieved from GOSAT with TCCON. (a) Native GOSAT retrieval; (b) SWIR-1 retrieval at 1200
resolving power; (c) SWIR-2 retrieval at 1600 resolving power. The grey line indicates a 1 : 1 correlation line; the colored lines show linear
fits to the respective dataset. Standard deviations around TCCON amount to 2.43 (native, compare, for example, Guerlet et al., 2013b), 3.00
(SWIR-1) and 3.28 ppm (SWIR-2).

Figure 5. Comparison of retrieval performances at individual TC-
CON stations sorted north to south. Marker size indicates number
of colocated soundings at each station. (a, b, c) Station-by-station
mean differences between TCCON and the native (black), SWIR-1
(blue) and SWIR-2 (red) retrievals from GOSAT. The standard de-
viation of mean differences among the stations, σ , amounts to 0.94
(native), 0.99 (SWIR-1) and 0.97 ppm (SWIR-2). (d, e, f) Scatter
around TCCON per station for the native, SWIR-1 and SWIR-2 re-
trievals. Vertical lines mark the average standard deviations (native:
2.43; SWIR-1: 3.00; SWIR-2: 3.28 ppm).

trieval performance at individual sites can be found in the
Supplement. Regional-scale variability of our proposed re-
trievals is not of utmost importance as our goal is to make
consistent measurements on a local scale. To this end, corre-
lations of retrieval errors caused by parameters that vary on
local scales are more informing.

For diagnosing spurious dependencies of the retrieved
XCO2 on locally variable geophysical parameters, we ex-
amine parameter correlations of the GOSAT–TCCON dif-
ferences. Figure 6 shows correlations of the native GOSAT,

SWIR-1 (resolving power: 1200) and SWIR-2 (resolving
power: 1600) retrievals for surface albedo (at 0.774 µm for
native GOSAT, at 1.600 µm for SWIR-1, at 2.099 µm for
SWIR-2), the scattering optical thickness (SOT) and the three
particle parameters Npar, zpar and αpar characterizing parti-
cle number density, particle layer height and particle size.
The particle parameters are taken from native GOSAT runs
since SWIR-1 does not retrieve the parameters and SWIR-
2 retrievals exhibit little DFS. The GOSAT–TCCON depar-
tures show a small correlation (R > 0.1) with surface albedo
for both SWIR-1 and native GOSAT configurations, while
the SWIR-2 retrievals do not show any correlation. Since
the SWIR-1 configuration neglects particle scattering, it ap-
pears reasonable that the GOSAT–TCCON departures corre-
late with albedo, which mediates the importance of scattering
with respect to the direct light path. Yet, only small correla-
tions are found for SWIR-1 errors with SOT, particle layer
height and particle size (R < 0.1). Minor SWIR-1 error cor-
relations with respect to particle number density (R = 0.11)
are present around TCCON stations. For SWIR-2, the cor-
relation with the particle layer height shows R <−0.3. Al-
though we do account for scattering in the SWIR-2, the
strong regularization of the retrieval leads to convergence
close to the a priori (τ = 0.1, zpar = 3000 m, αpar = 3.5) of
the particle parameters. Therefore, it is not surprising that
correlations still exist with particle scattering properties in
SWIR-2. An investigation of the impact of the aerosol pri-
ors on retrieval performance showed that SWIR-2 XCO2 is
only moderately sensitive to the aerosol priors. For instance,
varying aerosol prior optical depth by a factor of 2 or 0.5
results in small changes in standard deviations around TC-
CON (+0.22 and −0.08 ppm, respectively). Changing scat-
tering layer height priors to zpar = 1000 m or zpar = 5000 m
increased scatter around TCCON by +0.04 and +0.43 ppm,
respectively. Similarly, scatter around TCCON changes by
+0.22 and −0.05 ppm if αpar is set to 3.0 and 5.0, re-
spectively. SWIR-2 retrieval errors around TCCON sites do
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Figure 6. Differences between TCCON and native GOSAT (left), SWIR-1 (middle) and SWIR-2 (right) for selected geophysical parameters.
Pearson’s correlation coefficient R is shown in the corner of each subplot. The solid line is a linear fit to the data. Color encodes relative
occurrence of data points.

