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ABSTRACT
The problem of influence of tidal friction in both planetary and satellite bodies upon satel-
lite’s orbital motion is considered. Using the differential equations in satellite’s rectangular
planetocentric coordinates, the differential equations describing the changes in semimajor axis
and eccentricity are derived. The equations in rectangular coordinates were taken from earlier
works on the problem. The calculations carried out for a number of test examples prove that
the averaged solutions of equations in coordinates and precise solutions of averaged equations
in the Keplerian elements are identical. For the problem of tides raised on planet’s body, it
was found that, if satellite’s mean motion n is equal to 11

18�, where � is the planet’s angular
rotation rate, the orbital eccentricity does not change. This conclusion is in agreement with
the results of other authors. It was also found that there is essential discrepancy between the
equations in the elements obtained in this paper and analogous equations published by earlier
researchers.

Key words: Planets and satellites: general.

1 IN T RO D U C T I O N

In the last years, the problem of influence of tides raised on vis-
coelastic bodies of planets and satellites upon satellite orbital mo-
tion has become a topical issue. The accuracy of observations of the
major satellites of Jupiter, Saturn, Uranus, and Neptune has greatly
increased. In addition, in course of time, the intervals of observa-
tions have naturally become larger. These factors gave an impetus to
attempts to determine from observations those physical parameters
of planets and satellites that define the forces of tidal friction. The
tidal bulge moves in body’s interior creating a torque acting upon
satellite. The force is proportional to the ratio k2/Q, where k2 is the
Love number that characterizes the deformability of a body, Q is
the quality factor characterizing the viscosity of body’s interior. It
follows from the equations of motion that observations do not allow
us to obtain independent values of k2 and Q but only their ratio k2/Q.

Lainey et al. (2009a), taking all available at the time astrometric
observations of the Galilean satellites of Jupiter, determined the ratio
k2/Q for both Jupiter and its satellite Io. In the same way, using as-
trometric observations, Lainey et al. (2012) obtained new values of
tidal dissipation ratio of Saturn that turned out to be 10 times greater
than the value obtained from theoretical considerations. Moreover,
an unexpectedly high value of Mimas’ secular acceleration caused
by the tides on the satellite’s body was obtained.

� E-mail: emelia@sai.msu.ru

When determining the parameters from observations, the usual
practice is to carry out numerical integration of the equations of
motion in rectangular coordinates. Hence, it is necessary to have
expression for perturbing acceleration caused by tidal forces. Such
equations have been deduced by earlier researchers (see references
below).

The orbital evolution of a satellite caused by tidal forces is bet-
ter to study by considering the changes in two key parameters:
semimajor axis a and eccentricity e. It is the changes of these two
parameters that determine satellite’s fate, that is whether it falls
down to planet or moves away from it. To this end, differential
equations for these elements have been derived in a number of pa-
pers. Neglecting small short-period perturbations, two equations are
usually obtained which in general form look like these:

da

dt
= k2

Q
Aa(a, e),

de

dt
= k2

Q
Ae(a, e).

Separate equations of this kind are composed for both the problem
of taking into account the tides on planet’s body and the problem
for the tides on satellite. Both problems give differing equations,
but it is possible to take into account both effects in one system of
equations.

For the problem in consideration, differential equations in the
Keplerian elements have been published in earlier papers. In partic-
ular, they can be found in Lainey et al. (2012). In the paper (Lainey
et al. 2012; equation 2), the equation of motion of a tidally perturbed
body is written down in a form corresponding to the tidal model of
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Mignard (1979, 1980) and Hut (1981). Lainey et al. (2012; equa-
tions A1 and A2) also provide the expressions for da/dt and de/dt,
both for a non-synchronized and a synchronized body, altogether
four expressions. Below we shall demonstrate that two of those four
expressions are in disagreement with the Mignard–Hut tidal model
(in fact, one of those expressions is in error, while the other follows
from the general Kaula expansion, provided k2/Q in that expan-
sion is set frequency-independent, an assumption different from the
Mignard–Hut model). Providing those expressions, Lainey et al.
(2012; equations A1 and A2) refer to the work by Peale & Cassen
(1978), which deals with tidal heating and contains no expressions
for the tidal evolution of orbital elements.

In order to improve methodology, to clarify the possibility of
determining the parameters of tidal friction from observations as
well as to study orbital evolution, it would be interesting to com-
pare solutions of the equations in coordinates with solutions of the
equations in Keplerian elements. This is the aim that was set in this
paper.

