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Abstract. Observations of carbon monoxide (CO) from the
Measurements Of Pollution In The Troposphere (MOPITT)
instrument aboard the Terra spacecraft were expected to have
an accuracy of 10 % prior to the launch in 1999. Here we
evaluate MOPITT Version 7 joint (V7J) thermal-infrared
and near-infrared (TIR–NIR) retrieval accuracy and preci-
sion and suggest ways to further improve the accuracy of
the observations. We take five steps involving filtering or
bias corrections to reduce scatter and bias in the data rela-
tive to other MOPITT soundings and ground-based measure-
ments. (1) We apply a preliminary filtering scheme in which
measurements over snow and ice are removed. (2) We find
a systematic pairwise bias among the four MOPITT along-
track detectors (pixels) on the order of 3–4 ppb with a small
temporal trend, which we remove on a global scale using a
temporally trended bias correction. (3) Using a small-region
approximation (SRA), a new filtering scheme is developed
and applied based on additional quality indicators such as
the signal-to-noise ratio (SNR). After applying these new fil-
ters, the root-mean-squared error computed using the local
median from the SRA over 16 years of global observations
decreases from 3.84 to 2.55 ppb. (4) We also use the SRA to
find variability in MOPITT retrieval anomalies that relates
to retrieval parameters. We apply a bias correction to one
parameter from this analysis. (5) After applying the previ-
ous bias corrections and filtering, we compare the MOPITT
results with the GGG2014 ground-based Total Carbon Col-
umn Observing Network (TCCON) observations to obtain an
overall global bias correction. These comparisons show that
MOPITT V7J is biased high by about 6 %–8 %, which is sim-
ilar to past studies using independent validation datasets on
V6J. When using TCCON spectrometric column retrievals
without the standard airmass correction or scaling to aircraft
(WMO scale), the ground- and satellite-based observations
overall agree to better than 0.5 %. GEOS-Chem data assimi-
lations are used to estimate the influence of filtering and scal-
ing to TCCON on global CO and tend to pull concentrations
away from the prior fluxes and closer to the truth. We con-
clude with suggestions for further improving the MOPITT
data products.

1 Introduction

Carbon monoxide (CO) is an important atmospheric trace
gas. It is a tracer of pollution and atmospheric transport
and plays an important role in the atmospheric hydroxyl
(OH) budget. About 2800 Tg CO yr−1 is emitted globally,
with about 45 % of the emissions coming from oxidation of
volatile organic compounds (VOCs – predominately methane
and isoprene), about 25 % from biomass burning, 25 % from
fossil-fuel and domestic-fuel burning, and the rest from veg-
etation, oceans, and geological activity (Seinfeld and Pan-

dis, 2006). It acts as an indirect greenhouse gas (GHG) as
both a minor source of CO2 and by affecting OH concentra-
tions, which in turn affects the lifetime of methane. Its 100-
year global warming potential per mass is 1.9 (Forster et al.,
2007). The ultimate fate for 90 % of CO is oxidation by OH
to form carbon dioxide and HO2. CO has an average global
lifetime of about 1–3 months, with a shorter lifetime in the
tropics and a longer lifetime in the Southern Hemisphere ex-
tratropics (Lelieveld et al., 2016). The moderate lifetime of
CO makes it a good tracer for both emissions and transport
of pollution.

The Measurements Of Pollution In The Troposphere (MO-
PITT) is a Canadian instrument aboard the Terra Earth-
observing satellite, launched in December 1999. Drummond
et al. (2010) describe the instrument in more detail, but
briefly, it is a gas correlation radiometer with near-infrared
(NIR) and thermal-infrared (TIR) channels. The primary
MOPITT mission goal is to quantify CO in the Earth’s atmo-
sphere. Space-based observations of CO can provide greater
spatial coverage than a few surface observations. However,
space-based observations that rely on reflected (e.g., NIR)
sunlight can be influenced by surface properties, airglow,
and clouds and are more strongly affected by aerosol scat-
tering than solar-viewing instruments. For MOPITT the TIR
sensitivity depends on the strength of the temperature con-
trast between the surface and atmosphere, which is variable
across the globe. Due to the physical limitations of passive
Earth nadir-viewing remote sensing, satellite instruments of-
ten have lower information content per observation than
ground-based instruments (e.g., Deeter et al., 2015), espe-
cially compared to the Total Carbon Column Observing Net-
work (TCCON), which measures atmospheric absorption of
the Sun’s radiance. Ground-based spectrometers often have
higher spectral resolution and/or coverage as well as tem-
poral resolution at an individual location. These differences
between observing systems make intercomparisons useful in
checking for and reducing biases.

While MOPITT data are the longest satellite record of to-
tal column CO (Deeter et al., 2017), there are several other
satellite instruments that measure column CO, and we men-
tion a few of them here. SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric CHartographY)
aboard Envisat (Environmental Satellite) launched in March
2002 was first compared with ground-based observations in
2005 (Sussmann and Buchwitz, 2005) and later compared
with the larger TCCON and found to be biased about 10 ppb
lower (Hochstaffl et al., 2018). TROPOMI (TROPOspheric
Monitoring Instrument) aboard the Sentinel-5 Precursor was
launched in October 2017 and was found to be biased 6 ppb
higher than TCCON, with the difference depending on loca-
tion (Borsdorff et al., 2018). GOSAT-2 (Greenhouse gases
Observing SATellite-2) was recently launched in October
2018, and TCCON will be used for its validation.
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Most intercomparisons with MOPITT have used aircraft
data (e.g, Deeter et al., 2014, 2017, 2019). The first sys-
tematic validation of MOPITT CO with ground-based col-
umn measurements was by Buchholz et al. (2017), who used
the Network for the Detection of Atmospheric Composition
Change (NDACC) mid-infrared retrievals. There have been
some studies to compare observations from MOPITT with
data from a few (three to six) TCCON sites (e.g, Mu et al.,
2011; Té et al., 2016), but this is the first to use observations
from all the sites in an intercomparison with MOPITT. Con-
tinual comparisons of MOPITT observations with other sys-
tems ensure data quality and can be used to determine areas
of improvement. This intercomparison exercise uses the MO-
PITT Version 7 joint (V7J) product and ground-based NIR
observations from the TCCON.

The rest of this paper is summarized as follows: Sect. 2 de-
scribes the different instruments, systems, and datasets used
in this study. Section 3 describes our effort to derive filters
for MOPITT data and to improve the single-sounding accu-
racy and precision using bias corrections. Section 4 describes
the MOPITT and TCCON comparisons, including sensitiv-
ity tests and a comparison of averaging kernels and infor-
mation content. Section 5 describes data assimilation tests
where the GEOS-Chem model is used to estimate how filter-
ing and bias correcting MOPITT data affects global fluxes.
Finally we conclude in Sect. 6 with a summary of practical
considerations in this study along with suggestions on how
MOPITT retrievals might be improved in future iterations,
and we summarize our work in Sect. 7.

2 Datasets

2.1 MOPITT

The MOPITT instrument aboard the Terra satellite launched
in December 1999 has been described elsewhere (Drum-
mond et al., 2010). Briefly, it is a gas-filter correlation ra-
diometer with eight optical channels, of which three have
been used since August 2001 for CO observations, two in
the TIR band (channels no. 5 and no. 7; 4.617± 0.055 µm),
and one in the NIR band (channel no. 6; 2.334± 0.011 µm).
Each channel produces an “average” (A) and “difference”
(D) radiance measurement. A linear detector array in each
channel allows MOPITT to make observations at four dif-
ferent sounding locations simultaneously. The ground field
of view is approximately 22km× 22km for each sounding.
Retrievals from among these four “footprints” or pixels were
previously shown to have a bias compared to ground-based
column measurements from the NDACC Infrared Working
Group (IRWG) (Buchholz et al., 2017). A moving mirror
scans cross track for 29 “stares” in each direction for a swath
that is approximately 650 km wide, and one back-and-forth
sweep takes approximately 26 s.

Terra is in a daytime-descending (nighttime-ascending)
Sun-synchronous orbit at an altitude of about 700 km, with a
local Equator crossing time at around 10:30 LT (22:30 night-
time) and an inclination angle of 98.4◦. Terra makes 14–15
orbits daily, with an exact repeat time of 16 d. However, with
its wide swath width, MOPITT is able to achieve near-global
coverage every 3–4 d. The redundancies built into the MO-
PITT mission allowed for continued measurements after a
cooler failure in May 2001 eliminated one of the two opti-
cal boards and the usefulness of channels 1–4, leaving chan-
nels 5–8 (Drummond et al., 2010). The impact of other early
anomalies is minor. No abrupt changes since 2001 are ex-
pected to impact the retrievals, with the possible exception
of annual hot calibrations, the latest of which being in March
2019 and a separate temporary cooler malfunction in July
2009. Due to the different instrument configuration from the
early record, we only include MOPITT data from 2002 to
2017 (inclusive) in this study.