Figure 7. Retrieved SWIR-1 (a) and SWIR-2 (b) XCO2 plotted ver-
sus the corresponding native GOSAT retrievals. The colored lines
indicate linear fits to the data, and the grey line marks the 1 : 1 cor-
relation. Scatter amounts to 2.85 and to 2.69 ppm in SWIR-1 and
SWIR-2, respectively. Correlation coefficients are displayed in the
lower right corners of the panels. Color shading encodes relative
occurrence of data points.

not significantly correlate with SOT, particle number den-
sity and the size parameter. Native GOSAT retrievals consis-
tently show small correlations with all particle parameters.
In addition (not shown), correlations with |R|> 0.1 are ob-
served for SWIR-1 (and not for SWIR-2) with other geo-

physical variables like slant air mass of the geometric light
path (R =−0.17) and water vapor column (R = 0.21).

4 Global evaluation with native GOSAT retrievals

For evaluation on the global scale, we take XCO2 from native
GOSAT retrievals as the reference. The SWIR-1 and SWIR-
2 retrievals are discussed for resolving powers of 1200 and
1600, respectively. We subtract the overall biases found by
the TCCON analysis from all XCO2 retrievals discussed here
(−3.6, 2.49 and 1.04 ppm for the native, SWIR-1 and SWIR-
2 configurations, respectively).

Figure 7 shows the correlations of the SWIR-1 and SWIR-
2 configurations with the native GOSAT retrievals. The stan-
dard deviations of the differences to native GOSAT (scatter)
amount to 2.85 and 2.69 ppm for SWIR-1 and SWIR-2, re-
spectively, while correlation coefficients are 0.90 for both
SWIR configurations. Although the overall biases with re-
spect to TCCON have been subtracted, the global analysis
(containing many more data than the TCCON analysis and
even glint spectra) yields non-vanishing mean differences
(bias) of 0.59 ppm for SWIR-1 and −0.29 ppm for SWIR-
2 with respect to native GOSAT, presumably as a conse-
quence of an uneven distribution of TCCON sites around
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Figure 8. Retrieval bias (a, c) and scatter (b, d) with respect to
native GOSAT XCO2 over land as a function of latitude for the
SWIR-1 (a, b) and SWIR-2 retrievals (c, d) in 16◦ bins. Bold circles
indicate the average bias and scatter, while seasonal variations are
shown for boreal winter (DJF, diamonds), spring (MAM, squares),
summer (JJA, plus) and fall (SON, stars). Symbol size indicates the
relative number of GOSAT observations over land in the respective
latitudinal bin.

the globe. Figure 8 resolves bias and scatter of the SWIR
configurations in geographic latitude and season. Figure 8a,
b illustrate that SWIR-1 bias and scatter are both enhanced
in the Northern Hemisphere. Averaging all seasons, SWIR-
1 bias and scatter peak at 1.93 and 3.34 ppm, respectively,
between 20 and 30◦ N where the planet’s large deserts are lo-
cated. Deserts imply bright surfaces and desert dust aerosols
which may impact the SWIR-1 retrievals configured under
the non-scattering assumption. For the SWIR-2 configura-
tion, Fig. 8c, d show a meridional gradient for scatter and
an unclear pattern for bias. Average SWIR-2 scatter varies
between 2.03 ppm (at 15◦ S) and 3.20 ppm (at 65◦ N). The
bias seems to indicate that SWIR-2 retrievals underestimate
native GOSAT over the desert latitudes (20◦ N) and overes-
timate in higher latitudes (60◦ N). Seasonal variations gen-
erally follow the annual average patterns, and no clear sea-
sonal dependencies are detectable. Figures 9 and 10 show
maps of the differences between the native GOSAT config-
uration and SWIR-1 and SWIR-2 averaged at 1◦× 1◦ for
the full record of 8 years of GOSAT observations (2009–
2016). The global maps retrace the general observations of
the zonal averages shown in Fig. 8. SWIR-1 overestimates
native GOSAT retrievals throughout the high albedo regions
of the Sahara, central Asia and tentatively in central Aus-
tralia. SWIR-2 tends to overestimate native GOSAT in the
high latitudes and in Amazonia. Over the deserts the patterns
are mixed.

Figure 11 examines correlations of the retrieval differences
with selected geophysical parameters similar to the analysis
undertaken for TCCON (Sect. 3, Fig. 6). Among various pa-
rameters tested, most significant correlations are found for

Figure 9. Differences between native GOSAT and SWIR-1 re-
trievals averaged on 1◦× 1◦ for 8 years of GOSAT observations.
The global mean bias over land of 0.45 ppm was subtracted from
the graph.