2 BASIC FORMULAE OBTA INED BY EARLI ER
AU T H O R S

Let us consider differential equations of satellite motion in rectan-
gular planetocentric coordinates published in earlier works.

The equations necessary to solve the problem have been derived
by Mignard (1979) who studied the influence of tides in viscoelastic
interior of the Earth upon motion of the Moon. We take the formula
(5) of this paper. Later the theory has been developed in Mignard
(1980).

Tidal evolution in close binary systems was studied in the paper
Hut (1981). The leading contribution to the tidal perturbing force is
expressed by Hut (1981) with his formula (8) which is in agreement
with the result of Mignard (1979).

Lainey, Dehant & Patzold (2007) obtained the solution of the
problem of influence of tides on the body of Mars upon the motion
of Phobos. The authors used the equations of satellite motion in rect-
angular coordinates taken from Mignard (1980). The corresponding
formula in Lainey et al. (2007) has the reference (3).

Lainey et al. (2009a) extended the formulae for perturbing ac-
celeration caused by the tides in planet’s body to the case of tides
in viscoelastic satellite body influencing upon its orbital motion.
However there were no detailed derivations of the formulae. They
were just declared and given without explanations in Supporting
Information section of the paper [see the formulae (1) and (2) in
Lainey et al. (2009b)]. The formulae have generalized form for
both tides raised on planet and for those raised on satellite. Later
the same equations were also published in Lainey et al. [2012; see
the formulae (1) and (2)].

It is necessary to note that explanations to the formulae (1) and
(2) in Lainey et al. (2012) have errors. The phrase ‘... and FT

lk is the
force received by Pl from the tides it raises on Pk’ should be read
as: ‘... and FT

lk is the force received by Pk from the tides it raises on
Pl’.

If we read the phrase as it is written, then we come to the con-
clusion that the formula does not correspond to its particular case
considered by Mignard (1979) and Lainey et al. (2007). Actually,
taking in equation (1) in Lainey et al. (2012) the term corresponding
to the tides raised on planet’s body (index 0) by satellite (index i),
that is the term

m0 + mi

m0mi

FT
i0 = −3k2Gm2

i R
5�t

r0i

{
2r0i(r0iv0i)

r8
0i

+ [r0i × �] + v0i

}
,

and taking into account that (in notations of the paper in consid-
eration) r0i = r0 − ri = −r, v0i = v0 − vi = −v, where r and v
are planetocentric vectors of satellite’s positions and velocities, we
arrive at the following erroneous expression

m0 + mi

m0mi

FT
i0 = 3k2Gm2

i R
5�t

r

{
2r(rv)

r8
+ [r × �] + v

}
.

In contrast to the corresponding term in equation (5) in Mignard
(1979) as well as in equation (3) in Lainey et al. (2007), this expres-
sion has an opposite sign.

Let us use the generalized form of the equations of motion of
planetary satellite as given in Lainey et al. (2009b) and Lainey
et al. (2012). However, we shall make some simplifications leav-
ing only the terms that are of fundamental importance for further
analysis. First, we leave only the main term corresponding to the
planet’s attraction as a material point and the terms describing tidal
effects. Secondly, we neglect satellite’s mass in comparison with
that of the planet. This assumption is quite justifiable since the
masses of the satellites are really small compared to the planetary
masses. For the values in the formulae we shall use other notations
than those in the papers mentioned earlier. As in these papers, the
equations of motions we write in satellite’s rectangular coordinates
referred to the planetocentric reference frame. For convenience, we
use equations for two separate problems: the problem of satellite
motion influenced by the tides raised on planet’s viscoelastic body
and that where satellite’s motion is perturbed by the tides raised on
viscoelastic body of the satellite itself.

We use the following notations:
Rp - planet’s radius,
Rs - satellite’s radius,
GM - gravitational parameter of the planet,
Gs - gravitational parameter of the satellite,
a - semimajor axis of the satellite’s orbit,
n - mean motion of the satellite,
k2 - Love number of the planet (dimensionless),
k