There are different retrieval products corresponding to
TIR-only (T) retrievals, NIR-only (N) retrievals, and TIR–
NIR (J – joint) retrievals. We chose to make comparisons
with the level 2 Version 7 joint (L2, V7J) product because
it should theoretically contain the most information. Deeter
et al. (2014) noted that the V6 TIR–NIR product has the
greatest vertical resolution but has large retrieval errors and
bias drift. The TIR-only product has the highest stability, and
the NIR only is best at total column CO retrievals. The MO-
PITT retrievals are performed on a logarithmic scale due to
the large variability in CO in the atmosphere (∼ 1 order of
magnitude). The state vector includes up to 10 vertical layers
of log10(VMRCO) (dry volume-mixing ratios), surface tem-
perature, and surface emissivity. Retrievals are performed on
a grid of 100 hPa spaced layers up to 100 hPa (e.g., surface–
900, 900–800 hPa; Deeter, 2017). The top layer retrieved
is 100–50 hPa, and above that the prior VMRCO from the
model is used due to low sensitivity. The 50–0 hPa layer rep-
resents 1.2± 0.4% (1σ ) of the a priori CO column (1.3 %
in SH and 1.0 % in NH). Fractions of CO in this layer com-
pared to the total column are shown in Fig. S1 in the Supple-
ment. The a priori value is from climatological output from
the Community Atmosphere Model with Chemistry (CAM-
chem; Lamarque et al., 2012) and is described by Deeter et al.
(2014). The a priori covariance matrix is described by Deeter
et al. (2010). A total column is obtained by a weighted av-
erage of the layers, and this can be converted to a column-
average dry-air mole fraction (denoted XCO) by dividing by
the model total column of dry air included in the MOPITT
V7 product that takes into account surface pressure and wa-
ter content. We focus on only daytime soundings, which are
defined as those with a solar zenith angle (SZA) less than 80◦

in the retrieval. In the V7J data product the 100–0 hPa layer
is an average of the 100–50 and 50–0 hPa layers, and we use
the 100–0 hPa values for our 100–50 hPa layer but use values
that are 48 % of this amount for 50–0 hPa based on recom-
mendations of the MOPITT V5 user’s guide.

www.atmos-meas-tech.net/12/5547/2019/ Atmos. Meas. Tech., 12, 5547–5572, 2019
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There are a number of previous studies that have com-
pared MOPITT with different observing systems. Because
the algorithm has been improved several times since the start
of the mission, here we only list validation studies on Ver-
sions 6 (released in 2013) and 7 (released in 2016 and used
in this study). Recently Version 8 was released (December
2018). Versions prior to 6 are no longer available (https:
//www2.acom.ucar.edu/mopitt/products, last access: 2 Au-
gust 2018). Deeter et al. (2014) noticed a bias between the
MOPITT V6J column retrievals and aircraft observations of
+4.3 ppb (assuming an average total air column density of
2.1× 1025 molec. cm−2, roughly 5 % for a global 80 ppb av-
erage). They noted a correlation of r = 0.89 between the sys-
tems and a drift of only 0.15±0.1 ppb yr−1 (∼ 0.18±0.12 %).
The V6J retrievals had an overall positive bias at the surface
and 800 hPa layers, a negative bias at the 600 and 400 hPa
layers, and a positive bias again at the 200 hPa layer. The
bias, drift, and correlation all depended on which data prod-
ucts were compared. Later, the V6J profiles were compared
with aircraft measurements over the Amazon Basin (Deeter
et al., 2016). Limited maximum aircraft altitudes precluded
column retrieval comparisons, but Deeter et al. (2016) noted
maximum biases at the 800 hPa of −27 %.

Three studies compared ground-based remote-sensing ob-
servations with those from MOPITT (Rakitin et al., 2015;
Té et al., 2016; Buchholz et al., 2017). Rakitin et al. (2015)
made comparisons between MOPITT V6J L3 and various
ground-based remote-sensing sites in Eurasia. There is sig-
nificant variability in the unadjusted comparisons for differ-
ent sites in their study, which could be from the influence of
averaging kernels (Rodgers and Connor, 2003), but in gen-
eral MOPITT observations were larger than ground-based
observations. Té et al. (2016) compared MOPITT V6J and
IASI (Infrared Atmospheric Sounding Interferometer) satel-
lite observations with ground-based observations in an urban
site (Paris), a high-altitude site (Jungfraujoch), and a South-
ern Hemisphere site (Wollongong). They noted good agree-
ment between space and ground-based observations with
slopes of 0.91–0.99, with satellite observations being slightly
lower. Recently, Buchholz et al. (2017) compared MOPITT
V6 observations with those from 14 different ground-based
NDACC sites between 78◦ S and 80◦ N and used data from
August 2001 to February 2012 for comparisons with V6T,
V6N, and V6J. We focus on their V6J comparison results.
They found MOPITT to be generally biased high relative to
the NDACC, and 11 sites have a bias less than 10 % over
land. The all-station mean bias is 5.1 %, and the average cor-
relation is r = 0.78. They noted that the surface type (land
or water) had little effect on validation statistics. However,
they did note that validation results differed among pixels,
and pixel 1 has the lowest correlation while pixel 3 has the
highest correlation.

Deeter et al. (2017) is the only systematic global valida-
tion study of the MOPITT V7 algorithm. They use aircraft
measurements from the HIAPER Pole-to-Pole Observations

(HIPPO) campaign and National Oceanic and Atmospheric
Administration (NOAA) aircraft flask samples primarily over
North America for their validation dataset. They describe the
improvements included to create the V7 algorithm. They find
that the V7J column observations have a smaller bias and
larger r (1.4 ppb and 0.93, respectively) than the V6J prod-
uct (3.8 ppb and 0.89).

While L1 includes radiance bias corrections, there are no
empirical bias corrections to the physics-based retrieval in
the L2 V7 MOPITT products. There are retrieval anomaly di-
agnostics included in the L2 product, but users need to define
filters to use for their particular application. For L3, V7J day-
time observations where both the signal-to-noise ratio (SNR)
of channel no. 5A < 1000 and the SNR of channel no. 6A
< 400 are excluded (Deeter, 2017). All observations from
pixel 3 are also excluded due to excessive and unstable noise
from NIR measurements from that pixel (Deeter et al., 2015).
In this study suggested filters are developed along with a bias
correction.

2.2 TCCON

The TCCON is a global network of independently operated
solar-viewing Fourier-transform spectrometers (SV-FTS) op-
erated under a common set of standards. From measurements
taken by these spectrometers, retrieved estimates of XCO are
made (Wunch et al., 2011a, 2015). Because profiles are not a
part of the TCCON data product, we focus on validating the
MOPITT total columns rather than profiles. Data are quality
screened by both individual site operators as well as a cen-
tralized team. From sensitivity tests perturbing the algorithm
to each known source of uncertainty (e.g., a priori values
of VMRs and temperature and surface pressure), GGG2014
XCO systematic errors for TCCON are below 4 % (Wunch
et al., 2015). The uncertainty in the scaling slope is 6 % (2σ ).

One of the primary uses of the TCCON data has been
satellite validation (e.g., Inoue et al., 2016; Kulawik et al.,
2016; Wunch et al., 2017b). There are several reasons why
TCCON data are considered more accurate than satellite ob-
servations and hence a good validation source. (1) Obser-
vations are directly pointed at the Sun, which increases the
SNR, is insensitive to effects of surface properties, and is in-
sensitive to the effects of both airglow and aerosol scattering
(e.g., Zhang et al., 2015). (2) Instruments are operated at a
resolution of at least 0.02 cm−1, which provides more infor-
mation for spectral fitting than most satellite measurements.
(3) The network was established in 2004 with contributions
from many different institutions. This international collabo-
ration has led to many discoveries on how to reduce errors in
Xgas retrievals (e.g., Kiel et al., 2016).

Despite these advantages, there are known sources of un-
certainty that could bias the measurements. For example, to
tie this to the World Meteorological Organization (WMO) in
situ scale, there is a 7 % scaling factor in GGG2014 for XCO
(Wunch et al., 2015). This factor is considered large com-
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pared to the current uncertainty in spectroscopy, and there is
an ongoing effort to determine if this factor is appropriate. In
this study we use both the official TCCON XCO product as
well as a derived product without the empirical scaling factor
applied. For a discussion and current comparison of unscaled
TCCON data to the WMO scale, see Sect. S2 in the Supple-
ment.

We compare MOPITT with TCCON from mid-2004 to
2017 (inclusive). Prior to 2007 there were only four TCCON
sites (Table 1). During 2007 and 2008 the TCCON grew to
nine sites. Table 1 also lists the site locations and number of
coincidence days after MOPITT data are filtered.

2.3 AirCore

AirCore measurements are a novel way to vertically sam-
ple the atmosphere to obtain profiles of various gases and
have been described elsewhere (Karion et al., 2010; Mem-
brive et al., 2017). Briefly, a coiled tube on the order of 100–
300 m long, with an inner diameter on the order of 2–5 mm,
is taken to altitude. One end of the tube is sealed, so dur-
ing ascent it is evacuated and on descent the tube slowly fills
with ambient air. Because diffusion is slow over the length
of the tube but fast across the 2–5 mm diameter of the tube,
air from different altitudes does not mix significantly. Upon
landing the vertical profile of the gas is preserved along the
length of the tube, with high altitudes near the closed end and
low altitudes near the open end. On the ground, the AirCore
is analyzed within a few hours, which minimizes molecular
diffusion. By pulling the air through and measuring concen-
trations with a calibrated trace-gas analyzer, a vertical profile
can be obtained. AirCore CO is still a developmental prod-
uct with a sample measurement precision typically less than
5 ppb (Engel et al., 2017). However, stratospheric AirCore
CO profile comparisons have shown differences as large as
20 ppb, which could be a result of diffusion in stratospheric
AirCore samples, AirCore surface effects, or incorrect Air-
Core sample end-member assumptions. Accuracy is depen-
dent on the quality of calibration and standards (see Sect. S2).

Often AirCores are flown on balloons that can reach a ceil-
ing of around 30 km (∼ 10 hPa), depending on the type of
balloon. Once altitude is reached, the payload is cut away
from the balloon. Higher-altitude data (during rapid descent)
often need to be discarded; hence 22 km (∼ 40 hPa) is the
median highest altitude in this dataset. The vertical resolu-
tion depends on AirCore tubing dimensions, measurement
altitude, recovery time, and temperature but is on the order of
200–1000 m. From 2012 to 2017 there are 36 AirCore pro-
files available. AirCore profiles are used among other profile
measurements to tie TCCON retrievals to the WMO scale
(Wunch et al., 2015). Here we use them for sensitivity tests
when an approximation of the true atmospheric profile is
needed.

