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A B S T R A C T 

Apart from being chaotic, the inner planets in the Solar system constitute an open system, as they are forced by the regular 
long-term motion of the outer ones. No integrals of motion can bound a priori the stochastic wanderings in their high-dimensional 
phase space. Still, the probability of a dynamical instability is remarkably low o v er the next 5 billion years, a time-scale 1000 

times longer than the Lyapunov time. The dynamical half-life of Mercury has indeed been estimated recently at 40 billion 

years. By means of the computer algebra system TRIP , we consider a set of dynamical models resulting from truncation of the 
forced secular dynamics recently proposed for the inner planets at different degrees in eccentricities and inclinations. Through 

ensembles of 10 

3 –10 

5 numerical integrations spanning 5–100 Gyr, we find that the Hamiltonian truncated at degree 4 practically 

does not allow any instability over 5 Gyr. The destabilization is mainly due to terms of degree 6. This surprising result suggests an 

analogy to the Fermi–Pasta–Ulam–Tsingou problem, in which tangency to Toda Hamiltonian explains the very long time-scale 
of thermalization, which Fermi unsuccessfully looked for. 

Key words: chaos – instabilities – celestial mechanics – planets and satellites: dynamical evolution and stability – methods: 
numerical – methods: statistical. 
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 I N T RO D U C T I O N  

ven though the planet orbits in the inner Solar system (ISS) are
haotic with a Lyapunov time of about 5 million years (Laskar 1989 ,
990 ; Sussman & Wisdom 1992 ; Mogavero & Laskar 2021 ), they
re still statistically very stable over a time-scale that is a thousand
imes longer. The probability of a Mercury eccentricity higher than
.7 o v er the ne xt 5 billion years, for e xample, is about 1 per cent
rom direct integrations of the Solar system (Laskar & Gastineau
009 ; Abbot et al. 2021 ). This percentage agrees with the statistics
f a dynamical instability observed in secular models where the
ynamics is averaged over the planet mean longitudes (Laskar 2008 ;
ogavero & Laskar 2021 ). The statistical stability of the ISS o v er the

emaining lifetime of the Sun as a main sequence star is intriguing,
f one considers that it represents an open system, as it is forced by
he v ery re gular motion of the outer planets (Laskar 1990 ; Mogavero
 Laskar 2021 ). No e xactly conserv ed quantities, such as the energy

r angular momentum, can bound a priori the chaotic wanderings of
he system in its high-dimensional phase space. 

The disproportion between the Lyapunov time and the destabiliza-
ion time-scale of the ISS has been addressed by Batygin, Morbidelli
 Holman ( 2015 ), building on previous works by Lithwick & Wu

 2011 ) and Bou ́e, Laskar & Farago ( 2012 ). Bou ́e et al. ( 2012 )
onsider the first-order secular dynamics of a mass-less Mercury
n the gravitational field of all the other planets, whose orbits are
redetermined to a quasi-periodic form. They use a multipolar
xpansion of the Hamiltonian to show that very high Mercury
ccentricities appear in the reduced phase space of the resonance g 1 −
 5 (involving the fundamental precession frequencies of the Mercury
 E-mail: nam.hoang-hoai@obspm.fr (NH); federico.mogavero@obspm.fr 
FM) 

o  

i  

c  

a  

Pub
nd Jupiter perihelia), which confirms the role of this harmonic in
he destabilization of the ISS (Batygin & Laughlin 2008 ; Laskar
008 ; Laskar & Gastineau 2009 ). Batygin et al. ( 2015 ) expand the
ecular Hamiltonian to degree 4 in eccentricities and inclinations
f the planets, and study a few of its Fourier harmonics related to
he fundamental frequencies g 1 , g 2 , g 5 , s 1 , and s 2 . Their simplified
ynamics is ho we ver much more unstable than realistic models, the
ypical time for the destabilization of Mercury orbit being around
 Gyr (Woillez & Bouchet 2020 ). Recently, Mogavero & Laskar
 2021 , hereafter ML21) have proposed the model of a forced secular
SS, in which the outer planets only are frozen to quasi-periodic
rbits. With a numerical experiment over 100 Gyr, they estimate the
ynamical half-life of Mercury at 40 Gyr, consistently with the small
robability of an instability o v er 5 Gyr. 
Here we employ the computer algebra software TRIP (Gastineau
 Laskar 2011 , 2021 ) to perform truncation of the forced secular

SS at different degrees in eccentricities and inclinations. Through
nsembles of 10 3 –10 5 numerical integrations spanning 5–100 Gyr,
e sho w ho w dynamical contrib utions usually deemed as unimpor -

ant, that is, high-degree terms of the Hamiltonian and non-resonant
armonics, strongly affect the probability of an instability o v er 
 Gyr. 

 DY NA M I C A L  M O D E L S  

n the forced secular model of the ISS (detailed presentation in
L21), the orbits of the outer planets are predetermined to a quasi-

eriodic form, whose frequencies and amplitudes are inferred from
requency analysis (Laskar 1988 , 2005 ) of a comprehensive model
f the Solar system (Laskar et al. 2011 ). The secular gravitational
nteractions are considered at first order in planetary masses, which
orresponds to Gauss’ dynamics of Keplerian rings (Gauss 1818 ),
nd the leading contribution of general relativity (GR) is included.
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 

http://orcid.org/0000-0002-9362-1943
http://orcid.org/0000-0001-6830-0024
mailto:nam.hoang-hoai@obspm.fr
mailto:federico.mogavero@obspm.fr


Long-term instability of the inner Solar system 1343 

Table 1. Probability P ( sup t≤5 Gyr e 1 ( t) ≥ e max ) in percent and its 90 per cent confidence interval, where e 1 is Mercury’s eccentricity, for the dynamical models 
H 2 n , H, L 2 n , and LG09. 