(s)
2 - Love number of the satellite (dimensionless),

�tp - time lag of tidal bulge in the planet’s body,
�ts - time lag of tidal bulge in the satellite’s body,
Qp - quality factor of the planet,
Qs - quality factor of the satellite,
� - vector of the planet’s rotation rate,
�s - vector of the satellite’s rotation rate.
Note that �tp and �ts are assumed to be positive. The satellite’s

position and velocity are given by the vectors r and v.
Referring to formulae (1) and (2) in Lainey et al. (2009b, 2012),

under the assumptions made above and with adopted notations, we
write the differential equations of satellite motion in the following
form for the case of tides on the planet:

d2r
dt2

= −GM

r3
r − 3k2GsR

5
p

r8
�tp

[
2r(rv)

r2
+ [r�] + v

]
, (1)

and for the case of tides on the satellite:

d2r
dt2

= −GM

r3
r − 3k

(s)
2 GMR5

s

r8

GM

Gs

�ts

[
2r(rv)

r2
+ [r�s] + v

]
.

(2)

Here [r�] and [r�s] are vector cross products, (rv) is vector dot
product. These equations are consistent with the equation (8) from
Hut (1981).

The right-hand sides of the equations (1) and (2) determine the ac-
celeration of a satellite for given values of all the quantities entering
here, where only GM, Gs, Rp, and Rs are assumed to be constant.
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To simplify further analysis, we introduce some new notations
and slightly transform the equations. Let us introduce an arbitrary
value ā whose magnitude is taken to be equal to averaged value
of satellite’s semimajor axis. We use the well-known relationship
between the Keplerian elements

n2a3 = GM.

We introduce dimensionless constants Kp and Ks that are defined as
follows:

Kp = 3R5
p

ā5

Gs

GM
,

Ks = 3R5
s

ā5

GM

Gs
.

We use also the notations

K
(p)
2 = k2�tp, (3)

K
(s)
2 = k

(s)
2 �ts. (4)

Now, with the new notations the equations become as follows for
the case of tides raised on planet’s body:

d2r
dt2

= −GM

r3
r − K

(p)
2 Kp

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�] + v

]
, (5)

and for the case of tides on the satellite:

d2r
dt2

= −GM

r3
r − K

(s)
2 Ks

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�s] + v

]
. (6)

Here the coefficients K
(p)
2 and K

(s)
2 defined by (3) and (4) can

have any values at a given time. In the particular case �tp and �ts

can be constant.
It was noted in Lainey et al. (2012) that the time lags �tp and

�ts depend on the so-called tidal frequency, i.e. the velocity of the
tidal wave run on the surface. That is why they cannot be taken
as constants. Therefore in our subsequent calculations, we consider
the coefficient K

(p)
2 as an arbitrary function of |�| − n and K

(s)
2 as

an arbitrary function of n.
The papers mentioned above explain the relationship between

the time lags of tidal bulge and quality factors. According to these
explanations, we have

K
(p)
2 = k2

2Qp(|�| − n)
, K

(s)
2 = k

(s)
2

Qsn
. (7)

It is assumed that the planet is rotating faster than the satellite moves
along its orbit.

Note that, instead of quality factor Q, the parameters arctan Q

or arcsin Q are used in some papers. Such a change of parameters,
however, is not substantial in this work.

Mathematically, the results of this paper would remain valid even
if K

(p)
2 were an arbitrary function of |�| − n and K

(s)
2 were an

arbitrary function of n. We however concentrate in our calculations
on the dependencies (7) and assume parameters Qp, Qs, k2, and k

(s)
2

to be constant.
A general theory of land tides was pioneered by Darwin (1879)

and furthered by Kaula (1964). As was demonstrated by Efroimsky
& Makarov (2013; Section 5), the Mignard–Hut model is a partic-
ular case of that general theory. In our paper, we shall stick to the
Mignard–Hut model implemented by the above equations (1) and
(2).

3 SO LV I N G T H E EQUAT I O N S F O R
R E C TA N G U L A R C O O R D I NAT E S

Solving the equations obtained above at sufficiently large time in-
terval can give us the picture of evolution of satellite’s orbital pa-
rameters caused by the tides raised on viscoelastic bodies of both
planet and satellite. That is exactly what interests researchers in this
problem. We shall try to obtain the sought properties of satellite
motions. Since exact analytical solution is not possible in this case,
we have to use the methods of numerical integration.

We performed numerical integration of equations (5) and (6) at a
certain sufficiently large time interval and obtained planetocentric
coordinates and velocities of satellite for a series of time instants
with constant stepsize. For each time instant, osculating Keplerian
elements were computed. What is interesting for us here is the vari-
ation of the elements in time, particularly the changes in semimajor
axis a and eccentricity e.