3 Quality control filters and bias correction

Typically a retrieved state vector x̂ (e.g., an atmospheric pro-
file) is described as a linearization about the a priori state
vector xa (Rodgers, 2000), i.e.,

x̂ = xa+A(x− xa)+ εx (b,c) . (1)

In this equation, A is the averaging kernel, a matrix in this
case, with elements Aij = ∂x̂i

∂xj
, and x is the true state vec-

tor. The term εx is a catch-all for any remaining systematic
or random uncertainties from instrument calibration or the
retrieval. This term is a function of forward-model parame-
ters not perfectly known (b), such as pressure, temperature,
pointing, spectroscopy, and modeling of instrument response
(e.g., the instrument line shape). c contains other values in
the retrieval not used in the forward model, such as conver-
gence criteria. Changes in x̂ may thus be related to changes
in b and c. Biases in b and c may be approximated as having
a linear effect on x̂ (Rodgers, 1990). However, these effects
may not be accounted for in models, so measurement teams
may reduce the effects of these spurious variations by filter-
ing data empirically.

For example, empirical corrections are employed for var-
ious gases in the final TCCON products after the physics-
based retrievals to improve accuracy up to about 0.1 %,
which would otherwise be currently limited to accuracies of
about of 2 %–3 % due to spectroscopic uncertainties, espe-
cially in O2 (Wunch et al., 2011b, 2015). As a second ex-
ample, empirical corrections to CO2 measurements from the
Orbiting Carbon Observatory-2 (OCO-2) satellite (launched
in 2014) did not always improve data at all scales but did re-
veal areas where the algorithm could be improved (O’Dell
et al., 2018; Kiel et al., 2019). Though their studies were for
CO2, we apply many of the same methods for CO, including
similar truth proxies.

By comparing retrieved data with a truth proxy, some data
may stand out as being possibly biased due to the εx (b,c)
term. These may be filtered out, deweighted, or bias cor-
rected to improve the final product. It is challenging to define
a truth proxy because if the true state of the atmosphere were
known a priori, the measurement would not be needed in the
first place. Rather than using proxies that work for each mea-
surement, we aggregate many measurements to empirically
identify artifacts and outliers. We use TCCON and a small-
region approximation (SRA – also known as small-area ap-
proximation or variation in other studies) as truth proxies.
For the SRA we assume that over a sufficiently small region
(e.g., ∼ 100km× 100km) that is far from point sources the
atmosphere is approximately homogeneous and outliers are
due to inadequacies in the retrieval.

Filter selection and biases are interdependent; thus our
quality-control (QC) and bias-correction process was itera-
tive.

www.atmos-meas-tech.net/12/5547/2019/ Atmos. Meas. Tech., 12, 5547–5572, 2019
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Table 1. Details for TCCON sites used in this study. Occasionally one site had more than one instrument, as indicated by multiple two-letter
IDs.

Site name ID Lat Long m a.s.l. Operational Daysb References
datesa

AFRC, Edwards, CA, USA df 34.958◦ N 117.882◦W 699 Jul 2013–present 253 Iraci et al. (2016a)

Anmyeondo, South Korea an 36.624◦ N 126.331◦ E 30 Feb 2015–present 24 Goo et al. (2014)

Ascension Island ae 7.917◦ S 14.332◦W 10 May 2012–present 151 Feist et al. (2014)

Białystok, Poland bi 53.23◦ N 23.025◦ E 180 Mar 2009–Sep 2018 159 Deutscher et al. (2014)

Bremen, Germany br 53.104◦ N 8.850◦ E 27 Jan 2007–present 83 Notholt et al. (2014)

Burgos, Philippines bu 18.553◦ N 120.650◦ E 35 Mar 2017–present 31 Morino et al. (2018),
Velazco et al. (2017)

Caltech, Pasadena, CA, USA ci 34.136◦ N 118.127◦W 237 Sep 2012–present 56 Wennberg et al. (2014b)

Darwin, Australia db 12.456◦ S 130.927◦ E 37 Aug 2005–present 599 Griffith et al. (2014a)

East Trout Lake, Saskatchewan, Canada et 54.354◦ N 104.987◦W 502 Oct 2016–present 28 Wunch et al. (2017a)

Eureka, Nunavut, Canada eu 80.05◦ N 86.42◦W 610 Mar 2010–present 8 Strong et al. (2017)

Four Corners, NM, USA fc 36.797◦ N 108.480◦ E 1643 Mar 2013–Oct 2013 22 Dubey et al. (2014b),
Lindenmaier et al. (2014)

Garmisch, Germany gm 47.476◦ N 11.063◦ E 743 Jul 2007–present 153 Sussmann and Rettinger (2014)

Hefei, China hf 31.90◦ N 117.17◦ E 29 Sep 2015–Dec 2016 17 Liu et al. (2018)

Indianapolis, IN, USA if 39.861◦ N 86.004◦W 270 Aug 2012–Dec 2012 18 Iraci et al. (2016b)

Izaña, Tenerife, Spain iz 28.3◦ N 16.5◦W 2370 May 2007–present 65 Blumenstock et al. (2014)

JPL, Pasadena, jc
34.202◦ N 118.175◦W 390

Jul 2007–Jun 2008 10
Wennberg et al. (2014c, 2016a)

CA, USA jf May 2011–May 2018 19

Karlsruhe, Germany ka 49.100◦ N 8.439◦ E 116 Apr 2010–present 136 Hase et al. (2014)

Lamont, OK, USA oc 36.604◦ N 97.486◦W 320 Jul 2008–present 593 Wennberg et al. (2016b)

Lauder, New Zealand lh, ll 45.038◦ S 169.684◦ E 370 Jun 2004–present 150 Sherlock et al. (2014a, b),
Pollard et al. (2017)

Manaus, Brazil ma 3.213◦ S 60.598◦W 50 Oct 2014–Jun 2015 3 Dubey et al. (2014a)

Ny-ålesund, Spitsbergen, Norway sp 78.923◦ N 11.923◦ E 20 Mar 2006–present 79 Notholt et al. (2017)

Orléans, France or 47.997◦ N 2.113◦ E 130 Aug 2009–present 138 Warneke et al. (2014)

Paris, France pr 48.846◦ N 2.356◦ E 60 Sep 2014–present 40 Té et al. (2014)

Park Falls, WI, USA pa 45.945◦ N 90.273◦W 473 Jun 2004–present 435 Wennberg et al. (2014a)

Réunion Island ra 20.091◦ S 55.485◦ E 87 Sep 2011–present 275 De Mazière et al. (2014)

Rikubetsu, Japan rj 43.457◦ N 143.766◦ E 380 Nov 2013–present 12 Morino et al. (2014b)

Saga, Japan js 33.241◦ N 130.288◦ E 7 Jul 2011–present 136 Kawakami et al. (2014)

Sodankylä, Finland so 67.367◦ N 26.631◦ E 188 May 2009–present 241 Kivi et al. (2017),
Kivi and Heikkinen (2016)

Tsukuba, Japan tk 36.051◦ N 140.122◦ E 31 Aug 2011–present 66 Morino et al. (2014a)

Wollongong, Australia wg 34.406◦ N 150.879◦ E 30 Jun 2008–present 342 Griffith et al. (2014b)

Zugspitze, Germany zs 47.42◦ N 10.98◦ E 2960 Apr 2015–present 42 Sussmann and Rettinger (2018)

a Operational dates refer to time range where public GGG2014 retrievals are available. b Coincidence days only and after filtering MOPITT data.
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3.1 Pixel-to-pixel bias

Buchholz et al. (2017) observed biases among the four
MOPITT pixels. This bias significantly affects our SRA
(Sect. 3.2), as a biased value may be chosen as the median.
We spatially grid the data in 2◦×2◦ bins and average for each
pixel separately over monthly timescales to evaluate variabil-
ity in the bias. Here and throughout, data are averaged as
described in Appendix A. We analyze multiple months but
here show results from April and November 2016 in Fig. 1
for the difference between pixels 2 and 4. We choose these
two pixels because the instrumental noise is larger for pixel 3
(Deeter et al., 2015) and pixel 1 has a known large global
bias (Buchholz et al., 2017), and we would therefore expect
the difference between pixels 2 and 4 to be a lower bound
on pixel-to-pixel bias. We see large pixel-to-pixel bias pole-
wards of 60◦. Comparing with scenes flagged as snowy or
icy by retrievals from MODIS (Moderate Resolution Imag-
ing Spectroradiometer; also aboard Terra), we see that there
is some correlation between the bias with the snow or ice
scenes. This bias can be positive or negative. For example,
we see that pixel 2 is lower than pixel 4 towards the North
Pole and is biased positively over land in Antarctica. Over sea
ice around Antarctica, pixel 2 is lower than pixel 4. We also
compare pixels 1 and 3 to the weighted mean and find that
pixel 3 is biased low over land snow or ice and pixel 1 is bi-
ased high over both land and water snow or ice. These biases
likely arise from the effects snow or ice have on the thermal
contrast of the surface and hence affect the TIR channels. For
the rest of our analysis, we filter for daytime scenes and re-
move soundings where the MODIS diagnostics indicate the
presence of any snow or ice.

We examine temporal trends in MOPITT pixel bias com-
pared to the weighted mean from all pixels (Fig. 2). Data are
averaged globally for each pixel and surface type separately
for 15 d bins. This analysis relies on the assumption that on
average each pixel samples the same area. We see that the
absolute bias of pixel 1 is largest. However, in contrast with
Buchholz et al. (2017), we observe a negative rather than pos-
itive bias between pixel 1 and the mean in the TIR–NIR re-
trievals, which may be because their study was of V6 data.
Pixel 3 has a smaller absolute bias that is positive. In 2002,
the spread of the biases is larger than in 2017. On average, the
land and water biases are similar (within 0.4 ppb); however,
there is a larger seasonal cycle (∼ 1.5 ppb) in the bias for the
land that may be an artifact of the sampling and averaging
global 15 d bins.

