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ABSTRACT

The discovery of the chaotic motion of the planets in the Solar System dates back more than 30 years. Still, no analytical theory
has satisfactorily addressed the origin of chaos so far. Implementing canonical perturbation theory in the computer algebra system
TRIP, we systematically retrieve the secular resonances at work along the orbital solution of a forced long-term dynamics of the
inner planets. We compare the time statistic of their half-widths to the ensemble distribution of the maximum Lyapunov exponent
and establish dynamical sources of chaos in an unbiased way. New resonances are predicted by the theory and checked against direct
integrations of the Solar System. The image of an entangled dynamics of the inner planets emerges.
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1. Introduction
The chaotic long-term behaviour of the planetary orbits in the
inner Solar System (ISS) emerged when the numerical integra-
tion of analytically averaged equations of motion revealed a
maximum Lyapunov exponent (MLE) of about (5 million yr)−1

(Laskar 1985, 1989). Previously, the existence of secular res-
onances among the precession frequencies of planet perihelia
and nodes had been shown to generate small divisors, which
prevent the representation of the orbits as quasi-periodic series
(Laskar 1984, 1988). Investigating the origin of chaos, Laskar
measured the libration period of the Fourier harmonic θ2:1 =
2(g3 − g4) − (s3 − s4), which involves the fundamental frequen-
cies of Earth and Mars, to be about 4.6 Myr (Laskar 1990a). He
then proposed the libration–circulation transitions of the cor-
responding argument as a source of the observed MLE. Evi-
dence of a large chaotic zone bridging the resonances θ2:1 and
θ1:1 = (g3 − g4) − (s3 − s4) was later given (Laskar 1992). Nev-
ertheless, when the integration of the full equations of motion
confirmed the MLE of the averaged ones, the chaotic nature of
the θ2:1 dynamics was questioned (Sussman & Wisdom 1992).
As a consequence, a claim remains in literature that an undis-
puted dynamical mechanism for the observed chaos is missing
(Lecar et al. 2001; Murray & Holman 2001; Hayes 2007). In the
meantime, the alternating librations of θ2:1 and θ1:1 have been
confirmed by direct integrations (Laskar et al. 2004) and sup-
ported by geological records (Ma et al. 2017; Olsen et al. 2019;
Zeebe & Lourens 2019).

The high-dimensional dynamics of the inner planets prob-
ably discouraged systematic analytical studies of its resonant
structure. A couple of analyses have focused on the long-
term motion of Mercury, by freezing all the other planets
on quasi-periodic orbits (Lithwick & Wu 2011; Batygin et al.
2015), but this simplification leads to predictions that conflict
with the findings of realistic models (Mogavero & Laskar 2021).
Nevertheless, a Trojan horse against the curse of dimensional-
ity affecting the ISS dynamics is offered by computer algebra,
which allows the formal manipulation of the analytical series of

celestial mechanics and the implementation of canonical pertur-
bation theory in particular. Computer algebra has produced some
remarkable results, such as the reproduction of Delaunay’s mon-
umental lunar theory (Deprit et al. 1970) and the application of
the Kolmogorov–Arnold–Moser theory to the three-body prob-
lem (Robutel 1995; Locatelli & Giorgilli 2000), in addition to
the demonstration of the chaotic behaviour of the Solar System
itself (Laskar 1985, 1989). Still, its use in celestial mechanics
may seem limited given its potential.

We have recently proposed a forced model of the long-term
dynamics in the ISS (Mogavero & Laskar 2021). It allows the
secular phase space of the Solar System to be restricted in a con-
sistent way to the eight degrees of freedom (DOFs) dominated
by the inner planets. In this study we employ the computer alge-
bra system TRIP (Gastineau & Laskar 2011, 2021) to carry out
an unbiased analysis of the Fourier harmonics that constitute its
Hamiltonian (Appendix A).

2. Forced secular inner Solar System

The long-term dynamics of the Solar System planets essentially
consists of the slow precession of their perihelia and nodes,
driven by secular, that is, orbit-averaged, gravitational interac-
tions (Laskar 1990a; Laskar et al. 2004). The precession fre-
quencies of the outer planet orbits are practically constant over
billions of years when compared to those of the ISS (Laskar
1990a; Laskar et al. 2004; Hoang et al. 2021). Built on these
facts, the model of forced secular ISS consists in predetermin-
ing a quasi-periodic secular solution for the giant planets, with
the inner ones moving in the resulting time-dependent gravita-
tional potential (Mogavero & Laskar 2021). The quasi-periodic
form of the giant planet orbits is established through frequency
analysis (Laskar 2005) of the orbital solution of a compre-
hensive model of the Solar System (Laskar et al. 2004). The
low planetary masses and the absence of strong mean-motion
resonances in the ISS allow us to simply consider first-order sec-
ular averaging of the N-body Hamiltonian. This corresponds to
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Gauss’s dynamics of Keplerian rings (Gauss 1818), which we
correct for the leading secular contribution of general relativ-
ity. The pertinence of our model has been thoroughly demon-
strated (Mogavero & Laskar 2021). It matches reference orbital
solutions of the Solar System over timescales shorter than or
comparable to the Lyapunov time, with an average discrepancy
in the fundamental frequencies of only a few hundredths of an
arcsecond per year over the next 20 Myr. Moreover, it correctly
reproduces the MLE and the statistics of the high eccentricities
of Mercury over the next 5 billion years (Gyr).

Dynamical model. The secular Hamiltonian of the Solar
System planets at first order in planetary masses and cor-
rected for the leading contribution of general relativity reads
(Mogavero & Laskar 2021)

Ĥ = −

8∑
k=1

G
m0mk

ak


k−1∑
`=1

m`

m0

〈
ak

‖rk − r`‖

〉
+ 3

Gm0

c2ak

1√
1 − e2

k

 . (1)

The planets are indexed in order of increasing semi-major axis,
(mk)8

k=1 are the planetary masses, ak and ek are the (secular)
semi-major axes and eccentricities, respectively, G is the grav-
itational constant, and c is the speed of light. The vectors rk are
the planet heliocentric positions, and the bracket operator repre-
sents the averaging over the mean longitudes of the planets λk,
which results from the suppression of the non-resonant Fourier
harmonics of the N-body Hamiltonian at first order in planetary
masses (Mogavero & Laskar 2021). The semi-major axes ak are
constants of motion in the secular dynamics. A suitable set of
canonically conjugate momentum-coordinate pairs of variables
for the secular dynamics are the Poincaré rectangular coordi-
nates in complex form, (xk,− jx̄k; yk,− jȳk)8

k=1, with

xk =
√

Λk

√
1 −

√
1 − e2

k E j$k ,

yk =
√

2Λk

(
1 − e2

k

) 1
4 sin(Ik/2) E jΩk ,

(2)

where Λk = µk[G(m0 + mk)ak]1/2, m0 and µk = m0mk/(m0 +
mk) are the Sun mass and the reduced masses of the planets,
respectively, Ik are the planet inclinations, $k are the longitudes
of the perihelia, and Ωk are the longitudes of the nodes (Poincaré
1896; Laskar 1991; Laskar & Robutel 1995).

The model of forced ISS consists of the choice of an explicit
quasi-periodic time dependence for the orbits of the outer planets
(Mogavero & Laskar 2021),

xk(t) =

Mk∑
`=1

x̃k` E jmk` ·φ(t), yk(t) =

Nk∑
`=1

ỹk` E jnk` ·φ(t), (3)

for k ∈ {5, 6, 7, 8}, where t denotes the time, x̃k` and ỹk` are com-
plex amplitudes, mk` and nk` are integer vectors, and φ(t) = ωot,
with ωo = (g5, g6, g7, g8, s6, s7, s8) representing the septuple of
the constant fundamental frequencies of the outer orbits (Laskar
1990a). Gauss’s dynamics of the forced ISS is obtained by sub-
stituting this predetermined time dependence into Eq. (1),

H[(xk, yk)4
k=1, t] = Ĥ[(xk, yk)4

k=1, (xk = xk(t), yk = yk(t))8
k=5]. (4)

The resulting Hamiltonian system consists of two DOFs for each
inner planet, corresponding to the xk and yk variables, respec-
tively. The forced secular ISS is thus characterised by eight
DOFs. As a result of the forcing from the outer planets, its orbital

solutions live in a 16-dimensional phase space since no trivial
integrals of motion, such as the total energy or angular momen-
tum, exist.

The development of the two-body perturbing function
(Laskar & Robutel 1995), when implemented in TRIP, allows
the Hamiltonian H to be systematically expanded by exploit-
ing the low eccentricities and inclinations of the planets
(Mogavero & Laskar 2021). This development provides trun-
cated Hamiltonians H2n that are multivariate polynomials of
total degree 2n in the Poincaré variables of the inner plan-
ets (Appendix B). At the lowest degree, H2 produces a
forced Laplace-Lagrange (LL) dynamics, which can be ana-
lytically integrated by introducing complex proper mode vari-
ables, (uk, vk)4

k=1. By introducing action-angle variables through
uk =

√
XkE− jχk and vk =

√
ΨkE− jψk , the truncated Hamiltonians

expressed in the proper modes can be expanded as finite Fourier
series,

H2n(I, θ, t) =
∑
k∈Z8

∑
`∈Z7

H̃k,`
2n (I)E j(k·θ+`·ωot), (5)

where I = (X,Ψ) and θ = (χ,ψ) are the eight-dimensional vec-
tors of the action and angle variables, respectively, and (k, `) is
the wave vector of a given harmonic. There are 2748 harmonics
with a non-null amplitude H̃k,`

2n at degree four and more than ten
million at degree ten (Mogavero & Laskar 2021).