The orbits of real major satellites of Jupiter, Saturn, Uranus, and
Neptune have small inclinations to their planets’ equatorial planes.
Let us consider a hypothetic case close to real one when a satellite
moves in invariable plane, the axes of rotation of both planet and
satellite being normal to this plane. Then the vectors [r�] and [r�s]
lie in the plane of motion. Hence, all acting forces lie in the same
plane and satellite motions occur in one plane too. That is why,
in solving the equations (5) and (6), we can restrict ourselves to
modelling 2D motions only.

In practical calculations, the outcome depends on the spin rate
�s of the satellite. We shall assume that it is synchronized with the
mean motion.

Synchronism of the satellite rotation in the problem in consider-
ation was intensively studied by Rodrı́guez, Ferraz-Mello & Huss-
mann (2008), Williams & Efroimsky (2012), Makarov & Efroimsky
(2013) and Makarov (2015). It was found that if the satellite is per-
fectly oblate and only the tidal bulge is taken into account, the
stable configuration is not the 1:1 spin-orbit resonance but a so-
called pseudosynchronous spin state, a situation where the rotation
rate is slightly exceeding the mean motion. In this work we state that
the satellite is assumed to have some permanent triaxiality preserv-
ing it from pseudosynchronism and making the exact 1:1 spin-orbit
resonance possible.

In publications (Lainey et al. 2009b, 2012) the satellite is assumed
synchronized.

Physical parameters were taken to be close to those of the major
Uranian satellites. The following constants were adopted as plane-
tary parameters:

GM = 5793939.3 km3s−2, � = 501.1600928 deg d−1.
The coefficients in the equations are taken to be as follows:
Kp

k2
Qp

= 0.1 × 10−6,

Ks
k

(s)
2

Qs
= 10.0 × 10−6.

These values do not correspond to real possible values of viscosity
parameters of Uranus and its satellites. However, these exaggerated
values of the coefficients allow us to see the peculiarities of the
solution. The constant ā was taken to be equal to the initial value
of satellite’s semimajor axis.

Initial conditions for solution of the differential equations of
motion were taken in two sets:

1. a = 190940.453 km,
2. a = 114820.064 km.
The initial eccentricity in both cases is 0.002. The first set of

orbital parameters is very close to those of the Uranian moon
Ariel. The second set is considered because it demonstrates some
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Influence of tides in viscoelastic bodies 1281

Figure 1. Changes in semimajor axis of satellite at 8-d time interval caused
by tidal friction in planet’s interior. The second set of initial conditions is
used.

Figure 2. Changes in eccentricity of satellite at 8-d time interval caused by
tidal friction in planet’s interior. The second set of initial conditions is used.

peculiarities in orbital evolution (see below). In performing the nu-
merical integration, it was supposed that the satellite’s starting point
is in the pericentre of its orbit.

In order to see the character and magnitude of short-period
changes in osculating elements, the values of semimajor axis and
eccentricity were first computed at the time interval of 8 d with the
stepsize 0.01 d. It is those changes computed for the second set of
initial conditions in the problem of taking into account tidal dissi-
pation in planetary body that are shown in the Figs 1 and 2. Because

Figure 3. Change in satellite’s semimajor axis at 80200-d (220-yr) time
interval caused by tidal friction in planet’s interior. The first set of initial
conditions is used.

of strong secular perturbations, it is not possible to see short-period
oscillations of semimajor axis in the plot. However, the eccentricity
does manifest oscillations with the period equal to its orbital period.
The plots demonstrate that short-period variations of the osculating
elements a and e are extremely small and cannot characterize tidal
evolution of satellite’s orbit. In the same way, we obtained small
amplitudes of short-period oscillations in the elements in all other
cases that were considered.

In studying the orbital evolution, integration was performed at
the time interval of 80 200.0 d, i.e. about 220 yr. The results were
output with the stepsize 100 d (the data see below).

The Figs 3–6 show the changes in semimajor axis and eccentricity
of satellite’s orbit caused by tidal friction in planetary interior for
both sets of initial conditions.

Note that, for the second set of initial conditions, the perturbing
influence of tides raised on planet’s body results in that the eccen-
tricity is almost constant in the beginning of the time interval but
increases with the growth of semimajor axis. Here the initial value
of semimajor axis was especially chosen so that to demonstrate the
peculiarity of solution in this case. The way this value was obtained
is explained below.