One consideration for bias corrections is whether account-
ing for differences in averaging kernels can account for the
bias. Buchholz et al. (2017) noticed a large absolute bias for
pixel 1 compared with NDACC observations even after ac-
counting for averaging kernels. To examine the effects of av-
eraging kernels, we find MOPITT soundings within an el-
lipse (±1◦ latitude, ±1.5◦ longitude) around the center loca-
tion of AirCore flights on the same day. There are 20 flights

Table 2. Mean values of MOPITT XCO retrievals, colocated with
AirCore measurements and separated by pixel, compared to the
simulated XCO from applying MOPITT averaging kernels to Air-
Core profiles for 22 flights.

Retrieved mean Simulated mean
(ppb) (ppb)

Pixel 1 86.0 84.1
Pixel 2 87.7 84.3
Pixel 3 88.3 84.5
Pixel 4 88.6 84.4

with coincident observations and 1933 total corresponding
MOPITT soundings. We apply averaging kernels to create
simulated MOPITT column retrievals from AirCore profile
measurements:

ĉ = ca+ a
T
M
(
log10x− log10xa

)
, (2)

where ĉ is the simulated XCO, and ca is the a priori column
XCO. x is the dry VMR profile (from AirCore) and should
not be confused with the state vector, which is log10 (VMR)
for MOPITT. For this study we have defined the MOPITT
column-averaging kernel for a pressure level i to be (Ap-
pendix B)

aM, i =
∂ĉ

∂log10xi
= ln10

n∑
j

hj x̂jAij . (3)

The pressure weighting function h has been described by
Connor et al. (2008) and Wunch et al. (2010). We find that the
maximum bias for the retrieved columns is between pixels 1
and 4 and is about 8 times larger for the retrieved (2.6 ppb)
than for the simulated columns (0.3 ppb; Table 2). For these
soundings MOPITT is also biased high compared to the Air-
Core simulated columns by 3.3 ppb, which is greater than
the bias of 0.5–1.4 ppb compared to other aircraft profiles
(Deeter et al., 2017).

We make a preliminary pixel bias correction by adjust-
ing soundings over land and water for each pixel separately
based on a linear fit to the overall time series shown in Fig. 2.
This fit is later improved after filtering (Sect. 3.4). After this
adjustment we noticed some residual bias among the his-
tograms, so we also apply a year-to-year pixel bias correction
of up to 0.4 ppb that is the same for water and land.

3.2 Small-region approximation

We perform a SRA on the dataset with the preliminary fil-
ter for daytime and snow or ice free scenes and preliminary
pixel bias correction. In a SRA, data within a specified area
and time frame are assumed to be homogeneous, and vari-
ation within that area is assumed to be non-physical. There
is always some real variation in the atmosphere; however,
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Figure 1. On the left (a, b) are average differences in XCO between pixels 2 and 4. On the right (c, d) is the corresponding MODIS snow
or ice flag, where 0 indicates all snow or ice and 1 indicates that the scenes were clear of snow or ice. Some correlation is observed between
bins with a large pixel-to-pixel bias and snow or ice cover. Here and throughout we use an Eckert IV equal-area projection.

Figure 2. Pixel (pxl) biases compared to the weighted mean with time. Data are averaged into 15 d bins separated for land and water
soundings. The mean of pixels 1, 2, and 4 is also shown because pixel-3 data are not included in the L3 product. The small gap in 2009 is
from a temporary cooler malfunction on 28 July.

statistically, for a large sample size these variations are ex-
pected to average out. If the area is too small then there will
be too few points for an unbiased median. If the area is too
large then true atmospheric variability will be significant. A
disadvantage of using this method as a “truth” proxy is that
it is insensitive to bias on larger scales related to, for exam-
ple, latitude and surface albedo (e.g., O’Dell et al., 2018, for
OCO-2 and CO2).

We use small regions that are approximately 89km×
133km (0.8◦×1.2◦, latitude× longitude, at the Equator). Re-
gion size is a trade-off between having sufficient points per
region and keeping regions small enough that real variations
in XCO are small. The effects of different region sizes are de-
scribed in Sect. S3. To calculate anomalies, we subtract the

median from all the points within that region. If the median
point does not have at least a degree of freedom (DOF) for
the signal then the entire region is discarded. We also require
at least 10 points in each region, which retains about 50 % of
the SRA bins.

3.3 Quality control filters

Using the SRA “truth” proxy, we can look for correlations of
differences to the local median (i.e., anomalies) with various
parameters that are or may be related to the retrieval. Table 3
lists parameters we consider for filtering and bias corrections.
We make plots similar to those by Wunch et al. (2011b) and
O’Dell et al. (2018) (though their studies were of XCO2 ) of
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anomalies versus one of the various parameters to aid in de-
termining filter cutoffs (e.g., Fig. 3). Such plots may reveal
empirical relationships with features. Similar plots with ad-
ditional parameters, including some we decided were inap-
propriate to use as filters, are available in the Supplement
(Sect. S4). Several features can be examined in these plots
to decide on where to set the filter limits, including the un-
derlying histograms, systematic biases from zero in the mean
including spikes, the spread among pixels – which indicates
pixel-to-pixel bias, and the root-mean square (RMS) from
the SRA – which includes systematic and random deviations
from the truth proxy. We define filters based usually on one
of the following criteria: (1) absolute mean bias is greater
than 2 ppb, (2) the RMS is greater than 6 ppb, or (3) spread
of pixel-to-pixel bias is greater than 5 ppb. These criteria are
not strict, and we change thresholds if too few data are in a
bin (due to possible sampling bias), if too many data are re-
moved, or if the overall trend in the mean seems like it could
be corrected by a bias correction.

Several features are apparent in the SRA diagrams (Figs. 3
and S4–S9) that indicate that data may be less reliable. For
example, there is a step change in the bias for soundings over
land going from day to night. The RMS is much smaller over
snow or ice free scenes (flag of 1). We also note large anoma-
lies for low channel 5A SNR which, in agreement with the L3
product filters, suggest it to be a good parameter to filter on.
However, the bias is small for low channel 6A SNR sound-
ings; so unlike the L3 product, we do not use it as a filter
criterion. We also find that the sum of the retrieval anomaly
diagnostics is a better indicator for suspicious data over land
than over water. These particular tests also do not support ex-
cluding all pixel-3 soundings, though on average it does have
a lower and more variable DOF (Deeter et al., 2015). Maps
of where data are filtered are available in Figs. S10 and S11.
Using these filters reduces the number of daytime soundings
to 3.50×108 (of 5.40×108) and reduces the RMS from 3.84
to 2.55 ppb. By comparison, when we apply the L3 filters it
reduces data to 3.27× 108 daytime soundings and an RMS
of 3.02 ppb.

3.4 Bias correction

We observe trends in the mean bias with various parameters
(e.g., Figs. 3 and S4–S9). To reduce the likelihood of overfit-
ting, O’Dell et al. (2018) used linear fits as bias corrections
only if they removed at least 5 % of the variance for XCO2

from OCO-2. For XCO from MOPITT, the ratio between the
scatter (indicated by RMS) and bias is larger than for XCO2

from OCO-2; however, over our period of analysis there are
about 400 times more data over water and about 100 times
more over land. Fitting concerns here primarily relate to how
representative the SRA is as a truth proxy and how much the
biases would already be accounted for by adjusting individ-
ual soundings using averaging kernels.

Figure 3. Example diagram showing the small-region approxima-
tion (SRA) bias as a function of solar zenith angle for water. The
black points show the overall mean (mn) bias (minimum 2000
points), the magenta points show the RMS, and the other points
show the mean bias for the individual pixels (minimum 300 points).
The lighter histogram is of all the data. The darker histogram is data
remaining after the SZA and snow or ice filters. Figures like this are
used to make filters for and check for bias in MOPITT L2 data. The
red line is the filter cutoff at 80◦. The equivalent diagram for land,
along with diagrams for other features, is in Sect. S4.

Even with a criterion of only a 3 % reduction in the over-
all RMS, the only parameter to meet this is the maximum
difference between adjacent levels over land (see Fig. S5j).
This feature is larger for strong gradients between levels,
which can appear when there are strong surface fluxes or
when the retrieval is unstable and oscillates. This instabil-
ity may be caused by bias related to, for example, spectro-
scopic errors. Following O’Dell et al. (2018) we make piece-
wise linear fits to the overall mean over two regimes, split
at 100 ppb for a bias correction. The Multivariate Adaptive
Regression Splines (MARS) algorithm could also be used to
make a piecewise linear fit over a multidimensional dataset.
However, it is more likely to overfit the data. When we ap-
plied it to the top three most variable fields the RMS for land
soundings was not significantly reduced compared with our
piecewise fit, so we did not use those results.

In addition to the single “feature” bias correction above,
we apply a pixel-to-pixel bias correction after the filtering,
described in Sect. 3.3. We perform a second SRA on the
filtered data without a pixel bias correction. SRA data are
binned separately for each pixel and land or water surface
type and averaged over 10 d. On 28 July 2009 one of the
coolers on MOPITT malfunctioned, which caused a 2-month
instrument shutdown. We separate the period before and after
this event and make 16 different linear fits of the bias relative
to the all-pixel mean with time (2 for land and water, 4 for
pixels, and 2 for time), following the method of York et al.
(2004). These linear fits are used to define the pixel-to-pixel
bias.
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Table 3. Parameters in or related to MOPITT retrievals that we considered for filtering and bias correction. Data are excluded if any of the
criteria below are met. Mixed surface-type soundings are also excluded.