3. Maximum Lyapunov exponent

Computing the MLE is fundamental to the determination of
the origin of chaos, as its value can be compared to the half-
width of the leading resonant harmonics of the Hamiltonian,
which constitute the dynamical sources of chaoticity (Chirikov
1979). The non-null probability of unstable orbital evolutions
in the ISS (Laskar & Gastineau 2009) makes the definition of
the MLE as an infinite-time limit (Oseledec 1968; Benettin et al.
1980) not pertinent. We numerically compute a finite-time MLE
(FT-MLE) employing the standard algorithm of Benettin et al.
(1980) (faster chaoticity detectors have been developed start-
ing from the fast Lyapunov indicator of Froeschlé et al. 1997).
The FT-MLE is time-asymptotically a stochastic function of the
initial conditions of the system, and its computation acquires
full physical significance for an ensemble of orbital solu-
tions (Mogavero & Laskar 2021). Manipulation of the truncated
HamiltoniansH2n in TRIP allows us to systematically derive the
equations of motion and the corresponding variational equations,
which we integrate through an Adams PECE method of order 12
and a timestep of 250 yr. Figure 1 shows the FT-MLE expressed
as an angular frequency over the next 5 Gyr for different degrees
of truncation of the Hamiltonian. In each case, the FT-MLE is
computed for 128 stable (i.e. non-collisional) solutions, with
initial conditions very close to the nominal values of Gauss’s
dynamics and for different initial tangent vectors (Appendix C).
The figure shows the [5th, 95th] percentile range of the proba-
bility distribution function (PDF) of the FT-MLE estimated from
each ensemble of solutions. We also report the PDF from the full
HamiltonianH , computed in Mogavero & Laskar (2021), along
with the FT-MLE of its nominal solution S for nine different
initial tangent vectors, to manifest its asymptotic behaviour. In
a few hundred million years, each FT-MLE becomes indepen-
dent of the initial tangent vector, the renormalisation time, and
the norm chosen for the phase-space vectors. Its distribution only
reveals the intricate dependence on the initial position of the sys-
tem in the phase space. At 5 Gyr, the FT-MLE roughly ranges
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Fig. 1. Finite-time MLE of the forced secular ISS over 5 Gyr for differ-
ent degrees of truncation of the Hamiltonian and the corresponding Lya-
punov time FT-MLE−1. The bands represent the [5th, 95th] percentile
range of the PDF estimated from ensembles of 128 (H2n) and 1148 (H)
stable orbital solutions with very close initial conditions. The black lines
denote the nominal solution S for nine different initial tangent vectors.

from 0.15 to 0.5′′ yr−1 with a 90% probability. Figure 1 shows
that the truncated Hamiltonians H2n reproduce the asymptotic
distribution of the FT-MLE of the full dynamics H , even at the
lowest degree. It suggests, in particular, that the dynamical inter-
action of the Fourier harmonics at degree four constitutes the
primary source of the observed FT-MLE.

4. Leading harmonics

Significant insight into the ISS dynamics is provided by the
knowledge of the leading harmonics of the Hamiltonian, that
is, those that drive the system trajectory in the action space the
most, without necessarily being resonant. The action variables in
turn control the essential long-term variation in the frequencies
of motion (and therefore the activation of a specific web of res-
onances) through the mean frequencies ω2n(I) = ∂H̃0,0

2n /∂I that
derive from the integrable part H̃0,0

2n of the Hamiltonian in Eq. (5).
The contribution of the harmonic k, ` to the action vector I(t) is

∆Ik,`(t) = 2k Im
∫ t

0
dt′ H̃k,l

2n (I(t′))E j(k·θ(t′)+`·ωot′). (6)

We ranked the 69 339 harmonics of H6 according to the
time median of the relative Euclidean norm δIk,`(t) =
‖∆Ik,`(t)‖/ ‖I(t)‖ along the nominal solution S of Gauss’s
dynamics, spanning 5 Gyr (Appendix D). We report the first
30 harmonics in Table 1. As usual, each harmonic is identified
by the corresponding combination of frequency labels (gi, si)8

i=1
(Laskar 1990a). Given the absence of harmonics of order six,
Table 1 confirms the leading role of those of order two and
four, which enter the truncated Hamiltonian H2n at degree four.
The harmonics θ1:1 and σ1:1 = (g1 − g5) − (s1 − s2) appear
among the very leading terms, confirming their dynamical rel-
evance, as suggested in previous studies (Laskar 1990a, 1992;
Lithwick & Wu 2011; Boué et al. 2012; Batygin et al. 2015).
Among the top terms, there are harmonics that couple more
extensively the DOFs of the inner planets, with the remarkable
examples of (g1−g4)+ (s1− s4), associating the proper modes of
Mercury and Mars and (s1 − s2) + (s3 − s4), which concatenates
all the inclination DOFs. A non-negligible role of the Saturn-
dominated eccentricity mode g6 also emerges. Even though these

Table 1. Leading Fourier harmonics of H6 along the nominal solution
S spanning 5 Gyr.

i Harmonic [Fi] δIk,`

1 g2 − g3 + s2 − s4 0.781.02
0.02

2 g3 − g4 0.691.18
0.03

3 g3 − g4 − s3 + s4 0.420.94
0.14

4 g1 − g4 + s1 − s4 0.320.42
0.02

5 s3 − s4 0.310.59
0.02

6 g1 − g2 + s1 − s2 0.230.70
0.02

7 g2 − g3 + s2 − s3 0.180.27
0.04

8 g1 − g5 − s1 + s2 0.170.29
0.02

9 g1 − g3 + s1 − s3 0.170.30
0.02

10 g1 − g4 + s1 − s3 0.160.37
0.01

11 s1 − s2 + s3 − s4 0.160.24
0.03

12 g2 − g4 + s1 − s4 0.160.21
0.01

13 g2 − g4 + s2 − s3 0.150.38
0.01

14 g1 − g3 + s1 − s4 0.130.19
0.01

15 g1 − g4 + s2 − s4 0.130.20
0.01

16 g2 − g4 + s2 − s4 0.110.15
0.00

17 g2 − 2g4 + g6 0.110.25
0.00

18 g1 − g5 + s3 − s4 0.110.18
0.01

19 g3 − g5 − s1 + s3 0.100.14
0.01

20 g1 − g2 0.090.19
0.01

21 g4 − g6 + s2 − s4 0.080.11
0.00

22 g3 − g5 − s2 + s3 0.080.10
0.00

23 g2 − g3 + s1 − s4 0.080.10
0.00

24 g4 − g6 + s3 − s4 0.070.11
0.00

25 g3 − g4 + s3 − s4 0.060.15
0.01

26 s2 − s3 0.060.08
0.00

27 g1 − g2 − s1 + s2 0.060.12
0.01

28 g3 − g6 + s2 − s4 0.050.16
0.01

29 s1 − s2 0.050.22
0.00

30 g1 − g5 0.050.14
0.00

Notes. First 30 harmonics ranked according to the time median of their
relative contribution δIk,`(t) to the action vector I(t). The 5th and 95th
percentiles are reported as subscripts and superscripts, respectively.

harmonics are not all necessarily resonant, they suggest that the
dynamical entanglement of all the DOFs is significant along the
nominal solution S. This consideration is supported by the study
of partial Hamiltonians constructed from a limited number of
Fourier harmonics (Appendix E). As Fig. E.1 shows, while the
harmonics in Table 1 allow the asymptotic FT-MLE of Fig. 1
to be robustly reproduced, simplified Hamiltonians based on
the selection of specific DOFs may provide inconsistent predic-
tions, with too low values down to a non-chaotic dynamics. This
notably indicates that the resonant nature of a Fourier harmonic
should only be established along the orbital solution of a realistic
Hamiltonian.

5. Resonant harmonics

Figure 1 and Table 1 suggest that the non-linear interaction of
the Fourier harmonics at degree four constitutes the primary
source of chaos. In the framework of canonical perturbation the-
ory, we constructed a Lie transform to define a change of vari-
ables that eliminates the terms of degree four from the truncated
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Fig. 2. Reduced phase spaces (p, ϕ) of the harmonics θ1:1, θ2:1, and θ3:2 along the Lie-transformed nominal solution S′10(t) as deduced from the
Lie-transformed Hamiltonian H′10. The phase spaces correspond to the t0 times indicated in the upper-right boxes. The black dots reproduce the
level curves of the reduced Hamiltonian, and the orange dots represent its fixed points. The separatrices are shown by red dots, and the level
curve corresponding to the resonant variables at time t0 is shown in blue. The right-hand-side axes report the projection of the mean frequencies
ω′2n(p) = ∂H̃′ 0,02n /∂I′ along the normal k to the resonance plane.

Hamiltonian H2n (Appendix F). In the Lie-transformed Hamilto-
nian, H′2n, which is in Birkhoff normal form to degree four, these
terms are replaced with the chain of high-order harmonics that
arise from their dynamical interaction. Very importantly, the aim
of this procedure is not to set up successive analytical approxi-
mations of the dynamics, which would be a vain goal. We sim-
ply define new canonical variables that let the interactions of the
terms of degree four appear explicitly in the amplitudes of the
Fourier harmonics at higher degrees.

To reveal the resonant harmonics of the Hamiltonian
H′2n, we first retrieved those that present episodes of libra-
tion along the Lie-transformed nominal solution, S′2n. Fol-
lowing Mogavero & Laskar (2021), we defined time-dependent
fundamental frequencies for the inner orbits (g′i(t), s

′
i(t))

4
i=1

(Appendix F). For each harmonic of H′2n, we then evaluated
the corresponding combination of frequencies along the nomi-
nal solution. When this combination becomes null at least once
over the time span of the solution, we consider the harmonic to
be librating. This procedure filters out a majority of the Fourier
harmonics as they never librate.

The appearance of libration episodes, and thus the existence
of libration islands in the phase space, does not guarantee the res-
onant nature of a harmonic, as this is connected to the presence
of both stable and unstable manifolds. Therefore, we employed
the classic divide-et-impera approach of Chirikov (1979) and
considered a reduced Hamiltonian for each librating harmonic:

}k,`
2n (p, ϕ) = H̃′ 0,02n (I′(p)) + Ω p + 2Re{H̃′ k,`

2n (I′(p)) E jϕ}. (7)

The resonant variables p, ϕ are related to the Lie-transformed
action-angle variables I′, θ′ by I′(p) = I′0 + pk and ϕ = k ·
θ′ + Ωt, where we denote Ω = ` · ωo (Appendix G). We there-
fore inspected the fictitious one-DOF dynamics that would be
generated if k, ` were the only harmonic appearing in H′2n. The
topology of the reduced phase space (p, ϕ) depends on seven
integrals of motion, whose values relate to the position I′0 of the
system in the full-dimensional action space. For a given librat-
ing harmonic, our study considers the one-parameter family of
the reduced phase spaces that arise at each point along the nom-

inal solution S′2n(t) = (I′2n(t), θ′2n(t)), that is, I′0 = I′2n(t = t0)
(Appendix G). This family of phase spaces is therefore spanned
by the time t0. As an example, Fig. 2 shows, for different t0 times
along S′10(t), the phase spaces of the harmonics θ1:1, θ2:1, and
θ3:2, with θm:n = m(g3 − g4) − n(s3 − s4), as deduced from the
Hamiltonian H′10. The times were chosen across the first transi-
tion of θ2:1 from libration to circulation, which occurs at about
340 Myr along the nominal solution S′10, and corresponds to the
point where its FT-MLE starts to increase in Fig. 1. The figure
shows the level curves of the reduced Hamiltonian reconstructed
by numerical integration as well as its fixed points, computed
semi-analytically with TRIP. For a resonant harmonic, separatri-
ces emerge from the hyperbolic fixed points and enclose libra-
tion islands. The level curve corresponding to the value of the
resonant variables at time t0 along S′10(t) is also shown and used
to define the temporary libration or rotation state of the har-
monic.