Figure 10. Differences between native GOSAT and SWIR-2 re-
trievals averaged on 1◦× 1◦ for 8 years of GOSAT observations.
The global mean bias over land of 0.03 ppm was subtracted from
the graph.

the geophysical parameters that control the scattering regime.
These parameters are surface albedo, SOT, number density of
scatterers (Npar), center height of the scattering layer (zpar)
and the power-law parameter for the scattering particle size
distribution (αpar). As in Fig. 6, particle scattering parame-
ters are taken from the native GOSAT retrievals. Generally,
the SWIR-1 and SWIR-2 retrievals show parameter correla-
tions which are more significant on the global scale than what
has been found for the TCCON evaluation. The correlation
coefficients R are typically on the order of 0.2–0.3 and peak
at 0.5 for the correlation of the SWIR-2 bias with the number
density of scatterers Npar. This is true for the SWIR-2 re-
trievals, although the configuration allows for some freedom
fitting the particle parameters (DFS = 0.38 on average). We
also tried a non-scattering variant for SWIR-2 (not shown)
which yielded clearly inferior performance (see also Fig. 3)
due to correlations with other parameters such as the water
vapor column and the slant air mass.
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Table 2. Overview of TCCON datasets used in this work.

TCCON station Citation TCCON station Citation

Sodankylä Kivi et al. (2014) Lamont Wennberg et al. (2016b)
Białystok Deutscher et al. (2015) Anmyeondo Goo et al. (2014)
Bremen Notholt et al. (2014) Tsukuba Morino et al. (2018a)
Karlsruhe Hase et al. (2015) Edwards Iraci et al. (2016a)
Paris Té et al. (2014) JPL Wennberg et al. (2016a)
Orléans Warneke et al. (2014) Pasadena Wennberg et al. (2015)
Garmisch Sussmann and Rettinger (2018a) Saga Kawakami et al. (2014)
Zugspitze Sussmann and Rettinger (2018b) Hefei Liu et al. (2018)
Park Falls Wennberg et al. (2017) Rikubetsu Morino et al. (2018b)
Izaña Blumenstock et al. (2017) Ascension Island Feist et al. (2014)
Indianapolis Iraci et al. (2016b) Darwin Griffith et al. (2014a)
Four Corners Dubey et al. (2014), Lindenmaier et al. (2014) Reunion De Mazière et al. (2017)
Wollongong Griffith et al. (2014b) Lauder 1 Sherlock et al. (2014a)
Lauder 2 Sherlock et al. (2014b)

Figure 11. Differences between native GOSAT and the SWIR-1
(left) and SWIR-2 (right) configurations for selected geophysical
parameters. Pearson’s correlation coefficient R is shown in the cor-
ner of each subplot. The solid line is a linear fit to the data. Color
encodes relative occurrence of data points.

5 Discussion and conclusions

We have evaluated the performance of XCO2 retrievals from
solar backscatter satellite observations for a hypothetical sen-
sor that operates at moderate spectral resolution in either

Figure 12. XCO2 noise errors for SWIR-1 (ordinate) and SWIR-2
(abscissa). The grey line indicates the 1 : 1 correlation. Color shad-
ing encodes the relative occurrence of data points.

the SWIR-1 (around 1.6 µm) or the SWIR-2 band (around
2.0 µm). Both configurations, SWIR-1 and SWIR-2, cover
tens of CO2 absorption lines, and the selected retrieval win-
dows all cover transparent regions toward the shortwave and
the longwave ends to constrain surface albedo and its spectral
variation. The absorption optical depths in SWIR-1, however,
are generally less than those in SWIR-2. SWIR-1, in addition
to CO2, covers a CH4 absorption band; both configurations
have interfering water vapor absorption. For SWIR-2, we im-
plemented a retrieval variant of the RemoTeC algorithm that
allows for estimating three parameters that characterize light
scattering in terms of amount, size and height of the scatter-
ing particles. Yet, degrees of freedom for the particle retrieval
amount to only 0.38 on average, which indicates that the in-
formation content on scattering effects is limited. Neverthe-
less, our evaluation shows that the highly constrained particle
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retrieval outperforms a non-scattering retrieval in SWIR-2.
For SWIR-1, information content on particle scattering was
found even less, and therefore the SWIR-1 configuration is
based on the non-scattering assumption. Performance was
evaluated by mimicking the SWIR-1 and SWIR-2 sensors us-
ing spectrally degraded GOSAT observations without further
addition of noise to the spectra for the years 2009 to 2016,
which allowed for comparisons with ground truth provided
by TCCON and for comparisons with the native GOSAT re-
trievals (based on GOSAT’s full spectral resolution and spec-
tral band coverage).