Field name Sourcea Limits – land Limits – water Description

χ2 I Goodness-of-fit indicator

Digital elevation model I Surface height (m a.s.l).

Diff. surf. emissivity (E)b D < −0.05, > 0.05 < −0.75 Ê−Ea, E is in state vector

DOF I < 1.05 < 1.00 tr(A)

Diff. surf. temperature (T )b D < −4 T̂ − Ta, T is in state vector

Error surface E I > 0.055 Error on Ê

Total error XCO R Unused as a filter, used to weight data instead

Information content D H =− 1
2 log2

∣∣In−A
∣∣, unused, too similar to DOF

MODIS IR temperature threshold I MODIS cloud diagnostic 8

MODIS frac. cloudy I MODIS cloud diagnostic 2

MODIS snow and ice I < 0.999 < 0.999 MODIS cloud diagnostic 5 (see also Sect. 3.1)

Meas. error XCO R Unused, see Total error XCO

Mean averaging kernel D < 0.75 < 0.50
∑
uTAu
nlvls

, sum of all elements in A divided by number of
profile levels (u is vector of ones)

AOD 500 nm E Average of colocated MODIS pixels (within ±0.1◦)

Max. diff. between adj. levels D > 300 > 300 Indicator for possibly oscillating profiles

Number of iterations I Until convergence, 1–20

Solar airmass D 1
cos(SZA) +

1
cos(satellite ZA)

Smoothing error XCO R Unused, see Total error XCO

SNR 5A (TIR) R < 500 < 900 L1 radiance divided by error. 1000 is a threshold for L3
TIR and TIR–NIR

SNR 6A (NIR) R See SNR 5A. 400 is a threshold for L3 NIR and TIR–NIR

SNR 7A (TIR) R See SNR 5A

Sum retr. anom. diagnostic D > 0.5 Sum of five flags, user’s guide suggests
caution or exclusion if ≥ 1

Solar zenith angle (SZA) I > 80◦ > 80◦ > 80◦ is considered nighttime in the retrieval algorithm

tr total retr. cov. matrix D > 0.0170 > 0.0168 tr
(
Ŝ
)

, unitless due to log scale, related to overall uncert.
of retrieval combination of meas. and smooth matrices

tr meas. err. retr. cov. matrix D > 0.0055 tr
(
Ŝmerr

)
from uncert. in a priori values and weighting

tr smooth err. retr. cov. matrix D < 0.0114 tr
(
Ŝsmth

)
from uncert. in measured radiances

a Source: I is included in L2 files, R is ratio within L2 files, D is other derivation from L2 files, and E is external. b Difference from the a priori value. AOD is aerosol optical depth. tr is matrix
trace.

4 Comparisons with TCCON

4.1 Coincidence criteria

Various coincidence criteria have been used to match MO-
PITT soundings with other datasets, such as aircraft mea-
surements, other satellites, or ground-based sensors. For ex-

ample, Deeter et al. (2014, 2017) used a colocation radius of
50 km for aircraft profiles primarily over North America and
a colocation radius of 200 km for aircraft profiles primarily
over remote ocean. Over the Amazon, Deeter et al. (2016)
also used a colocation radius of 200 km and a colocation
time of 24 h. Té et al. (2016) used criteria of ±0.15◦ latitude
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and ±0.23◦ longitude, corresponding to 33km× 33km over
Paris. Buchholz et al. (2017) used a 1◦ radius and ground-
based measurements within the same day. Criteria could also
include fields such as the temperature of the free troposphere
(e.g., around 700 hPa, Wunch et al., 2011b; Nguyen et al.,
2014). Sha et al. (2018) used a sampling cone based on the
solar azimuth angle at the time of measurement for compar-
ing TCCON with TROPOMI. This is likely unimportant for
MOPITT given the larger footprint size (22km× 22 km ver-
sus 7km× 7km). For example, at a 60◦ SZA for a MOPITT
pixel centered on a TCCON site at sea level, the TCCON
ray would leave the MOPITT pixel at around 11 km or above
250 hPa. For a comparison of SCIAMACHY with NDACC–
TCCON, Hochstaffl et al. (2018) found it to be necessary
to deweight observations that were further away in time and
space from points of comparison. This is likely much less
of an issue for this study due to differences in retrieval errors
and coincidence scales. For MOPITT the median retrieval er-
ror is about 3.5 ppb versus 24.8 ppb for SCIAMACHY. For
SCIAMACHY temporal averaging was on the order of a
month compared to this study, where we only use TCCON
observations within ±30 min. We apply spatial averaging to
the MOPITT data typically over areas of 2◦× 4◦ (with ex-
ceptions noted below). Spatial weighting is not as much of
a concern here as for Hochstaffl et al. (2018) with SCIA-
MACHY because they used coincidence criteria of 500–
2000 km radii, which are significantly larger in terms of area
(about 8–100 times). However, despite using smaller areas,
heterogeneities in CO sources that MOPITT averages over
may occasionally introduce bias for real reasons (e.g., Lin-
denmaier et al., 2014).

We make exceptions to the ±1◦ latitude ±2◦ longitude
spatial coincidence criteria for several sites. For sites pole-
ward of 60◦ (eu, sp, and so) we expand the area to 4◦× 8◦

because the atmosphere is expected to be well mixed and re-
trievals are more sparse. For sites in the Los Angeles Basin
(ci, jc, and jf), we limit the area to 33.4–34.3◦ N, 116.7–
118.8◦W, because we expect XCO within the basin to be
much larger than the surrounding area due to urban emis-
sions. We set the minimum latitude to 34.5◦ N for the AFRC
site to avoid the polluted Los Angeles Basin. We average
soundings over land and water separately.

Because of the long (13+ year) comparison between MO-
PITT and TCCON, random representation error is much less
important than systematic error. Té et al. (2016) and Buch-
holz et al. (2017) noted that systematic biases can arise
from comparing total column observations (in molec. cm−2)
from MOPITT and NDACC when the surface altitudes dif-
fer significantly. This effect will be diminished in column
averages (XCO) in locations away from strong local surface
fluxes; however, different surface altitudes can lead to biases
because CO profiles are not completely uniform. Between
two TCCON sites only ∼ 10 km apart in an urban region,
Hedelius et al. (2017) noted an XCO2 difference of nearly
1 ppm. They attributed part of this to the different site alti-

tudes. We estimate the ratio between observations at the sur-
face pressure of TCCON versus the surface pressure of MO-
PITT soundings. The total column-average dry mole fraction
is

XCO, ppb=
∑

hjxj . (4)

The vector x here can be either the retrieved profile or the
a priori VMR profile. We use the MOPITT profiles because
they are likely more representative of the true atmosphere
than TCCON a priori profiles and apply Eq. (4) to find the
retrieved and prior MOPITT XCO at the MOPITT sounding
surface pressure. We then recalculate h based on the daily av-
erage TCCON site surface pressure. When TCCON altitude
is lower, the MOPITT surface level is uniformly extended.
For higher-altitude sites, the lowest-altitude MOPITT levels
are either unused (hj = 0) or deweighted. We then calculate
XCO based on TCCON surface pressure. Figure 4 shows the
ratios between the MOPITT retrieved XCO using the TC-
CON surface pressure compared to the MOPITT sounding
surface pressure for 10◦×10◦ areas. Larger areas are used to
get a larger variety in surface pressures. We see that for the
high-altitude Zugspitze site, this scaling is particularly large
(around 15 %). Over these areas the overall scaling for all
sites is 0.996± 0.023 (1σ ). A scaling factor less than unity
is usually due to larger CO mixing ratios near the surface
than the rest of the column and lower TCCON site pressure
(Hedelius et al., 2017). In this intercomparison, we implicitly
account for differences in surface pressure using the h vector.
This can make a difference for individual sites by as much
as −10.5± 4.1 ppb (1σ ) (for Zugspitze). However, we have
found in practice that accounting for differences in surface
pressure makes little difference here on the overall compari-
son (compare Fig. S12c and f). In aggregate the difference is
only −0.2± 1.5 ppb (1σ ).

4.2 Overall global scaling

MOPITT and TCCON use different a priori VMR profiles
and have different averaging kernels (AKs; Sect. 4.4), and
these differences in sensitivity need to be taken into account
when comparing retrievals from the different instruments.
Here we account for differences in AKs and a priori profiles
following the methods of Wunch et al. (2011b), which are
formally described as method II in Sect. S6.1. Retrievals are
also on different vertical grids, and regridding is described
in Appendix C. Figure 5 shows the comparison for all sites.
We find that MOPITT observations are higher than TCCON
by about 6.4 %. This is similar to the 5.1 % positive bias be-
tween MOPITT V6J and NDACC total column observations
(Buchholz et al., 2017).

We perform a variety of sensitivity tests on the overall
global comparison. There are different approaches to account
for different a priori VMR profiles and AKs such as the
choice of comparison ensemble (Sect. S6). Figure S12 shows
the comparison for a variety of tests when AKs are applied
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Figure 4. Scaling factors for MOPITT retrieved profiles if the sur-
face were at the surface of the TCCON site (listed in m a.s.l. in
parenthesis). Ordered by increasing site altitude. Soundings within
±5◦ latitude and±5◦ longitude of TCCON site are used. The center
99 % of data are shown. Blue filled sections indicate data density,
similar to a violin plot but using histograms rather than a kernel
density estimation due to sufficient data. Black boxes indicate the
central 50 % of data, and medians are orange.

differently or not at all. Generally all comparisons show MO-
PITT to be about 6 %–9 % higher than TCCON, with some
exceptions. For method III, where AKs are applied in a man-
ner opposite to method II, the bias is as high as 15 % but is
closer to ∼ 10 % or less. Figure S13 is a series of bar charts
of how the different methods compare for each site. We also
examine how the scaling changes for different colocation cri-
teria in Figs. S12d and e by halving and doubling the coin-
cidence areas. We find that MOPITT is biased higher than
TCCON in these tests by 5 %–7.4 %. Doubling the area de-
creases R2 for the global comparison.