e max H 4 H 6 H 8 H 10 H L 4 L 6 LG09 

0.35 38 . 793 39 . 037 
38 . 549 58 . 91 59 . 16 

58 . 66 56 . 90 57 . 68 
56 . 11 52 . 95 53 . 74 

52 . 16 49 . 67 50 . 47 
48 . 87 40 . 289 40 . 558 

40 . 020 47 . 20 47 . 44 
46 . 96 49 . 22 51 . 54 

46 . 90 

0.4 13 . 294 13 . 464 
13 . 124 31 . 62 31 . 85 

31 . 39 29 . 05 29 . 77 
28 . 33 25 . 33 26 . 03 

24 . 65 21 . 19 21 . 85 
20 . 55 13 . 698 13 . 887 

13 . 510 24 . 47 24 . 67 
24 . 26 25 . 55 27 . 63 

23 . 58 

0.5 0 . 483 0 . 519 
0 . 450 5 . 12 5 . 24 

5 . 02 5 . 04 5 . 39 
4 . 70 2 . 95 3 . 23 

2 . 70 2 . 04 2 . 27 
1 . 82 0 . 730 0 . 778 

0 . 685 3 . 85 3 . 94 
3 . 76 3 . 96 4 . 97 

3 . 15 

0.6 0 . 012 0 . 019 
0 . 008 1 . 53 1 . 59 

1 . 47 2 . 40 2 . 65 
2 . 17 1 . 15 1 . 33 

0 . 99 0 . 52 0 . 65 
0 . 42 0 . 056 0 . 070 

0 . 044 1 . 84 1 . 90 
1 . 77 0 . 96 1 . 53 

0 . 60 

0.7 0 . 001 0 . 004 
0 . 000 1 . 06 1 . 11 

1 . 01 2 . 07 2 . 31 
1 . 86 1 . 08 1 . 26 

0 . 93 0 . 45 0 . 57 
0 . 35 0 . 010 0 . 017 

0 . 006 1 . 41 1 . 47 
1 . 36 0 . 92 1 . 48 

0 . 57 

0.8 0 . 001 0 . 004 
0 . 000 0 . 75 0 . 79 

0 . 71 1 . 91 2 . 14 
1 . 70 1 . 02 1 . 19 

0 . 87 0 . 40 0 . 57 
0 . 28 0 . 41 0 . 52 

0 . 32 0 . 006 0 . 011 
0 . 003 1 . 20 1 . 25 

1 . 15 0 . 88 1 . 43 
0 . 54 

0.9 0 . 000 0 . 003 
0 . 000 0 . 42 0 . 45 

0 . 38 1 . 78 2 . 00 
1 . 58 1 . 00 1 . 17 

0 . 85 0 . 14 0 . 26 
0 . 08 0 . 40 0 . 51 

0 . 31 0 . 000 0 . 003 
0 . 000 0 . 85 0 . 89 

0 . 80 0 . 84 1 . 38 
0 . 51 

Notes . LG09 represents the 2501 direct integrations of Laskar & Gastineau ( 2009 ). H denotes the 10 560 orbital solutions of Gauss’ dynamics in ML21, and the 
two values of the last two rows of H correspond to the lower and upper bounds of the estimations, as explained in the text. 
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e remark that the shift of the frequency g 1 due to GR is comparable
o the half-width of the principal secular resonances (Mogavero & 

askar 2022 ), and cannot be considered as a small correction. 
With the aid of TRIP , the secular Hamiltonian ̂ H of the entire

olar system, at first order in planetary masses, can be expanded 
n series of the complex Poincar ́e variables of the planets, i.e.
 x i , ̄x i , y i , ȳ i ) 8 i= 1 (Laskar & Robutel 1995 ). The planets are inde x ed
n order of increasing semi-major axis, as usual. Truncation at total 
egree 2 n results in a polynomial Hamiltonian ̂ H 2 n . When the pre-
etermined orbits of the outer planets ( x i ( t) , y i ( t)) 8 i= 5 are substituted,
ne obtains the Hamiltonian of the forced ISS truncated at degree 2 n ,
.e. H 2 n (( x i , y i ) 4 i= 1 , t) = 

̂ H 2 n (( x i , y i ) 4 i= 1 , ( x i = x i ( t) , y i = y i ( t)) 8 i= 5 ).
he non truncated Hamiltonian, formally H = H ∞ 

, represents 
auss’ dynamics of the forced ISS. 
At the lowest degree, H 2 describes an integrable forced Laplace–

agrange dynamics. Its analytical solution can be obtained by a 
anonical transformation to the complex proper modes variables 
 u i , v i ) 4 i= 1 , with corresponding action-angle variables ( X i , χ i ; � i ,
 i ) such that ( u i = 

√ 

X i E 

−jχi ; v i = 

√ 

� i E 

−jψ i ). 1 When expressed
n these action-angle variables, the truncated Hamiltonian is a finite 
ourier series: 

H 2 n ( I , θ , t) = 

∑ 

k , � 

˜ H 

k , � 

2 n ( I ) E 

j ( k ·θ+ � ·ω o t ) , ˜ H 

k , � 

2 n = 

n ∑ 

p= 1 

˜ H 

k , � 

(2 p) , (1) 

here I = ( X , � ) and θ = ( χ , ψ ) are the eight-dimensional vectors
f the action and angle v ariables, respecti vely, t is the time, ω o =
 g 5 , g 6 , g 7 , g 8 , s 6 , s 7 , s 8 ) is the septuple of the constant fundamental
requencies of the outer orbits (Laskar 1990 ), and ( k , � ) ∈ Z 

8 × Z 

7 

s the wave vector of a given harmonic. The amplitude of a harmonic˜ 

 

k , � 

2 n consists of partial contributions ˜ H 

k , � 

(2 p) from terms of the same 
egree 2 p ≤ 2 n . To identify these partial contributions, we define 

 

k , � 
(2 p) = 

˜ H 

k , � 

(2 p) E 

j ( k ·θ+ � ·ω o t ) + c .c ., (2) 

here c.c. refers to the complex conjugate. The order of a harmonic
s defined as the ev en inte ger ‖ ( k , � ) ‖ 1 ≤ 2 n , where ‖ · ‖ 1 denotes
he 1-norm. Since the quasi-periodic form of the outer orbits contains 
armonics of order higher than one, the dynamics of H 2 n and H 2 n are
ot exactly the same. Yet, the difference is unimportant for the results
f this work, so we shall treat the two Hamiltonians as equi v alent
rom now on. 
 E represents the exponential operator, j stands for the imaginary unit. 

a  

a  

9  
econd order in planetary masses 

o investigate the effect of the order of the secular averaging on
he long-term statistics, we employ the autonomous polynomial 
quations of motion of Laskar ( 1985 , 1990 ) for the ensemble of
he Solar system planets. These equations formally derive from a 
amiltonian of order two in masses and degree 6 in eccentricities

nd inclinations, and will be denoted as L 6 throughout this paper. In
his work, we also implement a variant of this dynamics, in which
he equations for the inner planets are truncated at total degree 3 in
ccentricities and inclinations, while those of the outer planets are 
ept at degree 5 (Appendix A ). This new model, denoted as L 4 , is
eant as an analogue of H 4 at second order in masses. 