Figs 7–10 show the changes in semimajor axis and eccentricity
of satellite’s orbit caused by tidal friction in satellite’s body for both
sets of initial conditions.

It is necessary to note that the changes in semimajor axes and ec-
centricities represented in the plots reflect exactly the real evolution
of orbit due to the influence of tides in viscoelastic bodies of planet
and satellite. The reliability of the results is based on the reliability
of the equations of motion of satellite in rectangular coordinates
that were taken from the works mentioned above.

4 TRANSI TI ON TO THE DI FFERENTI AL
EQUATI ONS I N KEPLERI AN ELEMENTS

When studying planetary satellite motions at large time intervals,
it is most interesting to look at the behaviour of semimajor axis a

MNRAS 479, 1278–1286 (2018)
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1282 N. V. Emelyanov

Figure 4. Change in satellite’s eccentricity at 80200-d (220-yr) time interval
caused by tidal friction in planet’s interior. The first set of initial conditions
is used.

Figure 5. Change in satellite’s semimajor axis at 80200-d (220-yr) time
interval caused by tidal friction in planet’s interior. The second set of initial
conditions is used.

and eccentricity e. It is these parameters that describe the satellite’s
fate. Because of tidal dissipation of mechanical energy, a and e can
change in such a way that the satellite can either fall to the planet or
move away from it. That is why in many works devoted to the orbital
evolution differential equations for semimajor axis and eccentricity
are composed. We also made an attempt to compose and solve such
equations.

Since in this problem, without loss of generality, we can consider
only planar motions, no inclinations or longitudes of ascending
node are involved. It is also obvious that longitude of pericentre
and mean anomaly at epoch do not determine the orbital evolution

Figure 6. Change in satellite’s eccentricity at 80200-d (220-yr) time in-
terval caused by tidal friction in planet’s interior. The second set of initial
conditions is used.

Figure 7. Change in satellite’s semimajor axis at 80200-d (220-yr) time
interval caused by tidal friction in satellite’s interior. The first set of initial
conditions is used.

of satellite. It is for these reasons that we restricted ourselves to
composing only equations for semimajor axis a and eccentricity e.

To derive the sought equations, we use the equations in a and e
taken from Tisserand (1889), p. 433. They are as follows:

da

dt
= 2

n
√

1 − e2

[
e sin f R + a(1 − e2)

r
T

]
, (8)

de

dt
=

√
1 − e2

na
[sin f R + (cos f + cos E) T ], (9)

where f is the true anomaly, E the eccentric anomaly, R the ra-
dial component of perturbing acceleration, and T its tangential
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Influence of tides in viscoelastic bodies 1283

Figure 8. Change in satellite’s eccentricity at 80200-d (220-yr) time interval
caused by tidal friction in satellite’s interior. The first set of initial conditions
is used.

Figure 9. Change in satellite’s semimajor axis at 80200-d (220-yr) time
interval caused by tidal friction in satellite’s interior. The second set of
initial conditions is used.

component. The perturbing acceleration is given by its components
in the right-hand sides of (5) and (6). The sought equations will be
derived separately for tides raised on planet’s body and for those
raised on the satellite.

Let us first consider the first problem. From (5) we can obtain
the following expressions for the components of perturbing accel-
eration:

R(p) = −K
(p)
2 Kp

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�] + v

](p)

R

, (10)

Figure 10. Change in satellite’s eccentricity at 80200-d (220-yr) time in-
terval caused by tidal friction in satellite’s interior. The second set of initial
conditions is used.

T (p) = −K
(p)
2 Kp

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�] + v

](p)

T

. (11)

The upper index (p) indicates that the expression is used in the
problem of tides raised on planet’s body. Here and below, the lower
indices R and T denote corresponding components of vectors.

It is obvious that the first term in square brackets has only radial
component, the second one has only tangential component, and the
third one has both. We assume that the satellite’s orbital plane is
normal to the vector of planet’s angular rotation �. Hence the vector
[r�] lies in the orbital plane, it is normal to the vector r and points
to the direction opposite to that of satellite’s motion. To get the
radial components, we used the fact that, for an arbitrary vector V,
its radial component can be obtained from the expression (V, r)/r.

From the formulae of Keplerian motion we have

r = a(1 − e2)

1 + e cos f
, vR = an√

1 − e2
e sin f ,

vT = an√
1 − e2

(1 + e cos f ), (rv) = ane√
1 − e2

r sin f .