Figure 2 shows how a resonant phase space can signifi-
cantly differ from that of a simple pendulum, which is the uni-
versal model of non-linear resonance and is often invoked to
perform analytical computations. While the pendulum approx-
imation turns out to be well suited for the majority of the reso-
nant harmonics, it does not apply in general to the leading res-
onances, which are our main interest. We therefore discarded
this approximation and performed systematic algebraic manip-
ulations with TRIP to retrieve the fixed points of the reduced
phase spaces through the roots of a univariate polynomial in
the action p (Appendix G). Relying on a polynomial solver
(Appendix G, Bini 1996; Bini & Fiorentino 2000; Bini & Robol
2014), we established the resonant nature of each harmonic
along the nominal solution in a numerically robust and efficient
way. We retrieved, in particular, the characteristic frequencies of
the motion ωell and ωhyp around the elliptic and hyperbolic fixed
points, respectively. These frequencies are related to the square
root of the eigenvalues of the variational matrix that governs
the linear stability of the fixed points. Via a similar procedure,
we retrieved the extrema of the action p along a level curve of
the reduced Hamiltonian, which are employed to determine the
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Table 2. First 30 resonant harmonics of H′10 along the nominal solution S′10 spanning 5 Gyr.

i Fourier harmonic [Fi] ωhyp τres ωell τlibr ∆ω

1 ? g3 − g4 − s3 + s4 0.310.67
0.08 12% 0.651.56

0.26 18% 0.330.53
0.09

2 † g1 − g2 + s1 − s2 0.380.79
0.12 19% 0.891.34

0.26 26% 0.300.61
0.15

3 † g2 − g5 − 2s1 + 2s2 0.220.33
0.07 23% 0.330.45

0.16 56% 0.110.22
0.04

4 ? 2g3 − 2g4 − s3 + s4 0.140.36
0.04 70% 0.430.73

0.23 74% 0.080.16
0.02

5 † g1 − g5 − s1 + s2 0.080.10
0.05 10% 0.220.28

0.14 63% 0.070.18
0.06

6 g2 − g4 + s2 − s4 0.070.09
0.04 6% 0.070.09

0.05 70% 0.070.10
0.03

7 g1 − 2g2 + g4 + s1 − 2s2 + s4 0.110.13
0.10 5% 0.120.13

0.11 69% 0.060.07
0.05

8 g1 − g3 + s2 − s3 0.060.09
0.03 17% 0.060.10

0.04 60% 0.060.09
0.03

9 g1 + g3 − 2g4 + s2 − s3 0.080.09
0.06 5% 0.080.09

0.07 55% 0.050.06
0.04

10 ? 3g3 − 3g4 − s3 + s4 0.110.34
0.01 9% 0.140.24

0.06 40% 0.050.14
0.01

11 g2 − g3 − s1 + 2s2 − s3 0.060.07
0.04 5% 0.060.07

0.05 50% 0.040.05
0.03

12 g1 − 2g3 + g4 + s2 − s4 0.060.12
0.03 36% 0.060.12

0.03 51% 0.040.08
0.02

13 2g1 − g3 − g5 + s2 − s4 0.050.06
0.04 5% 0.050.06

0.04 52% 0.040.04
0.03

14 g4 − g5 − s2 + 2s3 − s4 0.050.05
0.04 2% 0.050.05

0.05 56% 0.030.04
0.03

15 g1 − 2g3 + g4 + s1 + s3 − 2s4 0.060.08
0.03 25% 0.060.08

0.03 61% 0.030.05
0.01

16 g1 − g4 + s1 − s4 0.030.06
0.02 23% 0.040.06

0.02 57% 0.030.05
0.02

17 † g1 − 2g2 + g5 + 3s1 − 3s2 0.080.10
0.06 6% 0.080.10

0.06 56% 0.030.04
0.02

18 g1 − g4 + s2 − s3 0.030.07
0.02 18% 0.040.08

0.02 61% 0.030.07
0.02

19 3g1 − g2 − g4 − g5 + s1 − s3 0.060.08
0.04 2% 0.060.08

0.05 46% 0.030.04
0.02

20 2g1 − g2 − g3 + s1 − s3 0.040.08
0.02 29% 0.050.08

0.03 55% 0.030.05
0.02

21 2g1 − g2 − g4 + s1 − s3 0.040.04
0.03 3% 0.040.04

0.04 48% 0.030.03
0.02

22 ? 3g3 − 3g4 − 2s3 + 2s4 0.060.10
0.03 8% 0.070.13

0.04 47% 0.020.05
0.01

23 2g1 − g2 − 2g3 + g4 + s1 − s4 0.040.06
0.02 3% 0.040.07

0.02 38% 0.020.04
0.01

24 2g3 − g4 − g5 − s1 + s4 0.030.07
0.01 16% 0.030.07

0.02 51% 0.020.05
0.01

25 g1 − 3g3 + 2g4 + s2 − s4 0.050.06
0.02 7% 0.040.06

0.02 53% 0.020.03
0.01

26 g1 − g2 − g3 + g4 + s1 − s2 0.030.04
0.01 6% 0.030.04

0.01 57% 0.020.03
0.00

27 g1 + g3 − 2g4 + s1 − s4 0.030.03
0.03 3% 0.030.03

0.03 42% 0.020.02
0.02

28 † g1 + g2 − 2g5 − 3s1 + 3s2 0.050.06
0.01 4% 0.050.07

0.01 42% 0.020.03
0.01

29 3g1 − g2 − g4 − g5 + s2 − s3 0.040.05
0.02 4% 0.040.05

0.02 54% 0.020.03
0.01

30 2g1 − g4 − g5 + s2 − s4 0.030.04
0.01 7% 0.030.04

0.01 55% 0.020.03
0.01

Notes. Time median of the fixed point frequencies ωhyp, ωell and of the resonance half-width ∆ω in arcsec yr−1. The 5th and 95th percentiles
are reported as subscripts and superscripts, respectively. The fraction of time the harmonic is resonant is τres, and τlibr represents the fraction of
libration states in the resonant case. The resonances are ranked according to their median half-width.

libration-rotation state of the harmonic and the resonance half-
width, ∆ω. Following Chirikov (1979), we considered the pro-
jection of the frequency vector ω′ = dθ′/dt along the normal to
the resonance plane k · ω′ + Ω = 0, that is, ω = ‖k‖−1 k · ω′.
The reduced dynamics in Eq. (7) induces a variation in this pro-
jection equal to ∆ω = ‖k‖−1∆ϕ̇. Building on ideas behind fre-
quency analysis (Laskar 1993), we then defined the resonance
half-width ∆ω from the variation in the rotational frequency of
the angle ϕ across the separatrix (Appendix G). In the pendulum
approximation we have, up to a constant factor close to one,
∆ω ∼ 2ωhyp‖k‖−1, (8)

which is the Chirikov (1979) half-width (recall that ωell = ωhyp
for the pendulum).

6. Origin of chaos

To establish a meaningful connection between the resonant
phase spaces and the observed FT-MLE, we assumed that the
time distribution of physical observables along the nominal solu-
tion spanning 5 Gyr is representative of their ensemble distri-
bution (that is, over a set of stable orbital solutions with very

close initial conditions) at some large time of the order of bil-
lions of years. Based on this sort of finite-time ergodic assump-
tion, we systematically retrieved for each librating harmonic of
H′2n the samples of the fixed point frequencies ωhyp, ωell and
of the resonance half-width ∆ω along the nominal solution S′2n.
Table 2 shows the first 30 resonant harmonics, along with their
time statistic, as deduced from the truncation of the Lie trans-
form at degree ten. We report for each frequency its time median
as well as the 5th and 95th percentiles as subscript and super-
script, respectively. The resonances are ranked according to their
median half-width. To measure the overall dynamical impact of
the terms, we denote as τres the fraction of time a harmonic is
resonant and as τlibr the fraction of libration states in the res-
onant case. Table 2 shows the harmonics that are resonant for
more than 1% of the time.

It is perhaps hopeless to obtain, for high-dimensional dynam-
ical systems, a precise formula connecting the FT-MLE to
the half-width of the leading resonances or to their fixed
point frequencies. Nevertheless, studies of the periodically
forced pendulum (Chirikov 1979; Holman & Murray 1996;
Murray & Holman 1997; Li & Batygin 2014) suggest that these
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Fig. 3. Overlaps of secular resonances from Table 2. Left panel: starred resonances θm:n = m(g3 − g4)− n(s3 − s4) in the frequency subspace spanned
by g4 − g3 and s4 − s3. Right panel: daggered resonances as integer combinations of (g1 − g5) − (s1 − s2) and (g1 − g2) + (s1 − s2) (the harmonic
F66 = 3g1 − g2 − 2g5 − (s1 − s2) is not shown in Table 2). The dashed lines represent the resonance centres, and the coloured regions correspond to
the time median of the signed half-widths. The nominal solution S′10, which spans 5 Gyr, is shown after low-pass filtering with a cutoff frequency
of (5 Myr)−1, the cross indicating the current position of the ISS. Frequencies are in arcsec yr−1.

quantities should differ only by a factor of order unity from one
another, that is,

2πFT−MLE ∼ ∆ω. (9)

To fix ideas, we also assumed that Eq. (8) holds beyond pendu-
lum approximation. For the top resonances of Table 2, the statis-
tical intervals of both ∆ω and ωhyp extensively overlap the range
spanned by the asymptotic FT-MLE of the nominal solution
in Fig. 1. Moreover, they are significantly compatible with the
long-term ensemble distribution of the FT-MLE. A statistical
connection between the leading resonances of the Hamiltonian
and the MLE thus emerges, even in the absence of relations more
precise than Eqs. (8) and (9). It indicates the dynamical sources
of the observed chaos. One may appreciate the low number of
resonances with ∆ω & 0.1′′ yr−1, which constitutes a sound-
ing explanation for the large width of the FT-MLE distribu-
tion, while the dense set of terms with ∆ω < 0.1′′ yr−1 explains
why the exponent never goes below this value. We point out the
absence of resonances of order two. The harmonic g1 − g5, in
particular, is known to be involved in the very high eccentricities
of Mercury (Boué et al. 2012) and is not expected to become
resonant along a stable solution.