 N U M E R I C A L  EXPERI MENTS  

e systematically derive the equations of motion for the truncated 
amiltonians H 2 n in TRIP . They are numerically integrated via an
dams PECE scheme of order 12, with a time-step of 250 yr. Typical

ntegration times are given in ML21 (Table 1 ). 
All the orbital solutions of H 2 n in this paper correspond to initial

onditions taken from a unique ensemble of 108 000 values very
lose to each other, and distributed according to 

 i = x ∗i + σ
(
Re { x ∗i } z i + j Im { x ∗i } z ′ i 

)
, (3) 

here x ∗i represents the nominal initial conditions for H given in
L21 (Appendix D), z i , z ′ i ∼ N (0 , 1) are standard normal deviates,

nd σ = 10 −9 . An analogous expression holds for the variables
 y i ). Initial conditions for ( u i , v i ) are directly derived from the
ransformation ( x i , y i ) → ( u i , v i ). For the first few million years,
ll the solutions reproduce the comprehensive direct simulation 
aX13b (ML21), while they diverge from each other after about 
00 Myr due to chaos. The choice of the initial distribution has an
mpact on the secular solutions that decreases with time because of
haotic diffusion (Hoang, Mogavero & Laskar 2021 ). Therefore, the 
ong-term statistics we present should not depend on its particular 
hape, but should rather reflect the nature of the dynamical models
mployed. 

We compute 108 000 solutions spanning 5 Gyr in the future for
 4 and H 6 , and 10 800 solutions for H 8 and H 10 o v er the same

ime interval. For each Hamiltonian, we prolong 1 080 solutions to
00 Gyr. The statistics of L 6 was first described in (Laskar 2008 )
ith 478 solutions integrated up to 5 Gyr. In this paper, we compute
 much larger ensemble of solutions: 120 000 and 40 000 solutions
t degree 6 lasting for 5 and 100 Gyr in the future, respectively;
0 000 and 10 000 solutions at degree 4 ( L 4 ) spanning the same
MNRAS 514, 1342–1350 (2022) 
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Figure 1. CDF of the first hitting time of Mercury’s eccentricity at 0.7 o v er 
5 Gyr with 90 per cent piecewise confidence interval, for the dynamics H 2 n , 
H 4 ,m , H, L 2 n , and LG09. LG09 represents 2492 direct integrations 2 (LG09), 
H denotes 10 560 solutions of Gauss’ dynamics (ML21). 
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ntervals. The statistics of this paper will be compared with those
rom previous works: the forced secular ISS without truncation in
ccentricities nor in inclinations, i.e. Gauss’ dynamics, denoted as
 (ML21); the direct integrations of the Solar system of Laskar &
astineau ( 2009 , hereafter LG09). 
For each ensemble of solutions, we retrieve the statistics of the
aximum value reached by the eccentricity of Mercury o v er a given

ime-span (Laskar 1994 ) This choice is moti v ated by the fact that
he excitation of Mercury’s eccentricity due to the resonance g 1 − g 5 
s a precursor of the dynamical instability. Mercury’s eccentricity at
 Gyr typically ranges from 0 and 0.5 (Laskar 2008 ; LG09; ML21).
he rare acti v ation of the resonance g 1 − g 5 allows a net transfer
f angular momentum deficit (Laskar 1997 ) from the outer planets
o the ISS, and pump the eccentricity of Mercury to a higher value.
nce the eccentricity of Mercury exceeds 0.7, the solutions enter

n unstable regime, where close encounters and collisions involving
ercury become possible. Therefore, a Mercury’s eccentricity higher

han 0.7 shall be taken as a synonym of instability for the rest of the
aper. 

All the secular solutions are stopped at numerical instability,
xcept those of Gauss’ dynamics that end at a secular collision,
hat is, the geometric intersection of the Keplerian ellipses of two
lanets (ML21). To have a more accurate comparison, we assume
hat after a secular collision, the maximum Mercury eccentricity of a
auss’ solution exceeds 0.9 shortly, which corresponds to the upper
ounds of the column H in Table 1 . This assumption for the solutions
f H is used for the remainder of this paper. In contrast, the lower
ounds assume that the maximum eccentricity of Mercury of such
olutions does not reach higher values after a secular collision, and
orrespond to the statistics reported in ML21 (Table 4). 

 STATISTICS  O F  M E R C U RY ’ S  

CCEN TRIC ITY  

.1 Small changes, big differences o v er 5 Gyr 

able 1 shows for each dynamical model the percentages of solu-
ions whose Mercury’s maximum eccentricity o v er 5 Gyr reaches
 arious v alues, from 0.35 to 0.9. We report statistical confidence
ounds estimated by Wilson’s ( 1927 ) score interval at 90 per cent
e vel. A temporal e volution of the statistics is presented in Fig. 1 ,
hich displays the cumulative distribution functions (CDFs) of
= inf t { e 1 ( t) ≥ 0 . 7 } , that is, the first time that the eccentricity

f Mercury e 1 reaches the threshold of 0.7 along a given solution
the variation of the CDFs with different thresholds is studied in
ppendix B ). The values of the curves at 5 Gyr coincide with the

ine of 0.7 of Table 1 . 
The most striking results from Fig. 1 and Table 1 lie in the statistics

f the models of degree 4, H 4 and L 4 . The probability of a high
ercury eccentricity o v er 5 Gyr is around 1 per cent in LG09, which

s considered as the reference model, and this is reproduced up to a
 actor of tw o by all the models of degree 6 and higher. Nevertheless,
he dynamics of H 4 is much more stable, with only one solution
mong 108 000 in which Mercury’s eccentricity exceeds 0.7, for an
stimated probability of 10 −5 , a thousand times smaller than that
f the reference model. At second order in planetary masses, the
isparity between L 4 and L 6 is two orders of magnitude, which is
till substantial. The CDF of L 6 is slightly greater than that of H 6 ,
hich shows that the contribution of the second order in planetary
NRAS 514, 1342–1350 (2022) 