Next we test sensitivity to pressure scaling. Our vertical
regridding (Appendix C) accounts for differences in surface
pressure, so we use a basic comparison without AK correc-

Figure 5. One-to-one plot comparing MOPITT and TCCON, fol-
lowing method II (similar to Wunch et al., 2011b, Sect. S6). MO-
PITT data were adjusted to the TCCON a priori profile (ĉ′M), and
MOPITT averaging kernels were applied to TCCON data (ĉM←T).
Error bars represent standard deviations of the weighted averages.
Triangles represent soundings over water, and other shapes are over
land. Text is number of points or days n; coefficient of determina-
tion for ordinary least-squares regression R2; and bias (in %) at 50,
75, 100, and 150 ppb using the shown fit and equation for the shown
fit using the methods of York et al. (2004).

tions (method 0) for this test. Between these two, the overall
offset is not significantly different (9 %–10 %).

Finally we test whether filtering and bias corrections af-
fect the comparison (Fig. S12g–i). The pixel and feature bias
correction have little effect on the overall global comparison
(∼ 5.8 %–6.8 %). Without filtering, the scatter in the com-
parison increases, leading to a smaller R2. Due to a large
intercept, the percent difference spans about 3 %–8 %. Fig-
ure S12g shows the comparison for a derived TCCON prod-
uct without empirical corrections for airmass and without
correction to the WMO scale (Wunch et al., 2015). In this
comparison the TCCON data do not have the standard scal-
ing to aircraft. Due to uncertainties in the TCCON WMO
scaling (Sect. S2), some comparisons are made without it.
Here the bias between the datasets is significantly different
and is less than 0.5 %. When MOPITT V7J data were com-
pared directly with NOAA flask measurements from aircraft,
Deeter et al. (2017) found a positive bias of less than about
1 %.

Figure 6 shows boxplots of the MOPITT to TCCON dif-
ferences (using method II) for each site for land-only and
water-only soundings. We do not note an overall bias be-
tween land and water. For all sites the TCCON−MOPITT
bias is positive and usually on the order of about 3–10 ppb
with a few exceptions. For example, MOPITT observations
compared to the AFRC (df) TCCON are particularly high
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Figure 6. Boxplots of the MOPITT–TCCON percent difference at
the TCCON sites (using method II), ordered by latitude (degrees
north in parenthesis). Blue boxes are MOPITT soundings over wa-
ter, and brown boxes are those over land. Whiskers represent the
inner 95 % of data. Notches are 95 % confidence intervals of the
median. Box heights represent the relative number of observations.
The solid horizontal line is the Equator, dashed lines are ±45◦, and
the dotted line is 60◦ N.

(∼14 ppb). This could be related to the high albedo or high
surface temperatures of this desert site.

4.3 Systematic biases

A seasonal variation in bias may be indicative of differ-
ences in sensitivities between the instruments to some fea-
ture, such as airmass or water content, that varies seasonally.
Figure 7 shows the time series of the difference averaged
in 1-month 5◦ latitudinal bands. Though there is significant
scatter among individual comparisons, we find a long-term
trend of −0.06± 0.06 % yr−1 in the MOPITT–TCCON dif-
ference using the Theil–Sen estimator. Deeter et al. (2017)
reported a bias drift of −0.04± 0.10 % yr−1 for V7J, though
bias drifts for individual layers were larger. Including a cor-

rection trend to the L1 radiances significantly reduced the
bias drift for the layers (Deeter et al., 2019). Seasonalities of
the difference for each site are in Fig. S14. There does not
appear to be a persistent seasonal trend for all sites, though
there is some seasonal variability for individual sites. For La-
mont and AFRC the bias is larger in July–October, while for
Białystok the bias is larger in April–June. At Ascension the
bias is largest in January–February, while for Réunion it is
largest in September–November. We do not make a seasonal
bias correction.

There appears to be some latitudinally dependent bias,
with a larger bias in the Northern Hemisphere. Part of this
could be related to stratospheric CO (Sect. S1). Deeter et al.
(2017) also showed some latitudinal variation in MOPITT
retrievals compared with aircraft. They suggested that part
of the variability could arise from interfering species such
as N2O, which has spectral lines that overlap with the TIR
channels. Before V7 a constant value of N2O was assumed,
which was determined to cause biases on the order of a few
parts per billion (Deeter et al., 2017). In V7 a global aver-
age is used based on a linear fit to monthly in situ observa-
tions. Figure S14 shows the bias as a function of column N2O
measured by the TCCON. There is a slope of −0.40 XCO ppb

XN2O ppb
,

though the overall correlation is small (R2
= 0.08). There

also appears to be a small dependence on column H2O,
which was likely reduced in V8 (Deeter et al., 2019). We
do not make bias corrections for any of these systematic fea-
tures.

4.4 Averaging kernels, covariance matrices, and
information content

According to Rodgers and Connor (2003, Sect. 2 therein),
an intercomparison of two observing systems should also
include a comparison of (1) averaging kernels, (2) retrieval
noise covariance, (3) degrees of freedom, and (4) the Shan-
non information content. In conjunction with the compari-
son of averaging kernels, we think that it is also helpful to
compare a priori profiles, which is done in Appendix D. Be-
cause the MOPITT retrievals are of logarithmic profiles and
the TCCON uses a linear scaling retrieval, some aspects of
the comparison are inherently different.

Example AKs for MOPITT and TCCON are shown in
Fig. 8. Because the MOPITT retrieval is on a log scale, we
make an assumption that the a priori VMRs represent the true
profile to obtain unitless AKs (Appendix B). We find that
the TCCON AKs are more sensitive than MOPITT. Shaded
regions in Fig. 8a show a wide variability in MOPITT col-
umn AKs. In addition, the typical state significantly affects
the MOPITT AKs (e.g., compare Pasadena and Lauder). TC-
CON CO column AKs are most sensitive to the stratosphere
and are assumed to be consistent at all sites. We make a
sensitivity test where the AKs were explicitly calculated in
GGG2014 for days with a wide range of XCO at the East
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Figure 7. Rotated Hovmöller diagram of the mean percent differ-
ences between binned MOPITT and TCCON data using method II
(Sect. S6.1). Latitude bins are 5◦ zonal bands, and temporal bins
are monthly; (a) uses standard TCCON data, and (b) is without the
TCCON scaling to aircraft (WMO scale – see Sect. S2).

Trout Lake site. In general the difference from the standard
AKs is small, on the order of 5 % at most.

A priori profiles and MOPITT retrieved profiles along with
their differences for select sites are shown in Appendix D. We
compare MOPITT and TCCON a priori profiles. In general,
MOPITT a priori profiles are influenced more by localized
emissions, as they are based on 1◦ simulated monthly clima-
tologies from the CAM-chem model (Deeter et al., 2014).
This can be seen especially at Pasadena and to a lesser ex-
tent at Lamont and Tsukuba. Ascension Island shows a spe-
cial case where enhanced CO in the lower free troposphere
is seen coming from biomass burning and rainforest VOC
emissions in Africa. At sites far removed from local emis-
sions (e.g., Ny-Ålesund and Lauder) the MOPITT and TC-

CON a priori profiles are in better agreement with each other
(see e.g., Pollard et al., 2017).

We take differences in a priori profiles and averaging
kernels into account following method II, described in
Sect. S6.1. Corrections are applied to each MOPITT retrieval
and to daily averages of TCCON retrievals within coinci-
dence criteria. We find in practice that corrections change
the comparison by about 3 %. TCCON data are adjusted
by 0.7± 1.8 ppb (1σ ), and MOPITT data are adjusted by
−1.0± 3.1 ppb (1σ ).

Rather than comparing the retrieval noise covariance, we
compare reported errors and measures of precision and accu-
racy. Histograms of total reported retrieval error for MOPITT
are shown in Figs. S4o and S5o. With our prescribed filter-
ing, global mean uncertainty values are 2.60±1.27 ppb (1σ )
for smoothing, 2.68± 1.40 ppb (1σ ) for measurement, and
3.86± 1.63 ppb (1σ ) for the total error. The average of the
errors reported in the TCCON files is 0.62± 0.50 ppb (1σ ).
However, these errors are more a measure of repeatability
than the total error or the accuracy. The 2σ uncertainty for
TCCON (GGG2009) was reported as 4 ppb (Wunch et al.,
2010), and the uncertainty budget from a range of sensitivity
tests is less than 4 % (Wunch et al., 2015).

Histograms of the MOPITT DOF for the signal for water
and land are shown in Figs. S4d and S5k. The DOF for the
signal (ds) can be determined from

ds = E
{(
x̂− xa

)T S−1
a
(
x̂− xa

)}
, (5)

where E is the expected value operator (Rodgers, 2000,
Eq. 2.46 therein). However, ds is usually determined from the
trace of the averaging-kernel matrix (Rodgers, 2000, Eq. 2.80
therein), which is equivalent to Eq. (5) for profile retrievals.
Because GGG2014 is a scaling retrieval, we treat TCCON
measurements as having ds = 1. With a profile retrieval we
would expect ds > 1, as was the case for CO2 (Connor et al.,
2016). The DOF gives an indication of how many indepen-
dent parameters can be improved compared with the a priori
profile. MOPITT DOFs are between 1 and 2, which indicates
that total column measurements may be reasonable, but indi-
vidual layer measurements may not always be accurate.