The resonances marked by a star in Table 2 only involve
the proper modes 3 and 4, while those distinguished by a dag-
ger exclusively concern the proper modes 1, 2, and 5. The first
group of harmonics is composed of θ1:1, θ2:1, θ3:1, and θ3:2 and
is associated with the chaotic zone proposed in Laskar (1992).
The second group belongs to the frequency subspace spanned
by the combinations g1 − g5, g2 − g5, and s1 − s2 and includes
the well-known resonance σ1:1. We first point out that the libra-
tion frequencies of 0.28 and 0.12′′ yr−1 associated with θ2:1 and
σ1:1 in Laskar (1990a) are consistent with the corresponding
statistics of the elliptic fixed point frequency ωell. We then show
that each of these two sets of harmonics constitutes a source
of chaoticity. The emergence of chaos from resonant one-DOF
phase spaces, as in Fig. 2, can be stated in two ways. As time
changes and the system moves along its nominal trajectory, the
phase-space region swept by the separatrices forms a chaotic
zone. In an equivalent way, a chaotic zone results, at fixed time

t0, from separatrix-splitting when one restores the harmonics
of H′2n that are suppressed in the reduced Hamiltonian. In any
case, chaos derives from the interaction of resonant harmonics.
Figure 3 represents such an interaction in terms of resonance
overlap (Chirikov 1979) for the groups of starred and daggered
harmonics. It shows the resonance planes in the frequency space
along with asymmetric resonance layers, defined by the time
median of the signed half-widths ∆ω+, ∆ω− (Appendix G). The
reported half-widths are meaningful in the region visited by the
nominal solution, which is also shown. The existence of the
chaotic zone suggested in Laskar (1992) is indeed supported by
a statistically robust overlap. The resonance θ2:1, in particular,
appears right in the centre of the resonance network, in agree-
ment with its large τres value. Its amplitude results to a large
extent from the interaction of θ1:1 and θ1:0 = g3 − g4 at degree
four (see Table 1). The resonance overlap in the g1 − g5, g2 − g5,
s1 − s2 subspace is shown in Fig. 3 in terms of integer combi-
nations of σ1:1 and (g1 − g2) + (s1 − s2). It appears to be more
relevant, at least for our nominal solution, than the restriction
to the subspace spanned by g1 − g5 and s1 − s2 investigated
in previous studies (Lithwick & Wu 2011; Batygin et al. 2015).
A relevant dynamical role of the proper mode g2, hinted at in
Lithwick & Wu (2011) and Batygin et al. (2015), is confirmed.
Figure 3 also suggests a long-term diffusion mainly perpendicu-
lar to the resonance planes, while Arnold’s diffusion along them
seems negligible (Laskar 1993), at least for the present regular
(i.e. non-collisional) solution.

Right after the top resonances, harmonics with ∆ω <
0.1′′ yr−1 significantly couple all the proper modes, confirm-
ing the implications of Table 1. Coupling resonances such as
(g2 − g4) + (s2 − s4), (g1 − g3) + (s2 − s3) and (g1 − g4) + (s1 − s4),
along with high-order ones resulting from their interaction with
leading harmonics, strongly suggest that resonance overlap takes
place extensively in the full-dimensional frequency space. Even
though we have isolated low-dimensional sources of chaoticity,
the large-scale chaos in the ISS is probably best understood as a
high-dimensional phenomenon.

The statistical nature of these findings suggests that the
harmonics of Table 2 should be found statistically in reso-
nance over an ensemble of sufficiently long orbital solutions

L3, page 6 of 16



F. Mogavero and J. Laskar: Origin of chaos in the Solar System

0

2π

4π

6π

(g1 − g2) + (s1 − s2) [F2], SLG
−1

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

2π

4π

6π

(g2 − g5)− 2(s1 − s2) [F3], SLG
−1

0

2π

4π

6π

(g2 − g4) + (s2 − s4) [F6], SLG
−1

0

2π

4π

6π

(g1 − g3) + (s2 − s3) [F8], SLG
0

0

2π

4π

6π

(g1 − g4) + (s1 − s4) [F16], SLG
0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (Gyr)

0

2π

4π

6π

(g1 − g4) + (s2 − s3) [F18], SLG
1

Fig. 4. Combination of angle variables for different harmonics of
Table 2 as a function of time along direct integrations SLG

n of the Solar
System presented in Laskar & Gastineau (2009) (n = 0 is the nomi-
nal solution). The angle variables correspond to the proper modes z•, ζ•
defined in Laskar (1990a). The time series are low-pass-filtered with a
cutoff frequency of (500 kyr)−1.

of the Solar System, independently of the precise proper
modes and dynamical model employed. A vivid example is
provided by the term (g1 − g2) + (s1 − s2) that we found
among the top resonances: it enters libration at around 1 Gyr in
Lithwick & Wu (2011) but was not mentioned for the much
shorter solutions of previous studies (Laskar 1990a, 1992;
Sussman & Wisdom 1992; Laskar et al. 2004). More generally,
we show in Fig. 4 examples of libration episodes for a num-
ber of harmonics in Table 2 along the direct integrations of
the Solar System presented in Laskar & Gastineau (2009) and
spanning 5 Gyr, when one uses the proper modes z•, ζ• defined
in Laskar (1990a). Despite the different dynamical model and
proper modes, one systematically confirms the librations pre-
dicted by the theory by inspecting just a few solutions. We point
out the remarkable case of (g1−g3) + (s2− s3), which will surely
be librating over the next few tens of millions of years. Clearly,
the chaotic zone of the ISS may extend to resonances that are
barely, or not at all, active along our nominal solution and thus
do not appear in Table 2. In any case, Fig. 4 suggests that, despite
being deduced from the forced secular dynamics, the web of res-
onances pictured here should underlie the chaotic dynamics of
the inner planets in every realistic model of the Solar System.
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Appendix A: The need for computer algebra. TRIP

When it comes to elucidating the causes of a chaotic dynam-
ics in celestial mechanics, one typically resorts to the analy-
sis of the Fourier harmonics of a given Hamiltonian (Chirikov
1960, 1969; Walker & Ford 1969; Wisdom 1980). The prob-
lem is first reduced to a set of partial one-DOF Hamiltonians
that describe the dynamics arising from each harmonic indepen-
dently of one another. The interaction of pairs of harmonics is
then addressed through the resonance overlap criterion (Chirikov
1960; Walker & Ford 1969; Chirikov 1979) and Poincaré’s sec-
tions (Henon & Heiles 1964) to reveal the dynamical sources of
chaos. In practice, the choice of the harmonics to study may rely
on a somewhat intuitive perception of their relevance, supported
by observational data, numerical investigations, and the findings
of previous research.

When the Hamiltonian system under investigation has a few
DOFs, the above approach is quite straightforward to apply and
very reliable (e.g. Wisdom et al. 1984). Conversely, when deal-
ing with several DOFs, as in case of the Solar System planets,
the curse of dimensionality makes its implementation especially
difficult. First of all, the number of low-order harmonics that
are potentially resonant rapidly grows with the dimension of the
phase space: an a priori choice of the pertinent harmonics may
thus lead to a biased analysis. More importantly, the resonant
nature of each harmonic, even in a one-DOF model, still depends
on the system position in the full-dimensional phase space.
Some authors have invoked the quasi-periodicity of certain vari-
ables to reduce the analysis to a lower-dimension phase space
(Lithwick & Wu 2011; Boué et al. 2012; Batygin et al. 2015).
However, the validity of such an assumption strongly depends on
the problem under investigation, and it cannot provide the basis
of a general approach. In the ISS, for instance, the fundamental
frequencies of the planet orbits all vary in an intricate way in a
few tens of millions of years, with the exception of the eccen-
tricity mode g2, which has slower frequency variations (Laskar
1990a; Laskar et al. 2004; Hoang et al. 2021). A quasi-periodic
approximation for the corresponding DOFs is thus not consistent
over timescales much longer than 10 Myr (Mogavero & Laskar
2021).

To overcome the difficulties associated with the high-
dimensional phase space of the ISS, we set up an unbiased
systematic analysis of the Fourier harmonics of the secular plan-
etary Hamiltonian. To this end, we employed TRIP, a com-
puter algebra system dedicated to the perturbation series of
celestial mechanics, which has been developed over the past
30 years at the Institut de mécanique céleste et de calcul des
éphémérides (Laskar 1990b; Gastineau & Laskar 2011, 2021).
The main objects of its symbolic kernel are the Poisson series,
that is, multivariate Fourier series whose coefficients are multi-
variate Laurent series1,

S (z1, . . . , zn, ϕ1, . . . , ϕm) =
∑

Ck,`z
k1
1 · · · z

kn
n E j(`1ϕ1+···+`mϕm),

(A.1)

where (zp)n
p=1 and (ϕp)m

p=1 are complex and real variables, respec-
tively, k = (kp)n

p=1 ∈ Z
n and ` = (`p)m

p=1 ∈ Z
m. The angle

variables (ϕp)m
p=1 enter the series through their complex expo-

nential, which is encoded in TRIP as a dedicated variable. The
complex coefficients Ck,` can be rational functions or numerical

1 Throughout the Letter, j =
√
−1 stands for the imaginary unit and E

represents the exponential operator.

coefficients of different types: double-, quadruple-, and multiple-
precision floating-point numbers; fixed or multiple-precision
integers or rational numbers; or double- and quadruple-precision
floating-point intervals. The symbolic kernel implements sev-
eral operations on the Poisson series: sum, product, division,
differentiation, integration, exponentiation, substitution of vari-
ables, and selection of specific terms. At the heart of these func-
tionalities, TRIP embeds a monomial truncated product, which
allows the product of two series to be truncated according to
a given condition on the partial or total degree of one or more
variables (truncation based on the size of the coefficients Ck,`
is also available). Truncations are formal objects in TRIP and
permit perturbative computations to be performed at a mini-
mal cost. TRIP also provides special functionalities for celes-
tial mechanics, such as Poisson brackets and the manipulation of
formal Lie series, which allow the algorithms of canonical per-
turbation theory (Hori 1966; Deprit 1969) to be implemented. A
numerical kernel, based on vectors, matrices, and multidimen-
sional tables, provides a state-of-the-art evaluation of the Poisson
series. It also includes a number of routines typical of more gen-
eral computer algebra systems, such as algorithms for the zeros
of univariate polynomials, the solutions of systems of algebraic
equations, and the analysis of time series (e.g. fast Fourier trans-
form, frequency analysis, integration, and interpolation). More-
over, TRIP natively integrates polynomial dynamical systems
through Adams PECE and DOPRI8 methods (Hairer et al. 1993;
Prince & Dormand 1981). Finally, TRIP provides a dedicated
procedural language that supports loops, conditional statements,
and function and structure definition, which permits the sym-
bolic and numerical kernels to be interfaced in autonomous pro-
grams. When unsupported functionalities are needed, it allows
external C and Fortran routines to be called and allows commu-
nication with other computer algebra systems, such as Maple and
Mathematica.