 9 out of the original 2501 solutions were damaged during data storage. 
3

asses is small and destabilizing. Nevertheless, for such a stable
odel like H 4 , the second order can still raise the instability rate by

ne order of magnitude. 
The great stability of the H 4 dynamics shows that the low

robability of 1 per cent for an instability of Mercury orbit o v er
 Gyr should be interpreted as a perturbative effect, with the leading
ontribution coming from the Hamiltonian terms of degree 6. The
ractical stability of H 4 o v er 5 Gyr is unexpected, since it still
eproduces the chaotic dynamics of the ISS with the same long-
erm statistical distribution of the maximum Lyapuno v e xponent as
n H 6 or Gauss’ dynamics (Mogavero & Laskar 2022 ). It also shows
he same destabilization mechanism, that is, the acti v ation of the
esonance g 1 − g 5 . Previous works on the instability of Mercury orbit
tudied a simplified dynamics in which only a few Fourier harmonics
f H 4 are considered (Batygin et al. 2015 ; Woillez & Bouchet 2020 ).
his latter model is actually considerably more unstable than the

eference model LG09, in deep contrast with the practical stable
ynamics of H 4 o v er 5 Gyr. 
The secular models of degree higher than 4 give predictions that

enerally agree with the N -body integrations LG09. While Gauss’s
ynamics tends to underestimate, and H 8 o v erestimates the insta-
ility probability, H 10 gives accurate predictions (this is probably
 coincidence related to the behaviour of the series expansion). At
imes shorter than 5 Gyr and for a threshold of 0.7, the estimations
f H 6 , H 10 , and L 6 generally agrees with the results of a refined
ethod of rare event detection applied to direct integrations (Abbot

t al. 2021 ) 3 : For L 6 , the probability of Mercury orbit having
ccentricity larger than 0.7 in the next 2 Gyr is 0 . 025 per cent with
 90 per cent confidence interval (0 . 019 per cent , 0 . 034 per cent ),
hile it is 0 . 2 per cent with a 90 per cent confidence interval

0 . 18 per cent , 0 . 22 per cent ) o v er 3 Gyr. The Hamiltonians of degree
 and 6 show a relatively pronounced decay of the probability from
.7 to 0.9 (see also Fig. B1 ). This interesting phenomenon is inherent
o degree 6 or lower, because the probability of the models of higher
 The definition of instability in Abbot et al. ( 2021 ) is ho we ver dif ferent. 
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egree is fairly constant across high values of Mercury’s eccentricity: 
f e 1 reaches 0.7 along a solution, it also probably goes beyond 0.9. 

.2 Ranking of harmonics according to their contributions to g 1 

n order to explain the difference between the statistics of H 4 

nd H 6 , we shall switch to the proper mode variables and the
ourier representation of equation ( 1 ). The Hamiltonian H 6 contains 
ubstantially more harmonics than H 4 , 69 339 compared to 2748. 
or each harmonic of H 4 , H 6 includes additional terms of degree 6 

n its amplitude. Despite the large difference in the number of terms,
ost of the contributions of H 6 are negligible. We aim to identify 

ere the Fourier harmonics that have an important impact on the 
estabilization mechanism, that is, the acti v ation of the resonance g 1 

g 5 . Because g 5 is constant in the forced dynamics, we shall focus
n the fundamental precession frequency of Mercury perihelion g 1 . 
Following ML21, the instantaneous value of the frequency g 1 for 

he Hamiltonian H 2 n is defined as 

ˆ  (2 n ) 1 = −θ̇1 = −∂ H 2 n 

∂ I 1 
= 

∑ 

k , � 

n ∑ 

p= 1 

ˆ g k , � 1(2 p) , (4) 

here the partial contribution at degree 2 p of each harmonic is 

ˆ  k , � 1(2 p) = −∂ F 

k , � 
(2 p) ( I ) 

∂ I 1 
= −∂ ̃  H 

k , � 

(2 p) ( I ) 

∂ I 1 
E 

j ( k ·θ+ � ·ω o t ) + c .c .. (5) 

n this form, each harmonic manifests its importance via its direct 
ontribution to g 1 , which varies along an orbital solution according 
o the position in the phase space, i.e. ˆ g k , � 1(2 p) ( t) = ˆ g k , � 1(2 p) ( I ( t) , θ ( t) , t).
o identify the main harmonics involved in the destabilization of 

he dynamics, equations ( 4 ) and ( 5 ) are e v aluated along unstable
olutions. Short-term oscillations are suppressed by the low-pass 
olmogorov–Zurbenko (KZ) filter (Yang & Zurbenko 2010 ), which 

s applied to the instantaneous frequency g 1 and its harmonic 
ontributions. We use the KZ filter with three iterations of the moving
verage and a cut-off frequency of (1 Myr) −1 (ML21, Appendix B)
o obtain the filtered values 

 

(2 n ) 
1 = KZ ( ̂  g (2 n ) 1 ) , g 

k , � 
1(2 p) = KZ ( ̂  g k , � 1(2 p) ) . (6) 

he harmonics can then be ranked according to the maximum value 
f their absolute filtered contribution o v er the time interval [0, T ].
he time-span T is chosen to be slightly larger than the time of the
rst acti v ation 4 of the resonance g 1 − g 5 . After this point, the system
ither exhibits a secular collision right away or enters a period of
xcited dynamics before an eventual collision. This unstable state 
ypically lasts longer for a solution of H 6 than for a Hamiltonian of
igher degree. 
We establish the harmonic ranking on an unstable solution of 
 6 , whose Mercury’s eccentricity o v er time is shown in Fig. 2 (the

anking of the leading harmonics is quite robust when we switch 
o other unstable solutions). The first entrance into the chaotic zone 
f the resonance g 1 − g 5 occurs just after 1.97 Gyr (see Fig. 3 a),
uring which the eccentricity of Mercury is pumped to 0.65 and the
armonic contributions generally reach their maximum values (see 
ig. 3 b). The ranking is computed o v er the first 2 Gyr to capture the
ontributions of the harmonics at the resonance. Table 2 shows two 
armonic rankings based on the partial contributions at degree 4 and 
, respectively. It is surprising to find that the contributions to g 1 at
 Throughout the paper, by activation we mean the exploration of the chaotic 
one of the resonance, independently of the entrance in a libration state. 

r  

f  

r
b  
egree 6 are slightly less, but still roughly the same amount as those
t degree 4. Because the principal contributions at degree 6 come
rom harmonics of order 2 and 4, what H 6 mainly offers is not new
esonances, but rather corrections to the existing harmonics of H 4 . 
he corrections at degree 6 help to push g 1 toward g 5 and bring

he solution closer to the destabilizing resonance. Geometrically 
peaking, in the phase space the resonance g 1 − g 5 defined by H 6 is
loser to the current ISS than that of H 4 . 