Taking into account these relationships, we obtain

[
2r(rv)

r2
+ [r�] + v

](p)

R

= 3
nae√
1 − e2

sin f , (12)

[
2r(rv)

r2
+ [r�] + v

](p)

T

= na√
1 − e2

(1 + e cos f )

− a(1 − e2)

1 + e cos f
|�|. (13)
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1284 N. V. Emelyanov

Now, substituting relationships (12) and (13) into (10) and (11) and
then substituting the results into (8) and (9), we have

da

dt
= K

(p)
2 Kp

ā5

a5
na

2
√

1 − e2

(1 − e2)8
(1 + e cos f )8

×
[
|�| − n

(1 − e2)3/2
(1 + 2e cos f + 3e2 − 2e2 cos2 f )

]
,

(14)

de

dt
= K

(p)
2 Kp

ā5

a5
n

√
1 − e2

(1 − e2)8
(1 + e cos f )8

×
{

|�| 1 − e2

1 + e cos f
(cos f + cos E)

− n√
1 − e2

[3e sin2 f + (cos f + cos E)(1 + e cos f )]

}
.

(15)

The derived equations exactly correspond to the initial equa-
tions (5) and (6) in rectangular coordinates. These equations are to
be solved together with the equations for the argument of pericentre
ω and mean anomaly M. Such a solution would correspond exactly
to that of the equations in rectangular coordinates, since the orbital
elements and the vectors of position and velocity remain interrelated
by the formulae of Keplerian motion.

As demonstrated above, when in solution of the equations in
coordinates the transformation is made from coordinates and ve-
locities to the Keplerian elements, the changes in semimajor axis
and eccentricity look like monotone evolving functions with su-
perimposed short-period oscillations. These oscillations are rather
small so that, in analysing satellite’s orbital evolution, they can be
neglected.

We suppose that by averaging the right-hand sides of equa-
tions (14) and (15) over time the solution of these equations will
provide us with evolutionary changes in the elements free from
short-period perturbations. It is possible to check this assumption
by comparing the solutions of strict equations (5) and (6) in coor-
dinates with those of averaged equations in elements. Identity of
averaged solution of the equations in coordinates with the solu-
tion of averaged equations in elements would allow us to study the
long-term orbital evolution of satellites caused by tidal friction in
planetary and satellite bodies by using only equations for a and e.

To make such a check, it is first necessary to derive averaged
equations for the elements a and e and then to solve them by nu-
merical integration. We derived such equations and obtained their
solution.

When averaging equations (14) and (15), we had to make an ex-
pansion in powers of eccentricity neglecting the terms containing
squared eccentricity. This simplification is acceptable because solu-
tion of the problem will supposedly be applied to the major moons
of large planets whose orbital eccentricities are really small.

Now let us proceed to carrying out the procedures described
above.

We denote averaged values by the bar above. In the process of
averaging, the following relationships were used:

cos f = −e, cos E = −1

2
e, cos2 f = 1

2
+ O(e2),

cos f cos E = 1

2
+ O(e2),

where O(e2) are terms of expansion in powers of e having the second
order of smallness. In addition, we used expansions

(1 + e cos f )k = 1 + ke cos f + O(e2),

where k is an arbitrary integer. Only the first two terms of the
expansion were used.

At an intermediary stage of our actions we obtained the equations:

da

dt
= 2K

(p)
2 Kp

ā5

a5
na(1 + 8e cos f )

× [|�| − n(1 + 2e cos f + 3e2 − 2e2 cos2 f )
]
, (16)

de

dt
= K

(p)
2 Kp

ā5

a5
n {|�|(1 + 7e cos f )(cos f + cos E)−

− n√
1 − e2

[3e sin2 f (1 + 8e cos f ) (17)

+(cos f + cos E)(1 + 9e cos f )]} .

After averaging, we finally have

da

dt
= 2K

(p)
2 Kp

ā5

a5
na(|�| − n),

de

dt
= K

(p)
2 Kp

1

2
· ā5

a5
· (11|�| − 18n)ne.