Finally, the information content Hs is a measure of how
accurate a measurement is to how well a value is known
a priori. Rodgers (2000) expresses it on a natural log scale
(Eqs. 2.73 and 2.80 therein):

Hs =
1
2

ln
∣∣∣Ŝ−1Sa

∣∣∣=−1
2

ln |In−A| , (6)

where In is the identity matrix. Here we express Hs on a
log2 scale instead. Histograms of Hs for MOPITT profile re-
trievals are shown in Figs. S6a and S8a, and values are on
the order of 2.5–5.5 bits over water and 2.5–7 bits over land.
If model values of XCO are accurate to about 32 ppb, and if
the TCCON accuracy is about 4 ppb, then the TCCON XCO
information content is about log2

32
4 ≈ 3 bits.
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Figure 8. Examples of AKs from TCCON and MOPITT – subplots are not always related. MOPITT daytime AKs (a–d) are shown as
center-point values along the y axis for clarity, though MOPITT retrievals are layer averages. Unitless MOPITT column AKs are generated
using the methods of Appendix B. (a) MOPITT column AKs around Lamont for 2012–2013 separated by pixel. Filled areas are the central
80 %, and solid center lines are the medians per level. Black lines are select examples from single soundings that show wide variability from
sounding to sounding. The thicker example corresponds to the full AK in (b). (b) Example MOPITT full AK from 16 October 2012. Dots
highlight the ith level shown in the legend. (c) Median MOPITT column AK per level by month for Pasadena. (d) Median MOPITT column
AK per level by season for land and water soundings for Lauder. (e) Standard TCCON GGG2014 AKs, which are assumed to be a function
of only SZA and pressure. (f) Differences from AKs explicitly calculated at the ETL site on specific days compared to the standard AKs. For
18 June 2017, the mean of the ETL XCO is 74.0±0.8 ppb (1σ ). For 9 September 2017, the mean of the ETL XCO is 169±32 ppb (1σ ), with
a range of 95–225 ppb.
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5 Model assimilations

We assimilate MOPITT observations using the GEOS-Chem
model to show how filtering and the bias correction affect es-
timated emissions inferred from inversion analyses. We con-
ducted three experiments in which we assimilated the follow-
ing datasets: (1) the original MOPITT data, (2) the filtered
and bias-corrected data with scaling down by about 6 % to
match the standard TCCON data (Fig. 5; referred to as As-
sim. 2), and (3) the filtered and bias-corrected data with a
scaling of less than 0.5 % to the TCCON-based data not tied
to the WMO scale and without the empirical airmass correc-
tion (Fig. S12g; referred to as Assim. 3). The assimilation
is performed using the GEOS-Chem four-dimensional varia-
tional (4D-Var) data assimilation system, employing Version
35J of the adjoint model at a horizontal resolution of 4◦×5◦.
The GEOS-Chem 4D-Var system has been used in previous
studies for assimilation of MOPITT data (e.g., Kopacz et al.,
2010; Jiang et al., 2013, 2015, 2017). We assimilate the MO-
PITT data to optimize monthly average CO emissions. We
assimilate daytime observations for the periods of October–
December 2009 and May–July 2011 to coincide with flights
from the HIPPO campaign. The a posteriori CO fluxes are
compared with the a priori fluxes, and the a posteriori CO
concentrations are validated against CO measurements from
the HIPPO 10 s merged data (Santoni et al., 2014).

The assimilation uses the offline CO simulation in GEOS-
Chem with prescribed monthly mean OH fields from
TransCom (Patra et al., 2011) to compute the sink of CO.
The prior anthropogenic CO emissions are from the EDGAR
v4.2 inventory, which are overwritten regionally with the fol-
lowing inventories: the Streets 2006 emissions over China
and southeastern Asia from Zhang et al. (2009), the an-
nual Canadian anthropogenic emissions from the Criteria
Air Contaminants (CAC inventory), the National Emissions
Inventory 2005 (NEI2005) from the United States Envi-
ronmental Protection Agency (EPA), the “co-operative pro-
gramme for monitoring and evaluation of the long-range
transmission of air pollutants in Europe” (EMEP) inventory,
and the Big Bend Regional Aerosol and Visibility Observa-
tional (BRAVO) inventory in Mexico. The Global Fire Emis-
sions Database, Version 3 (GFED3), provides the biomass
emissions. The biofuel emissions are the Yevich and Logan
(2003) inventory. The initial condition of CO states is gen-
erated by spinning up the GEOS-Chem model from January
2009. The initial CO concentrations are not optimized in the
assimilation. The prior emissions are scaled by a factor of
1.5, and the emission error is purposely set to be 500 % so
that the posterior CO source estimates will be less influenced
by the a priori emissions and more strongly reflect the infor-
mation from the filtered MOPITT observations.

Using HIPPO-2 and HIPPO-4 measurements for compar-
ison, the simulation using only a priori fluxes produces mole
fractions that are low by approximately 5 % (Tables 4 and 5).
On the other hand, the original MOPITT assimilation and

the assimilation which is not tied to WMO (Assimilation 3)
tend to agree with each other and are biased high relative
to HIPPO measurements. Assimilation 2 mole fractions are
lower compared to HIPPO than the other assimilations. This
suggests that scaling down MOPITT observations to match
TCCON is translated to less CO in the assimilation, as ex-
pected. However, the comparison with HIPPO shows mixed
results with each simulation depending on which latitudinal
bands is considered.

To validate the quality of the filtered and bias-corrected
MOPITT observations, the prior CO fluxes are compared
with the a posteriori fluxes (Fig. 9). Again we find that as-
similations 1 and 3 are in general agreement and Assimila-
tion 2 produces lower fluxes. Fluxes using assimilated data
are nearly always smaller than fluxes using the prior fluxes
scaled up by 50 %. Assimilation 2, which includes scaling
MOPITT to the standard TCCON product, produces fluxes
that are in between the unscaled (lower) and scaled (higher)
prior fluxes. Though fluxes from Assimilation 2 are closest
to the unscaled prior fluxes, they are higher by about 30 %
and 15 % during HIPPO-2 and HIPPO-4, respectively.

These results are inconclusive as to which of the assimi-
lations is best. Comparisons with HIPPO mole fractions are
mixed, and uncertainties in the assimilated prior fluxes pre-
vent us from drawing definitive conclusions from the flux
comparison. It is unclear if the filtering and bias corrections
improved fluxes in these experiments.

6 Discussion

6.1 Practical considerations in intercomparisons of
remote sounding retrievals

In addition to the formal aspects of intercomparing retrievals
from different remote sounding retrievals, there are a variety
of practical aspects to consider. For several of these aspects,
an entire study could be devoted to them for each intercom-
parison. We summarize our comparison methodology in Ta-
ble 6 and give examples of other studies that provide addi-
tional details or alternative methods. Though it is impractical
to test all combinations of different considerations, we test
some as described in Sect. 4.2, such as coincidence criteria,
filtering, bias corrections, and applications of averaging ker-
nels.

6.2 Considerations for future MOPITT data use

Several lessons learned in this study may be useful for fu-
ture versions of MOPITT data products or users assimilating
the data. Additional fields used in the retrieval, such as the a
priori mixing ratio from 50 to 0 hPa and the water vapor pro-
file, would be useful outputs when converting mixing ratios
from whole air to dry air. Though the prior covariance ma-
trix is fixed (Deeter et al., 2010), a single matrix per daily
file may be helpful. The retrieved surface emissivity over
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Table 4. Comparisons of GEOS-Chem-simulated mole fractions assimilating MOPITT data with HIPPO-2 observations. Uncertainties are
1σ . Units are in parts per billion. See text for descriptions of the assimilations.

Latitudinal bands Prior VMR Orig. MOPITT Assim. 2 Assim. 3

[−40,−20] −4.8± 14.0 2.5± 15.3 −2.4± 14.9 2.1± 15.2
[−20,20] −5.4± 6.9 0.0± 7.3 −6.0± 6.9 −0.3± 7.3
[20,40] −5.3± 22.7 14.0± 28.3 −4.1± 22.9 13.2± 28.1
[40,60] −7.4± 14.1 2.9± 15.7 −6.2± 13.9 2.5± 15.6
[−90,90] −5.2± 19.0 3.3± 19.9 −4.2± 18.9 3.0± 19.8

Table 5. Comparisons of GEOS-Chem-simulated mole fractions assimilating MOPITT data with HIPPO-4 observations. Uncertainties are
1σ . Units are in parts per billion. See text for descriptions of the assimilations.

Latitudinal bands Prior VMR Orig. MOPITT Assim. 2 Assim. 3

[−40,−20] −2.0± 5.4 2.3± 5.9 −0.5± 5.4 2.4± 5.8
[−20,20] −6.8± 6.0 −1.5± 6.5 −5.5± 6.4 −1.4± 6.5
[20,40] −13.2± 17.9 −2.9± 18.9 −8.6± 18.2 −2.7± 19.0
[40,60] −3.5± 27.3 12.1± 26.6 4.2± 27.1 12.4± 26.6
[−90,90] −4.1± 17.9 6.0± 19.2 0.5± 18.5 6.3± 19.3

Figure 9. Emission estimates from assimilations in GEOS-Chem adjoint model for two different times. For this figure, global emissions are
scaled down by 2. SEA is southeastern Asia.

land is on average about 0.007, or about 0.75 % larger than
the prior emissivity, and the retrieved surface temperature is
on average about 6 K larger than the prior temperatures (see
histograms in Fig. S5f and S5m). This suggests that prior
surface emissivity and temperature values should perhaps be
reconsidered, as they may be biased low over land. Further
updates to prior values of CO, N2O, and H2O are expected
to further improve the retrievals. For example, the retrieved
column CO is slightly larger than the a priori column glob-
ally (Fig. S16), but the difference depends on the level and
could be related to uncertainties in model transport, sinks,
and sources.