Fig. 3 (b) gives a closer look at the time evolution of the leading
armonic contributions to g 1 at de gree 6. The y are small at the
eginning when the solution is stable, but get much bigger when
he eccentricity of Mercury becomes higher, that is during and after
he first acti v ation of the resonance g 1 − g 5 at 1.97 Gyr. During
his period, which is shown in the lower panel of Fig. 3 (b), the
trongest terms are the null-frequency harmonic, i.e. the integrable 

art of the Hamiltonian ˜ H 

0 , 0 
(6) , and the harmonic s 1 − s 2 , which also

nters resonance. These two terms tend to destabilize the system by
ecreasing g 1 by substantial amounts, which are even greater than 
he leading GR correction of 0.4 arcsec yr −1 at degree 2 at some
oint. In the opposite direction, the two harmonics 2 g 1 − ( s 1 + s 2 )
nd 2( g 1 − s 1 ) raise g 1 , moving it away from g 5 . Although these
erms are non resonant, they are extremely crucial for the stability of

ercury orbit (see Section 4.3 ). Other harmonics also contribute to
 1 at degree 6 in an alternating pattern, but to a lesser extent. 
To confirm the crucial role of the terms of degree 6, we add them

o H 4 to construct partial Hamiltonians (Mogavero & Laskar 2022 ): 

 4 ,m 

= H 4 + 

m ∑ 

i= 1 

F 

i 
(6) , (7) 

here F 

i 
(6) = F 

k i , � i 
(6) is the i th harmonic from the ranking at degree

 of Table 2 , and m is the total number of such harmonics that are
onsidered. Fig. 3 (a) shows the filtered g 1 computed from different
amiltonians along the same unstable trajectory of H 6 of Fig. 2 .

nitially, when the solution is stable and Mercury’s eccentricity is 
elati vely lo w, the frequency g (4) 

1 of H 4 is almost indistinguishable
rom the corresponding g (6) 

1 of H 6 . Across the acti v ation of the
esonance g 1 − g 5 , the difference between the two frequencies 
ecomes considerable: g (6) 

1 almost reaches g 5 , while g (4) 
1 does not.
MNRAS 514, 1342–1350 (2022) 
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M

(a) (b)

Figure 3. Temporal evolution of the filtered frequency g 1 defined from different Hamiltonians (left-hand panel) and partial contributions g k , � 1(6) at degree 6 from 

the six leading harmonics of Table 2 (right-hand panel) along the unstable integration of H 6 of Fig. 2 . The low-pass filter has a cut-off frequency of (1 Myr) −1 . 
The initial period of 20 Myr and the period of the first acti v ation of the resonance g 1 − g 5 from 1.95 to 2 Gyr are enlarged in the lower panels. 

Table 2. Rankings of Fourier harmonics. 

i Harmonic F 

i 
(4) C k , � (4) Harmonic F 

i 
(6) C k , � (6) 

1 0 −0.836 0 −0.614 
2 s 1 − s 2 −0.790 s 1 − s 2 −0.573 
3 2 g 1 − s 1 − s 2 0.413 2 g 1 − s 1 − s 2 0.268 
4 2 g 1 − 2 s 1 0.366 2 g 1 − 2 s 1 0.237 
5 g 1 − g 5 −0.126 g 1 − g 2 −0.071 
6 2 g 1 − 2 s 2 0.117 2 g 1 − 2 s 2 0.054 
7 g 1 − g 2 + s 1 − s 2 −0.054 g 1 − g 5 −0.053 
8 g 1 − g 2 0.035 g 1 − g 2 + s 1 − s 2 −0.044 
9 g 1 − g 2 − s 1 + s 2 −0.027 2 s 1 − 2 s 2 0.044 
10 s 1 − s 3 0.024 g 1 − g 2 − s 1 + s 2 −0.039 

Notes . Partial contributions to g 1 (arcsec yr −1 ) from the harmonics at 
degree 4 ( F 

i 
(4) ) and 6 ( F 

i 
(6) ), along the unstable solution of H 6 of Fig. 2 . 

The maximum filtered contributions are denoted by C k , � (2 p) = g 
k , � 
1(2 p) ( t 

� ), with 

t � = arg max t≤T | g k , � 1(2 p) ( t) | (equations 5 and 6 ). For each partial degree, the 

harmonics are ranked according to | C k , � (2 p) | with T = 2 Gyr, which is shortly 
after the first acti v ation of the resonance g 1 − g 5 . 
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he difference is mainly due to the integrable term 

˜ H 

0 , 0 
(6) , which is

ncluded in H 4 , 1 , and to the first leading harmonics contained in H 4 , 4 .
The statistics of the high Mercury eccentricities from H 4 ,m 

should
pproximate that of H 6 better than H 4 . In order to test this expectation,
e integrate the dynamics of H 4 , 1 , H 4 , 4 , and H 4 , 51 from 10 800 and
 080 initial conditions o v er 5 and 100 Gyr, respectively. The initial
onditions are taken from the same ensembles employed for H 2 n .
he CDFs of the first time that Mercury eccentricity reaches 0.7 for
 4 ,m 

are shown in Fig. 1 . The wide discrepancy between H 4 and H 6 

s first bridged by adding the integrable term 

˜ H 

0 , 0 
(6) , with which the

urve of H 4 , 1 attains a probability of 0 . 2 per cent at 5 Gyr. Including
he next three leading harmonics brings the curve to the same level
s Gauss’ dynamics. Adding additional terms makes the statistics
scillate around that of H 6 . 
The impact of the choice of the initial conditions on the present

nalysis deserves a discussion. As stated in Section 3 , the nominal
NRAS 514, 1342–1350 (2022) 
nitial conditions of the truncated forced dynamics H 2 n are chosen
o be the same as those of Gauss’ dynamics H. In principle, they
hould be adapted to each model according to the harmonics that
re dropped from the full Hamiltonian (Laskar & Simon 1988 ;
L21). Nevertheless, the lack of adjustment of the nominal initial

onditions has a negligible effect in our study. First of all, the
armonic contributions to g 1 in Table 2 are established on an orbital
olution of H 6 : The change in the initial conditions with respect to
 is of only degree 8 in eccentricities and inclinations of the planets

Morbidelli 2002 ). Secondly, H 4 and all the partial Hamiltonians
onsidered in equation ( 7 ) contain the entire contribution from
erms of degree 4. Therefore, the change in the initial conditions
s still of degree 6. These considerations indicate that all the models
onsidered here reproduce consistently the dynamics of the ISS
n short (secular) time-scales, as shown for the frequency g 1 in
he lower panel of Fig. 3 (a). Moreo v er, the impact on long-term
tatistics of small differences among ensembles of initial conditions
enerally decreases with time because of chaotic diffusion (Hoang
t al. 2021 ). As a result, our findings should not be sensitive to
he initial displacement in the phase space, but rather reflect the
istinctive long-term behaviour of the different models. 