Appendix B: Development of the secular planetary
Hamiltonian

The secular Hamiltonian Ĥ of the entire Solar System in Eq. (1)
can be expanded in series of the Poincaré complex variables
and truncated at a given total degree 2n, where n is a posi-
tive integer (Laskar 1991; Laskar & Robutel 1995). This results
in a polynomial Hamiltonian Ĥ2n =

∑n
p=0 Ĥ(2p), where Ĥ(2p)

groups all the monomials of same total degree 2p in the variables
(xk, x̄k, yk, ȳk)8

k=1. The expansion straightforwardly provides the
truncated Hamiltonian for the forced ISS,

H2n =

n∑
p=1

H(2p),

H(2p)[(xk, yk)4
k=1, t] = Ĥ(2p)[(xk, yk)4

k=1, (xk = xk(t), yk = yk(t))8
k=5]. (B.1)

At the lowest degree, the H2 Hamiltonian describes an inte-
grable, forced LL dynamics for the inner planets. The corre-
sponding equations of motion are analytically solved by intro-
ducing complex variables (uk, vk)4

k=1, with (uk,− jūk; vk,− jv̄k)
conjugate momentum-coordinate pairs, that correspond to
the proper (i.e. normal) modes of the free oscillations
(Mogavero & Laskar 2021). By switching to the new set
of canonical variables (uk, vk), the truncated Hamiltonian in
Eq. (B.1) transforms to

H2n[(uk, vk), t] =

n∑
p=1

H(2p)[(uk, vk), t], (B.2)
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where H(2p) groups all the terms of same total degree
2p (Mogavero & Laskar 2021). Action-angle variables
(Xk, χk; Ψk, ψk)4

k=1 that trivially integrate the LL problem
are thus introduced as

uk =
√

Xk E− jχk , vk =
√

Ψk E− jψk (B.3)

for k ∈ {1, 2, 3, 4} and allow the truncated Hamiltonian in
Eq. (B.2) to be written as a finite Fourier series,

H2n(I, θ, t) =
∑
k∈Z8

∑
`∈Z7

H̃k,`
2n (I)E j(k·θ+`·ωot), (B.4)

where H̃k,`
2n are complex amplitudes, with H̃−k,−`

2n = H̃k,`
2n , and

where we employ a compact notation for the action-angle vari-
ables, that is, I = (X,Ψ) and θ = (χ,ψ). At the lowest degree,
one has the LL Hamiltonian H2 = H̃0,0

2 = ωLL · I, with
ωLL = −(gLL, sLL), and the Hamiltonian in Eq. (B.4) is therefore
in quasi-integrable form. In the framework of canonical pertur-
bation theory, the explicit time dependence of the Hamiltonian
(coming from the forcing of the outer planets) can be absorbed
in a phase-space extension, resulting in

H?2n(I, θ;Φ,φ) = ωo ·Φ +
∑
k∈Z8

∑
`∈Z7

H̃k,`
2n (I)E j(k·θ+`·φ). (B.5)

The dynamics of the additional angles is consistently given by
φ̇ = ωo, while that of the conjugated actions Φ is irrelevant.

Appendix C: Nominal solution and choice of initial
conditions

We estimated the statistical properties of the chaotic dynam-
ics in the ISS from the orbital solution S of Gauss’s dynam-
ics (Hamiltonian H in Eq. (4)) that is numerically integrated
over 5 Gyr starting from the nominal initial conditions given
in Mogavero & Laskar (2021, Appendix D). This solution is
denoted as the nominal solution throughout the Letter and con-
sists of the values of the canonical variables sampled with a
timestep ∆t of 1000 yr, that is, S = {S(tm)}5·106

m=0 with S(tm) =
(I(tm), θ(tm)) and tm = m∆t. We considered the time distribution
of a physical observable along the nominal solution S as repre-
sentative of its ensemble distribution (that is, over a set of stable
orbital solutions with very close initial conditions) at some large
time of the order of billions of years.

Following Mogavero & Laskar (2021), we chose the initial
conditions for the ensemble computation of the FT-MLE by
taking the relative variation in each coordinate of the nominal
phase-space vector of Gauss’s dynamics as a normal random
variable, with zero mean and a standard deviation of 10−9. In
other words, the initial conditions are distributed according to

xi = x∗i + σ
(
Re{x∗i } zi + j Im{x∗i } z

′
i
)

(C.1)

for k ∈ {1, 2, 3, 4}, where x∗i represents the initial conditions
of the nominal solution S, zi, z′i ∼ N(0, 1) are standard nor-
mal deviates, and σ = 10−9. An analogous expression holds for
the variables yi. The initial conditions thus follow a multivariate
Gaussian distribution centred at the nominal initial conditions of
H , with a diagonal covariance matrix. The initial tangent vec-
tors that we used in the application of the Benettin et al. (1980)
algorithm are also sampled from a multivariate Gaussian distri-
bution, with null mean and an identity covariance matrix. We
chose a renormalisation time of 5 Myr and the Euclidean norm
for the phase-space vectors.

Appendix D: Leading harmonics

There can be many different ways of ranking the Fourier har-
monics of Eq. (B.4), depending on the dynamical quantities that
one aims to track. As we intend to reconstruct the resonant struc-
ture of the ISS, we are interested in the long-term variation in the
frequencies of motion ω = θ̇. From Eq. (B.4), Hamilton’s equa-
tions give

ω2n =
∂H̃0,0

2n

∂I
+

∑?

k,`

∂H̃k,`
2n

∂I
E j(k·θ+`·ωot), (D.1)

where (k, `) ∈ Z8 × Z7 and the star means that the null wave
vector (0, 0) is excluded from the summation. As the Hamil-
tonian H2n is close to integrable, the actions I(t) vary over a
timescale much longer than that of the angles θ(t). Therefore,
Eq. (D.1) suggests that the frequencies ω2n(t) rapidly fluctuate
around the slow-varying mean frequenciesω2n(I(t)) = ∂H̃0,0

2n /∂I,
only depending on the action variables. If the motion were quasi-
periodic, the harmonics appearing in the summation of Eq. (D.1)
could be systematically eliminated by a series of canonical trans-
formations in the form of Lie transforms. The mean frequencies
would then give the (constant) frequencies of motion as a func-
tion of the transformed action variables. For a chaotic dynamics,
the presence of resonant harmonics shifts the short-time average
of ω2n with respect to ω2n. Nevertheless, the mean frequencies
still provide the overall long-term behaviour of the frequencies
of motion. We thus chose to rank the Fourier harmonics of the
Hamiltonian according to their contribution to the system trajec-
tory in the action space, which in turn drives the variation in the
mean frequencies with time.

Hamilton’s equation İ = −∂H2n/∂θ gives the contribution of
the harmonic k, ` to the action vector I(t) as

∆Ik,`(t) = 2k Im
∫ t

0
dt′ H̃k,l

2n (I(t′))E j(k·θ(t′)+`·ωot′). (D.2)

By construction, the sum of the contributions from all the har-
monics exactly reconstructs the system displacement in the
action space at a given time, that is, ∆I(t) = I(t) − I(0). The
integral was computed numerically in TRIP for each harmonic
along the sampled nominal solution S. The harmonic ranking
was established by considering the relative Euclidean norm of
the contribution,

δIk,`(t) =

∥∥∥∆Ik,`(t)
∥∥∥

‖I(t)‖
· (D.3)

The set of values δIk,` = {δIk,`(tm)}5·106

m=0 is treated as a sample
from an underlying PDF and characterised via statistical esti-
mators. The harmonics in Table 1 are listed according to their
median contribution, while the 5th and 95th percentiles show the
dispersion of δIk,`.

Appendix E: Partial Hamiltonians

The identification of the leading harmonics of the Hamiltonian
allows the FT-MLE to be reproduced from a small set U of
Fourier harmonics, by considering

HU6 = H̃0,0
6 +

∑?

(k,`)∈U

H̃k,`
6 E j(k·θ+`·ωot). (E.1)

Partial Hamiltonians HU6 can be systematically constructed in
TRIP through the selection of specific terms ofH6. We integrated
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Fig. E.1. Finite-time MLE and corresponding Lyapunov time FT-
MLE−1 from different partial Hamiltonians (Eq. (E.1)). The bands rep-
resent the [5th, 95th] percentile range of the PDF estimated from an
ensemble of 128 stable orbital solutions with very close initial condi-
tions. The blue colour corresponds to the Fourier harmonics of Table 1,
the green colour to the harmonics of the same table that only include
the angular DOFs 1, 2, and 5, and the red colour to those harmonics
that only involve the angular DOFs 3 and 4. The hatched regions corre-
spond to the case where the choice of the DOFs is made across the entire
H6 Hamiltonian. The grey region stands for the full H Hamiltonian, as
shown in Fig. 1.

the corresponding variational equations to obtain the FT-MLE
distribution of an ensemble of 128 stable solutions with initial
conditions very close to the nominal ones of Gauss’s dynamics.
Figure E.1 shows the [5th, 95th] percentile range of the FT-MLE
distribution from the 30 leading harmonics of Table 1. This sim-
plified dynamics reproduces the asymptotic FT-MLE distribu-
tion of the Hamiltonians H and H2n very well, confirming the
dynamical relevance of the leading harmonics. Very importantly,
the FT-MLE prediction turns out to be robust with respect to the
addition of further harmonics from our ranking.

The construction of partial Hamiltonians allows the exten-
sive entanglement of the DOFs already shown in Table 1 to
be highlighted. Figure E.1 reports the FT-MLE distribution
from the leading harmonics of Table 1 that only involve the
angles of the proper modes 1, 2, and 5, that is, the harmon-
ics U = {F6,F8,F20,F27,F29,F30} only involving combina-
tions of g1, g2, g5, s1, and s2. This partial Hamiltonian includes,
in particular, the Fourier harmonics considered in the simpli-
fied long-term dynamics of Mercury in Batygin et al. (2015).
The predicted Lyapunov time of about 100 Myr is clearly incom-
patible with the full system dynamics. The prediction does not
improve when the selection of the harmonics only involving
g1, g2, g5, s1, and s2 is made across the entireH6 Hamiltonian (as
shown by the hatched green region). The harmonics of Table 1
that only involve the angles of the proper modes 3 and 4, that
is, the harmonicsU = {F2,F3,F5,F25} only involving g3, g4, s3
and s4, produce an asymptotic FT-MLE that is compatible with
the full system dynamics (as shown by the red region in Fig. E.1).
Nevertheless, when the selection of such harmonics is made
across the entireH6 Hamiltonian, the resulting FT-MLE turns out
to be a monotonically decreasing function of time, suggesting
an integrable dynamics (hatched red region in Fig. E.1). These
numerical experiments show that freezing a priori some DOFs

may dramatically change the behaviour of the system, resulting
in predictions that may largely depend on the specific choice
of the Fourier harmonics. Clearly, the surprising behaviours of
Fig. E.1 may depend on the fact that the initial conditions of
the simplified dynamics are not adjusted according to the choice
of the harmonics. Proper initial conditions should be computed
from the Lie transform that allows the harmonics of the Hamil-
tonian H6 that do not appear in HU6 to be eliminated. However,
this adjustment is often omitted when simplified models are con-
structed in literature. Due to this fact, we decided to keep the
nominal initial conditions of Gauss’s dynamics in these numer-
ical experiments. In any case, taking the ensemble of the DOFs
of the inner system into account seems essential. The resonant
nature of a Fourier harmonic, in particular, should only be estab-
lished along the orbital solution of a realistic Hamiltonian.