Then using first of the relations (7) we reduce the equations to the
form

da

dt
= Kp

k2

Qp

ā5

a5
na (18)

de

dt
= Kp

k2

Qp

1

4
· ā5

a5
· 11|�| − 18n

|�| − n
ne. (19)

Our expressions (18) and (19) are in agreement with equations (9)
and (10) from Hut (1981). They also agree with equations (41) and
(46) from Kaula (1964), provided a misprint is corrected in the latter
equation .1

Now let us look at how and which equations are obtained in the
case of perturbing action of tides raised on viscoelastic body of
satellite. From equations (6) we find that the radial and tangential
components of acceleration have the form

R(s) = −K
(s)
2 Ks

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�s] + v

](s)

R

, (20)

T (s) = −K
(s)
2 Ks

ā5a3

r8
n2

[
2r(rv)

r2
+ [r�s] + v

](s)

T

. (21)

Here, the upper index (s) indicates that the expression is used in the
problem of tides raised on satellite’s body. The lower indices R and
T denote, as earlier, two components of vectors.

Supposing that the satellite’s angular rotation rate �s is normal
to the orbital plane, similar to the previous case we have
[

2r(rv)

r2
+ [r�s] + v

](s)

R

= 3
nae√
1 − e2

sin f , (22)

1A factor of 4, which is present in the first line of equation (46) from Kaula
(1964), is missing in the second line of that equation.
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[
2r(rv)

r2
+ [r�s] + v

](s)

T

= na√
1 − e2

(1 + e cos f ) − a(1 − e2)

1 + e cos f
|�s|. (23)

Since we adopted the assumption that the satellite is in the state
of constant synchronous rotation, we assume that |�s| = n. Taking
this into account and substituting (22) and (23) into (20) and (21)
and then substituting the results into (8) and (9), we obtain

da

dt
= −K

(s)
2 Ks

ā5a3

r8
· 2n2a

1 − e2

× [
3e2 sin2 f + (1 + e cos f )2 − (1 − e2)3/2

]
, (24)

de

dt
= −K

(s)
2 Ks

ā5a3

r8
n2

{
3e sin2 f

+ (cos f + cos E)

[
1 + e cos f − (1 − e2)3/2

1 + e cos f

]}
. (25)

According to what was said earlier, we make simplifications in the
right-hand sides of these equations, i.e. expand them in powers of ec-
centricity, leaving only main terms of expansion, and average them
over time. At intermediary stage of this process, after expansion in
powers of eccentricity, the following equations are obtained:

da

dt
= −K

(s)
2 Ks

ā5

a5
2n2a(1 + 8e cos f )

×
(

9

2
e2 − 2e2 cos2 f + 2e cos f

)
, (26)

de

dt
= −K

(s)
2 Ks

ā5

a5
n2e[3 sin2 f + 2 cos f (cos f + cos E)]. (27)

Averaging over time gives the final result:

da

dt
= −19K

(s)
2 Ks

ā5

a5
n2ae2,

de

dt
= −7

2
K

(s)
2 Ks

ā5

a5
n2e.

Using the second of the relations (7) we transform these equations
to the form

da

dt
= −19Ks

k
(s)
2

Qs

ā5

a5
nae2, (28)

de

dt
= −7

2
Ks

k
(s)
2

Qs

ā5

a5
ne. (29)

It is these equations that should describe the evolution of a and e
caused by the dissipation of mechanical energy of satellite’s orbital
motion due to tidal friction in viscoelastic body of satellite itself.

Now we should compare the solution of the equations in rectan-
gular coordinates that was obtained earlier with that of the equa-
tions (18) and (19) of the first problem and with that of the equa-
tions (28) and (29) of the second problem. We carried out numerical
integration of the latter equations with the same initial conditions
that were set in solving the differential equations in rectangular co-
ordinates. These solutions are shown in the same Figs 3–6 and 7–10
corresponding to both problems. The lines of solutions coincide
completely thus demonstrating exact identity (at least, within the
limits of line’s thickness) of both solutions. More accurate anal-
ysis proves that the solutions of the equations in orbital elements
are exactly equal to the elements obtained from the solution of the

equations in coordinates that were averaged to remove short-period
oscillations.

This result proves our assumption that the solution of the equa-
tions (18), (19), (28), and (29) in the elements reliably describes
satellite’s orbital evolution in both problems.

Note that, for the second set of initial conditions, semimajor axis
was chosen to satisfy the condition

n = 11

18
|�|.

In this case, at the initial moment, the right-hand side of the equa-
tion (19) is equal to zero. The Fig. 4 shows that, in the beginning of
the interval, the mean value of eccentricity almost does not change.
It is this behaviour of this function that allows us to see short-period
oscillations in the Fig. 2.