.3 Importance of non-resonant harmonics 

e have shown the importance of harmonics at degree 6 by
dding them to H 4 to construct partial Hamiltonians. Among the
eading terms, there are several non-resonant harmonics, which are
ften considered unimportant when constructing simplified models.
mong the leading non-resonant harmonics of Table 2 , we consider
 g 1 − ( s 1 + s 2 ), 2( g 1 − s 1 ), and 2( g 1 − s 2 ), to highlight their role
n stabilizing the ISS. We shall subtract the entire contribution of
hese three harmonics from the Hamiltonians H 4 and H 4 ,m 

, to define
ew partial Hamiltonians denoted as H 

∗
4 and H 

∗
4 ,m 

, respectively. The
alues of m are chosen to be the same as in Section 4.2 , that is, m ∈
 1, 4, 51 } . We integrate the equations of motion defined by H 

∗
4 and

 

∗
4 ,m 

o v er 5 Gyr from the same ensemble of initial conditions defined
n Section 3 , to obtain 10 800 solutions. 
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Figure 4. CDFs of the first hitting time of Mercury’s eccentricity at 0.7 o v er 
5 Gyr for the dynamical models H 4 , H 6 , H 4 ,m (solid lines), and H 

∗
4 , H 

∗
4 ,m 

(dashed lines). The Hamiltonians H 

∗
4 and H 

∗
4 ,m exclude from H 4 and H 4 ,m , 

respectively, the entire contribution of the three non-resonant harmonics 2 g 1 
− ( s 1 + s 2 ), 2( g 1 − s 1 ), and 2( g 1 − s 2 ) of Table 2 . 
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Fig. 4 shows the comparison between H 4 , H 4 ,m 

, and H 

∗
4 , H 

∗
4 ,m 

for
he CDF of the first time that Mercury’s eccentricity reaches 0.7 
 v er 5 Gyr. For all the models, removing the three non-resonant
armonics makes the dynamics significantly more unstable, with 
t least one order of magnitude of difference. For comparison, the 
ynamics of H 4 is a thousand times more stable than H 6 o v er 5 Gyr,
ut taking away the three harmonics brings the model H 

∗
4 basically 

o the same level of instability of H 6 . If we consider the Hamiltonian
 

∗
4 , 51 , based on H 4 , 51 that is the closest dynamics to H 6 among the
resented partial Hamiltonians, its probability of instability is around 
0 per cent at 5 Gyr, that is, twenty times more than the instability
ate of H 6 . These numerical experiments show the crucial role of
hese non-resonant harmonics in stabilizing the ISS. Interestingly 
nough, all the three harmonics permits the exchange of angular 
omentum deficit between the eccentricity and inclination degrees 

f freedom, that is, between the proper modes ( u i ) and ( v i ). These
esults also show the sensitivity of the destabilization probability 
o the details of the dynamics, and may explain, at least partially,
he great instability shown by the simplified models considered in 
iterature (Batygin et al. 2015 ; Woillez & Bouchet 2020 ). 

.4 Statistics o v er 100 Gyr 

o explore the dynamics in a regime where highly excited orbits
o longer represent rare events, we follow ML21 and prolong 1080 
ntegrations of the different Hamiltonians previously considered to 
00 Gyr. Fig. 5 shows the CDFs of the first time that Mercury
ccentricity reaches 0.7 and the corresponding probability density 
unctions (PDFs). The PDFs are estimated by the debiased kernel 
ensity estimation (KDE) method (Cheng & Chen 2019 ), with 
aussian kernel and Silverman ( 1986 )’s rule-of-thumb bandwidth 

Appendix D ). We use the log transformation and the pseudo-data 
ethod (Cowling & Hall 1996 ) to remo v e the boundary effects

nduced by the KDE at 0 and 100 Gyr, respectively. The confidence
ntervals of the PDFs are estimated by bootstrap (Efron 1979 ) of the
ebiased KDEs; for the CDFs, we use Wilson’s score interval. 
The CDFs of H 6 and H 8 are close to each other, with medians of

0 Gyr, while that of H 10 is around 35 Gyr. The increasing values of
he medians may suggest a convergence toward the value of 40 Gyr of
auss’ dynamics. On the other hand, the difference between H 4 and

he other truncated forced dynamics is still considerable. The median 
ime for H 4 is 75 Gyr, roughly doubling the value of H 6 . If we assume
hat the PDFs follow a Levy distribution ρ( τ ) = ( T 0 / πτ 3 ) 1 / 2 E 

−T 0 /τ

 v er short times (ML21), with T 0 proportional to the median of the
istribution, one easily understands how a difference by a factor of
wo in the medians of the PDFs results in very different probabilities
 v er 5 Gyr. Indeed, the fact that the destabilization o v er 5 Gyr is a
are event greatly amplifies the disparity between H 4 and the models
f higher degree. 
There is practically no difference between the statistics of H 6 and
 6 o v er this time-scale, which confirms the secondary effect of the

econd order in masses for the forced ISS and the statistics of the high
ercury eccentricities in particular. Ho we ver, this ef fect is magnified

or H 4 , the CDF of L 4 approaching halfway the curves of higher
egrees, with a median time of around 60 Gyr. Fig. 5 also shows the
DFs of H 4 ,m 

, highlighting the impact of the leading harmonics at

egree 6. With only the integrable term 

˜ H 

0 , 0 
(6) considered, the CDF of

 4 , 1 is already close to that of H. When additional harmonics are
dded, their CDFs approach the curve of H 6 , as shown by H 4 , 4 and
 4 , 51 . 