Appendix F: Lie transform

We employed canonical perturbation theory to construct a
change of variables that eliminates the Fourier harmonics of
degree 4 from the truncated Hamiltonian, that is, the harmon-
ics with a non-null wave vector appearing in H(4) in Eq. (B.2).
Such a transformation of variables can be canonically defined as
the time-1 flow of a generating Hamiltonian S that satisfies the
homologic equation

H(4) + {S,H2 + ωo ·Φ} = H̃0,0
(4) , (F.1)

where the braces represent the Poisson bracket and where we
employ the extended phase-space formalism of Eq. (B.5) to deal
with a time-independent Hamiltonian. The resulting change of
variables is given by the formal Lie transform

(I′, θ′;Φ′,φ′) = E−LS (I, θ;Φ,φ), (F.2)

where LS · = {S, ·} is the Lie derivative associated with the gen-
erating function S. The exponential of an operator A acting on
the phase-space functions is formally expressed as

EA =

+∞∑
q=0

Aq

q!
, (F.3)

with A0 defined as the identity operator and Aq = AAq−1 for
q ≥ 1. The transformed Hamiltonian reads

H′(I′, θ′;Φ′,φ′) = ELS H?2n

∣∣∣∣
I′,θ′;Φ′,φ′

, (F.4)

where the Lie transform is formally evaluated at the new
canonical variables I′, θ′;Φ′,φ′. The solution to the homologic
Eq. (F.1) is expressed as

S(I, θ;φ) = − j
∑?

k,`

H̃k,l
(4)(I)

k · ωLL + ` · ωo
E j(k·θ+`·φ). (F.5)

As H(4) possesses a finite number of non-null harmonics, the
Fourier series in Eq. (F.5) is finite. Moreover, all the denom-
inators being constant and different from zero, the generating
function S is a well-defined analytical function.

Because the generating function S in Eq. (F.5) does not
depend on the actions Φ, the only term appearing in H′ that
depends on the transformed variables Φ′ is ωo ·Φ

′. The values
of Φ′ are therefore irrelevant from a dynamical point of view
(as are those of Φ), and the transformation Φ′ = E−LSΦ can be
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Fig. F.1. Convergence of the Lie-transformed nominal solutionS′2n. Left
panel: Relative increments δS′2n(t) =

∥∥∥S′2n(t) − S′2n−2(t)
∥∥∥ / ∥∥∥S′2n(t)

∥∥∥ as a
function of time and truncation degree 2n. Right panel: Corresponding
time means 〈δS′2n(t)〉. The time series are low-pass-filtered with a cutoff

frequency of (5 Myr)−1.

discarded. Moreover, from {S,φ} = 0 it follows that φ′ = φ, in
agreement with the previous point.

To implement the exponential operator in TRIP, the formally
infinite summation in Eq. (F.3) must be truncated. As all the
terms in the generating function S are of degree 4, the Lie deriva-
tive LS raises the degree of the Hamiltonian terms by 2. There-
fore, to truncate the transformed Hamiltonian at degree 2n, it is
sufficient to compute the summation up to the order n − 1 and
then discard the terms of degree higher than 2n, that is,

H′2n
Truncation at degree 2n
←−−−−−−−−−−−−−−−

n−1∑
q=0

Lq
S

q!

H?2n. (F.6)

Once the Hamiltonian H′2n is computed, the corresponding nom-
inal solution S′2n is obtained from the truncation of the operator
E−LS at the same order n − 1, that is, S′2n =

(∑n−1
q=0(−1)qLq

S/q!
)
S.

Computing the change in the nominal solution is essential for
consistently evaluating the amplitudes of the Hamiltonian terms
resulting from the Lie transform.

F.1. Convergence

Since the generating Hamiltonian S is an analytical function,
the convergence of the series generated by the Lie trans-
forms E±LS depends on the size of its Fourier coefficients
(Morbidelli 2002). To address the convergence of our Lie
transform, we first plotted the relative increments δS′2n(t) =∥∥∥S′2n(t) − S′2n−2(t)

∥∥∥ / ∥∥∥S′2n(t)
∥∥∥ of the transformed nominal solu-

tion as a function of time and truncation degree (see Fig. F.1).
We used the Euclidean norm for the phase-space vectors, as
usual. To highlight the long-term trend of the time series, which
may be hidden by large short-time oscillations, we applied the
low-pass Kolmogorov-Zurbenko (KZ) filter with three iterations
of the moving average and a cutoff frequency of (5 Myr)−1

(Zurbenko & Smith 2018; Mogavero & Laskar 2021). As also
shown by the time mean of the increments 〈δS′2n(t)〉, the con-
tributions to S′2n decay exponentially with the degree of trun-
cation, up to degree ten at least. That said, the decrease is
in practice quite slow. Figure F.2 then addresses the conver-
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Fig. F.2. Convergence of the Lie-transformed Hamiltonian H′2n along
the nominal solution S′10. Left panel: Relative increments δH′2n(t) =∣∣∣H′2n(S′10(t)) − H′2n−2(S′10(t))

∣∣∣ / 〈∣∣∣H′2n(S′10(t))
∣∣∣〉 as a function of time and

truncation degree 2n. Right panel: Corresponding time means 〈δH′2n(t)〉.
The time series are low-pass-filtered with a cutoff frequency of
(5 Myr)−1. The convergence of the original H2n Hamiltonian along the
nominal solution S is also shown.

gence of the Lie-transformed Hamiltonian H′2n along the trans-
formed nominal solution S′10. The relative increments δH′2n(t) =∣∣∣H′2n(S′10(t)) − H′2n−2(S′10(t))

∣∣∣ / 〈∣∣∣H′2n(S′10(t))
∣∣∣〉 are plotted as a

function of time and truncation degree 2n. We also report the
convergence of the original H2n Hamiltonian along the nomi-
nal solution S for comparison. Again, the contributions to H′2n
decrease with the degree of truncation, up to degree ten at least,
even though the decay is slow when compared to that of the orig-
inal H2n Hamiltonian. Even if the asymptotic convergence can-
not be guaranteed, the absence of any divergence in Figs. F.1
and F.2 suggests the stability of the estimations based on the
truncation of the Lie transform at a finite degree 2n ≤ 10. Some
oscillations of these estimations can be expected as a result of
the slow (finite-degree) convergence of the series.

F.2. Librating harmonics

To retrieve the set of librating harmonics, we defined time-
dependent fundamental frequencies (gi(tm), si(tm))4

i=1 along a
sampled orbital solution, as we did in Mogavero & Laskar
(2021) in the case of the frequency g1. Following Eq. (B.3),
the instantaneous (angular) frequencies of the proper modes
(ui(t), vi(t)) are given by (−χ̇i(t),−ψ̇i(t)). We sampled the
time derivatives via the Lagrange five-point formula, as very
high numerical precision is unnecessary. Since the instanta-
neous frequencies present large short-time fluctuations that hide
their long-term evolution, we applied the low-pass KZ filter
(Zurbenko & Smith 2018; Mogavero & Laskar 2021) to the time
series and defined (gi(tm), si(tm)) = KZ[(−χ̇i(tm),−ψ̇i(tm))]. We
used three iterations of the moving average and a cutoff fre-
quency of (5 Myr)−1. This specific value was chosen to filter out
the non-chaotic part of the dynamical spectrum from the time
series. When the fundamental frequencies were computed for a
given orbital solution, the librating harmonics were defined from
the combinations of frequencies that become null at least once
over its time span. We find around 1000, 15 000, and 150 000
librating harmonics among those appearing in H′2n along the
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Lie-transformed nominal solution S′2n at degree six, eight, and
ten, respectively.

Appendix G: Reduced Hamiltonians

To retrieve the resonant harmonics of the Lie-transformed
Hamiltonian H′2n, that is,

H′2n(I′, θ′;Φ′,φ′) = ωo ·Φ
′ +

∑
k,`

H̃′ k,`
2n (I′)E j(k·θ′+`·φ′), (G.1)

we considered the dynamics generated by each Fourier compo-
nent separately. If we assume that at time t = t0 along the nomi-
nal solution S′2n(t) the system is at position (I′0, θ

′
0) in the phase

space, the dynamics that would be generated by the harmonic
k, `, starting at (I′0, θ

′
0, t0), if all the other harmonics are ignored,

is given by the reduced Hamiltonian

hk,`
2n (I′, θ′, τ) = H̃′ 0,02n (I′) + 2 Re{H̃′ k,`

2n (I′) E j(k·θ′+Ωτ)}, (G.2)

where τ ≥ t0 is the time of the fictitious dynamics, Ω = ` · ωo,
and we consider k ∈ Z8\{0}. The resonant nature of the harmonic
depends on the closeness of the actions I′0 to the resonance con-
dition

k · ω′2n(I′) + Ω = 0, ω′2n =
∂H̃′ 0,02n

∂I′
, (G.3)

which defines a hyperplane of normal vector k in the space of the
mean frequenciesω′2n and an algebraic variety in the space of the
actions I′ (at degree four this is a hyperplane as ω′4 depends lin-
early on I′). According to the reduced Hamiltonian, the actions
I′ oscillate along the direction k, that is,

İ′ = −
∂hk,`

2n

∂θ′
= 2k Im{H̃′ k,`

2n (I′) E j(k·θ′+Ωτ)}. (G.4)

Following the Chirikov (1979) derivations, we performed the
explicit reduction of the Hamiltonian in Eq. (G.2) to one DOF.
We considered the canonical transformation (I′, θ′) → (p,ϕ)
defined by the time-dependent generating function

F(p, θ′, τ) =
(
I′r

T
+ pTM

)
θ′ + pTν τ, (G.5)

where M is a real 8 × 8 matrix, I′r, ν ∈ R8, and T denotes the
transposition operator. One has

I′ =
∂F

∂θ′T
= I′r +MT p, ϕ =

∂F
∂pT = Mθ′ + ντ,

}k,`
2n = hk,`

2n +
∂F
∂τ

= hk,`
2n + pTν.