Filtering can reduce spurious values. MOPITT files in-
clude parameters that could be used in filtering, such as a
retrieval anomaly diagnostic, various cloud indicators, and
the DOF. Data users should consider creating a QC flag for
their analyses, or a binary flag could be included in future
versions, e.g., based on parameters in Table 3 or based on the
recommendations of the MOPITT team (e.g., the L3 filters).
Often highly deviant retrieved surface temperatures show up
around coastlines (especially western coastlines; Fig. S10)
that did not pass our quality screening. These may be related
to sounding definitions of surface type. SNR 6A is used to
filter MOPITT data when creating the TIR–NIR L3 product
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Table 6. Summary of practical considerations comparing MOPITT and TCCON soundings.

Practical consideration Example This work

Coincidence criteria Nguyen et al. (2014) 2◦× 4◦, ±30 min (typically); Sect. 4.1
Weighted averaging Hochstaffl et al. (2018) (distance and time) On reported errors 1

ε2 ; Appendix A
Weighted average error Gatz and Smith (1995) Gatz–Smith method; Appendix A
Representation errors (e.g., p) Buchholz et al. (2017), Té et al. (2016) Accounting for surface p; Sect. 4.1
Filtering Genetic algorithms, e.g., Mandrake et al. (2013) Chosen using SRA; Sect. 3.3
Bias corrections Wunch et al. (2011b), O’Dell et al. (2018) Primarily pixel-based; Sect. 3.4
Accounting for different xa, A Rodgers and Connor (2003), Wunch et al. (2011b) Sect. S6
Pre-averaging Buchholz et al. (2017), Appendix B therein Typically pointwise application of xa; A
Vertical regridding Delhez (2003) Mass conserving; Appendix C

to maintain consistency with the NIR product and increase
stability of the DOF, but we do not find sufficient evidence
to use it as a TIR–NIR filter criterion based on XCO stability
alone.

When biases are found in the MOPITT L2 data, the strat-
egy is to correct the L1 radiances or the retrieval algorithm
(e.g., Deeter et al., 2019). MOPITT data users of L2 XCO
may consider implementing a bias correction before anal-
ysis or model assimilation. In terms of XCO, pixel-3 data
agree with pixels 2 and 4; however, this agreement may
not necessarily hold for retrieved profiles, and pixel-3 data
are excluded in the L3 product due to excessive NIR noise
and in order to increase stability in the DOF (e.g., Deeter
et al., 2015). A bias correction should be considered when
assimilating pixel 1. There is a bias in the SRA for large re-
trieval errors on XCO above about 8 ppb (Figs. S4o, S5o).
This bias suggests that perhaps these data should be excluded
or deweighted further, which we did not do here. A bias
adjustment field could also be included as a field in future
MOPITT files. Such an adjustment could account for empir-
ical biases noted with various parameters; pixel-to-pixel bi-
ases (Sect. 3.4); and an overall bias compared with NDACC
(Buchholz et al., 2017), aircraft flights (Deeter et al., 2017),
and/or TCCON.

7 Conclusions

In this study quality-filtered and bias-corrected MOPITT
data are compared with TCCON data. We first derive filters
using only the MOPITT data, assuming homogeneity over
small regions. These filters have the largest effectover snow
or ice scenes and over high terrain. They reduce the over-
all RMS from 3.84 to 2.55 ppb. We find and correct a bias
among the four pixels, which we confirmed exists using Air-
Core. We also find and correct a feature bias.

After the filtering and bias correction, we compare with
TCCON data. Using a method (method II; see Sect. S6.1)
similar to Wunch et al. (2011b) to account for differences in
a priori profiles and AKs, we find MOPITT data to be biased
high by about 6 % compared with TCCON, but it is not clear

whether MOPITT or TCCON is biased. We also test different
methods, which all lead to a bias of about 6 %–10 %. There is
a trend of−0.06±0.06 % yr−1 in the MOPITT–TCCON dif-
ference. The bias also appears to depend on site and latitude,
but the scatter is not consistent enough to derive a correc-
tion. We also compared AKs and information content from
the different retrievals. TCCON AKs are more sensitive to
changes in the stratosphere. MOPITT AKs peak in the mid-
troposphere and can vary significantly among locations.

After applying filtering, and an overall scaling to match
the TCCON, we assimilate the data into GEOS-Chem. Fil-
tering and bias correction are uniform enough to not make a
large difference among regional fluxes. When data are also
scaled down to TCCON before implementing into GEOS-
Chem, fluxes were lower in all regions. However, because
of bottom-up uncertainties in global CO fluxes, these exper-
iments were inconclusive. Additional work is needed to un-
derstand the relatively large (∼ 6 %) difference between MO-
PITT and TCCON.

Data availability. MOPITT data were obtained from the NASA
Langley server (ftp://l5ftl01.larc.nasa.gov/MOPITT/, last access:
12 December 2018). TCCON data were obtained through the TC-
CON data archive hosted by CaltechDATA (TCCON, 2018). See
Table 1 for data references for each site. TCCON data without the
scaling to the WMO scale were obtained from the site PIs. AirCore
data were obtained from Colm Sweeney (v20170918).
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Appendix A: Calculation of XCO and weighted
averaging

The MOPITT V7 data product contains fields for retrieved
total column CO (in molec. cm−2). Unlike the TCCON, MO-
PITT does not retrieve a dry-air column. However, a model
dry-air column is provided. We obtain a dry-air mole fraction
from

XCO,ppb=
retrieved CO column
model dry air column

× 109. (A1)

The retrieval error (in molec. cm−2) can be converted to parts
per billion in the same way.

When averaging n soundings together, we use a weighted
average using the inverse squared retrieval errors as weights.
The average retrieved value ŷ is

ŷ =

n∑
i

ŷi ŷ
−2
i, err

n∑
i

ŷ−2
i, err

, (A2)

where ŷi denotes an individual measurement in the bin, and
ŷi, err is the corresponding error. When an average weighted
error is needed, we calculate a weighted standard error of the
mean (SEM) using

SEM=

√√√√√√ n

(n− 1)
(
n∑
i

ŷ−2
i, err

)2

n∑
i

(
ŷ−2
i, err

)2(
ŷi − ŷ

)2
. (A3)

In the case of uniform weights ŷ−2
i, err, this reduces to the typ-

ical SEM equation. We also test a bootstrap analysis (Efron
and Gong, 1983) on binned data for one of the parameters
(DEsfc) in the bias correction analysis (Sect. 3.4) to evaluate
Eq. (A3). Data are placed into 146 bins, with at least 2000
points in each. The bootstrap is run 500 times per bin. We
find, in agreement with Gatz and Smith (1995), that Eq. (A3)
is a reasonable approximation to the SEM determined from
the bootstrap method, with an offset of only +0.2± 3.1 %
(1σ ).

Appendix B: MOPITT column-averaging kernel

We derive our own MOPITT column-averaging-kernel (AK)
vector based on the full averaging-kernel matrix. To fulfill
Eq. (2) (and using Eq. 4), MOPITT AK elements aj are

aj =
∂ĉ

∂log10xj
=
∂
∑
ihi x̂i

∂log10xj
. (B1)

Making use of ∂log10x̂i
∂x̂i

=
1

x̂i ln10 , and Aij =
∂log10x̂i
∂log10xj

,

aj =
∑
i

hi
∂x̂i

∂log10xj
= ln10

∑
i

hi x̂i
∂log10x̂i

∂log10xj

= ln10
∑
i

hi x̂iAij . (B2)

This MOPITT column-averaging kernel is not directly com-
parable with the TCCON column-averaging kernels because
of the log scale. A unitless column-averaging kernel can be
made but requires an a priori assumption about the true state
of the atmosphere. For example,

1
hj

∂ĉ

∂xj
=

1
hj

∂ĉ

∂log10xj

∂log10xj

∂xj
=

1
hj

aj

xj ln10
. (B3)

Appendix C: Vertical regridding

We find it necessary to express values from one retrieval
on the vertical pressure grid of the other. MOPITT profiles
are reported as layer averages, but TCCON profiles are re-
ported as level values. TCCON profiles are converted to
the MOPITT grid by linear interpolation. We divide each
MOPITT layer into 500 finer equal-pressure layers (about
0.4 hPa each). We interpolate the TCCON profiles to these
finer layers and then take the overall average to put the TC-
CON profile on the MOPITT pressure grid.

Basic interpolation on the midpoints should not be used
to convert the MOPITT layer averages to the TCCON grid
because it does not require that mass be conserved when
the layers have different widths. Instead we use a mass-
conserving linear-interpolation scheme based on the MO-
PITT layer averages. This is based on the work of Hedelius
and Wunch (2019) and Delhez (2003).

Appendix D: Comparison of profiles

The a priori profiles differ between MOPITT and TCCON.
This could lead to different intercomparison results depend-
ing on which is chosen as a comparison ensemble. In general,
the TCCON a priori profiles are smooth, with only 3-D vari-
ation (time, latitude, and altitude) that takes into account the
local tropopause height. MOPITT a priori profiles are 4-D
(time, latitude, longitude, and altitude) and hence differ in
locations with strong local pollution (e.g., Pasadena). Exam-
ples of prior and retrieved profiles and their differences for
several sites are in Fig. D1. Global maps of the average ra-
tios between the retrieved and prior values for MOPITT are
available in Sect. S9.
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Figure D1. Profiles and profile differences between MOPITT and TCCON for six select sites and different days in 2013. For clarity, only
one MOPITT profile within the coincidence criteria is selected per day. The rows are the TCCON a priori profiles (Ta), the MOPITT a priori
profiles (Ma), the MOPITT retrieved profiles (Mr), the difference between TCCON and MOPITT a priori profiles, and the difference between
MOPITT a priori and retrieved profiles.
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