 DI SCUSSI ON  

ur findings suggest a remarkable analogy between the secular 
SS and the Fermi–Pasta–Ulam–Tsingou (FPUT) problem, which 
onsists in a chain of coupled weakly-anharmonic oscillators (Fermi 
t al. 1955 ). This is basically the same kind of interactions as in the
ecular planetary problem. Differently from Fermi’s expectations, the 
MNRAS 514, 1342–1350 (2022) 
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roper modes of oscillation of the FPUT dynamics remain far from
he equipartition invoked in equilibrium statistical mechanics for a
ery long time. This has been related to the closeness of the FPUT
roblem to the integrable Toda dynamics, which does not allow any
hermalization of its action variables (Flaschka 1974 ; H ́enon 1974 ;
erguson, Flaschka & McLaughlin 1982 ; Benettin, Christodoulidi
 Ponno 2013 ). Although not integrable, and indeed chaotic, the
amiltonian H 4 plays a role similar to the Toda Hamiltonian,

s it does not allow essentially any dynamical instability over
 Gyr. The main question at this point is why the dynamics of
 4 is practically stable o v er 5 Gyr. Once this is assessed, the

mall 1 per cent probability of an instability of the ISS may be
onceived as a natural perturbative effect of terms of degree 6 and 
igher. 
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PPENDI X  A :  SECULAR  DY NA MIC S  AT  

ECOND  O R D E R  IN  PLANETA RY  MASSES  

We use the secular equations of motions of Laskar ( 1985 , 1990 , 2008 ,
nd references therein). They were obtained via series expansions in
lanetary masses, eccentricities, and inclinations, as well as through
econd-order analytical averaging over the rapidly changing mean
ongitudes of the planets. The expansion was truncated at the second
rder with respect to the masses and to degree 5 in eccentricities and
nclinations. The equations include corrections from GR and Earth–

oon gravitational interaction. This leads to the following system
f ordinary differential equations, denoted by L 6 throughout this 
aper: 

d ω 

d t 
= 

√ −1 { � + � 3 ( ω, ω̄ ) + � 5 ( ω, ω̄ ) } , (A1) 

here ω = ( z 1 , . . . , z 8 , ζ 1 , . . . , ζ 8 ), with z k = e k E 

j� k and
k = sin ( i k / 2) E 

j�k . The planets are inde x ed in order of increasing
emi-major axis, as usual. The variable � k is the longitude of the
erihelion, �k is the longitude of the ascending node, e k is the
ccentricity, and i k is the inclination. The function � 3 ( ω, ω̄ ) and
 5 ( ω, ω̄ ) are the terms of degree 3 and 5, respectively. The 16 × 16
atrix � is the linear Laplace–Lagrange system, which is slightly
odified to make up for the higher order terms in the outer Solar

ystem. 
To mimic H 4 , we define the new model L 4 by dropping the

erms of degree 5 from the equations of the inner planets, 
hat is: 

d ω 

d t 
= 

√ −1 { � + � 3 ( ω, ω̄ ) + D � 5 ( ω, ω̄ ) } , (A2) 

here we introduced the diagonal matrix D = diag ( 0 , 1 , 0 , 1 ),
ith 0 = (0 , 0 , 0 , 0) and 1 = (1 , 1 , 1 , 1). It should be noted

hat the truncations behind the models L 6 and L 4 are de-
ned with respect to the classical variables z k , ζ k , differently
rom the models H 2 n that result from the expansion of H in
he complex Poincar ́e variables x k ∝ (1 − (1 − e 2 k ) 

1 / 2 ) 1 / 2 E 

j� k 

nd y k ∝ (1 − e 2 k ) 
1 / 4 sin ( i k / 2) E 

j�k . 
We define ensembles of initial conditions by slightly varying a

ingle variable of an inner planet at a time, while keeping other
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Table A1. Offsets of the initial variables k i = e i cos � i and eccentricity e i , 
with i ∈ { 1, 2, 3, 4 } corresponding to the inner planets { Mercury, Venus, 
Earth, Mars } . 

Variable Offsets ε N T (Gyr) 

k i −N ε to N ε 10 −11 5000 100 
e i −N ε to N ε 10 −11 10 000 5 

Notes . Different initial conditions correspond to offsets of n ε in a single 
variable of a single planet for n = −N , . . . , N , while other variables are kept 
to their nominal values. Each initial condition is used to compute a solution 
o v er the time interval [0, T ]. 
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ariables identical to their reference values, as shown in Table A1 .
 or the inte grations o v er 100 Gyr, we use the initial conditions
aried from the variables ( k i = e i cos � i ) i = 1, 4 of the four inner
lanets, except for the solutions of L 4 , where only those varied
rom k 1 are used. For the solutions computed over 5 Gyr, the
ariables ( e i ) i = 1, 4 are varied to obtain the initial conditions. The
olutions integrated up to 100 Gyr are included in the analysis of the
tatistics of the first 5 Gyr. Equations ( A1 ) and ( A2 ) are integrated
rom these ensembles of initial conditions to obtain the solutions 
f L 6 and L 4 . 

PPEN D IX  B:  STATISTICS  WITH  DIFFERENT  

H R E S H O L D S  O F  M E R C U RY ’ S  

CCEN TRIC ITY  

e compute the CDFs of the first hitting time of Mercury’s eccentric-
ty at the three levels 0.7, 0.8, and 0.9, in order to test the dependency
f the instability statistics on different thresholds. The results are 
hown in Fig. B1 . Up to 5 Gyr, when the instability constitutes a rare
vent, the models of degree higher than 6 show consistency across
igure B1. CDFs of the first hitting time of Mercury’s eccentricity at the three th
anel) in the future for the dynamical models H 2 n , H, L 2 n , and LG09. LG09 repres
nd 1042 solutions of Gauss’ dynamics in ML21 spanning 5 and 100 Gyr, respect
, in which Mercury’s eccentricity of a solution is assumed to exceed 0.9 after a se
igh values of eccentricity. The difference between the CDFs of the
hree thresholds is relatively significant for the models at degree 6
 H 6 , L 6 ), and even more so at degree 4 ( H 4 , L 4 ). For H 6 and L 6 ,
nly about half of the integrations exceeding 0.7 also goes beyond
.9 in 5 Gyr. It should be noted that if Mercury’s eccentricity goes
eyond 0.9, it is likely that a catastrophic event will shortly ensue,
hether it is a secular collision (ML21) or a numerical instability in

he truncated dynamics. Therefore, the expected time that a solution 
f H 6 spends in an unstable state of high Mercury eccentricity is
onger, which makes H 6 a prime model for the study of the unstable
tates of the ISS. Over a longer time-scale of 100 Gyr, when the
estabilization is no longer a rare event, the difference of the CDFs
ith respect to the choice of the eccentricity threshold is small for

he models at degree 4 and negligible for the rest. 