We note that the main conclusion of this paper remains valid
even if K

(p)
2 is an arbitrary function of � − n and K

(s)
2 is an arbitrary

function of n.
Differential equations in the Keplerian elements for the problem

in consideration can be found in earlier papers. In particular, they
are given in Lainey et al. (2012) where, for the case of tides on
planet’s body, reference is given to Kaula (1964) and, for the tides
raised on satellite, authors refer to Peale & Cassen (1978). Using
our notations, these equations have the form

da

dt
= Kp

k2

Qp

ā5

a5
na, (30)

de

dt
= Kp

k2

Qp

57

24
· ā5

a5
ne (D), (31)

da

dt
= −7Ks

k
(s)
2

Qs

ā5

a5
nae2 (D), (32)

de

dt
= −7

2
Ks

k
(s)
2

Qs

ā5

a5
ne. (33)

Comparing these equations with the equations (18), (19), (28),
and (29) obtained in our work makes it evident that two equations out
of four coincide but two others (denoted by the letter D) significantly
differ. To see the differences of the solutions graphically, we made
plots (see the Figs 11 and 12). The differences in plots reflect
significant differences in the solutions. The observed differences
make it possible to conclude that the equations (31) and (32) given
in Lainey et al. (2012) apparently follow from another model of
tides that does not correspond to the formulae (1) and (2) taken
from the same paper.

On the other hand, the equations in elements (31) and (32) do not
correspond to the equations in coordinates (5) and (6). This means
that if we had accepted that the equations (31) and (32) are correct,
we would have to conclude that the equations (5) and (6) are wrong.

5 C O N C L U S I O N S

As a result of our work, we obtained the differential equations
for evolution of semimajor axis and eccentricity of satellite’s orbit
caused by tidal friction in both planet’s and satellite’s bodies. The
departing point for these equations were differential equations in
rectangular coordinates given in Lainey et al. (2012). The averaged
solutions of the equations in coordinates are proved to be identical
with the precise solution of averaged equations in elements.

For the problem of tides raised on planet’s body, the relationship
was found between satellite’s mean motion n and planet’s rotation
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Figure 11. Change in eccentricity of satellite’s orbit at 80200-d (220-yr)
time interval caused by tidal friction in planet’s body. The first set of initial
conditions is used. The bold line corresponds to the solution of the equation
obtained in this paper, the thin one corresponds to that of the equation given
in Lainey et al. (2012).

Figure 12. Change in semimajor axis of satellite’s orbit at 80200-d (220-yr)
time interval caused by tidal friction in satellite’s body. The first set of initial
conditions is used. The bold line corresponds to the solution of the equation
obtained in this paper, the thin one corresponds to that of the equation given
in Lainey et al. (2012).

rate |�| when the rate of eccentricity’s change becomes equal to
zero. This happens when n = 11

18 |�|.
The differential equations in the Keplerian elements obtained in

this paper can be compared with those deduced by other authors. In
total, there are four equations, two of them being those for semima-
jor axis and eccentricity in the problem of tides raised on planet’s
body. Two other equations are those for semimajor axis and eccen-
tricity in the problem of tides raised on satellite. It turned out that

the equations for semimajor axis for tides raised on planet and the
equations for eccentricity for tides in satellite’s body do coincide.
However, two other equations do not coincide since the coefficients
of equations are essentially different.

Note that it should be necessary to check the process of derivation
of the equations in coordinates that we took from earlier works.
The sources of these equations are the papers by Mignard (1979,
1980). We could not trace the derivation of these equations. It would
also be necessary to check the correctness of generalization of the
formulae in both papers by Mignard (1979, 1980) for the case of
perturbations due to the tides raised on satellite’s body that was
made in Lainey et al. (2009b, 2012). It remains to be assumed
that if initial equations in coordinates had been incorrect, all four
equations in elements would have been different from those in other
works. However, two out of four equations coincide, which gives
us some confidence that initial equations in coordinates are correct.

The question remains open as to why two out of four equations
in the Keplerian elements differ from those obtained by other au-
thors. Since solutions of our four equations in the elements coincide
with those of equations in coordinates, we infer that it is our equa-
tions in the elements that are correct. The equations obtained by
other authors apparently describe some other process but not that
of the change of satellite’s Keplerian elements caused by the tides
in viscoelastic bodies of planet and satellite and following from
equations (5) and (6).

Note that our conclusions and results of numerical integration
can be easily checked by anyone. The conclusions are given above,
while numerical integration could be easily performed, all the equa-
tions being given in explicit form and initial numerical values for
all necessary parameters being available.
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