Comparing the SWIR-1 and SWIR-2 retrievals to TC-
CON, we tried various resolving powers between 8100 and
760 for SWIR-1 and 6500 and 700 for SWIR-2, which is the
range roughly in between the CarbonSat concept and hyper-
spectral imagers such as AVIRIS-NG. Generally, the scat-
ter with respect to TCCON increases moderately with de-
creasing resolving power. For SWIR-2, we find a relatively
sharp increase below a resolving power of 1000. The stan-
dard configurations that we have chosen for further analy-
ses correspond to resolving powers of 1200 and 1600 for
SWIR-1 and SWIR-2, respectively. The corresponding scat-
ter around TCCON amounts to 3.00 and 3.28 ppm, respec-
tively, while native GOSAT retrievals scatter by 2.43 ppm.
These configurations fit on a detector with 256 spectral pixels
assuming a sampling ratio of 3 per FWHM. Other evaluation
metrics such as the overall global bias and the station-by-
station biases do not show significantly worse performance
than the native GOSAT configuration for the TCCON com-
parisons. Likewise, correlations with the scattering param-
eters are mostly small for the TCCON coincidences. The
evaluation using the native GOSAT retrievals on the global
scale shows differences in the range of 2 to 3 ppm, which,
for SWIR-1, clearly correlate with desert areas. In contrast
to the TCCON evaluation, the differences to native GOSAT
for both SWIR-1 and SWIR-2 also correlate with particle
scattering parameters (R typically in the range 0.2–0.3, up
to 0.5). Thus, assuming that the native GOSAT retrievals are
more accurate, we expect the SWIR-1 and SWIR-2 configu-
rations to suffer from regionally correlated errors due to par-
ticle scattering. Possibly, an additional aerosol sensor, such
as the one recently proposed by Hasekamp et al. (2019), may
help to overcome challenges in scenes with difficult aerosol
loads.

Our goal is to assess the suitability of the spectral sizing
of the SWIR-1 and SWIR-2 configurations for a hypotheti-
cal sensor that maps localized CO2 sources with high spa-
tial resolution. Our study indicates that limiting band cover-
age to a single SWIR band and operating at a spectral re-
solving power between 6000 and 1000 does not substantially
degrade XCO2 retrieval performance in terms of errors that
appear random in our comparisons to TCCON and to the
native GOSAT retrievals. However, the SWIR-1 and SWIR-
2 configurations are less capable of accounting for particle
scattering effects than the configurations of the type of the

native GOSAT design. The hypothetical sensor aims at dis-
criminating plumes from background concentration fields on
the scale of hundreds of meters to a few kilometers with a
ground resolution on the order of 50 m× 50 m enabling en-
hanced contrast in the vicinity of the sources (Fig. 1). Thus,
in terms of random errors, our findings are promising for us-
ing one of our SWIR-1 and SWIR-2 configurations. For the
errors induced by particle scattering, the implications largely
depend on whether the scattering regime can be assumed ho-
mogeneous on the respective scales of hundreds of meters
to a few kilometers. Even if atmospheric scattering proper-
ties are homogeneous, ground albedo varies substantially on
these scales. Surface reflectance has been shown to be a cen-
tral driver in methane retrieval precision by Cusworth et al.
(2019). However, ground albedo is presumably more tempo-
rally consistent than aerosols, for example, and so could be
more easily defined by independent measurements.

Our study isolates the effects of spectral resolution and
spectral band selection, but it postpones the assessment of
whether a sufficient signal-to-noise ratio is achievable. While
our evaluation reveals no clear preference for SWIR-1 or
SWIR-2, we expect that the assessment of signal-to-noise ra-
tio will favor the SWIR-2 configuration. Figure 12 shows the
noise error of the XCO2 retrievals from SWIR-1 and SWIR-
2. These errors are calculated by Gaussian error propagation
of GOSAT’s radiance noise through the RemoTeC algorithm.
Propagated noise errors in SWIR-2 are on average a factor
of 2.9 less than those in SWIR-1, which is largely due to
SWIR-2 covering the stronger CO2 absorption bands. Thus,
we expect that achieving the required signal-to-noise ratio
is less demanding for SWIR-2 than for SWIR-1. Addition-
ally, the SWIR-2 seems better suited for the construction of
a cloud filter, because its CO2 bands have very different op-
tical depths. Similar to the cloud filter currently in use for
GOSAT measurements, one could retrieve XCO2 from the
two SWIR-2 bands individually and filter for discrepancies.
This scheme should be tested in the future. Overall, we rec-
ommend further studies to consolidate the SWIR-2 configu-
ration in terms of instrument design and noise performance
and to evaluate the relevance of scattering-induced errors for
the targeted fine spatial resolution. A forthcoming study ad-
dressing these aspects of the proposed sensor is currently un-
der preparation.

Data availability. An overview of TCCON datasets used in this
work is listed in Table 2.
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