PPENDI X  C :  DI FFERENCE  BETWEEN  PA ST  

N D  F U T U R E  F O R  T H E  STATISTICS  O F  

ERCURY ’S  ECCENTRI CI TY  

n this work, we focus on the statistics of Mercury’s eccentricity
 v er long time-scales in the future. It is interesting to revert the time
irection to obtain the statistics in the past for comparison. From the
et of initial conditions defined according to Table A1 , equations ( A1 )
nd ( A2 ) are integrated in the direction of ne gativ e times to obtain
20 000 and 40 000 solutions spanning 5 and 100 Gyr, respectively,
or both degrees 4 and 6. 

The CDFs of the first hitting time of Mercury’s eccentricity at
.7 for L 4 and L 6 in two time directions are shown in Fig. C1 .
or both models, the difference between past and future is small
ut still noticeable initially, and gradually diminishes as time goes. 
he asymptotic convergence of the two time directions is physically 
xpected, and has been also observed for the PDFs of the fundamental
MNRAS 514, 1342–1350 (2022) 

resholds 0.7, 0.8, and 0.9, up to 5 (left-hand panel) and 100 Gyr (right-hand 
ents 2492 orbital solutions o v er 5 Gyr of LG09, while H denotes the 10 560 

ively. It should be noted that we use here the upper bound of estimation for 
cular collision, as explained in the main text. 
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M

Figure C1. CDFs of the first hitting time of Mercury’s eccentricity at 0.7 for the dynamical models L 2 n o v er 5 Gyr (left-hand panel) and 100 Gyr (right-hand 
panel) in the two time directions, with 90 per cent confidence intervals. The integrations in the past are denoted by L 

−
2 n , while L 

+ 
2 n denotes the integrations in 

the future. 
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requencies of the Solar system (Hoang et al. 2021 ). Over the time-
cale of 100 Gyr, the CDFs of past and future are identical for both
 4 and L 6 . 

PPENDIX  D :  PDF  ESTIMATION  

n this section, we will briefly explain the methods to estimate
he PDF of τ = inf t { e 1 ( t) ≥ 0 . 7 } , that is, the first time that the
ccentricity of Mercury e 1 reaches the threshold of 0.7 from our
nsembles of integrations spanning from 0 to 100 Gyr. 

ebiased KDE and bootstrap 

DE, also known as the Parzen–Rosenblatt window method, is a non-
arametric estimator of the underlying PDF of a data set (Rosenblatt
956 ; Parzen 1962 ). In this work, we use a bias-corrected version
f the KDE to facilitate the uncertainty estimation by bootstrapping
he data. We briefly present the method here (a detailed presentation
an be found in Cheng & Chen 2019 and references therein). Let

X = { X 1 , X 2 , . . . , X n } be a uni v ariate independent and identically
istributed (i.i.d.) sample drawn from an unknown probability density
unction p ( x ). The KDE of the sample is then defined as 

̂ 

 h ( x| X ) = 

1 

nh 

n ∑ 

i= 1 

K 

(
x − X i 

h 

)
, (D1) 

here K is a non-ne gativ e kernel function and h is the bandwidth.
n this work, we choose Silverman’s ( 1986 ) rule of thumb for the
election of the optimal bandwidth and the standard Gaussian kernel.

ith this choice of bandwidth, the bias error and variance error
f the KDE in equation ( D1 ) are of the same order of magnitude.
herefore, the bootstrap method (Efron 1979 ), which measures the
ariance error by random resampling of the original data set, is not a
onsistent estimator of the total error of the KDE in equation ( D1 ).
ne approach to this problem is to use a bias-corrected KDE, defined

s 

˜ 

 h ( x) = 

̂ p h ( x) − h 

2 

2 
σ 2 

K 

d 2 ̂ p h ( x) 

dx 2 
, (D2) 

here σ 2 
K 

= 

∫ || x || 2 K( x ) dx is a constant depending on the kernel
unction K . With the debiased KDE in equation ( D2 ), the bias error
NRAS 514, 1342–1350 (2022) 
s reduced so that the total error is dominated by the variance error,
hich can be consistently estimated by the bootstrap method. 
The procedure of the standard bootstrap (Efron 1979 ) is as follows.
e resample the original data set X with replacement to obtain a

ootstrap sample X 

∗ = { X 

∗
1 , X 

∗
2 , . . . , X 

∗
n } . Equation ( D2 ) is then

pplied to this bootstrap sample to obtain a bootstrap debiased
DE 

˜ p 

∗
h ( x| X 

∗). We then repeat this procedure B times to obtain B
ootstrap debiased KDEs ˜ p 

∗(1) 
h , · · · , ̃  p 

∗( B) 
h . Because the distribution

f | ̃  p 

∗
h − ˜ p h ( x) | approximates that of | ̃  p h − p( x) | , from the sample

f the B bootstrap KDEs, we can compute an asymptotically valid
stimation of the piecewise confidence interval CI 1 − α( x ), defined as 

 ( | ̃  p h − p( x) | < CI 1 −α( x)) = 1 − α. (D3) 

oundary correction 

ernel density estimation of a PDF on a finite interval can be affected
y non-negligible bias at the boundaries. In our work, the interval is
efined by the total integration time, that is, [0, 100] Gyr in Fig. 5 .
he nature of the two boundaries is different, and they should be

reated differently. At t = 0, the integrations start closely around a
ominal value of e 1 ≈ 0.2, therefore the PDF of the first hitting time
f e 1 = 0.7 should be 0 when t = 0. This constraint suggests the log-
ransformation of the sample before applying the KDE (Charpentier
 Flachaire 2015 ). 
The boundary at 100 Gyr has no similar constraints, and we employ

 pseudodata method to correct the bias (Cowling & Hall 1996 ). The
dea is to use the original data set to generate fictitious data outside
he interval of interest. Let X (1) < . . . < X ( n ) be the order statistics
f the data X 1 , . . . , X n on the interval [0,1]. The extra data points
enerated in the range ( − ∞ , 0) are defined by the three-point rule: 

 ( −i) = −6 X ( i) + 4 X (2 i) − 3 X (3 i) . (D4) 

o adapt the upper limit of the interval [0, 100] Gyr to this rule, we
imply transform the data as X ( i ) → (100 − X ( i ) )/100. The pseudodata
re then generated according to equation ( D4 ), and the ensemble is
ack-transformed at the end. The number of pseudodata points is
aken to be about 10 per cent of the sample size. 
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