(G.6)

We chose the first row of the matrixM to be kT , and the remain-
ing seven rows to be orthonormal vectors (eT

i )8
i=2 perpendicular

to k, that is, eT
i e  = δi  and eT

i k = 0 for 2 ≤ i,  ≤ 8. It follows
that

I′ = I′r + p1 k +

8∑
i=2

piei, (G.7)

with p = (p1, . . . , p8)T . We finally chose ν = (Ω, 0, . . . , 0)T so
that ϕ1 = k · θ′ + Ωτ. The reduced Hamiltonian }k,`

2n governing
the new canonical variables (p,ϕ) is given by

}k,`
2n (p, ϕ1) = H̃′ 0,02n (I′(p)) + Ω p1 + 2 Re{H̃′ k,`

2n (I′(p)) E jϕ1 }. (G.8)

The reduced dynamics only affects the momentum p1, and
(pi)8

i=2 are all integrals of motion. These constants can be set
to zero by choosing I′r = I′0 and employing the initial condition
I′(τ = t0) = I′0 so that p1(τ = t0) = 0 and

I′(p1) = I′0 + p1 k. (G.9)

As the action variables I′ are non-negative by definition, the
dynamics of the momentum p1 is generally restricted to a sub-
set of the real line that is bounded from above, below, or both,
depending on the wave vector k.

G.1. Reduced phase spaces

A different choice considered by Chirikov (1979) consists in tak-
ing I′r on the resonance surface given by Eq. (G.3), with the addi-
tional constraint that I′0 − I′r is parallel to the direction k, that is,

k · ω′2n(I′r) + Ω = 0, I′0 = I′r + p1(t0)k. (G.10)

With this choice, the integrals of motion (pi)8
i=2 have null values

and the action variables are given by

I′(p1) = I′r + p1 k. (G.11)

To simplify the notation, we omit the subscripts of the reso-
nant variables (p1, ϕ1) from now on. With Chirikov’s choice
and under the assumption of sufficiently small oscillations of
the momentum p, the reduced Hamiltonian can be expanded
around I′r and provides, at first order, the universal description of
a non-linear resonance in terms of pendulum dynamics (Chirikov
1979). In this case the vector I′r represents the centre of oscilla-
tion in the action space.

When truncating the Lie transform in Eq. (F.4) at degree 2n,
the two constraints in Eq. (G.10) can be rewritten as a poly-
nomial equation of degree n − 1 in the variable p(t0), which
thus possesses up to n − 1 real solutions. As a generalisation of
the pendulum approximation, when no real solutions for p(t0)
exist, or when the corresponding vectors I′r have some nega-
tive components, generally no hyperbolic fixed points appear in
the reduced phase space (p, ϕ). The dynamics is thus globally
characterised by rotation states of the angle ϕ. Depending on
the Fourier amplitude H̃′ k,`

2n , libration islands may still exist, for
example close to the boundaries of the p variable. However, in
the absence of hyperbolic points, they are not enclosed by a sep-
aratrix. These reduced phase spaces are therefore considered as
non-resonant. When a real solution for p(t0) exists and the cor-
responding point I′r lies in the physical action space (that is, its
components are all non-negative), hyperbolic fixed points gener-
ally appear in the phase space. The separatrices that emerge from
these points separate resonant libration states of ϕ from rotation
states. The position of the fixed points along the momentum axis
is offset with respect to p = 0 (corresponding to the action point
I′r) by an amount that depends on the Fourier coefficient H̃′ k,`

2n .

G.2. Fixed points

The topology of a reduced phase space depends on the posi-
tion of the system in the eight-dimensional action space, that
is, it depends on I′0 through Eq. (G.9) or Eq. (G.10). An explicit
study of the one-DOF Hamiltonian in Eq. (G.8) can be carried
out when a given point I′0 is considered. The fundamental idea
in this work is to retrieve the topology of the reduced phase
spaces along the nominal solution S′2n(t) = (I′2n(t), θ′2n(t)), that
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is, I′0 = I′2n(t = t0). For each Fourier harmonic k, `, one obtains
a one-parameter family of phase spaces spanned by the time
t0. We studied their topology through the retrieval of the fixed
points. Their position can be analytically obtained in the pendu-
lum approximation; however, while the pendulum model works
fine for the majority of the harmonics, it turns out not to be per-
tinent for the leading resonant ones, which are our main interest.
Fortunately, as the following derivations show, computer alge-
bra allows the fixed points of a general reduced phase space to
be systematically retrieved, making the pendulum approxima-
tion unnecessary.

In light of Eqs. (G.9) and (G.11), the reduced Hamiltonian
can be written as

}(p, ϕ) = f0(I′(p)) + Ω p + 2 Re{ f1(I′(p))E jϕ}, (G.12)

where we rename }k,`
2n , H̃′ 0,02n , and H̃′ k,`

2n as }, f0, and f1, respec-
tively, to keep a simpler notation. From Eq. (B.3) it follows that
one can write f1(I′) = µ(

√
I′)F1(I′), with

µ
(√

I′
)

=

8∏
i=1

√
I′i
|ki |

, (G.13)

where we denote
√

I′ = (
√

I′i )
8
i=1 and k = (ki)8

i=1. The function
µ is thus a real multivariate monomial of degree |k| =

∑8
i=1 |ki|

in the square roots of the action variables, while F1 can be
expressed as a multivariate polynomial of degree (2n−|k|− |`|)/2
in the action variables2, the order of the harmonic k, ` (i.e.
|k| + |`|) being an even integer. The fixed points of the Hamil-
tonian } satisfy the system of equations{

Im{ f1E jϕ} = 0
d f0 + Ω + 2 Re{d f1E jϕ} = 0

, (G.14)

where d stands for derivation with respect to p. The function
d f0 is a multivariate polynomial of degree n − 1 in the action
variables and thus a univariate polynomial of the same degree
when expressed in the variable p. Because of the square roots
appearing in f1 and in its derivative d f1, the system of equa-
tions (G.14) is non-algebraic. Nevertheless, systematic manipu-
lations of these equations allow its solutions to be found through
the roots of a univariate polynomial in the variable p. Search-
ing for solutions that correspond to non-null values of the action
variables I′, we assumed µ , 0 and write the first equation as
F1E2 jϕ = F1. From Eq. (G.13) it follows that the square root
dependence in d f1 can be eliminated through multiplication by
the function

η
(√

I′
)

=

8∏
i=1

√
I′i
|ki |mod 2

, (G.15)

that is, the function d̃ f1 = ηd f1 can be expressed as a polynomial
of degree n − 1 − (|`| −

∑8
i=1 |ki|mod 2)/2 in the action variables.

Through multiplication by η and taking the square, the second
equation of system (G.14) implies η2(d f0 +Ω)2 = 4 Re{d̃ f1E jϕ}2.
The first equation then allows the dependence on the variable ϕ
to be eliminated from the second equation, providing the systemF1E2 jϕ = F1

|F1|
2
[
η2(d f0 + Ω)2 − 2|d̃ f1|2

]
− 2 Re{(d̃ f1F1)2} = 0

. (G.16)

2 The polynomial F1 generally has complex coefficients as the phases
of the quasi-periodic decomposition of the giant planet orbits in Eq. (3)
are explicitly contained in the complex amplitudes.

The second equation is now a univariate-polynomial equation in
the variable p of degree 2(2n − 1 −

∑8
i=1b|ki|/2c) − |`|. Its com-

plex solutions can be systematically retrieved through a univari-
ate polynomial solver. Among all the solutions, one has to keep
the real ones that correspond to positive values of the action vari-
ables I′ in Eqs. (G.9) or (G.11). For each solution p?, the value
of the angle ϕ? is then given by E jϕ? = ±(F1(p?)/F1(p?))1/2,
where the sign is chosen to restore the sign loss that occurs in
squaring the second equation of the system (G.14).

The linear stability of a fixed point is assessed from the sign
of the eigenvalues of the variational matrix

V =

(
−∂2}/∂p∂ϕ −∂2}/∂ϕ2

∂2}/∂p2 ∂2}/∂ϕ∂p

)
(G.17)

evaluated at the fixed point. The matrix V is the product of
the symplectic matrix J = ((0,−1), (1, 0)) with the Hessian of
the reduced Hamiltonian, and its eigenvalues λ are given by the
equation λ2 = − det(V). In the case of an elliptic fixed point (i.e.
when λ2 < 0), the angular frequency of the small oscillations is
given by ωell =

√
det(V), while in the case of a hyperbolic fixed

point (i.e. when λ2 > 0) we denote ωhyp =
√
− det(V).

G.3. Level curves

We systematically characterised the level curves of the reduced
Hamiltonian by retrieving their extrema. The tangent direction t
to the level curve }(p, ϕ) = }0 can be expressed as

t = ( ṗ, ϕ̇) = (−∂}/∂ϕ, ∂}/∂p). (G.18)

The extrema of the variable p along the level curve satisfy the
equation ∂}/∂ϕ = 0, while the extrema of ϕ are given by
∂}/∂p = 0. To distinguish between the minima and maxima of
the variables, one studies the acceleration vector a = ṫ along the
level curve, which is given by

a =

(
−
∂2}

∂p∂ϕ
ṗ −

∂2}

∂ϕ2 ϕ̇,
∂2}

∂p2 ṗ +
∂2}

∂ϕ∂p
ϕ̇

)
. (G.19)

It follows that −(∂}/∂p)(∂2}/∂ϕ2) is positive for a minimum of p
and negative in the case of a maximum. Similarly, an extremum
of ϕ is a minimum when −(∂}/∂ϕ)(∂2}/∂p2) is a positive quan-
tity and a maximum if it is negative.

As an example, the extrema of the momentum p along the
level curve }(p, ϕ) = }0 are given by the system of equations{

Im{ f1E jϕ} = 0
}0 = f0 + Ω p + 2 Re{ f1E jϕ}

. (G.20)

Similarly to the computation of the fixed points, the solutions
of Eq. (G.20) can be searched for among those of the system of
equations{

F1E2 jϕ = F1

(}0 − f0 −Ω p)2 = 4| f1|2
, (G.21)

which involves the solution of a univariate-polynomial equation
of degree 2n in the variable p.

G.4. Resonance half-width

Following Chirikov (1979), we denote as ω the projection of the
frequency vector ω′ = dθ′/dt along the normal to the resonance
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plane k·ω′+Ω = 0, that is, ω = ‖k‖−1 k·ω′. The reduced dynam-
ics in Eq. (G.12) induces a variation in this projection equal to
∆ω = ‖k‖−1∆ϕ̇. Based on ideas from frequency analysis (Laskar
1993), we then associated with the level curve of the reduced
Hamiltonian passing through the point (p0, ϕ0) its rotational fre-
quency ν(p0, ϕ0), that is, the time mean of the instantaneous fre-
quency ϕ̇,

ν(p0, ϕ0) = lim
t→∞

1
t

∫ t

0
ϕ̇(τ; p0, ϕ0) dτ, (G.22)

where the time integration is meant along the trajectory starting
at (p0, ϕ0) at time τ = 0. The rotational frequency of a separatrix
is null, as for the librations of the angle ϕ inside a resonant island,
while ν is different from zero for rotations. Therefore, we estab-
lished the half-width of a resonant harmonic from the variation
in the rotational frequency across its separatrix. To associate an
intrinsic half-width with each harmonic as in the Chirikov (1979)
definition, we defined once and for all the two-fold half-width as

∆ω± = ‖k‖−1ν(p±, ϕ± + π/2), (G.23)

where (p±, ϕ±) are the locations of the maximum and minimum,
respectively, of the momentum p along the separatrix of the
resonance (it is implicitly assumed that the line curve through
(p±, ϕ± + π/2) corresponds to a rotation of the angle ϕ). When
applied to the simple pendulum, definition (G.23) gives

∆ω± = ±2ωhyp‖k‖−1β, (G.24)

where β = π/(2
√

2/3K(2/3)) is a constant factor, K(m) =∫ π/2
0 (1 − m sin2 φ)−1/2dφ being the complete elliptic integral of

the first kind. As β ≈ 0.95, Eq. (G.24) is practically the Chirikov
(1979) half-width (recall that ωell = ωhyp for the pendulum).

To compute the frequency ν of a rotating line curve in a
numerically efficient way, we write ν(p0, ϕ0) = 2π/T (p0, ϕ0),
where the signed period T is given by

T (p0, ϕ0) =

∫ 2π

0

dϕ
ϕ̇(p(ϕ; p0, ϕ0), ϕ)

, (G.25)

with ϕ̇(p, ϕ) = ∂}(p, ϕ)/∂p. Equation (G.25) assumes that ϕ
is a monotonic function of time along the level curve through
(p0, ϕ0) (i.e. ϕ̇ > 0 or ϕ̇ < 0), and p = p(ϕ; p0, ϕ0) then
represents the momentum as a (single-valued) function of the
angle3. To compute the signed period without numerical integra-
tion of the corresponding trajectory, we reconstructed the curve
p = p(ϕ; p0, ϕ0) geometrically. We started by retrieving the min-
imum, pmin, and maximum, pmax, of the momentum along the
level line (p0, ϕ0) as solutions of system (G.21). We then linearly
sampled values of p in the interval [pmin, pmax] and retrieved cor-
responding values for ϕ through Eq. (G.12), which consists of a
linear trigonometric equation in the angle variable. We finally
used spline interpolation to uniformly sample the curve along
the angle axis and compute the integral in Eq. (G.25).

The two-fold definition in Eq. (G.23) attributes a different
half-width to each side of the resonance along the momentum
axis. While the pendulum dynamics is symmetric, the two half-
widths ∆ω± are not equal in absolute value in the general case.

3 In the general case, the integral must be split over subsets of [0, 2π]
for which ϕ̇ does not change sign, and the contributions summed in
absolute value to obtain the period of the motion. We simply do not
compute the rotational frequency when ϕ is not monotonic, as this con-
stitutes a minority of cases.

Moreover, their signs depend on the topology of the reduced
phase space and are not necessarily opposite (see, as an example,
the resonance θ1:1 at 450 Myr in Fig. 2). The time statistic of the
resonance half-width along the sampled nominal solution (given
in Table 2) is constructed from the sample

∆ω = {|∆ω+(tm)|, |∆ω−(tm)|}, (G.26)

where m spans the subset of times the harmonic is resonant. The
two sides of the resonance are thus equally weighted in abso-
lute value. More informative statistics are the signed half-widths,
∆ω+ and ∆ω−, derived from the samples{

∆ω+ = {∆ω±(tm) |∆ω±(tm) > 0}
∆ω− = {∆ω±(tm) |∆ω±(tm) < 0}

, (G.27)

whose medians define the asymmetric resonance layers in Fig. 3.

G.5. Time sampling

To retrieve the samples of the fixed point frequencies ωhyp, ωell
and of the resonance half-width ∆ω along the sampled nominal
solution S′2n(tm) = (I′2n(tm), θ′2n(tm)), we first applied the low-
pass KZ filter to the time series of the action-angle variables,

(Î′2n(tm), θ̂′2n(tm)) = KZ[(I′2n(tm), θ′2n(tm))], (G.28)

with three iterations of the moving average and a cutoff fre-
quency of (5 Myr)−1. Similarly to our definition of a librating
harmonic in Appendix F, we are not interested in harmonics that
are resonant over timescales much shorter than the Lyapunov
time. Moreover, low-pass filtering allows the time series to be
resampled with a timestep ∆t′ = 250 kyr, which is much big-
ger than the original one, ∆t = 1 kyr Appendix C. This resam-
pling is fundamental for actually being able to perform the sys-
tematic retrieval of the reduced phase-space topology over the
entire nominal solution, which spans 5 Gyr, and for all the librat-
ing harmonics. We point out that, because of the linearity of
the KZ filter, filtering the angle variables θ′(t) is equivalent to
filtering the corresponding instantaneous frequencies dθ′(t)/dt,
as done in Appendix F to define time-dependent fundamental
frequencies.

G.6. Polynomial solver

To find numerical approximations to the roots of a univari-
ate polynomial with complex coefficients, TRIP implements
the fixed-precision algorithm of Bini (1996) and extends it to
quadruple- and multi-precision floating point coefficients. Based
on the Ehrlich-Aberth iteration (e.g. Bini 1996), which allows
simultaneous approximations of all the roots, the algorithm guar-
antees a posteriori error bounds. This allows, in particular, the
real roots we are interested in to be isolated in a robust way. The
algorithm deals with polynomials of high degree and with very
large or small coefficients. Such polynomials can be generated
in the symbolic preprocessing of systems of equations, as in our
case. When a lack of convergence to some of the roots is detected
after a fixed maximum number of iterations, or in the rare case of
an overflow, we temporarily switched to the more recent imple-
mentation of MPSolve 3 (Bini & Fiorentino 2000; Bini & Robol
2014), which we integrated in TRIP and which provides a guar-
anteed approximation of the roots with any desired number of
digits.
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Fig. G.1. Time PDF of the hyperbolic fixed point frequency ωhyp (first line), resonance half-width ∆ω (second line), and signed half-widths ∆ω−,
∆ω+ (third line), for four resonant harmonics listed in Table 2 and degree of truncation 2n from six to ten. Each time distribution results from the
truncated Hamiltonian H′2n along the nominal solution S′2n(t) spanning 5 Gyr. Kernel density estimation of the PDF is shown as a solid line, and
the observed median and the [5th, 95th] percentile range are represented by a vertical dashed line and a shaded region, respectively. Frequencies
are in arcsec yr−1.

Appendix H: Transformed proper modes and time
distributions

The proper modes u = (ui)4
i=1 and u = (vi)4

i=1 introduced in
Appendix B change under the Lie transform according to

(u′, u′) = E−LS (u, u). (H.1)

While the transformed proper modes are formally determined
by Eq. (H.1), the need to truncate the Lie transform in actual
computations produces different definitions, that is,

(u′2n, u
′
2n) =

n−1∑
q=0

Lq
S

q!

 (u, u). (H.2)

Even though the Lie transform defines a canonical change of
variables close to identity, its slow (finite-degree) convergence
shown in Appendix F suggests that the contributions from high-
degree terms are actually non-negligible. Indeed, harmonics of
order eight and ten appear among the leading resonances of
Table 2, and their amplitudes are largely the result of the Lie
transform. The truncated proper modes in Eq. (H.2) may thus
be expected to differ from one another in an appreciable way.
As the resonances in Table 2 are given in the proper modes
truncated at degree ten, we show in Fig. G.1 some examples
of the dependence of the time statistic on the degree of trunca-
tion of the Lie transform. For the resonant harmonics σ1:1, θ2:1,

θ1:1, and (g1 − g3) + (s2 − s3), we report in the corresponding
column the time PDF of the hyperbolic fixed point frequency
ωhyp (first line), the resonance half-width ∆ω (second line), and
the signed half-widths ∆ω−, ∆ω+ (third line), for degrees of
truncation from six to ten. Each time distribution thus results
from the truncated Hamiltonian H′2n along the corresponding
nominal solution S′2n(t), which spans 5 Gyr. We show the ker-
nel density estimation (Rosenblatt 1956; Parzen 1962) of each
PDF (we used the Gaussian kernel and the Silverman (1986)
rule of thumb to select the bandwidth4) as well as the observed
median and the [5th, 95th] percentile range. Figure G.1 shows
that the time distributions of different degrees largely overlap
one another. Their medians, in particular, differ by a factor of
two at most. These examples indicate that, as the nominal solu-
tion varies within the chaotic zone, the resonant nature of a
Fourier harmonic can be stated statistically, in a way that is,
within the framework of this study, largely independent of the
precise truncation of the proper modes in Eq. (H.2). The depen-
dence on the truncation degree does not modify the general pic-
ture of the resonance web given in Table 2. Truncation at degree
ten, used for that table, allows the appearance of higher-order

4 The harmonic θ1:1 is resonant for only 0.3% of the time at degree
six, so the corresponding PDFs present spikes. We thus had to adapt the
bandwidth choice to get a smoother estimation for ∆ω. We also point
out that θ1:1 possesses no negative signed half-width at degree ten (see
its phase space at 450 Myr in Fig. 2).

L3, page 15 of 16



A&A 662, L3 (2022)

harmonics to be accounted for. In this context, we point out
that one may expect libration episodes of a resonant harmonic
to emerge in a statistical framework independently of the pre-
cise proper modes and even the dynamical model employed, as
shown in Fig. 4. This consideration is clearly restricted to sets
of proper modes that differ by a quasi-identity change of vari-
ables from those that integrate the LL dynamics (e.g. u, u in
this work or z•, ζ• in Laskar 1990a), and to dynamical mod-
els that faithfully reproduce the predictions of N-body numerical
integrations.

We remark that we do not provide confidence intervals
for the PDF estimation in Fig. G.1. Estimation of confidence
intervals must take into account that the time samples are cor-
related over a length comparable to the Lyapunov time of
the dynamics. Confidence intervals for correlated data can be
obtained via moving-block bootstrap (Hoang et al. 2021), for

example. While one may expect the variance of the PDF esti-
mation to be rather large, we aim here to show the compati-
bility of the distributions across different degrees of truncation,
and this is already indicated by the PDF estimation itself. More
precisely, we do not intend to state exact time distributions for
ωhyp or ∆ω (which would be limited by the assumptions behind
our approach, by the way) but simply to identify the ranges
over which these dynamical quantities may statistically vary.
As an example, the overlap between the asymptotic Lyapunov
exponent in Fig. 1 and the ranges spanned by ωhyp and ∆ω
in the case of the leading resonances θ1:1 and θ2:1 is clearly
robust across different degrees of truncation. In this sense, the
medians and percentile ranges in Table 2 are not meant to
represent strict values for the corresponding observables, but
more simply to synthesise distributions such as those shown in
Fig. G.1.
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